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ABSTRACT

The long standing conflict between the optimization of code and

the ability to symbolically debug the code is examined. The effects

of local and global optimizations on the variables of a program are

categorized and models for representing the effect of optimizations

are given. These models are used by algorithms which determine the

subset of variables whose values do not correspond to those in the

original program. Algorithms for restoring these variables to their

correct values are also developed. Empirical results from the appli-

local optimization are presented.cation of these algorithms to
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1. INTRODUCTION

There is a classic conflict between the application of optimization

techniques and the ability to employ symbolic debuggers. While program

optimizations must ensure that the optimized code is functionally equiv-

alent to the unoptimized code, an optimization normally alters the inter-

mediate results. Thus if an optimized program aborts or is stopped by a

debugger, the resulting states of the variables, may not reflect the

values in the unoptimized code. We will refer to these variables as in-

correct variables. The user is then faced with the difficult task of

attempting to unravel the optimized code and determine what values the

variables should have. This is especially difficult if the program con-

tains errors, so that some variable values may actually be wrong. The

importance of the ability to symbolically debua code has been discussed

extensivelyI%JAgI~

Simple solutions to this conflict, for example omitting the optim-

ization of undebugged code, are not acceptable for several reasons.

First, many compilers apply optimization techniques as a normal part of

the compilation process. This is especially true for local optimization,

where redundant stores are eliminated or code reordering is done. Secondly,

the ability to symbolically and reliably debug code is an important asset

which should not be relinquished. In large optimized programs, e.g., an

operating system, the error state may not be duplicative. Lastly, applying

a symbolic debugger to optimized code is an important method for dis-

covering errors in the optimizer.

In this paper the problem is considered for both standard local

optimizations and a set of important global optimizations. The emphasis

of this approach is:
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1. To detect incorrect variables in an optimized program using

information available to the compiler as it compiles and

optimizes the program.

2. To recover the correct values of these variables.

3. To add no extra overhead to the executing program whenever

possible.

4. To consider only approaches whose payoff is reasonable and

cost relatively low.

First, the effects of local and global optimization are demonstrated.

Then the problem of local optimization is examined: a model to represent

the code optimization process, incorrect variable detection, and variable

value recovery are discussed. Results of an empirical study of these

algorithms are given. The same approach is utilized for golbal optimi-

ation. The conclusion discusses the possiblities for incorrect variable

detection and value recovery in standard compilers.



3

2. THE EFFECTS OF OPTIMIZATION ON SYMBOLIC DEBUGGING

Both global and local optimization affect the ability to do symbolic

debugging since they eliminate and reorder stores to variables. This

effect occurs for different reasons. Local optimization may eliminate

stores to variables which are stored to later in the same basic block.

Altering of the order of code execution in a basic block may also be done

in the local optimization process. The effects of these two types of

local optimization are shown in the following code segment:

Initial Code

1. A : = B + C

2. B := D + E

3. c : = F + H

4. G := D + E

Optimized and Reordered Code-

1'. G, B := D + E

2 ' .  C : = F + H

3'. A := 2 * B

5. A := 2 * B

Error Occurs at Reported at Variables with the wrong value
I I

Gl

debuggi

symboli

global

1'

2'

3'

obal optimization'can also affect the abi

f-cl* A number of common global optimizati

c debugging; these include constant foldi

A

A, G

A

lity to do symbolic

ons do not affect

n5.L copy propagation,

common subexpression elimination, code hoisting (provided only

expressions are hoisted), and loop unrolling. These optimizations do

not alter stores to variables in the program either by changing their

position or eliminating them. Therefore, the values of variables in

a program using only these optimizations will not differ from the values

in the optimized program on a statement by statement basis.
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Three important global optimizations impact the ability to do correct

symbolic debugging: code motion, induction variable elimination, and dead

variable elimination. All of these global optimizations cause difficulties

for the debugger becuase they either remove or reorder assignements.

Code motion causes difficulty because operations Within loops are

moved. If these operations include assignments to variables, the re-

sulting program will not have variable values corresponding to the original

program. The following example illustrates this problem:

unoptimized code optimized code

repeat i := j;

S1; repeat

i := j; Sl"

s2 s2

until p; until p

where j is a loop constant.

Now there are three possible stopping points in the optimized loop:

Execution Stops before

i := j

Sl

s2

Reoorted at Is I correct?

A second cause of difficulty may be induction variable elimination.

i := j inside loop

Sl

s2
.

Yes

No, if first time
through loop

Yes

Since this optimization may completely eliminate assignments to variables,

the variable may obviously be incorrect. The following example shows this:



unoptimized code c o d eoptimized

for i := 1 to n do begin for Tj := 2 to 2*n do begin- - -~ -

Sl;

j :=i*2

Sl;

s2 - replace all references
to j by Tj

s2 end

end (i is not used in the loop body, j not used in Sl, Tj
is a new temporary)

At all possible break points in the loop body i and j are incorrect.

If i and j are live after the loop they will need to be fixed up at

the loop end by the optimized code.

Dead variable elimination can also cause problems, because a

store can be omitted whenever there are no uses of that value. This

occurs if a variable is stored into, before the last value stored to

the variable is used, or if the variable is never referenced again.

In the first case, if execution is stopped between the two stores, the

value will be incorrect. In the second case if execution is stopped

anywhere after the dead store the value is incorrect. For example, if

i and j are not live after the loop in the previous example, their values

will be incorrect in the optimized code.
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2. A MODEL OF LOCAL OPTIMIZATION AND CODE GENERATION

In order to describe algorithms which assist a debugger in locating

incorrect variable values it is necessary to have a model for code

generation. Labelled DAGs, a variant of the DAG structure defined by

[1,2,4], can be used to represent the code optimization process, while

retaining information necessary to determine the form of the original

An augmented computation DAG is a Directed Acrylic Graph with the

following labels on nodes:

1. Leaves are labelled by unique identifiers, either variables

or constants.

2. Interior nodes are labelled by an operator symbol.

3. Nodes may optionally have an extra set of labels which are

variable names. There are two type of variable name labels:

a. Current type label-indicates that the node represents the

current value of the labelling variable. A third field

of the label indicates another DAG node, whose purpose is

b.

to indicate the original code ordering.

Old type label-indicates that the value of this node

represents the value of the label variable at an inter-

mediate point in the computation. The third field is also

present. These labels represent old values of a variable,

they are removed during the DAG construction algorithms

PI .
4. All nodes contain a code start label which indicates the start

of the machine instruction sequence for this node.



The purpose of an augmented computation DAG, hereafter called DAG,

is to represent both the locally optimized reordered code and the original

unoptimized code. This is done by constructing the DAG, so that a post

order traversal will result in an execution pattern which matches the

original code sequence. This is accomplished by the semantics associated

with the DAG labels. The node pointer field of a current or old type

label indicates the original position of the variable store. Thus in

traversing the DAG, a store to a variable in a label is delayed (the node

value must be retained) until the node indicated by the second field is

visited. The node field pointer may not point to a node earlier in the

DAG, that is a node which is built first.

Also the DAG must indicate the order of statements within the original

basic block. Each statement has an unique root, and the roots are

implicity ordered by the order of the statements. Each rooted DAG is

then traversed in post order, ordering the DAGs by the implicit statement

order. We will assume the nodes in the DAGs are ordered, d cd', if d is

visited first in a postorder traversal of the DAGs.

An algorithm for constructing these DAGs is not given here, simp

modifications to the algorithms found in [ 2 ], suffice. It is usefu

examine an example of these DAGs.

Unoptimized Code

A := B + C

B := D + E

C : = F + H

G : = D + E

A := 2*B

e

to

DAG REPRESENTATION
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The nodes have been numbered for ease in interpreting the DAG, The

order of the roots is: 1,4,7,10. Note that the pointer field for the

G label on node 4, is node 7, since the store to G, should not occur

until after node 7. Code start labels should be associated with each

node.

In general, code may be generated for the nodes of the DAG in any

order. For simplicity two restrictions are imposed. First, the set of

instructions generated for a node in the DAG must be consecutive. Secondly,

all stores of a value corresponding to a node d, must occur at the end of

the instructions for d. Thus, if an error occurs at d, it must occur before

any stores of the value computed at d have occured. The purpose of this

is to ensure that the code for a node in the DAG either stores to all

current labels on the DAG or has stored to none of them. These restrictions

can be removed at the expense of enlarging the size of the DAG, and keep-

ing one label per node. No restrictions on reordering are imposed so code

for nodes may be generated in any order.

Before discussing the algorithms for finding variables with incorrect

values some discussion of the symbolic debugger's action is needed. The

symbolic debugger can not stop at a point where some of the variables in

current type labels on a node have been stored to. This is enforced by the

fact that all stores occur at the end of the node, contiguously.

Another issue is where the symbolic debugger reports that it has stopped,

or in the case of a user set breakpoint at what locations such breakpoints

are aliowed. Suppose the debugger is invoked by an error in the source

program, which corresponds to a node d in the DAG. Since d may be contained

in several subDAGs, the debugger must choose where to report the error.



The location must be in the first statement corresponding to a subtree

containing d. If the error is not reported in the first statement

containing d, that node must have been evaluated without error in the

original source program (clearly not possible).

A second question is where to allow breakpoints to be inserted. This

problem arises since the user can insert a breakpoint at a statement which

corresponds to a node d, contained in multiple subDAGs, i.e., common to

several statements. In the optimized program, execution would then stop

at the node d, reporting that execution halted at the statement corresponding

to the first instance of d. To prevent this possibility breakpoints can

only be inserted at statements which either have a unique starting node,

i.e., the first node of the statement, is not contained in any other subDAG;

or at a statement, S, where the starting node of S, is first reached in the

subDAG for S.
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3. DETECTION OF INCORRECT VARIABLES FOR LOCAL OPTIMIZATION

Given that a program is halted at machine instruction d, what subset

of the variables contain incorrect values? To address this question it

is necessary to classify the ways in which a variable could be incorrect.

There are two distinct situations':

1. A variable could have been assigned a value prematurely, due

to either common subexpression elimination or code reordering.

In our earlier example variable G, would have this property.

Call this set of variables the Roll Back Variables (RBV).

2. A variable could have not yet been assigned a value, due to

either an eliminated store to that variable or reordering of

the code. Call this set of variables the Roll Forward

Variables (RFV). -Variable A has this property in the example.

These sets, RBV and RFV, are computed by following algorithm:

Algorithm: Detection of incorrect variable values.

Input : DAG, D, and an node, d, which is the error or breakpoint

location.

output : The sets RFV and RBV.

Algorithm:

RFV :=$

RBV :=+

(* First pass- find all identifiers which should have been

stored to *)

for all nodes n < d do- -

FIXED := vI I(v is a current label on n

pointer (v) < d))

for all nodes n E D do begin- - - -

) and (actual node
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if (n > d) and (code start (n)>code start (d)) then

(* n should have been executed but was not *)

RFV := RFV U tv v is a current variable label on n}

(* Compute RFV set arising from eliminated stores *)

if n < d then RFV := RFV U ( ( v / v is an old type variable label

on n 1 - FIXED);

(* Compute RBV set *)

if code start (d) < code start (n) then

if n < d then RBF := RBV U (v 1 v is a current type variable

label on n) and (actual node pointer for

v rd)I

else if n > d then RBV := RBV U { v
I
v is a current variable- -

label on n 1

end

This algorithm finds the set of all variables whose values are not

correct at the node, d, in the DAG, according to the original program.

There are only two ways in which a variable can have the wrong value: it

is stored into prematurely (RBV set), or it is not stored into when the

oriqinal proqram stored into it (RFV set). Consider the RBV set, vcRBV

set if the following conditions hold:

1. v is stored into in node n

2. n should not have been executed, i.e. n > d; or the store should

not have been executed, i.e. actual node pointer for v >d.

3. n was executed, i.e. code range (n)< code range (d).

Clearly, the algorithm computes RBV exactly.

Now consider RFV; a variable v ERFV, if it was not stored into because:
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1. The store was eliminated, and it was not stored into (i.e., not

in FIXED), before d.

or

2. The store should have occured before d (i.e., n< d) and did not

( i.e., code range (n) Bcoderange  (d)).

Hence RFV is computed correctly.

The running time of this algorithm depends on the execution time on

the loop; if the number of nodes in D is D , then the running time isI I
0( D a) where a is the execution time of one iteration.

I I
If we utilize bit vectors with constant operations to represent the

label sets we can improve the running speed of each iteration. By just

using bit vectors, each step of the loop body is constant, except for:

RBV := RBV lJ{v 1 ( v is an old type label on n) and (actual node

pointer for v >d))

Thus running time of the algorithm is 0 (number of nodes * number

of eliminated stores). In practice the number of variables referenced

in a basic block is small and the number of eliminated stores much smaller,

hence bit vectors are a reasonable representation and the algorithm runs

in close to 0 (number of nodes) for almost all real examples.
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4. RECOVERY OF INCORRECT VARIABLES FOR LOCAL OPTIMIZATION

Given an augmented computation DAG and a stopping point in the

DAG, a symbolic debugger could report which variable values were

reliabily known; the debugger could even print the optimized code. The

algorithms in this section attempt a preferred solution: to find the

variable values in the unoptimized code and report those values. Using

this method, the effect of the optimization on program semantics is

eliminated.

An important observation is that it may not always be possible

to recover a variable value, especially if the value must be rolled

back. In the earlier example, the value of G would not be recoverable

if execution stopped at 2'.

In attempting to recover the incorrect variables two assumptions

are made. First, the semantics of operations on nodes are not utilized,

except to apply the operation at a node. For example, consider the

following code segment and its augmented DAG.

1. A := B + C

2. D := 6;

3. 6 := C;

4. D. E;l =

(old, A, 3)

(current, A/3)

04 (current, D,4)

Suppose the symbolic debugger is invoked with execution halted at 4, the

last value of D is 6, but the value of 6 was destroyed by the execution

of statement 3 (6 := C). If we use information about the operation +,

at node 3, we see that 6 = A - C, since the values of A and C are both
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available we could restore 6. For simplicity the above approach is not

considered by ignoring semantics of operations.

In the following algorithms, we concentrate on determining whether a

variable is restorable. The restoration process is derived in the

algorithm and variable recovery could easily be accommodated. The algorithms

do not examine the current availability of partial results, e.g., the value

of a node may be represented by a register or a temporary. If the current

values of temporaries and registers are to be utilized, a Simple map between

nodes and these values is required. Marking the nodes as available in the

algorithms which follow will then have the correct result.

The problem of recovering incorrect variable values can be sub-

divided into correcting the subsets RBV and RFV computed in the last

section. To recover a variable v ERBV, two conditions must hold: v must

be an old type label on some node n < stopping-node point d, and the value

computed at n must be available or computable. The variables in RFV can

be recovered by one of two strategies, which correspond to why the variable

is in RFV.

Algorithm:- Finding the subset of recoverable variables from a set of variables

whose values are in error.

Input: A DAG, D, with a stopping point d, and the two sets RFV and

output: The set Recoverable,c(RFV  U RBV), whose members are variab

recoverable values.

The algorithm uses the function Available.

RBV.

les w ith

Available (n, d) - finds if the value at node n is available if execution

stops at node d.

Available (n, d) = if 3 v(v is a current label on n and code range (n)< code

range (d)) then true

else if n is a parent node then_I_-
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Available (right child, d) and

Available (left child,d)

else (* leaf node *)

let v be the variable name of the leaf;

yp(p contains v as the current label and code range (p)<code

range (d))

Alaorithm for Recovery Detection

Recoverable := 0 ;

(* First we recover RBV variables *)

for all VI RBV do begin- -

n .l =max(mJm contains an old label for v } ;

if ( n-null) and

Available (n, d) then Recoverable := Recoverable U {v};

end;

(* Recover RFV set *)

for all VE RFV do begin- -.

if]n(v is current label on n and n cd) then

Recoverable := Recoverable U v

\ else begin-_

n := max (m 1 m contains an old label for v) ;

if n<>null and Available (n, d)

then Recoverable := Recoverable U {v } .

end
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This algorithm computes the set Recoverable, s.t.

RecoverableS(RBV U RFV) and

v cRecoverable+value of v, at point d in the original code can be

computed.

v &((RFV U RBV) - Recoverable)+ value of v at point d is not recoverable.

In order to show that this algorithm correctly computes Recoverable, it

must be shown that all variables in RFV and RBV are correctly recovered,

and that the sets RBV and RFV are independant.

To recover v ERBV, it is necessary to have an earlier value for v,

since the store which must be rolled back will have destroyed the value

of v. Hence to recover v, an old label for v, on a node n <d (the

stopping point), must be found. The value corresponding to n must be

available if v is recoverable. To recover VE RFV, we must consider how

v could be in RFV. There are two cases, reordered code with a store not.

yet executed, and an eliminated store. The first case occurs only if a

store exists on a node n< d, and code range (n)>code range (d); these

cases are recovered by executing all nodes less than d. In the second

case we must find the value v should have at d; this value is the value

at the node n, where n contains an old label for v, and no node greater

than n and less than d, has such a label. Therefore, v is recoverable

if the value of the node is available.

To find if the value of a node is available, there are several cases.

First, if the node has any current type labels, then the value is recoverable,

since the value is stored in the variable corresponding to the label. If

the node represents a parent node without current labels, then the value is

recoverable if both children are recoverable. Lastly, the node may be a leaf.
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Leaf values are available if the value they represent has not been stored

into. This leads to a potential dependence of the sets RBV and RFV.

Consider the following code sequences:

Unoptimized Code _Reordered Optimized Code

1. F:=D 1. D:=B

2. A := 6 + C 2. A := 6 + C

3. D := 6 3. F := E

4. F := E

Now suppose instruction 2 of the optimized code fails. The augmented

computation BAG Eooks like:

(current, A,4)

1 (0D
old, F,l) (current, F,5)

5 CE

with code range (2)~ code range (4)<code range (5), 1~ 4, and 4~ 5.

Then RFV = {F} and RBV = (D) . F is recoverable if the value of node 1 is

recoverable, but node 1 is recoverable if D is recoverable. In this case our

algorithm reports D is not recoverable; it is not necessary to recover

either set first.

This DAG demonstrates that a variable, v, in RFV can be recoverable

only if v' &RBV is recoverable. But we claim these two sets are still

independent, since this situation can only arise when v' is a leaf value.

If v' is a leaf value and the variable v' has already been stored into,

then the value of node is never recoverable. Therefore, the sets retain

the independence and the Recovery Algorithm obtains the correct result.

This algorithm for variable recovery is reasonably efficient. The

algorithm for computing the function Available runs in time less than



O(I D I) where

variable v ERBV

then determine

bounded by 0( 1

DI is the number of nodes in the DAG D. Recovering each

is a two step process; find the last old store to v, and

f that node is available. Both of these operations are

I 1 . Likewise recovering each member of the RFV set has

runtime complexity bounded by 0( ID( ). Thus the running time of the

recovery algorithm is bounded by : 0(( 1 RFV 1 + IRBV 1 ) * 1 D 1 ).

What happens when the debugger encounters an error when trying to

restore some variables? Although this problem sounds complex, the solution

is quite simple. The symbolic debugger can only encounter an error at

node n, if n<d. Therefore, if the code was not optimized the error would

,have occurred at n. The debugger now reports that the error has occurred

at n, rather than d, and attempts to recover the variable values in effect

at node n. The major effect of this type of error is that the number of

unrestorable variables may grow, since more stores between n and d, may

have been executed. This process of moving back the error point must

halt since only a finite number of statements are contained in the basic

block, and the error point is only moved in one direction.
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6. EMPIRICAL RESULTS FOR LOCAL OPTIMIZATION

A trial implementation of these algorithms for a subset of Pascal

has been done in Pascal. A compiler for the Pascal subset was constructed,

the compiler produces a stack based intermediate form, very similar to

P-Code. The subset currently does not include pointers or sets.

The implementation of these algorithms consisted of two seperate

steps. First, a program which builds DAGS from the stack based inter-

mediate form is used. The DAG construction algorithm of [Z] is employed.

Code generation is then done using the hueristic algorithms for DAGs

[Z]. The code generation algorithm allows an arbitrary choice of nodes.

at one point. Thisjchoice was randomized to provide the maximum variety

of code orderings.

The result of the DAG building and code generation is an augmented

computation DAG which includes the extended label fields and the code

start value for each node. The algorithms for erroneous variable detec-

tion and recovery then utilize the DAG as input together with some stopping

point in the code.

The most significant results of the study for a group of programs

consisting of over 5000 lines are shown below (66 stands for a basic

block):

Average size of a 66 in P-Code instructions 9.0

Average number of variable references/B6 1.8
Average number of variables assigned/B6 .5

Average percentage of 66 with common subexpressions

Average percentage of 66 with nontrivial common
subexpressions (i.e. more than one term)

67%

30%

Average number of terms/common subexpression 1.8
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Average number of common subexpression/BB
Average number of common subexpression/
66 with at least one common subexpression

1.5

2.4

Average precentage of 66 with common subexpressions
that have incorrect variables 20%

Average percentage of incorrect variables that are
recoverable 58%

There are several important observations to be made based on this

data. First, the frequency of variable references, and common sub-

expressions agrees with data collected by others. The high number

(2.4) of common subexpression within blocks with at least one common

subexpression, increases the potential gain for local optimization.

This is especially true if such blocks are within inner loops.

The percentage of blocks with common subexpressions that have

incorrect variables is relatively hiqh (20%); this indicates a real

possibility that a symbolic debugger may encounter a variable with an

incorrect value. Employing recovery strategies is fairly sucessful,

allowing recovery of about 58% of the incorrect variables. This would

seem to indicate that recovery attempts are worthwhile.
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7. A GRAPH MODEL FOR GLOBAL OPTIMIZATION

In order to analyze programs which have been globally optimized a

representation for the unoptimized and optimized program is needed. The

model will consist of two parts: a global flow graph model, where each

basic block is a node, and augmented DAGs for each node in the flow

graph. The model will also distinguish certain flow graph nodes and

utilize DAG node pointers between different flow graph nodes. We con-

sider global optimzations as defined in [3].

Code motion is defined as the movement of loop invariant code from

inside the loop to a special node, called the preheader, which precedes

the loop. For simplicity only code motion to the front of the loop is

considered. The standard requirements on the moved code are imposed.

Code motion is represented by a preheader node which contains an augmented

DAG. The DAG differs from a local optimization DAG, in that the actual

node pointer on a label, points to a DAG node within the loop body. This

node pointer indicates the original placement of an assignment.

Induction variable elimination causes a similar difficulty, i.e.

assignment to variables have been deleted and moved in position. Represen-

ting induction variable elimination requires knowledge of where the original

assignments occurred in the loop body, and the functions relating the

induction variables. For simplicity, we assume that all induction variables,

which are functions of a single basic induction variable, are replaced by

a single new induction variable. This new induction variable is a loop

temporary not appearing in the program. This condition can be removed

at the cost of slightly increasing the complexity of the model for

induction variable elimination.
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I is an induction variable if and only if:

1. I is a basic induction variable, i.e., I is assigned once in

the loop, with an assignment of the form I := I -t C, where C

is a loop constant.

or

2. I E Family (J), where J is a basic induction variable and there

exist m and n loop constants, s.t. I is assigned once in the

loop and the value assigned to I is m*J+ n.

Consider each Family, F of induction variables: for each family there

must be a temporary variable in the loop, call this TF- Since TF = mF*J + nF'

for each iE F, we can find m'i, n'i s.t. the value assigned to i in the loop

is equal to m'i*TF + n'i. These m'i and n'i are given by:

m' "i=
i n' =ni- minF

i
mF mF

where mi and ni are the original constants, s.t. i c Family (J) +i is

assigned the value miJ + ni in the 100~.

In addition to knowing the loop constants m'i and n'i) and the new

base induction variable TF, the original location of the assignment for

each induction variable is needed. All this information can be stored in

the loop preheader node.

Dead variable elimination can be represented with the augmented DAGs,

by marking the stores to the dead variable as old.

The proposed model represents both the original and the optimized

code. To reconstruct the effect of the original code the following rules

are followed:
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1. For a preheader node

a. Evaluate the DAG but postpone all assignments according to the

node pointers associated with the assignment label. These

assignments need only be executed on the first execution of the

loop body.

b. For each induction variable, i, in the preheader do the following:

on each 100p execution compute m'i * TF + n'i, store this value

into i, when the location of the original assignment is reached.

2. All old label stores are also treated as new stores and executed

when their node pointer points to the node just executed. This

recovers dead variable stores.

A small example is given below:

i := 1;

repeat

j:=i*2

k := 10;

A[j] := k;

i : = i + 1

until i = 11

After global optimization:

TI := 2;

k : = 10;

repeat

AiT : IO;

TI := TI + 2

until TI = 22

(* Assuming 1 and j are not live after the loop *)
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This leads to ihe following graph model:

Induction VariablesInduction Variables

eader

Note: A label pointer is

represented by (m,n) where

m is a flowgraph node and n

is a DAG node. The label

pointer (m,zero) indicates a

store immediately upon

entrance to the node. Self

referencing label pointers

are ommitted.
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Using the method given for restoring the original code the result is:

i := 1;

TI := 2;

loop: j := TI;

k := 10:

A [TI] := 10;

TI :=TI + 2;

I := TIj2; (* integer divide *)

if TI # 22 go to loop

This code will correctly preserve variable values, independent of where

code is stopped.



26

8. DETECTION OF INCORRECT VARIABLES FOR GLOBAL OPTIMIZATION

This section gives methods for detecting which variables have in-

correct values if execution is stopped at some point in globally optimized

code. This issue is addressed separately from local optimization for

simplicity purposes. Several methods for detecting these incorrect values

are presented; the next section discusses recovery issues.

Consider an assignment to a variable, v, which is moved to the pre-

header by the optimization of code motion. Such an assignment could only

have been moved if the right hand side was loop invariant. Therefore,

the variable v will have the correct value if the execution reaches the

original location of the assignment at least once. Therefore v is incorrect

iff: the loop body is not completely executed the first time, and the

stopping point in the loop body is before the actual node pointer on

the assignment in the preheader. The second condition holds if the

stopping point dominates the node indicated by the actual node pointer.

This is easily checked.

There are two methods for determining that the loop body was not

executed once. The simplest method is to add a flag for each loop, which

is set false in the loop preheader and true in the last statement of the

loop body. Then the body is executed at least once if the flag is true

when the program is stopped. The major disadvantage of this approach is

the extra overhead of one assignment on each loop execution.

Related approaches may be possible for certain types of loops, such

as for statements. For example, with the statement for i := m to n do S,

the code is stopped in the first execution of S, if i = m. If i # m,then
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the loop body must have completely executed at least once. This approach

has several difficulties, e.g., the body may alter either i (some languages

prohibit this) or m. Then this test is no longer suitable.

An alternative approach which completely eliminates undetectable

errors due to code motion, is to unroll the loop, so that the first execu-

tion of the loop body is straightline code. Under these conditions the

loop preheader is not needed for code motion, since these variables can

be assigned in the unrolled loop body. For example, the statement for

i := 1 to n do S, becomes i := 1; S; for i :=2 to n do S. If execution- - - -

halts in the first copy of S, no variables are incorrect because of global

optimization, since no assignments have been moved. If the program halts

on a later execution of S, code motion has no effect, since all assignments

would have occurred at least once.

There are two disadvantages to this approach. The first is that the

size of the code for the loop is increased, possibly substantially. A

second minor disadvantage exists if the debugger wishes to halt execution

at a point in the loop body, two calls to the debugger must be inserted.

Likewise the debugger must know that both copies of S map to the same loop

body. The major advantage is that additional algorithms for incorrect

variable detection with code motion are not needed.

Detection of incorrect values for induction variables is reasonably

straightforward. If I is the set of induction variables in a loop header

for L, then iE I has the wrong value if: the loop has executed more than

once, or the stopping point is after the point indicated by the actual node

pointer for i. Note that this is, in some sense, the inverse of the condition

for a variable assignment moved by code motion. Thus the same techniques
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used for detecting loop execution in code motion work to determine if

the loop has been executed at least once.

Elimination of stores to dead variables cause an incorrect variable

to occur if the eliminated store node was executed and no other store to

the variable has been reached. The problem this causes is that a variab

v, to which a store was eliminated is incorrect at point p, if there ex

a path from that eliminated store to p. But, this does not mean v is

necessarily incorrect since there may be another path from the store to

p, that assigns to v.

le

ists

A store to a variable v in flowgraph node n is a dead store if v is an

old label on some node in n and v is not a current label on any node in n.

A variable

which goes

without go i ng through a node containing an actual store to v between n and p.

v may be endangered at p, if there is a path from the start node

through a node n containing a dead store of v, and reaches p,

This is clearly a data flow analysis problem. A variable v can be in one

of three possible states at p, if a dead store of v exists:

1. v is not endangered on any path to p and hence v has the right

value at p.

2. v is endangered on all paths to p, then v has the wrong value.

3. v is endangered on a subset of the paths to p, then v is incorrect

only if an endangered path was used to reach p most recently.

Thus it can be determined if v is possibly incorrect. To resolve case

3, some mechanism such as a flag is needed to determine which path was used

to reach p. This method has the serious disadvantage that is probably more

costly than the original dead store elimination. lrlith the requirement of

data flow and flags, it appears that incorrect variable determination

for dead stores is not profitable.
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9. RECOVERY OF INCORRECT VARIABLES FOR GLOBAL OPTIMIZATION

The problem of recovering incorrect variables in the presence of

global optimization is more difficult than local optimization, since the

chances for success are generally less. Code motion and dead store re-

covery require the same techniques. If v is a variable with the wrong

value at p, either because of code motion or elimination of a dead store

to v, then the previous value of v must be recovered. In order to determine 1

what the previous value is, data flow information is necessary. In the

case of code motion, the set of definitions for v that reach the loop

preheader are needed. For dead store elimination the set of definitions

for v that reach p are needed. Call these definitions D. If IDI yl then

v can not be recovered since it is impossible to tell which one of the

definitions for v was the most recent. If IDI = 0 then v was undefined

at p and recovery is not necessary. If JDI =l, then some attempt at

recovery can be made. Let D be a statement of the form v :=A op B, if

there are no definitions for A or 8, between D and p, then v still has the

value A op B. Otherwise, to recover v, the values of A and B at D must be

recovered. This process can continue until v is recovered or the number

of definitions of some variable is greater than one, in which case the

attempt fails.

This process has three significant disadvantages. First is a very

costly process since several data flow problems must be solved. Secondly,

it would seem to be very ineffective because of the stringent requirements

which are needed to recover a variable value. This is especially true of

the requirements that IDIs 1 and that no definitions for the operands

exist between D and p. Another problem is that the operands may represent

temporaries rather than variables. In this case, to recover v, the temporary
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values must be recovered. The same techniques as recovering v apply.

Thus in general it will not be cost effective to attempt to recover

incorrect variables due to either code motion or dead store elimination.

A more fruitful recovery problem is that of.induction variable

elimination. Let V be the set of induction variables replaced by T and

let T be updated in the loop by a statement, S, T :=Cl * T + C2. The

stopping point p can be in one of six locations l-6 as shown below:

01
S
02

04
T :=
05

T . -.- S
03 06

This creates four distinct classes; the correct value of v is given by

the class of p:

v is a function of current value of T, v = m',,*T + n',,.

v is a function of the next value of T, v = m',,*next  (T) + n',,.

v is a function of the previous value of T, v = m'v*previous
(T)+n',,. .

The values of T are given by

Ti = C1*Ti-l t C2.
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Therefore, the following algorithm recovers V:

for all v&V do begin- -

n := actual node pointer for v (from preheader);

case position of s, n, p of

1,3,4,6 :v :=m',*T +n'v;

2 : v :=m' V*(Cl*T + C2) + n’ V
5 : v :=m' V*(T/Cl - C2) + nIv

end

end

This algorithm recovers all variables which are incorrect due to induction

variable elimination. The approximate running time is constant for each

variable. Thus a fairly efficient means for recovery of eliminated induction

variables is possible.
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10. CONCLUSIONS

This paper has argued the importance of symbolic debugging capability

in the presence of optimization. The effects of optimization on this

capability are examined. Algorithms for detecting variables whose values

do not reflect the unoptimized program are given. The problem of re-

covering the correct values for these variables is also examined.

Several important results come from this work. First, detection of

incorrect variables with local optimization is quite easily done. The

necessary information could easily be produced by a compiler and placed

with the symbol table which is needed for a symbolic debugger to operate.

Variable recovery is fairly successful for local optimization and requires

no additional information.

Global optimization causes more difficulty than local optimization

due.to its dynamic nature as opposed to the static behavior of basic block

code. Detection of incorrect variables requires some additional overhead

in the case of code motion and induction variable elimination. This

overhead may be acceptable, depending on the importance of retaining

symbolic debugging capabilities. Recovery of correct variable values

is difficult for code motion. Since variables are troublesome in the

presence of code motion, on only the first execution, recovery can be

reasonably omitted for code motion.

Recovery for induction variable elimination is important, since the

variables will be incorrect for the duration of the loop. Without recovery

of induction variables the user may not be able to determine the number

of executions of a loop, when an error occurs. Fortunately, recovery of

induction variables is very successful, since all variables can be recovered.

Use of a program variable to replace a family of induction variables is
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also possible, but causes some additional complexity.

Elimination of dead stores results in insurmountable difficulties

both for detection of incorrect variables and their recovery. If symbolic

debuggers are to be applied to code, this optimization should probably not

be employed.

If the compiler is designed with options that control optimization

and debugging, the following modes seem reasonable:

Optimization

Norma

defau

1

w

OFF1

ACKNOWLEDGEMENTS

Local (could be default)

Detection

and recovery

of incorrect

variables is

supported.

Local and Global

Detection and recovery for
local optimization.

Detection for code motion.

Detection and recovery for
induction variables.

No global dead store elimination.

Detection and recovery for
local optimization only.

J. Barth provided the initial motivation to study this problem.

S. Graham suggested loop unrolling as a means of detecting the

first execution of the loop body.
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