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1. Introduction

This report defines an upward compatible extension of the programming language Pascal [1,2].
This extension is designed to support the construction of large systems programs. A major attempt
has been made to keep the orginal goals of Pascal intact; in particular, Pascal* strives for
simplicity, effcicnt runtime implcmcntation, efficient compilation, language security, and compile-
time checking. Many of the ideas in Pascal* arc influenced by other languages, especially the
programming language Mesa [3].

The first part of this report introduces the language. The latter parts define the language
features and give examples. Pascal* is an upward compatible extension of standard Pascal, but it is
syntactically distinct. A syntactically separate extension has two significant advantages: standard
Pascal programs will execute as standard Pascal* programs, and Pascal* programs will not be
parsed by standard Pascal compilers. Thus standard Pascal compilers will gcneratc syntax errors for
Pascal* programs which employ portions of the extension.

There are seven classes of extensions:

1. Type structure - parametric types,  type constructors, random access files, explicit packing
and allocation size control, and extensions to the notation used in variant records.
2. Constants, variables, and expressions - constant expressions, variable init!?lization,
conditional boolean operators, and a type recasting function.

3. Control structures - set quantification statement, a loop exit statement, and a return
statement.
4. Modules - a module construct, with identifier importing and exporting.

5. Exception handling - exception signalling and handling.
6. Procedures and functions - generalization of the ftmction return type and a constant
parameter type.

7. Predefincd objects - extended dynamic storage management, a string type and string
operations, set functions, prcdefined exceptions, and additional implementation deEned
constants.

This report uses the cxtcndcd IWF notation used in the Pascal standard [2]. l’hc existing Pascal
BNF is not repeated but is employed in the syntax definition of Pascal*. The semantics are defined
informally.

1.2 General Extension

A minor but gcncral extension to the language is to relax the order of declaration rules for
labels, constants, types,  variables, procedures and functions. ‘l’hesc declaration sections may occur in
any order and any number of titnes. This rule permits structured constants, and grouping of
declarations. An identifier must still be declared before it is used. Pointer types arc cxcludcd from
the declaration bcforc USC rule, and procedures can bc predeclarcd with a forward dcciaration. The
new syntax for the declaration  section is:

block = declarations statcmcnt-part .

declarations = (declaration)  .
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declaration = constant-definition-part
1 type-definition-part
1 variable-declaration-part
1 procedure-declaration
1 exception-declaration
I handler-declaration
I function-declaration
I label-declaration-part .

2. Types

2. L Parmctric Types

type-definition = identifier [ type-parameter-list ] ” =” type .
type = parametric-type

I simple-type
I structured-type .

parametric-type = idcntificr type-parameter-list
I type .

type-parameter-list = “(” type-parameter { “,” type-parameter ) “)” .
type-parameter =  i d e n t i f i e r  { “,‘I  idcntiiier } “:” simple-type  .
simple-type = scalar-type

I subrange-type
I type-identifier .

subrange-type = id-or-constant “..” id-or-constant .

id-or-constant = identifcr
I conslant .

A parametric  type is not a conventional type; it is a template for a type. The type descriptor in
a paramtric  type may contain identifiers which would need to bc constants in a standard Pascal type
definition. In a parametric type definition thcsc identifiers  are formal parameters.  The parameters
arc local to the type dcfintion and arc bound to the instances of the idcnNiers  occuring in the type
specifier. Instances of new types can bc created by using a parametric type name with a set of
actual parameters. Parametric types provide a flexible solution to the problems of array handling
which arise in Pascal [2,4].

2. I. I Puratnetric  type defitlitioti

A parametric type definition consists of a type name, the formal parameters for the type with
their type-name, and a type specifier which employs the parameter names in place of constants.
Altcrnativcly, a parametric ty.pc T1 may bc dcfincd in terms of another parametric type T2, where
the a c t u a l  parameters to  T2 consist of constants and the formal paramctcrs of type Tl. A
parametric type definition must specify formal parameters for all parametric components of the
type. For example, the following defines two parametric types T and Tarray:

tYW T(a,b: integer) = a..b;
Tarray(a,b: char; c,d: integer) = array [a..b] of ‘i’(c,d);

The type, Tarray, must specify paramctcrs for the array component, T, since it is parametric.
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2. I.2 Parametric iype instantiation

Since parametric types are templates, they are incompletely specified and denote a class of
types. Conventional types (called concrete) can be formed by supplying constants as actual
parameters to a parametric type. The resulting concrete type has all the properties of a Pascal type.
For example:

type Concrete: Tarray  (‘A’, ‘H’, 1, 20);
defines an array type whose components are type L.20 , and which has index type ‘A’..‘H’. The type
Concrete is a dell-delincd type and may be used in the usual manner.

2.1.3 Parameters and pointers

Pascal * allows variable parameters,  constant parameters, and pointers to be declared as
parametric types. The binding to a particular concrete type is delayed until runtimc, only the
parametric type is known at compile-time.

When var and readonly parameters to procedures are defined as parametric types, the
corresponding actual parameter must be a concrete instance of the parametric type. The binding to
the specific concrctc instance occurs at procedure  call time.

A pointer type which is parametric is bound to a concrete type either by supplying values in
calls to the proccdurc new, or by assigning to another pointer which has an associated concrete type.
Thus every non-nil pointer has a concrete type. Since the paramctcrs for a parametric pointer type
can be spccif-ied  in a call to new, it is possible to create dynamic objects in the heap. Dcrefencing a
non-nil parametric pointer yields a parametric type whose parameters come from the pointer type.

A pointer of type rT where T is parametric may bc assigned to any other inst.ancc of the same
parametric type and to a concrete instance of the type whose parameters match. A parametric
variable or constant parameter may only be assigned to a instance of the parametric type, with the
same parameter values.

2. I. 2 Type Parameter Values

The values of the actual parameters for any instance of a parametric type arc acccssecl using
record sclcction notation. The parameters arc treated as constants. For example:

type S(a,b: 1‘) = record
fl: Tl (a,b);
fit: T 2

end;
var p :  rs;

procedure Q(var x: S);
begin

( p?.a and pr.b are actual parameters for pr;
x.a and x.b are actual paramctcrs for x. )

end;

2.1.3 Example - Matrix Handling

{Example - matrix multiply.

The following procedure will multiply two matrices of arbitrary size. A work matrix of the
resultant size is created in the heap. This allows the procedure to accomodatc the scame
actual paramctcr  passed to both formal paramctcrs.)
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const maxsize =  2 5 ;
tYPc size: 1 ..maxsize;

matrix (m,n: size) = array [l..m,l..n]  of real;
var a: matrix (10,5);

b: matrix (5,lO);
procedure MatrixMultiply (var a: matrix; rcadonly b: matrix);
{Multiply a*b and store into a, using a scratch matrix in the heap)
type matrixptr = rmatrix;
var i, j ,  k: Lmaxsize;
(Need a work matrix pointer - we could declare a work matrix using: Matrix (maxsize,maxsizc))

c: matrixp tr;
lwgin

new (c (a.m,b.n));
if (a.n 0 b.m) or (a.m <> b.n) then error (‘matrix incompatability’)
ClSC for i := 1 to a.tn do for j : = 1 to b.n do begin

ct [i,j] : = 0.0;
for k : = 1 to a.n do ct [ij] : = cf [ij] + a[i,k]  * b [kj]

end;
for i : = 1 to a.m do for j : = 1 to b.n do a[i,j] : = CT [i,j];
dispose (c);

end ( matrixmultiply );
begin

MatrixMultiply  (a,b)
end.

2.2 Type Compatibility

The rule for type compatibility is the rule used in the Pascal standard wi~i appropriate
extensions for parametric types. Two paramteric types arc compatible if cithcr they are compatible
in the standard Pascal sense, or their types names arc the same and the paramctcrs are equal.
Additionally, two parametric pointer types are assignment compatible if’ they have the same type
name (even if their paramctcrs differ). 13ccause of the strict rules for type checking, problcrns  may
bc cncountcrcd in multi-module programs where two modules provide diffcrcnt names for
structurnlly  equivalent objects. This type of problem can bc solved with simple applications of type
rccas t ing.

2.3 Type Constructors

type-constructor = type-identifier ‘I[” type-specifier “1” .
type-identifier = identifier .

type-specifier  = expression
I range-specifier ‘Y’ expression
1 type-spccificr  { ‘I,” type-specifier  )
1 [type-identifier] “1” type-spccificr “I”
1 [record-identifier] ‘I[” record-spccificr  “I” .

record-specifier = field-identifier ‘7 type-specifier  (I’,” field-identifier “:” type-specifier) .

range-spccificr  =  express ion  ‘Y’ expression  .

entire-variable = variable-identifier
I type-constructor .
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A type constructor permits the construction of a value of any defined concrete type. Consider a
type constructor of the form T “[” type-spccificr  “I”. T must bc a concrete type, i.e. it can not be
parametric. The type T dictates the form of the type specifier and the result of the type constructor
according to the following rules:

1. T is a simple type or set type, then the type specifier must be an expression of type T.
The result is a value of type T equal to the value of the type specifier expression.

2. T is a array type, then the type constructor must be either a list of expressions with
length equal to the size of the index type, or a list of range specifiers. The result is a value
of the array type T, with the components being the values in the type specifier. If the t, pe
specifier is a list of values they are matched to the array components by matching increasing
indices with increasing positions in the list of values. If the type specifier is a list of range
specifiers, then each range range spccificr has the syntax range : expression and means that
all clcments of the array in the rarlge  should obtain the value of expression. The range
values in the list of range specifiers may not overlap. In either case the types of the
expressions must match the component type of the array.

3. T is a record type, then the type specifier must be a list of field-identifier - val& pairs.
The field idcntificrs must match the field names of the record and the type specifiers must
correspond to the associated field types.  No field-identifier may OCCW* more than once. The
result is a value of type T, with the record fields equal to the corresponding values from the
typ *: spccificr list.

The type name which normally precedes the type spccificr is optional for inner components of a
type constructor. Type constructors may appear anywhere a variable of the constructed type could
appear,  except that they may not bc assigned to, nor passed as variable parameters. Furthermore, if
all the expressions in a type specifier arc compile-time constants, then the result is a constant, and
may appear anywhere a constant might appear. In the type constructor for a string or a packed
array of char the abbreviation ‘string of characters’, may be used for a list of character constants;
the number  of elements in the list must match the length of the string of characters.

2.3. I Examples
tYPe T = array [1..3]  of in tcger;

R = record
field 1: integer;
ficld2: 1’

end;
s = set of 1..20; .
Matrix = army [1..2,1..2]  of real;

const ZeroMatrix  = Matrix[[  L..2: O],[O,O]];
OncTwoThrec = T[l,2,3];
DiagMatrix  = Matrix[[l,O],[  l,O]];

var x: 7’;
i, j: integer;
sset: S;
rrccord: R ;

i :=4; j :=5; .
sset : = S  [S..lO,i..j] ;
rrecord : = I<[ fieldl:i,  field2: [i,10,25]]  ;
X : = T[4,5,j]

end.

-5-



2.5 Files and Random Access

Random access is available to all files, using the type seek~ype and the procedure seek:

tYPc seektype - (fromstart, fromcnd, relative);
procedure seek (var f: file; from: seektypc; var n: O..maxint)

f -- specifies the file to access
from -- specifies one of three seek types:

fromstart -- seeks from the start of file (n > 0);
fromend - - seeks from the end of the file (n < 0);
relative -- seeks from the current position.

n -- number of records to seek in the file. The actual offset of the record from the start of
the file at which the seek stops is returned, in n.

The file operation overput is defined as:
procedure overput (f: file) - writes the value of the buffer variable, f?, in the current file
component. If cof(f) is true prior to execution then the value of f? is appended to the file.

‘l’he file procedure overwrite causes the current component to be replaced.

procedure overwrite ( var f: file; x: T) is equivalent to:
fr x;:= ovcrput (f)

2.6 Machine Thzpendcnt Structures

Specification of the packed attribute for type T, has the effect of creating a new type whose
storage is minimized with respect to T. Only the structured  types array and record are affected by
packing; the standard procedures pack and unpack provide conversion between identical packed
and unpacked types (as in the standard).

‘l’hc exact cffcct of packing on a structure is only partially defined to permit a reasonable level
of implementation flexibility. Packing will in gcncral minimize storage; the exact layout of a
packed object is not dcfincd, except in the case of record fields. In a packed record each field of an
unstructured type is allocated the smallest size possible in bits; howcvcr, no field of a simple type is
required to cross a word boundary.

2.61  Size Control in Packed  Records md Arruys

field = id-list “:” type [ size-spcc ] .
array-type = “array” ‘I[” type “I” “9f’ type [ size-spec ] .

size-spcc = “allocate” “(‘I constant ‘I)” .

Within a packed record or packed array, a size attribute may be spccificd. In a packed
record the semantics of the size attribute for a field is to allocate that field as if it occupied the
number of bits spccificd in the size attribute. In a packed array the semantics of the size attribute is
to allocate each component  in the array as if it occupied the number of bits specified in the size
attribute.  The number  of bits rcquircd  fbr the field or component must bc less than or equal to the
specified value. The field or component is always right justified; if the field or individual array
components have a nonstructured type then they are not allocated across word boundaries.
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The following example illustrates the use of the size attribute (assume 32 bit words):

tYPc demo = packed record
f l :  0..3 :illocate (4 ) ;
12: O..l allocate (25);
f-3: 0..20

end;
isarray = packed array [l ..lOO] of O..lOOO  allocate (14);

The record would occupy 2 words with the following storage layout:

field word
fl 1
f2 1
f-3 2

bit positions
0..3
4..28
0..4

The array will occupy 50 words with 2 components/word, in bit positions 0..13 and 14..27,
respectively; bits 2k.31  arc empty.

2.7 Variant Records

case-constant = constant
I constant ‘I.” constant .

The labels on variant records may also contain constant subranges.

3. Constants, Variables and Expressions

3.1 Extended  Constants

constant = expression .

The definition of’ a constant is extended to include constants defined by any compile-time
computable expression. An extended constant may bc used anywhcrc a constant is normally
required. A compile-time computable cxprcssion is an expression containing only the f’ollowing:
manifest constants, defined constants, constant type constructors, the standard Pascal operators, array
indexing, record selection from the fixed portion of a record, and standard prcdcfined functions.

3.2 Variable Initialization

variable-declaration = id list “: ” type [ : = variable init ] .

variable-init = constant .

Variable initialization is only allowed to variables at the global level of a module or a program.
All variables in the identifier list arc initialized to the same value.
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3.3 I~oolean Expressions

multiplying-operator = “/” 1 “div” 1 “mod” 1 “and” 1 “cand” .
adding-operator = ” +” I “-” I “or” I “COT”  .

Two additional operators  are defined for boolean expressions. A cand B is equivalent to: if A
then 13 clsc false. A car 13 is equivalent to: if A then true else B. Note that the order of evaluation
for cancl and car is strictly defined.

3.4 Type Recasting Function

The type recasting function will convert the type of an expression to another type with the same
representation length. This fi.mction provides explicit type coercion which is implemented as a
compile time (but not constant) operation. The function takes two parameters, one of which is a
type name and the other the value to be coerced:

function Recasf  (value : Srctype; T: TypcName): T
To convert x to type ‘I’, the following call is made: Recast (x,T).  For example, to convert an integer
i to a real, the fimction invocation is: Recast (i,real), yielding a real result.

4.1 A set oricritcd for statement

for-statcmcnt = “for” control-variable ( ‘I: = ” for-list I “in” set-expression ) “do” statement .

This for statement quantifies over a set expression while assigning successive values from the set,
in the order smallest to largest, to the control variable.

4 . 2  Exit  Statement

statcmcnt = exit .

The exit statcmcnt causes termination of the most local statically surrounding for, while, or
repeat statement.

4.3 Extended Case Statement

cast-statcmcnt  = “cast” expression “of’ cast-parts “end” [ otherwise-part ] .
case-parts = cast-part ( ,“;” cast-part 3 .

case-part - case-label { “,” cast-label 3 ‘7 statcmcnt .

otherwise-part = “othcrwisc” statcmcnt .
case-label =constant [“..” constant ] .

Case labeling is extended to allow: constant subranges to act as labels. Also, the “otherwise”
clause, which is cxccuted if the cast selector expression fails to match any case label, is added. Cast
labels must not overlap.
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4.4 Return Statement

return statement = “return” .

The return statement causes immediate termination of the current procedure and a return to the
calling procedure.

module = “module” module-identifier [ program-paramctcrs ] I’;” declarations “.” .

module-idcntificr = identifier .

Modules provide encapsulation of procedures, functions, exceptions, constants, types, and
variables. Modules may also be separately compiled,  and intcrmodule type compatability will
insured by checking at compile time. Unless an identifier is explicitly exported from a module, it is
local to that module and can not be used from other modules. Likewise, all identifiers referenced
in a module must be tither local or explicitly imported from another  module. When an identifier, X,
is imported from a module A& its local name is 11/1.x. A with-statement can be used, as it is with a
record, to qualify an identifier reference. The statement with III clo S, will cause the identifier x to
be interpreted as A1.x within the statement S.

A program is a special instance of a module, declared as in standard Pascal. Only the program
rilay contain a main body, and every executable group of modules must contain exactly one instance
of a program.

5.1 Importing and Exporting of Names

declaration = “import” id-list “from” module-name
I “export” id-list [ “to” module-list ] .

module-list = id-list .

Named objects (i.e. constants, variables, types,  proccdurcs, functions, and cxccptions) which are
cxportcd or defined by other mod&s can bc accessed only if they arc named it1 an import
statement. The export statcmcnt makes a list of objects available for importation by other modules.
To rcfercnce an object dcclarcd by another module, it must bc cxportcd by the declaring module,
called the implementor, and imported by the accessing module, called the client. If the export
destination list is present in lhc implementor  it must include the name of the client module, and the
client module must always name the implementor. Omitting the module destination list on an
export  statcmcnt allows all potential clients access to the idcntificrs being exported. The compiler
creates the necessary information for intcrmodulc type checking, which is done at compile-time.
Modules must bc compiled according to the partial ordering derived from the USC of identifiers
which arc imported and cxportcd.

5 . 2  Creating Modu le  Interfaces

declaration = “defines” id-list [ “for” module-list ] .
I “implements” id-list “for” module-list .

It is often useful to separately define the interface between a client and an implcmcntor. There
arc several potential bcncfits including the ability to work on both client and implcmcntor in
parallel, and employing multiple implementors without requiring recompilation of the client. The
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defines and imphnents constructs provide a way of specifying module interfaces separately from the
implementing module.

Objects in the client/implementor  interface arc declared in an interface module, and listed in
the defines clause within that module. An implementor  may specify that it implcmcnts some subset
of the objects defined in the interface module by naming the objects in an implements clause. The
named objects will then reside in the implementor  but continue to be defined by the interface
module. The interface module need only be compiled once, then the implementor and client
modules may be compiled independently.

The defznes construct behaves like an export in that it makes a name accessible from both
client and implcmcntor modules. Client modules must import the object names which they require
from the module which defines them. The for clause on a defines statcmcnt specifics the legal client
modules just as a destination clause does on an export directive. Defines may be used to specify a
proccdurc type (i.e. its parameters and return type if it is a function). In this case the procedure
header is specified in the intcrfacc module, with the keyword definition replacing the body.

The impZerrwz/s  statement is used to specify that a certain module implements a portion of an
interface defined in an intcrfacc module. Implements specifics a list of’ identifiers which are defined
jn other modules but which rcsidc in the module with the implcmcnts construct. There can be at
most one implementor  for each defined object in a program. An object which is implcmcntcd in a
module is not rcdcclared in that module; however, a procedure or function body must be
elaborated in the implcmcntor. Such a procedure or function is declared as usual except the
paramc tcrs are omitted.

5.3 Restricted phrase

declaration = “defines” “restricted” id-list [ “for” module-list ] .

An exporting, defining,  or implcmcnting statcmcnt may restrict access to variables and types
which it defines, through the USC ot‘ the rcstrictcd construct. ‘l’hc construct exports, dcfi~~s, or
impicmcrlts  follow& by restricted id-list, will result in a set of objects whose use by modules which
import them is rcstrictcd. Rcstrictcd affects the USC  of both types and variables. For variables no
alicration of the value is permitted. For types only assignment and test for equality are permitted.
The jmplcmentor  retains full access rights. If an idcntificr is restricted by an interface module it
must also be rcstrictcd by the corresponding implcmcnt;\tic~n module.

5 . 4  Example

A module which implements some matrix operations is defined with an interface.
moclulc Matrixlntcrface;

{The interface to the module)
dcfincs restricted matrix;
imports vector from VcctorTnterface;
exports vector, size;
defines Add, GctRow;
tYPc size = L.50;

Matrix (m,n: size) = array [Lm] of vector (n);
procedure Add (var a: matrix; readouly b: matrix); definition;
procedure GetRow (var v:vcclor;  readonly amatrix; rownumber:size); definition;

end; { MatrixInterface 3
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module Matrix Module;

(Only two procedures arc included in the module, obviously other procedures, e.g. multiply
could also be included.)

implcmcnts Add ,  GetRow f o r  MatrixInterface;
imports size from Matrix Interface;
imports Add from VectorInterface;

procedure Add;
( assume no aliasing and compatible sizes )
begin

for i := 1 to a.m do VectorInterface.Add (a[i],b[i]);
em1 ( A d d  };
procedure GetRow;
begin

V : = a[rownumber];
entl { Dimensions );

end ( MatrixModule ).

‘I’hcn a scqar’ate UserModule could employ the the matrix routines via the interface:
module UserModule;

imports Add, GctRow,  Size, Matrix from Matrixlnterfi~cc;
imports Vector from VectorInterface;
( Create two matrices }
var M, N: Matrix( 10,lO);

i, j: Size;
v :  Vector;

procedure UscMatrix;
begin

MatrixIntcrfacc.Add (M,N);
Matrix Interfacc.GctRow (v,M,i)

end
end ( UserModule } .

6. Exception Handling

exception-declaration = exception-heading block .
exception-heading = “exception” “identifier” [ formal-parm-sections ] “;” .
formal-parm-sections  = “(I’ formal-parm-section { “;” formal-parm-section) “)” .
statement = “raise” “idcntificr” [ actual-parameter-list ]

I “catch” cxccption-handler {“;” exception-hnndler~  “in” statement
I “continue”.

exception handler = exception-idcntificr (“,” exception-identifier) I’:” statement .-
exception-identifier = “identifier” .
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6.1 Exception Declarations

An exception  declaration specifies an exception which can be raised and caught by a handler.
The exception declaration specifies the name of the exception and its formal parameters. An
cxccption must be declared (or imported) before it can bc caught or raised.

6.2 Exception Handlers

One or more exception handlers can be bound to a statement using the catch statement. The
catch statement supplies a list of exceptions  (and handlers) which are to be used if the named
exception is raised within the statement. For example: catch E]: S$...E,:  S, in S, specifies that. the
exceptions El,...,En are caught locally if the statement S terminates by raising any one of these
exceptions. After catching the cxccption EP statcmcnt Si is executed.

Scoping and access to identifiers in an exception handler is identical to that of the associated
statcmcnt S, except that the exception parameters arc also visible. A handler is very much like a
procedure; it can reference the paramctcrs declared by the exception declaration, contain procedure
calls and variable references, but is invoked in a special manner.

Additionally, the exception name others can be tised to define an exception handler which fields
any exception, except the special exception unwind. It has a single rcadonly parameter, which is type
string, and will contain the name of the exception  which was actually raised.

6.3 R a i s i n g an Exception

An exception is raised by the execution of a raise statement, of the form raise exception-name
“(“paramctcr-list”)“. Raising an exception causes one of two actions: either a program error or the
invocation of an exception handler, with the name of the raised exception or the name others.

The invocation of a handler for a raised exception  is dynamic according to the following
rules:

1. If the exception E is raised in procedure P within statcmcnt S, then the most local
exception handler  for 1; (or others) which is associated with a statement which includes E, is
invoked.
2. If no statement in I’ which contains S has handler for 1; or oll~s, then the search
continues with the statement which invoked P.
3. If the search reaches the main block and no handler appears there, a runtime error is
caused.
4. If a handler raises an exception the search begins with the statement which contains the
catch statement.

There arc two types of exceptions  statldard  and user declared Standard exceptions  - including
Overflow, DividcbyZcro, etc. can be raised by both programmer  and translated program,
standard parameters are dcfincd. It is not possible to continue after handling a predcfmed
exception. User declared cxccptions  are raised explicitly by user program.

6.4 Terminating a Handler
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The handler body can be thought of as an inline procedure, so that its execution interrupts the
execution of the statement raising the exception. Thus, there are several ways in which the exception
handler can complete execution:

r~orrml completion - reaching the end of the handler body. This causes the statement to
complctc cxccution and control begins on the next statement.

goto - has the same effect as if executed from within the object of the catch statement.
return - cffccts a normal procedure return from the proccclure enclosing the handler.

raise - raise another exception, accepts a paran&er list. The starch for the handler begins
on the surronding statement.

corltinuc  - causes execution to continue following the orginal raise statement.

If a series of procedures is about to be aborted (because a handler  is terminating without
using continue), then the exception mcvid  which has no parameters is raised at the point of the
orginal cxccption  raise. Urzwirzd  is never propagated  past the handler which caused its invocation. If
an unwind handler dots not terminate with the statement raise zmwird,  the propogation is halted
and control continues in the manner indicated by the unwind handler.

7. Procedures and Furlc time

One extension is made to the procedure and function parameter mechanism, and one extension
to the function mechanism.

7.1 Constant Parameters

formal-parameter-section = parameter-group
I “var” parameter-group
I “const” parameter-group
1 procedure-heading
1 function-heading .

A new parameter type const is introduced. Paramctcrs of type corlst  may only be rcfcrcnced;
they may not bc assigned to nor passed as variable paramctcrs.

7.2 Function Types

Functions are extended to allow them to return any type except parametric types and files.

8. Predefiml Objects

8.1 Dynamic Storage Managenwnt

New allocates storage from the dynamic storage pool (heap) and sets a pointer to the allocated
storage. There arc two additional types of calls to new. Assume p is type ?T, then
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1 .  new(p(vl,...,v,)) - if p is a pointer type described by p = rT(al,...,an)  then this call to
new creates an instance of type T(vI,...,vn) and returns it as pr; until p is reassigned the
type of pr is T(vI,...,vn).

2. ncw(p(vl,..., v,), tl,..., tm) - applies when the referent type of p is both parametric and a
variant record. The vi are the parameters and the ti are the tags.

Dispose is an explicit mechanism to free storage which will make available for reallocation via
subscqucnt calls to new. Assume p is type VI’, then dispose (p) has two effects: p? is made
available for allocation, and p is assigned the value nil. The operation dispose (p) has no effect on
any other objects or pointers unless the object is pr or the pointer is equal to p. If p1 = p and the
operation dispose(p)  is done, it is illegal to deference p1 before assigning it a new value.

8.2 Set Functions

If S is type set of i..j, then the following fimctions are defined on S:
first (S) = the smallest k 1 k in S.
last (S) = the largest k I k in S.

8 .3  Sca lar  P’mctions

ord - if x is an expression of scalar type ‘T, ord (x) returns the ordinal position of x in the
type. For example if 1’ = (ig,...,i,), then ord (ij> = j.

8.4 Type Functions

size - size (type name) yields the allocated size in storage units of the named type. If the
type is parameterized the parameters must appear following the type name, e.g. size (type
name (pl,...,pn)).

8.5 Standard Exceptions

A set of standard exceptions is dcfincd in the module Z)e~rredl7xceptiolls.  To raise or catch a
predefined exception, the cxccption name must be imported from the module into the local module.
The predefined exceptions can not bc continued. When a prcdcfined  cxccption is raised and a set of
activations is terminated, the portion of the code executed in any activation riced not be consistent
with the order of the code and the position of the statement which causes the raise.

The exception ZJfzdefinedZTxception  is raised when a prcdefined exception whose name was not
imported occurs; it can not’ bc caught and is always reported as an error in the program (the
variable values when this exception arises may not be well defined).
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The following definitions specify the standard exception headers (handlers for these exceptions
may not tcrminatc with continue), the existence and type of parameters for the standard exceptions
is implementation dcpcndent:

exception

exception

exception

cxccption

exception

exception

excepkion

exception

exception

exception

IntegerOvcrflow.

RcalOvcrflow.

RealUndcrflow.

ZeroDivide; (I3y an integer}.

ReferenceError; {Attempt to defercncc a null valued pointer}.

IndexError; ( A r r a y index not a member of the array index type}.

RangeError; (Attempt to exceed :he range of a scalar variable}.

StorageOverflow; {Available storage has been exceeded).

ContinuationError; (Attempt to continue for a prcdcfined exception).

InputError; (Input data does not match the date type being read).

8 .6  Imptementation Defined Conskmts

minint - minimum integer maxiill - max imum i!ltegcr
minreal - minimum real max real - maxi :num real
minchar - minimum character maxchar - maximum character
charsctsizc - size of character set maxsctsk - maximum set size

8.7 Implementation Requirements

These requirements may bc used in the creation of portable programs.

maxsctsizk  lminintl maxint > 60 > 215 - 1

charsetsize > 60
Itninrcall  , max real > 221 - 1

8.8 String Type

A string facility which provides varying length strings with a maximum size on each string is
included. The type siring is a parametric type: the parameter specifics the upper bound on the
length. The logical view on a string is defined by:

- 15 -



type s t r ing  (n:  O..maxint)  =  record
length: O..n;
text: packed array [l..n] of char

end

Pascal string constants of the form ‘characters’ are treated as string constants where the actual
parameter is the length of the string. Thus the constant ‘AK’, has type string(3), and is
considered an abbreviation for: string@)  [3, ['A', ‘B’, ‘C’] 1. The predcfincd constant nullstring is
defined as a string with a zero length field.

The type string is supported by a variety of predcfined procedures for manipulating strings.
Since strings arc standard variables they may be compared for equality and assigned, but thcsc
operations may be less efficient than using string procedures. The string procedures are briefly
dcfincd below in psuedo-Pascal* :

procedure ASSIGN(readonly source: string; var dest: string);
hegin

dest : = source; ( only the characters in positions l..length  in source are copied }
end;

function LENGTM(readonly  source:string):  O..maxint;
begin L E N G T I I :  =  sourcekngth cud;

functiou POS(rcadouly  string1 ,string:!:  string): O..maxint;
begin  i f  3i (stringlkxt - string2.text  [i..i+stringl.lcngth-1]  ) then POS: = i  e lse  POS:  =0
end;

procedure SUBSTR( readouly source:string; sourcepos:l..maxint;  lcng:O..maxint;
var dest: string; destpos: l..maxint);

b e g i n  dest.tcxt[dcstpos..destpos+leng-I] : = sourcc[sourcepos..sourcepos+leng-11;
dest.length:  = max(dest.length,dcstpos  + leng-1) end;

procetlurc APPENI>(rcadonly  source: string; var dest: string);
begin dcst.tcxt[dcst.lenglh  + 1 ..dest.length  + source.length]:  = source.text end;

function Gf”l’CI-IAR(readonly source:string;  sourcepos:l ..maxint): char;
begiu GEI‘CHAR: = sourcctcx  t[sourcepos] end;

procedure PUTCHAR(source:char; v a r  dcst:stcing; dcstpos:l..maxint);
begin dcst.text[destpos]:  = source end

Additionally, the following comparison functions are provided: S’I’REQ, STRN E, STRGT,
STRGE,  STRLT, STRLE. Each accepts two strings and returns a boolean result, They are defined
as follows:

function STREQ(readonly  Sl,S2: string): boolean;
begin STREQ : = (Sl .length = S2.length)  and (Sl.tcxt[l..Sl.lcngth]  = S2,text[l..SLlength]) end;
function STRNE(readonly  Sl,S2: string): boolean;
begin SIX N E : = not STRlQ(Sl,S2) end;

faction S’I’RG’I’(  rcadonly Sl,S2: string): boolean;
begin i f  (Sl.lcngth  =  S2.lcngth) a n d  (Slkngth =  0 )  t h e n  f a l s e

else if Sl.icngth  = 0 then STRG’[  : = false
else if S2.length = 0 then S’L’RG’I  :  = true
else S’I’RGT : =, (GE’I’CHAlI(Sl,l)  > GETCHAR(S2J))  o r

((GWCHAR(Sl,l)  = GETCHAR(S2, I)) and
STRGT (SU13S’l’R(S1,2,S1.lcng-1),SU~~S’1’1~(S2,2,S2.lcng-1))) end;
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futlction STRGE(rcadonly Sl,S2: s t r i n g ) :  boolean;
begin STRGE : = STREQ(S 132) or STi<GT(Sl ,S2) end;
function STRLT(rcadonly  Sl,S2: string): boolean;
begin STRLT : = n o t  STRGE(Sl,S2) end;

function STRLE(readonIy  Sl,S2: string): boolean;
begin STRLE : = not STRGT(Sl,S2) end

The standard procedures Read and Write will also accommodate strings.
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