! PASCAL*: A PASCAL BASED SYSTEMS PRO-
GRAMMING LANGUAGE

John Hennessy

TECHNICAL REPORT NO. 174

- June 1980

The work described was supported by the Office of Naval Research,
under a contract to the University of California Lawrence Livermore
Laboratory, contract LLL PO no. 9628303

Pascalx : A Pascal Based Systems
Programming Languageft

John Hennessy
Computer Systems Laboratory
Departments of Computer Science and Electrical Engineering
Stanford University
Stanford, California 94305

Technical Report Number 174
June 1980

Abstract

Pascalx (Pascal-star) is a new programming language which is upward compatible with
standard Pascal and suitable for systems programming. Although there are scveral additions to the
language, simplicity remains a major design goal. The major additions reflect trends evident in
newer languages such as Euclid, Mesa, and Ada, including: modules, simple parametric types,
structured constants and values, several minor extensions to the control structures of the language,
random access files, arbitrary return types for functions, and an exception handling mechanism.

Key Words and Phrases: systems programming, programming language, Pascal, modules, exception
handling, paramcterized types, language cxtcnsion.

T This work described was supported by the Office of Naval Research, under a contract to the
University of California Lawrence Livermorc Laboratory, contract LLL PO no. 9628303.

1. Introduction

This report defines an upward compatible extension of the programming language Pasca [1,2].
This extension is designed to support the construction of large systems programs. A major attempt
has been made to keep the orginal goals of Pascal intact; in particular, Pascal* strives for
smplicity, efficient runtime implcmentation, efficient compilation, language security, and compile-
time checking. Many of the ideas in Pascal* arc influenced by other languages, especidly the
programming language Mesa [3].

The first part of this report introduces the language. The latter parts define the language
features and give cxamples. Pascal % is an upward compatible extension of standard Pascal, but it is
syntactically distinct. A syntacticaly separate extension has two significant advantages. standard
Pascal programs will execute as standard Pascal* programs, and Pascal* programs will not be
parsed by standard Pascal compilers. Thus standard Pascal compilers will generate syntax errors for
Pascal* programs which employ portions of the extension.

There are seven classes of extensions:

1. Type structure — parametric types, typc constructors, random access files, explicit packing
and allocation size control, and extensions to the notation used in variant records.

2. Constants, variablcs, and expressions - constant expressions, variable initialization,
conditional boolean operators, and a type recasting function.

3. Control structures - set quantification statement, a loop exit statement, and a return
Statement.

4, Modules - a module construct, with identifier importing and exporting.
5. Exception handling — exception signaling and handling.

6. Procedures and functions - generalization of the function return type and a constant
parameter type.

7. Predefincd objects - extended dynamic storage management, a string type and string
operations, sct functions, prcdefined exceptions, and additional implementation defined
constants.

This report uses the cxtended BN notation used in the Pascal standard [2]. The existing Pascal
BNF is not repeated but is employed in the syntax definition of Pascal*. The semantics are defined
informaly.

1.2 General Extension

A minor but genecral extension to the language is to relax the order of declaration rules for
labels, constants, typces, variables, procedures and functions. These declaration sections may occur in
any order and any number of tithes. This rule permits structurcd constants, and grouping of
declarations. An identifier must still be declared before it is used. Pointer types arc cxcluded from
the declaration before UsC rule, and procedures can be predeclarcd with a forward declaration. The
new syntax for the declaration scction is:

block = declarations statcmcnt-part .
declarations = {dcclaration} .

declaration = constant-definition-part
type-definition-part
variable-declaration-part
procedure-declaration
exception-declaration
handler-declaration
function-declaration
|abel-declaration-part .

2. Types

2. 1 Parametric Types

type-definition = identifier [type-parameter-list | " =" type .
type = parametric-type
| simple-type

| structured-type
parametric-type = identifier type-parameter-list

type
type-parameter-liss = "(" type-parameter { "," type-parameter } ")" .
type-parameter = identifier { " identifier } ":" simple-type .
simple-type = scalar-type
subrange-type
| type-identifier .
subrange-type = id-or-constant ".." id-or-constant .

id-or-constant = identifcr
| constant .

A paramctric type is not a conventiona type; it is a template for a type. The type descriptor in
a paramtric type may contain identifiers which would need to bc constants in a standard Pascal type
definition. In a parametric typc definition these identifiers are formal parameters. The parameters
arc loca to the typc dcfintion and arc bound to the instances of the identifiers occuring in the type
specifier. Instances of new types can bc created by using a parametric type name with a set of
actual parameters. Parametric types provide a flexible solution to the problems of array handling
which arise in Pascal [2,4].

2.1.1 Parametric type definition

A parametric type dcfinition consists of a type name, the formal parameters for the type with
their type-name, and a typc specifier which employs the parameter names in place of constants.
Altcrnatively, a parametric type Ty may bc defined in terms of another parametric type 15, where

the actual paramecters to T, consist of constants and the formal paramctcrs of type Ty. A
parametric typc definition must specify formal parameters for all parametric components of the
type. For example, the following defines two parametric types T and Tarray:
type T(ab: integer) = a.b;
Tarray(a,b: char; c,d: integer) = array [a.b] of T(c,d);

The type, Tarray, must specify paramctcrs for the array component, T, since it is parametric.

2. 1.2 Parametric {ype instantiation

Since parametric types are templates, they are incompletely specified and denote a class of
types. Conventional types (called concrete) can be formed by supplying constants as actual
parameters to a parametric type. The resulting concrete type has all the properties of a Pascal type.
For example:

type Concrete: Tarray (‘A”, H> 1, 20);

defines an array type whose components are type 1..20 , and which has index type A’.H The type
Concrete is a vell-defined type and may be used in the usual manner,

2.1.3 Parameters and pointers

Pascal * allows variable parameters, constant parameters, and pointers to be declared as
parametric types. The binding to a particular concrete type is delayed until runtimc, only the
parametric type is known at compile-time.

When var and readonly parameters to procedures are defined as parametric types, the
corresponding actual parameter must be a concrete instance of the parametric type. The binding to
the specific concrete instance occurs at procedure call time.

A pointer type which is parametric is bound to a concretc type either by supplying values in
cals to the procedure new, or by assigning to another pointer which has an associated concrete type.
Thus every non-nil pointer has a concrete type. Since the paramctcrs for a paramectric pointer type
can be specified in a call to new, it is possible to create dynamic objects in the heap. Derefencing a
non-nil parametric pointer yields a parametric type whose parameters come from the pointer type.

A pointer of type *T where T is parametric may bc assigned to any other instance of thc same
parametric type and to a concrete instance of the type whosc parameters match. A parametric
variable or constant parameter may only be assigned to a instance of the parametric type, with the
same parameter values.

2.1.2 Type Parameter Values

The values of the actual parameters for any instance of a parametric type arc accessed using
record sclection notation. The parameters arc treated as constants. For cxample:

type S(@b: T) = record
fl: T1 (ab);
f2: T2

end;

var p: *S;
procedure Q(var x: S);
begin
{ pt.a and pt.b are actual parameters for pt;
x.a and x.b are actual paramctcrs for x. }
end;

2.1.3 Example ~ Matrix Handling

{Example — matrix multiply.

The following procedure will multiply two matrices of arbitrary size. A work matrix of the
resultant size is created in the heap. This alows the procedure to accomodatc the same
actual paramcter passed to both formal paramctcrs.)

const maxsize = 25;
type sizc: 1 .maxsize;

matrix (m,n: size) = array [l.m,1..n] of real;
var a matrix (10,5);

b: matrix (5,10);

procedure MatrixMultiply (var a matrix; rcadonly b: matrix);
{Multiply a*b and store into a using a scratch matrix in the heap)
type matrixptr = tmatrix;
var i, j, ki l.maxsize;
(Need a work matrix pointer — we could declare a work matrix using: Matrix (maxsize,maxsize)}
C. matrixp tr;
begin
new (¢ (am,b.n));
if (an <> b.m) or (am <> b.n) then error (‘matrix incompatability’)

else for i (= 1 to atn do for j : = 1 to b.n do begin
ct [ij] : = 00;
for k : = 1 to an do ¢t [i,j] : = ¢t [ij} + afik] * b [k,j]
end;
fori : = 1toamdoforj: =1t bndo dij] : = ct [ij];
dispose (c);
end { matrixmultiply };
begin
MatrixMultiply (a,b)

end.

2.2 Type Compatibility

The rule for type compatibility is the rule used in the Pascal standard with appropriate
extensions for parametric types. Two paramteric types arc compatible if cither they are compatible
in the standard Pascal sense, or their types names arc the same and the paramctcrs are equal.
Additiondly, two parametric pointer types are assignment compatible if’ they have the same type
name (even if their paramctcrs differ). Because of the strict rules for type checking, problems may
bc cncountcred in multi-module programs where two modules provide different names for
structurally equivalent objects. This type of problem can bc solved with simple applications of type
recasting.

2.3 Type Constructors

type-constructor = type-identifier "[" type-specifier "]’ .
type-identifier = identifier .

type-specifier = expression
range-specifier ":" expression
| type-specifier {)" type-specifier }
| [type-identifier] "|" type-spccificr "]"
| [record-identifier] "[" record-specifier "]" .
record-specifier = field-identifier ":" type-specifier {"," field-identifier ":" type-specifier) .

range-specifier = expression "." expression .

entire-variable = variable-identifier
| type-constructor .

A type constructor permits the construction of a value of any defined concrete type. Consider a
type constructor of the form T "[" type-specifier "]". 7" must bc a concrete type, i.e. it can not be
parametric. The type T dictates the form of the type specifier and the result of the type constructor
according to the following rules:

1 T isasmple type or set type, then the type specifier must be an expression of type 7.
The result is a value of type T equal to the value of the type specifier expression.

2. T is a aray type, then the type constructor must be either a list of expressions with
length equal to the size of the index type, or a list of range specifiers. The result is a value
of the array type T, with the components being the values in the type specifier. If the t, pe
specifier is alist of values they are matched to the array components by matching increasing
indices with increasing positions in the list of values. If the type specifier is a list of range
specifiers, then each range range spccificr has the syntax range : expression and means that
al clements of the array in the range should obtain the value of expression. The range
values in the list of range specifiers may not overlap. In either case the types of the
expressions must match the component type of the array.

3. T isarccord type, then the type specificr must be a list of ficld-identifier — value pairs.
The field identifiers must match the ficld names of the record and the type specifiers must
correspond to the associated field types. No field-identifier may occur more than once. The
result is a value of type T, with the record fields equa to the corresponding values from the
tyg spccificr list.

The type name which normally precedes the type spccificr is optional for inner components of a
type constructor. Type constructors may appear anywhere a variable of the constructed type could
appear, except that they may not bc assigned to, nor passed as variable parameters. Furthermore, if
al the cxpressions in a type specifier arc compile-time constants, then the result is a constant, and
may appear anywhere a constant might appear. In the type constructor for a string or a packed
array of char the abbreviation ‘string of characters’, may be used for a list of character constants;
the number of elements in the list must match the length of the string of characters.

2.3. [Examples

type

const

var

begin
i

T = aray [1.3] of integer;
R = record

field 1: integer;

ficld2: 1
end;
s = set of 1.20; ‘
Matrix = array {1..2,1.2] of real;
ZeroMatrix = Matrix|[L.2: 0L[0,0]];
OncTwoThree = T[1,2,3];
DiagMatrix = Matrix[[1,0],[1,0]];
x: T;
i, j; integer;
sset: S
rreccord: R ;

1=4; io=5
sset 1= S [8.10,i.] ;

rrecord @ = R] fieldl:i, field2: [i,10,25]] ;

X
end.

» = T4.5,]

2.5 Files and Random Access

Random access is available to all files, using the type seckiype and the procedure seek:
type secktype = (fromstart, fromend, relative);
procedure seek (var f: file; from: seektypc; var n: O..maxint)
f -- specifies the file to access
from -- specifies one of threc scek types:
fromstart -- seeks from the start of file (n > 0);
fromend -- seeks from the end of the file (n < 0);
relative -- sceks from the current position.
n -- number of records to seck in the file. The actual offset of the record from the start of
the file at which the seck stops is returned, in n.
The file operation overput is defined as:

procedure overput (f: file) - writes the valuc of the buffer variable, fr, in the current file
component. If cof(f) is true prior to execution then the vatuc of fr is appended to the file.

The file procedure overwrite causes the current component to be replaced.

procedure overwrite (var f: file; x: T) is equivalent to:
fr 1= X overput (f)

2.6 Machine Dependent Structures

Specification of the packed attribute for type T, has the effect of creating a new type whose
storage is minimized with respect to T. Only the structured types array and record are affected by
packing; the standard procedures pack and unpack provide conversion between identical packed
and unpacked types (as in the standard).

The exact cffect of packing on a structurc is only partially defined to permit a reasonable level
of implementation flexibility. Packing will in general minimize storage; the cxact layout of a
packed object is not defined, cxcept in the case of record fields. In a packed record each field of an
unstructured type is allocated the smallest Size possible in bits; howcvcer, no field of a simple type is
required to cross a word boundary.

2.6.1 Size Control in Packed Records and Arrays

field = id-list ":" type [sizespcc] .
array-type = “array” "[" type "]" "of" type [size-spec] .
size-spcc = “allocate” "(" constant ")" .

Within a packed record or packed array, a size attribute may be spccificd. In a packed
record the semantics of the size attribute for a field is to alocate that ficld as if it occupied the
number of bits specificd in the size attribute. In a packed array the semantics of the size attribute is
to dlocate cach component in the array as if it occupied the number of bits specified in the size
attribute. The number of bits required fbr the field or component must bc less than or equal to the
specified value. The ficld or component is aways right justified; if the field or individua array
components have a nonstructured type then they are not atlocated across word boundaries.

The following example illustrates the use of the size attribute (assume 32 bit words):

type demo = packed record
fl: 0.3 allocate (4);
f2: 0..1 allocate (25);
f-3: 0..20
end;
isarray = packed array [1 ..100] of 0..1000 alocate (14);

The record would occupy 2 words with the following storage layout:

fied word bit positions
fl 1 0.3
£2 1 4,28
f3 2 0.4

The array will occupy 50 words with 2 components/word, in bit positions 0..13 and 14..27,
respectively; bits 28..31 arc empty.
2.7 Variant Records

case-constant = constant

| constant ".." constant .

The labels on variant records may also contain constant subrangcs.

3. Constants, Variables and Expressions

3.1 Extended Constants
constant = expression .

The definition of’ a constant is extended to include constants defined by any compile-time
computable expression. An ecxtended constant may bc used anywhere a constant is normally
requircd. A compile-time computable cxpression is an expression containing only the following:
manifest constants, defined constants, constant type constructors, the standard Pascal operators, array
indexing, record selection from the fixed portion of a record, and standard prcdcfined functions.

3.2 Variable Initialization

variable-declaration = id list ": " type [: = variable init | .
variable-init = constant .

Variable initialization is only allowed to variables at the global level of a module or a program.
All variables in the identifier list arc initialized to thc same value.

3.3 Boolean Expressions

multiplying-operator = "/" | “div’ | “mod” | “and” | "cand"
addlng-OpefalDl’ = " +u I n_n I “ aﬂ I ”C()I'" .
Two additional opcrators are defined for boolcan expressions. A cand B is equivalent to: if A

then B clsc false. A cor B is equivalent to: if A then true else B. Note that the order of evaluation
for cand and cor is strictly defined.

3.4 Type Recasting Function

The type recasting function will convert the type of an expression to another type with the same
representation length. This function provides explicit type coercion which is implemented as a
compile time (but not constant) operation. The function takes two parameters, one of which is a
type name and the other the value to be coerced:

function Recast (value : Srctype; T: TypeName): T

To convert x to type ‘I’, the following call is made: Recast (x,T). For example, to convert an integer
i to a real, the function invocation is: Recast (i,real), yielding a rcal result.

4. Control Structures

4.1 A set oriented for statement
for-statcment = “for” control-variable (": = " for-list | “in” set-expression) “do” <tatement .

This for statement quantifies over a set expression while assigning successive values from the set,
in the order smallest to largest, to the control variable.

4 . 2 Exit Statement
statcment = exit .

The exit statcment causes termination of the most loca statically surrounding for, while, or
repeat statement.

4.3 Extended Case Statement

casc-statement = "case" expression “of’ cast-parts “end” [otherwise-part | .
case-parts = cast-part { ;" cast-part } .

case-part = caselabel { "," cast-label } ":" statcmcnt .

otherwise-part = “ othcrwisc” statcment .

case-label =constant [".." constant | .

Case labeling is extended to alow: constant subranges to act as labels. Also, the "otherwise"
clause, which is cxecuted if the case selector expression fails to match any case labdl, is added. Casc
labels must not overlap.

4.4 Return Statement
return statement = “return”

The return statement causes immediate termination of the current procedure and a return to the
caling procedure.

5. Modules
module = “module” module-identifier [program-paramctcrs] ;" declarations "." .
module-idcntificr = identifier .

Modules provide encapsulation of procedures, functions, exceptions, constants, types, and
variables. Modules may also be separately compiled, and intcrmodule type compatability will
insured by checking at compile time. Unless an identifier is explicitly exported from a modulc, it is
local to that module and can not be used from other modules. Likewise, al identifiers referenced
in a module must be cither local or explicitly imported from anothcr module. When an identifier, x,
is imported from a module A, its local name is M.x. A with-statement can be used, as it is with a
record, to qualify an identifier reference. The statement with M do S, will cause the identifier x to
be intcrpreted as M.x within the statement S.

A program is a specia instance of a module, declared as in standard Pascal. Only the program
may contain a main body, and every executable group of modules must contain exactly one instance
of a program.

5.1 Importing and Exporting of Names

declaration = “import” id-list “from” module-name
| “export” id-list [“to” module-list | .

module-list = id-list .

Named objects (i.e. constants, variables, types, proccdurcs, functions, and cxceptions) which are
cxported or defined by other modules can bc accessed only if they arc named in an import
statement. The export statcment makes a list of objects available for importation by other modules.
To reference an object declarced by another module, it must bc cxported by the declaring module,
called the implementor, and imported by the accessing module, called the client. If the export
destination list is present in the implementor it must include the name of the client module, and the
client module must always name the implementor. Omitting the modulc destination list on an
cxport statcment allows all potential clients access to the identifiers being exported. The compiler
creates the necessary information for intcrmodulc type checking, which is donc a compile-time.
Modules must bc compiled according to the partial ordering derived from the usc of identifiers
which arc imported and cxportcd.

5.2 Creating Module Interfaces

declaration = "defines" id-list [“for” module-list | .
| “implements’ id-lis “for” module-list .

It is often useful to separately define the interface between a client and an implcmentor. There
arc several potential benefits including the ability to work on both client and implecmentor in
paralel, and employing multiple implementors without requiring recompilation of the client. The

defines and implements constructs provide a way of specifying module interfaces separately from the
implementing modulc.

Objects in the client/implementor interface arc declared in an interface module, and listed in
the defines clause within that module. An implementor may specify that it implcments some subset
of the objects definced in the interface module by naming the objects in an implements clause. The
named objects will then reside in the implementor but continue to be defined by the interface
module. The interface module nced only be compiled once, then the implementor and client
modules may be compiled independently.

The defines construct behaves like an export in that it makes a name accessible from both
client and implecmentor modules. Client modules must import the object names which they require
from the module which defines them. The for clause on a defines statcment specifies the legal client
modules just as a destination clause does on an export directive. Defines may be used to specify a
procedurc type (i.e. its parameters and rcturn type if it is a function). In this case the procedure
header is specified in the intcrfacc module, with the keyword definition replacing the body.

The implements statement is used to specify that a certain module implements a portion of an
interface defined in an interface module. Implements specifics a list of” identifiers which are defined
in other modules but which reside in the module with the implcments construct. There can be a
most one implementor for each dcfined object in a program. An object which is implcmented in a
module is not redeclared in that module; however, a procedure or function body must be
claborated in the implcmentor. Such a procedure or function is declared as usual except the
paramc tcrs are omitted.

5.3 Restricted phrase
declaration = “defines” “restricted” id-list [“for” module-list] .

An exporting, defining, or implementing statcmcnt may restrict access to variables and types
which it defines, through the usc of the rcstricted construct. The construct exports, defines, or
impicments followed by restricted id-list, will result in a set of objects whose use by modules which
import them is restricted. Restricted affects the use of both types and variables. For variables no
alieration of the value is permitted. For types only assignment and test for cquality are permitted.
The implementor retains full access rights. If an identifier is restricted by an interface module it
must also be rcstrictcd by the corresponding implementation module.

5.4 Fxample

A module which implements some matrix operations is dcfined with an interface.
module MatrixInterface;

{The interface to the module)
defines restricted matrix;
imports vector from VectorInterface;
cxports vector, size;
defines Add, GetRow;
type size = 1..50;
Matrix (m,n: size) = array [l.m] of vector (n);
procedure Add (var a: matrix; readonly b: matrix); definition;
procedure GetRow (var v:vector; readonly a:matrix; rownumber:size); definition;

end; { MatrixInterface }

- 10 -

module Matrix Module;

(Only two procedures arc included in the module, obvioudly other procedures, e.g. multiply
could also be included.}

implements Add, GetRow for MatrixInterface;
imports size from Matrix Interface;

imports Add from Vectorlnterface;

procedure Add;
{ assume no aliasing and compatible sizes }
begin
for i = 1 to am do Vectorinterface.Add (a[i],b[i]);
end { Add };

procedure GetRow;
begin

v ;= grownumber];
end { Dimensions };

end { MatrixModule }.

Then a senarate UserModule could employ the the matrix routines via the interface:
module UserModule;

imports Add, GetRow, Size, Matrix from MatrixInterface;
imports Vector from Vectorlnterface;

{ Create two matrices }
var M, N: Matrix(10,10);

i, j: Size

v: Vector;
procedure UscMatrix;
begin

MatrixInterface. Add (M,N);
; Matrix Interface.GetRow (V,M,i)

en

end { UserModule }

6. Exception Handling

exception-declaration = exception-heading block .
exception-heading = “exception” "identifier" [formal-parm-sections | ;" .
formal-parm-scctions = "(" formal-parm-section { ";" formal-parm-section) ")" .

statement = "raise" “identificr” [actua-parameter-list |

| “catch” cxccption-handler {";" exception-handler} “in” statement

| “continue’.
exception handler = exception-identificr {",” exception-identifier) ":" statement .
exception-identifier = “identifier” .

- 11 -

6.1 Exception Declarations

An exception declaration specifies an exception which can be raised and caught by a handler.
The exception declaration specifies the name of the exception and its forma parameters. An
cxception must be declared (or imported) before it can bc caught or raised.

6.2 Exception Handlers

One or more¢ exception handlers can be bound to a statement using the catch statement. The
catch statement supplies a list of exceptions (and handlers) which are to be used if the named
exception is raised within the statement. For example: catch £;: Syi...F,: S, in S, specifies that. the
exceptions El,...,En are caught localy if the statement S terminates by raising any one of these
exceptions. After catching the cxccption £, statement S; is executed.

Scoping and access to identifiers in an exception handler is identical to that of the associated
statcment S, except that the exception parameters arc aso visible, A handler is very much like a
procedure; it can reference the parameters declared by the exception declaration, contain procedure
calls and variable references, but is invoked in a special manner.

Additionally, the exception name others can be used to define an exception handler which fields
any cxception, except the special exception unwind. It has a single rcadonly parameter, which is type
string, and will contain the name of the ecxception which was actually raised.

6.3 Raising an Exception

An exception is raised by thc execution of a raise statement, of the form raise exception-name
“(* paramctcr-list”)" . Raising an exception causes one of two actions: either a program error or the
invocation of an exception handler, with the name of the raiscd exception or the name others.

The invocation of a handler for a raised exception is dynamic according to the following
rules:

1. If the exception £ is raised in procedure P within statcment S, then the most loca
exception handler for £ (or others) which is associated with a statement which includes E, is
invoked.

2. If no statement in I which contains S has handler for I/ or others, then the search
continues with the statcment which invoked P.

3. If the search recaches the main block and no handler appears there, a runtime error is
caused.

4. If a handler raises an exception the search begins with the statement which contains the
catch statcment.

There arc two types of exceptions standard and user declared Standard cxceptions - including
Overflow, DividebyZero, ctc. can be raised by both programmer and translated program,
standard paramcters are dcfincd. It is not possible to continue after handling a predefined
exception. User declared cxceptions are raiscd explicitly by user program.

6.4 Terminating a Handler

- 12 -

The handler body can be thought of as an inline procedure, so that its execution interrupts the
execution of the statement raising the exception. Thus, there are several ways in which the exception
handler can complete execution:

normal completion - reaching the c¢nd of the handler body. This causes the statement to
complete exccution and control begins on the next statement.

goto - has thc same effect as if executed from within the object of the catch statement.
return - cffects a normal procedure return from the procedure enclosing the handler.

raise - raise another exception, accepts a paran.cter list. The search for the handler begins
on the surronding statement.

continue - causes execution to continuc following the orginal raise statement.

If a serics of procedures is about to be aborted (because a handler is terminating without
using continue), then the exception unwind which has no parameters is raised at the point of the
orginal cxception raise. Unwind is never propogated past the handler which caused its invocation. If

an unwind handler does not terminate with the statement raise unwind, the propogation is halted
and control continues in the manner indicated by thc unwind handler.

7. Procedures and [func tions

One extension is made to the procedure and function parameter mechanism, and one extension
to the function mechanism.

7.1 Constant Parameters

formal-parameter-section = parameter-group
"var" parameter-group
“condt” parameter-group
| procedurc-heading
| function-heading .

A new parameter type const is introduced. Parameters of type const may only be referenced;
they may not bc assigned to nor passed as variable parameters.

7.2 Function Types

Functions are extended to alow them to return any type except parametric types and files.

8. Predefined Objects

8.1 Dynamic Storage Management

New alocates storage from the dynamic storage pool (heap) and sets a pointer to the allocated
storage. There arc two additional types of calls to new. Assume p is type *T, then

- 13 -

1. new(p(vy,..vy)) - if p is a pointer type described by p = tT(ay,...,a,)) then this call to
new creates an instance of typce T(vy,..,v,) and returns it as pt; until p is reassigned the
type of ptis T(vy,...vy).

2. new(p(Vy,es V), Uty - @pplies when the referent type of p is both parametric and a
variant record. The vi are the parameters and the ti are the tags.

Dispose is an explicit mechanism to free storage which will make available for reallocation via
subscquent calls to new. Assume p is type T, then dispose (p) has two effects. pt is made
available for alocation, and p is assigned the value nil. The operation dispose (p) has no effect on
any other objects or pointers unless the object is pt or the pointer is equal to p. If p; = p and the

operation dispose(p) is done, it is illegal to deference p; before assigning it a new value.

8.2 Set Functions

If S is type set of i..j, then the following functions are defined on S:

first (S) the smalest k | k in S
last (S) the largest k | k in S.

8.3 Scalar FKunctions

ord - if x is an expression of scalar type T, ord (x) returns the ordinal position of x in the
type. For example if T = (ig,...i,), then ord (ij) =].

8.4 Type Functions

size - Size (type namc) yiclds the alocated size in storage units of the named type. If the
type is parameterized the parameters must appear following the type name, e.g. siz¢ (type
name (pl,...,pn)).

8.5 Standard Exceptions

A set of standard cxceptions is defined in the module DefinedE xceptions. To raise or catch a
predefined exception, the cxception name must be imported from the module into the local module.
The predefined exceptions can not bc continued. When a predcfined cxception is raised and a set of
activations is terminated, the portion of the code executed in any activation nced not be consistent
with the order of the code and the position of thc statement which causes the raise.

The exception UndefinedException is raised when a prcdefined exception whosc name was not
imported occurs; it can not” bc caught and is aways reported as an crror in the program (the
variable values when this exception arises may not be wcll defined).

- 14 -

The following definitions specify the standard exception headers (handlers for these exceptions
may not terminate with continue), the existence and type of parameters for the standard exceptions
is implementation dcpcndent:

exception
exception
exception
exception
exception
exception
exception
exception
exception

exception

IntegerOverflow.

RealOverflow.

RealUnderflow.

ZeroDivide; {By an integer}.

ReferenceError; { Attempt to deference a null valued pointer}.

IndexError; (Array index not a member of the array index type}.

RangeError; (Attempt to exceed :he range of a scalar variablc}.

StorageOverflow; {Available storage has been exceeded).
ContinuationError; (Attempt to continue for a prcdcfined exception}.

InputError; (Input data does not match the date type being read).

8.6 Implementation Defined Constants

minint - minimum integer maxint - maximum integer
minreal - minimum red max real - maxi mum rea
minchar - minimum character maxchar - maximum character

charsctsize - size of character sct maxsctsize - maximum set size

8.7 Implementation Reguirements

These requirements may bc used in the creation of portable programs.

charsetsize > 60
|minreal] , maxrea > 2l g

8.8 String Type

A string facility which provides varying length strings with a maximum size on each string is
included. The type string is a parametric type: the parameter specifics the upper bound on the
length. The logical view on a string is defined by:

- 15 -

type string (n: O.maxint) = record
length: O..n;
text: packed array [l..n] of char
end

Pascal string constants of the form ‘characters are treated as string constants where the actual
parameter is the length of the string. Thus the constant ‘AK’, has type string(3), and is
considered an abbreviation for: string(3) [3, ['A", °B’, ‘C']]. The predcfincd constant nullstring is
defined as a string with a zero length field.

The type string is supported by a variety of predcfined procedures for manipulating strings.
Since strings arc standard variables they may be compared for equality and assigned, but these
opcrations may be less efficient than using string procedures. The string procedures are briefly
defincd below in psuedo-Pascal* :

procedure ASSIGN(readonly source: string; var dest: string);
hegin

dest :=source; { only the characters in positions 1.length in source are copied }
end;

function LENGTH(readonly source:string): O..maxint;
begin LENGTII: = source.length end;

function POS(readonly stringl string2: string): 0..maxint;
begin if 3Ji (stringl.text = string2.text [i..i+stringl.length-1]) then POS: = i else POS: =0
end;

procedure SUBSTR(readonly source:string; sourcepos:l..maxint; leng:0..maxint;
var dest: string; destpos: 1.maxint);
begin dest.text[destpos..destpos+1leng-1] : = source[sourcepos..sourcepos+leng-1};
dest.length: = max(dest.length,destpos + leng-1) end;

nrocedure APPEND(readonly source: string; var dest: string);
begin dest.text[dest.length + 1..dest.length + source.length]: =source.text end,;

function GETCHAR(readorly source:string; sourcepos:1 ..maxint): char;
begin GETCHAR: = source.tex tfsourcepos] end;

procedure PUTCHAR(source:char; var dest:string; destpos:1..maxint);
begin dest.text{destpos]: = source end

Additionaly, the following comparison functions are provided: SI'REQ, STRN E, STRGT,
STRGE, STRLT, STRLE. Each accepts two strings and returns a boolean result, They are defined
as follows:

function STREQ(readonly S1,52: string): boolean;
begin STREQ : = (S1 .length = S2.length) and (SI.text[1..Sl.length] = S2.text[1..S1.length]) end;

function STRNFE(readonly S1,S2: string): boolean;
begin SIR N E : = not STREQ(S1,S2) end;

function STRGT(readonly S1,82: string): boolean;
begin if (Sl.dength = S2.Iength) and (Sldength = 0) then false
else if Sl.icngth = 0 then STRGT : = false
else if S2.length = 0 then STRGT : = true
else STRGT : = (GEI'CHAR(SL1) > GETCHAR(S2,1)) o r
((GETCHAR(S1,1) = GETCHAR(S2,1))and
STRGT (SUBSTR(S1,2,S1.leng-1),SUBSTR(S2,2,S2.leng-1))) end;

- 16 -

function STRGFE(readonly S1,52: string): boolean;
begin STRGE : = STREQ(S 1,52) or STRGT(SI ,S2) end;

function STRLT(readonly S1,S2: string): boolean;
begin STRLT : = not STRGE(S1,S2) end;

function STRILE(readonly S1,S2: string): boolean;
begin STRLE : = not STRGT(S1,52) end

The standard procedures Recad and Write will also accommodate strings.

Acknowledgments

Forest Raskett provided the initial motivation for Pascalx and supplied numerous vauable
criticisms and suggestions during the design. Many other pcople contributed comments and
criticisms especially the S| staff members here and at Lawrence Livermorc Laboratories, and
faculty and graduate students at Stanford.

References
[1] Jensen, K. and Wirth, N., Pascal User Manual and Report, Springer Verlag, New York, 1974.
[2] Addyman, A., ISO Draft Pascal Standard, SIGPLAN Notices, Junc 1980.

[3] Michell, J.G., Maybury, W., and Sweet, R., Mesa Language Manual Version 5.0, Tech. Rep.
CSL-79-3, Xerox PARC, Pdo Alto, Ca., 1979.

[4] Habcrmann, A.N., Critical Comments on the Programming Language Pascal, Acta Inforrnatica 3,
47-57, 1973.

- 17 -

