
COMPUTER SYSTEMS LABORATORY-_ - .- .-- Il-l---y^-_-_ _ ._*- - ._- -S.--P -..--_ .-
___ .._*-.-^----------I_

STANFORD ELECTRONICS LABORATORIES

DEPARTMENT OF ELECTRICAL ENGINEERING

An Investigation of the
Partitioning of Algorithms Across

an MIMD Computing System

(XMAP-I)

Erik J. Gilbert

TECHNICAL NOTE NO. 176

I3 May 1980

STANFORD UNIVERSITY - STANFORD, CA 94305

COMPUTER SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

Thls work was performed In conjunctlon wlth the software development effort at Stanford Unlverslty, urder a s&contract from
Lawrence Llvermore Laboratory to the Computer Science Department, Prlnclpal lnvestlgator Profepsor 010 Wlederhold, Contract
Number LLL PO#9083403. The S-l hardware and software development has been sqported by the Department of the Navy
vla Offlce of Naval Research Order Numbers NOOOl4-76-F-0023, NOO014-77-F-0023, and NOCNIl4-78-F-0023 to the
Unlverslty of Callfomla Lawrence Llvem~~e Laboratory (which Is operated for the U. S. Department of Energy mdw Contract
No. W-7405-Eng-48), from the Computations Grog of the Stanford Linear Accolerrtor Center (suppocted by the U. S. 7

Department of Energy tier Contract No. EY-76-C-03-0515). and from the Stanford Mlflclal lntelllgence Laboratory (WhkiI I
receives support from the Defense Advanced Research Projects Agency and the Natlonal Scfence Fomdatkm).

Table of Contents

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Introduction .

Definitions .

Motivation .

Techniques for partitioning

Selection of a sample application

Overview of SIMPLE

Partitioning SIMPLE

Multiprocessor SIMPLE simulation

Analytic speedup computation ,

Synchronization and communication

Directions for future study

Conclusion .

Acknowledgments

References .

1

2

3

4

6

8

12

20

22

27

30

31

32

33

A b s t r a c t :

Multiprocessors offer a new dimension of computing power to user applications with extremely
compute-intensive requirements. One mode of using a multiprocessor to this end is that of
expressing the algorithmic solution to an application problem in some partitioned fashion in order
to make effective use of several processors at once. This report documents aspects of progress made
to date in the continuing investigation within the S-l project of application partitioning across
classic MIMD multiprocessors. The goal of this investigation is to demonstrate the practicality of
the partitioned application mode of multiprocessor use for large classes of realistic problems,
particularly in the context of a large-scale multiprocessor such as the S-l project has designed and
will be implementing. The investigation so far has included a broad spectrum of studies, ranging
from general research on multiprocessing issues to specific experiments with algorithms for

. particular application problems.

Key w o r d s a n d p h r a s e s :

Multiprocessor, application partitioning, large-scale computing, parallel processing, tightly coupled

MIMD systems.

1

1 Inttoductioll

Multiprocessors (strictly speaking, Multiple-Instruction-Multiple-Data processor systems [41)
are potentially extremely attractive systems for realizing greatly enhanced computing capabilities.
Potential benefits include significant improvements over both the Single-Instruction-Single-Data
and Single-Instruction-Multiple-Data types of uniprocessor systems in the areas of availability,
configurability, cost-effectiveness, and raw computing power. The primary concern of this paper is
in the area of raw computing power enhancement available from a multiprocessor. Particular
reference is made to a classic multiprocessor architecture being explored by the S-i Project [12,131

In order to best realize the computing power increase potentially available from a
multiprocessor on a single application problem, it must be possible to express the algorithmic
solution to the problem in some partitioned fashion in order to make effective use of several
processors at once. The simplest and most obvious, but still useful, scheme for partitioning is to run
several different, independent copies of the application algorithm on different sets of data which are
of interest to the researcher; such an approach is predicated on the different data sets being totally
independent of each other.

However, the more interesting case occurs when the algorithm is structured to take advantage
of parallelism inherent in the problem when processing a single set of data. Such an approach
admits of possibly very large gains in effective processing speed, and thus potentially allows many
more cases of interest to be studied in serial order per unit of wallclock time; such an approach is
required if subsequent data sets have features determined from computational study of previous
ones. It is this particularly useful case to which the present investigation is addressed.

This report documents aspects of progress made to date in the continuing investigation within
the S-l project of application partitioning across classic MIMD multiprocessors. The goal of this
investigation is to demonstrate the practicality of the partitioned application mode of multiprocessor
use for large classes of realistic problems, particularly in the context of a large-scale multiprocessor
such as the S-l project has designed and will be implementing. The investigation so far has
included a broad spectrum of studies, ranging from general research on multiprocessing issues to
specific experiments with algorithms for particular application problems.

This report covers several different topics, roughly following the chronological development of
the investigation to date. After some definitions and further motivation for application partitioning,
there is a brief discussion of generally applicable techniques for partitioning. Next is a historical
perspective of the process of selecting a “representative” application for further detailed study. An
overview is then given of the algorithm chosen for specific study, followed by a description of the
methods used for partitioning that algorithm. After that appears a discussion of some simulation
results, followed by some analytic results. Finally, there is a discussion of some of the detailed
implications of this study in terms of synchronization and communication mechanisms found to be
desirable for support of application algorithm partitioning. The report concludes with a discussion
of directions which such investigations may profitably take in the future.

2

2 Definitions

The term “multiprocessor” will be used in this paper to refer to a generalization of the
structure of the S-l multiprocessor. A few important attributes of this generalization are listed here.
It is assumed that there is a moderate number (say 2 to ZOO) of extremely fast single processors
tightly coupled to a relatively large amount (at least 10 million words) of uniformly accessible global
memory. Each processor may also have a moderate quantity of very high performance memory (e.g.
cache) local to it, but it must also have high bandwidth (although not necessarily short latency)
access to the global memory. Many of the ideas contained herein apply also to other multiprocessor
structures (e.g. larger numbers of slower processors), but the S-l structure has been the primary
focus for optimization of the partitioning approach developed in this study.

“Problem partitioning” refers to the process of taking a particular application problem and
constructing an algorithmic solution for it which can take advantage of the potential for parallel
execution available in a multiprocessor. The primary motivation assumed for partitioning a .

’problem is to substantially decrease the absolute wallclock time taken to run each instance of the
application (as opposed to other motivations such as improved reliability and/or recoverability). For
partitioning to be realistically useful in this way, the partitioned application must run substantially
faster than a uniprocessor version, even when all possible overheads are taken into account,
including operating system, multiprocess communication, and synchronization.

The “speedup” of a multiprocessor algorithm is the ratio of wallclock elapsed time for
uniprocessor execution to wallclock elapsed time for multiprocessor execution. It is, of course, a
function of the number of processors, and possibly other algorithm parameters. The speedup
provides a measure of the success with which the problem has been partitioned, indicating greater
success as the speedup approaches the number of processors. There are actually conditions in which
the speedup can theoretically exceed the number of processors; these will be noted in more detail
later.

3 Motivation

Depending on the exact nature of the application, the process of constructing an effectively
partitioned solution can vary greatly in difficulty. As mentioned earlier, any uniprocessor code can
be immediately run on a multiprocessor in the mode of multiple independent data files; but this is
not a partitioned single application as defined here. This mode does serve to characterize a class of
applications whose partitioning is trivial. Any application which consists of several already
independent computations can be easily partitioned in this way. A simple example (in which each
of the independent computations has the same structure) might be a Pascal compiler which has the
ability to process multiple input procedures in a “separate compilation” mode.

There is another class of applications which is almost as easy to partition. It is all those
which have a basic iterative “outer loop” with perhaps a summary data gathering step at the end of
each iteration, but with several otherwise independent computation blocks occurring in each
iteration. Examples of this structure of computation may be found in Monte Carlo approaches to
simulation [6].

To approach the issue of difficulty of partitioning from another standpoint, it is reasonable to
ask for what kinds of applications is a substantial amount of partitioning effort justified. In
particular, if an application is hard to partition it could be argued that it is better to run it
unpartitioned in timesharing mode along with other user problems in order to still gain the
cost-effectiveness benefits of the multiprocessor. However, there are several interesting application
areas in which any gains in absolute wallclock execution time are valuable. Classic examples
include the weather prediction problem and many types of real-time processing, such as radar signal
processing. Also, as the number of processors in the multiprocessor increases, the attractiveness of
the partitioning approach increases for more and more problems.

4

4 Techniques for partitioning

As the number of designed or implemented multiprocessors increases, a few general techniques
for problem partitioning are beginning to emerge [71. Three such techniques which have been
considered could be called “synchronous partitioning,” ”asynchronous partitioning,” and “pipelining.”
From the descriptions below it should become apparent that these techniques are by no means
mutually exclusive, and hence may be used in combination in a partitioned application.

The technique of synchronous partitioning is perhaps the most obvious and most widely
applicable of the three. In this technique, either the data structure or the program (or both) is
divided up into comparatively independent units, and multiple processes compute in parallel within
these units. Occasionally, two or more processes must synchronize with each other in order to
maintain data consistency or pass summarizing information among processes.

The technique of asynchronous partitioning [ll is less intuitive and can lead to debugging
difficulties due to the lack of exact reproducibility of results, but offers advantages by avoiding the
potentially large overheads of frequent process synchronization. This technique is best understood
in the context of iterative numerical algorithms. For instance, consider an application containing a
large two dimensional matrix of real numbers which are being updated by an iterative algorithm
such that each new point value depends in some simple way on previous values of neighboring
points. The points may be partitioned into groups among the available processors. If the
correctness of the algorithm does not depend on the use of a precisely defined previous iteration
value for neighboring points in the updating procedure, and if instead any reasonably recent value
will suffice for convergence, then the processes may iterate without synchronization at each iteration.
The termination test for convergence is most easily implemented if the error measure is defined so
that it can be tested locally in each process, determining process convergence independent of other
processes. Thus the only form of synchronization is implicit in the shared point values, which are
continually updated in parallel. Note that a pure implementation of this technique has the
characteristic that no process is ever in synchronization wait, and so all processes are always actively
working towards the solution. However, it is possible for convergence to be slower than in a
synchronized solution due to nonuniform use of previous values. The general ideas of this
technique have been the subject of research for several years, often appearing under the name
“chaotic relaxation” 121.

The pipelining technique is very similar to the pipelined approach in high-performance
uniprocessor hardware implementation. In this technique, the computation is divided into several
parts, called “stages,” which have the characteristic that the output from one stage becomes the input
to the next stage. So, once the computation is well under way, all of the stages can be computing in
parallel with the data streaming into the first stage and the results streaming out of the last stage.
An example of this approach might be the division of a compiler into scanner, parser, global
optimization, and code generation stages.

One note about the interaction between implementations and multiprocessor efficiency and
speedup deserves mention here. Some problem partitionings, especially those using pipelining, lead
to an implementation which has a fixed maximum speedup, e.g. the number of pipeline stages.

4 Techniques for partitioning 5

Other partitionings which are parameterized by the number of processors (and possibly some
measure of data size) have no obvious fixed maximum speedup, and thus (at least for large data
sizes) can continue to benefit from additional processors. Thus, the implementor should be aware
that, by requiring a fixed length pipeline or division into a fixed number of parallel processes, a
limit on future flexibility for expansion is being imposed.

6

5 Selection of a sample application

Since the main goal of this investigation is to demonstrate the practicality of partitioned
execution of real-world problems, the study includes considering several application areas and
specific codes as possible candidates for partitioning. The majority of applications thus far
considered may be characterized as large scale numerical physical simulations. These applications
have been emphasized because of the potential for substantial benefits to these large consumers of
CPU time and because of the large body of expertise in this area available to the S-l project at the
Lawrence Livermore Laboratory.

A number of large LLL physics codes were considered as candidates for a detailed
partitioning study. Criteria for selection of these codes included such issues as importance to the
LLL community and tendency to be representative of currently used techniques for physical
simulation. Importance at LLL is often measured by total CPU hours consumed in production use;
one of the candidate codes surveyed below consumed over 6000 hours of CDC 7600 CPU time
during the past year. The majority of detailed study to date has been concentrated on one
particular code, named SIMPLE [3]. Other candidate codes are abstracted here for completeness
and as de facto targets of future detailed study.

ZOHAR [9] is an LLL “particle pusher” code for two dimensional electromagnetic plasma
simulation. It can also be run in a “two-and-a-half dimensional” configuration, where it maintains
two space dimensions and three velocity components. It is expected to be quite amenable to
multiprocessor partitioning due to its basic Monte Carlo approach. It will also be an interesting
vehicle for studying the utility of S-l special hardware and microcode for Fast Fourier Transforms,
since it makes substantial use of two dimensional FFT’s; the short S-l floating point data format
should also be highly useful for Monte Carlo needs, and makes very high arithmetic bandwidth
available.

TARTNP [lo] is an LLL Monte Carlo code for calculating the transport of neutrons,
photons, and neutron-induced photons. It is fairly large and complex due to the flexibility of the
code. For example, the user may divide a problem into a large number of different zones and then
specify any one of 17 different methods of calculating particle transport for each zone. The current
code version is about 25,000 lines of the LLL dialect of Fortran. Despite its complexity, it is
expected to be amenable to partitioning both due to its Monte Carlo natu’re and the tendency for
users to specify from 25 to 200 completely independent samples in a given run.

WAVE [51 is a Los Alamos Scientific Laboratory code for “particle in cell” (PIG)
electromagnetic and electrostatic simulation, supporting both two dimensional and two-and-a-half
dimensional configurations. It is also attractive to consider for partitioning, due to its Monte Carlo
nature, and it may be somewhat simpler than the related LLL code (ZOWAR). Portions of the code
which may be particularly interesting for analysis of S-l implementation include the FFT and
tridiagonal linear equation solver sections of its Poisson solver.

LASNEX 1141 is an LLL code for studying inertial confinement fusion. It includes a two
dimensional Lagrangian formulation of shock hydrodynamics, and models frequency-dependent

5 Selection of a sample application 7

radiation transport and electron and ion thermal conduction. Of particular interest is its
“Incomplete Cholesky Conjugate Gradient” (ICCG) subroutine [81, which iteratively solves the large
sparse linear systems which arise from the heat conduction difference equations. A substantial
fraction of LASNEX CPU time is spent in the ICCG subroutine. LASNEX has many structural
and algorithmic similarities to the SIMPLE code.

CORONET is an LLL two dimensional Lagrangian hydrodynamics code. It contains some
implicit PDE solution techniques, as well as some explicit ones. Like the LASNEX code, it uses
global timestep control and a table-lookup technique for supplying the required equations of state
for the fluids being modelled, and it supports irregular boundaries. It does not employ Monte Carlo
techniques in its most-used form.

Two other LLL codes have been nominated by LLL scientists as possible candidates for
multiprocessor partitioning study. One is MEG, a one dimensional hydrodynamics solver containing
some Monte Carlo sections. The other is HEMP, a pure two dimensional hydrodynamics code using
explicit solution techniques, which supports irregular boundaries. Both of these seemed to pose less
challenge for present purposes than the other major nominees.

As stated above, detailed study so far has been primarily concerned with the SIMPLE code.
SIMPLE was chosen for several reasons: (1) it is a close relative of CORONET and LASNEX, two
large and complex LLL physics codes; one of the few basic algorithmic differences is SIMPLE’s lack
of support of regions with irregular boundaries; (2) it seems to be representative of techniques used
in many physical modelling codes, in that it contains both explicit and implicit PDE solvers, it uses a
two dimensional Lagrangian formulation, and it uses table lookup for the required equations of
state of the fluids being modelled; (3) it is sufficiently simplified from a full-scale code to be quite
manageable in size (as it consists of about 1800 lines of Fortran); (4) it has been studied by others in
the academic sector as a candidate application for a number of novel processor architectures, such as
data-flow machines.

Large scale numerical simulations such as these form one significant class of applications for
which multiprocessor partitioning seems to be appropriate. Several other application areas have
been suggested and studied by other researchers. One application considered because it is widely
used but still fairly self-contained is sorting. Internal (main memory) sorting is fairly CPU intensive
but still difficult to partition effectively, since obvious partitionings are often theoretically limited to
less than linear speedup [I 11. Another general area of application is heuristic search of large tree
structures such as those found in artificial intelligence problems. One other application which has
been studied in this light is set partitioning integer programming [ll].

8

6 Overview of SIMPLE

The intent of the SIMPLE code is to give a simple, yet realistic, example of computational
fluid dynamics and heat flow. It solves the differential equations of inviscid compressible shock
hydrodynamics and simple heat conduction using a Lagrangian formulation. It works in two
dimensions on a region with a regular boundary. It uses simple table lookup to represent the
equations of state of an ideal gas.

The differential equations are reduced to difference equations. The equations for
hydrodynamics and for heat conduction are solved in separate sections of the ‘code employing
different techniques. The hydrodynamics equations are solved explicitly, while the heat conduction
equations are solved implicitly.

The basic data structure in SIMPLE is used in the representation of the mesh covering the
problem domain. This consists of 13 two dimensional arrays of real numbers to store the physical
quantities involved, plus a few additional arrays for working storage. There are also one
dimensional arrays to store the tabular definition of the equation of state, and of course several
scalars to store miscellaneous other quantities.

The outer loop structure (after the problem is set up) is a simple iteration as the time value is
increased:

repeat
hydrodynamics pass;
heat conduction pass;
compute new delta t;
advance time by delta t;

until done

The hydrodynamics pass has the following structure:
for each mesh zone, calculate new pressure using EOS lookup;
for each boundary zone, calculate geometry;
for each boundary zone, set up boundary physics;
for each mesh point, calculate new velocities;
for each mesh point, calculate new coordinates;
for each mesh zone, calculate new density and change in specific volume;
for the boundary, sum up the work done on the boundary by hydrodynamics;
for each mesh zone, calculate artificial viscosity and Courant delta t limit;
for each mesh zone, calculate hydrodynamic work and update energy, using EOS;
for all zones, sum up the kinetic energy for the entire problem;
for each mesh zone, calculate new temperature via table lookup;

The heat conduction pass has the following structure:
for each mesh zone, calculate two material properties;
for the boundary, set the boundary properties to neighboring values;
for each mesh zone, calculate coupling constants in the K direction;

6 Overview of SIMPLE

for each mesh zone, calculate coupling constants in the L direction;
for the boundary, set some appropriate initial values;
over the entire mesh, perform a forward and backward sweep in L (see text);
over the entire mesh, perform a forward and backward sweep in K (see text);
for each mesh zone, calculate new energy using EOS, and new delta t limit;
for the boundary, sum up the energy flow across boundaries;
for all zones, sum up a new internal energy for the entire problem;

Notice that, with one significant exception, all of the steps in both passes have a very similar
structure. A typical step passes over the entire mesh (or maybe just the boundary) making Iocal
computations at each mesh zone or mesh point. These local computations typically involve updating
one or more quantities at the given place in the mesh, after examining the previous value and
perhaps the previous values of a few neighboring elements. AIso, of course, computations involving
only the boundary contribute much less to the CPU time used than computations over the whole
mesh. Below in figure 1 is a pictorial representation of a typical SIMPLE mesh processing step,
showing the obvious left to right and top to bottom ordering of mesh element computation. This
will be compared in the next section with the multiprocessor partitioned ordering.

10 6 Overview of SIMPLE

Figure 1: Typical mesh processing order

The one exception to this structure occurs in the steps in the heat conduction pass called
“forward and backward sweeps.” Superficially, even these steps may appear to have a similar
structure. There is one important difference, arising from the implicit nature of the PDE solution
technique used. In order to solve a tridiagonal linear system of equations, the sweeps evaluate a
recurrence of the form X[I] := A[I]aX[I-11 + B[I] for increasing values of I. The key here is that
each new X quantity depends on the new X quantity which was computed in the immediately
preceding inner loop iteration. This dependence causes some difficulty in the partitioning of the
sweeps, which will be discussed in the next section on partitioning of SIMPLE.

Another algorithmic structure which is used is the table lookup in the EOS and temperature
calculations. In both cases this consists basically of locating between which pair of entries in an
increasing table of values some physical quantity belongs numerically, and then using the

6 Overview of SIMPLE 11

corresponding index into other tables to compute an interpolated function value. The lookup search
is a straightforward sequential ordered table search. The only unusual part of the algorithm is that
each table index is saved as a starting place for the next search, which reduces the search time
assuming that successive uses of the function tend to pass arguments of similar magnitude.

12

7 Partitioning SIMPLE

Given the basic structure of SIMPLE as mostly performing localized operations fairly
uniformly across a large data structure (the mesh), the most reasonable approach seems to be a
data-directed synchronous partitioning. Specifically, each of several processes is assigned to operate
on some subset of the mesh, computing independently of the other processes whenever possible.
Occasional synchronization is required for keeping one mesh section from advancing too far beyond
the others, for mesh-wide data summarizing operations, and in the sweep steps (as explained later).

An important factor to consider in partitioning a program which has a large shared data
structure like SIMPLE’s mesh is the presence of per-processor cache memory on the S-l. Due to the
large difference in access time to a word in central shared memory and a word already in a
processor’s cache, it seems reasonable to select a programming style which has a high degree of
per-processor data locality of reference. In a code like SIMPLE, where the computation within the
large shared data structure is quite evenly distributed, an easy way to do this is to statically partition
the data structure into fixed equal size pieces, with one piece per process. Each process is then
responsible for updating its piece, and most of the references to that piece are made by that process,
thus assuring locality. Notice that it is also being assumed that there is at least an approximate
one-to-one mapping between processes and processors, and that processes do not migrate from one
processor to another very often. Otherwise, the advantages of having all recently referenced data in
cache would be lost. These assumptions are valid on the bare hardware of the S-l, and must be
supported by any operating system which is intended to maximally benefit from this type of
operation.

For SIMPLE, the chosen static mesh partitioning is into “column groups.” Each process is
assigned a different fixed subrange of columns of all of the arrays representing the various physical
quantities in the mesh. Of course, any process can still access any quantity at any point in the mesh
since the entire mesh is in global shared memory. It is just assumed that most of the references
within a column group will be by the assigned process, and hence that the column group data will
reside largely in the corresponding processor’s cache. Below in figure 2 the column grouping of the
mesh is shown, along with the ordering within processes of a typical mesh computation,
corresponding to the uniprocessor version in figure 1.

7 Partitioning SIMPLE 13

Proc.
0

,:r-----/
!-,
/ - - - - - -
c..;

:- ----4
:->)

)/-----4
‘-w;

:->--I;:/-----’
‘\-:- - - - - -
s-j------d
:-WI-----*
I:> ;,
-----d/
c--,1------/
r-->--+;--me--/I
‘It------)

Proc.
1

-1I/-----I
(-:/ - - - - - -
(- - - ,:-----4
:->)

;---_-d
CT>-,

:

C&j/------
‘\-:- - - - - -

5-j
---e--M

L>)
:-----d

<-,
/ -----4 /

‘-Mb1- - - - - - A
;->--+;
---m--l

‘->)

Proc.
2

0.0

l .e

..a

Proc.
15

-1IF-----A
(-,
/ - - - - - -
c.);

:-----4
:->h

//-----&
I--)m----d
5-y
/-----4
‘\-- - - - - - :
c>)

:----w-d
:->)

)-----I
k+,-----d/
Li\)------/
:->>-+~-,,,--A
‘->)

Figure 2: Partitioned mesh processing order (independent mesh computations)

The presence of the caches has another interesting performance implication, on the theoretical
speedup achievable for a program like SIMPLE. For some reasonable mesh sizes, it is quite
possible that all of the mesh data will not fit in a single processor’s cache, but that it will all fit in all
of the caches combined. In this case, the uniprocessor execution of the program could continually
cause cache misses and corresponding lengthy delays while cache lines are transferred to and from
main memory. However, the multiprocessor version, with properly partitioned references to the data,
would be able to retain the entire mesh distributed in all of the caches, thus causing cache missing to
be insignificant. In this way, if the efficiency of processor utilization is high enough, the speedup
over the uniprocessor version could actually exceed the number of processors executing the program!

Here are some details of the process of partitioning a mesh-processing part of SIMPLE other

14 7 Partitioning SIMPLE

than the difficult sweep steps. One simplified typical code fragment might appear as follows (where
K is the row index and L is the column index):

for L := LMN to LMX do
for K := KMN to KMX do

begin
A [K,Ll := (X[K,Ll+Y[K,Ll) >K (Z[K,L- I]-Z[K- 1,Ll);
BIK,Ll := B[K,Ll + Z[K,Ll*Y[K-l,L+ll;
end;

for L := LMN to LMX do
for K := KMN to KMX do

begin
P[K,Ll :- PIK,Ll + A[K-l,L]*A[K,L];
q[K,Ll := q[K,L] + B[K,L-l]*B[K,Li
end;

Notice that the computation at each mesh point is in terms of other quantities at the same
mesh point or at a neighboring mesh point, thus maintaining the desirable locality mentioned above.
The only references outside of local column groups occur when L is in the first or last column of a
group and an off-column reference like Z[K,L-I] or Y[K-l,L+ll is made. Also notice that within
each loop pair the computations at each mesh point are completely independent of each other, and
so they may be performed in parallel with no interprocess synchronization needed. However, the
second loop pair is dependent on the results of the first loop pair, so synchronization is needed to
insure that the second loop pair is not executed by some process before the A and B values needed
have been stored by perhaps a different process. An easy way to insure this is to insert a “synchall”
synchronization call between the loop pairs. This call forces each process to wait at that point of
execution until all processes have arrived there, and then they are all allowed to proceed. Since each
process is performing essentially the same amount of work on its column group as any other process,
all processes may be expected to complete the first loop pair at about the same time and not cause
very much overhead wait time at the synchall point.

So, the partitioned version of the code fragment might appear as follows (where PR is the
index of the process executing the code, and LMN and LMX have been expanded into arrays
specifying the column boundaries of the column groups):

for L := LMN[PRl to LMX[PRl do
for K := KMN to KMX do

begin
A[K,Ll := (X[K,Ll+Y[K,Ll) * (Z[K,L-II-Z[K-1,Ll);
B[K,Ll := BIK,Ll + Z[K,Ll*Y[K-1,Lt 11;
end;

SYNCHALL;
for L := LMN[PR] to LMX[PR] do

for K := KMN to KMX do
begin

7 Partitioning SIMPLE 15

P[K,Ll := P[K,Ll + A[K-l,Ll*A[K,L];
QJK,Ll := QJK,Ll + B[K,L-llxB[K,Ll
end;

Another code fragment worth considering is one which includes a summary data gathering of
some sort, such as the result of a summation or a maximum over some function of the mesh points.
Such a computation requires a complete pass over the mesh with a single scalar output, rather than
updated mesh values. A typical step of this sort in SIMPLE might appear as follows:

TOTAL := 0.0;
for L :- LMN to LMX do

for K :- KMN to KMX do
begin
TOTAL := TOTAL + A[K,LlaX[K,Ll;
end;

The obvious approach to partitioning this code fragment is to let each process compute a total
for its column group, and then to have one process compute a grand total at the end. If the number
of processes is sufficiently large, the simple grand total computation should perhaps be replaced by a
multiprocess version which could compute pairwise subtotals, eventually reducing the number of
totals to one grand total. So, a partitioned version of this code fragment could appear as follows
(where MAXPROC is the number of processes): ’

PTOTAL[PR] := 0.0;
for L := LMN[PR] to LMX[PR] do

for K := KMN to KMX do
begin
PTOTAL[PR] := PTOTALIPR] + A[K,L]*X[K,Lk
end;

SYNCHALL;
if PR = 1 then (* processor I computes the grand total *>

begin
TOTAL := 0.0;
for P :- 1 to MAXPROC do

TOTAL := TOTAL + PTOTALD-‘];
end;

One more code segment which should be discussed is the table lookup in the EOS and
temperature calculations. As mentioned previously, these code segments are essentially
straightforward sequential ordered table searches, which can be executed independently by several
processes in parallel with no synchronization since they are computing function values from
read-only data. The only exception to this is the mechanism for retaining the search index from
the previous search for use as a starting point the next time. The obvious way of partitioning this
mechanism is to retain the previous search index on a per process basis, so that processes executing
in unrelated portions of the mesh do not try to use each other’s previous search indices.

16 7 Partitioning SIMPLE

Finally, some consideration must be given to the somewhat more difficult problem of
partitioning the forward and backward sweeps in the heat conduction pass. It was noted previously
that the difficulty arises from the recurrence inherent in the loops, in which each inner loop
iteration is dependent on results computed in the previous iteration. Even this structure would not
be difficult to partition if such iterations only traveled up and down columns, and hence were
evaluating each recurrence only within a single process. Unfortunately, recurrence iterations are
performed both up and down columns and across rows. So, some of the recurrences must be
evaluated across process boundaries, requiring some form of synchronization at very frequent
intervals (once per process boundary crossed, i.e. several times per row of the mesh in a single
sweep). All previously discussed partitionings of SIMPLE required only about one synchronization
per computation over the entire mesh.

A partitioned forward mesh sweep recurrence is diagrammed below in figure 3. In the figure,
the mesh rows have been grouped into blocks of three rows each; row blocking is not used in the
code below, but it will be discussed later in the section on analytic study. The vertically circled
column group boundaries show points at which synchronization must occur. The diagonally circled
column group portions represent a single time snapshot of how much computation can proceed in
parallel, due to the skew enforced by the left to right recurrence. As time proceeds, more and more
processes become actively executing in parallel. The average degree of parallelism depends on the
“angle of attack” of the diagonal part, which is determined by the amount of row blocking, the mesh
dimensions, the number of processors, and the synchronization overhead. These quantities will be
studied in detail later, in the analytic section.

7 Partitioning SIMPLE 17

Proc.
0

-;
----a-~

-H,
/.------

.-

-1
I*-----d

--; ;

------a

->-> ’

19 •***mm.*m~m=

-1
_-----d

.-:

e------

+-i

b” 0

0
0
0

Proc.
1

-1
J- - - - - - -

(->b,
r---,--.

(.>-+‘I
.

l ..Y.Y. 0.

f*>+

,----m-e/

$ ->;

/v----m-.

:>->
4

..*...m...o

;-;

/ ------d

L>->i

-_------

I >\/

0

0

0

Proc.
2

l .y ;.,1 I-w--v-/
:-,------ -:->---;. u
(O-1 I,,---/~ 5-3,/-----��L..;
-1 //------�3-ym----dc >)

000

l o *

F::I...
:

t

0.0
.
:

I 0.0

Proc.
15

Figure 3: Partitiolled forward sweep processing (with row blocking)

For reference, a slightly simplified version of the unpartitioned troublesome sweep code
fragment appears below:

for K :- KMN to KMX do
begin
for L := LMN to LMX do

begin
A[K,Ll := q[K,Ll/ A[K,L-II;
B[K,Ll :- (QJK,L-lI*B[K,L-11) / A[K,L-11;
end;

for L := LMX downto LMN do (* note stepping by -1 *)

18 7 Partitioning SIMPLE

begin
TIK,L] := A [K,L]>lcT[K,L+ l]+B[K,Ll;
end;

end (*for Kt);

For partitioning this code fragment, there must be a somewhat more detailed synchronization
mechanism than the synchall call used previously. Let A WAIT(n) and SIGNAL(n) correspond
roughly to Dijkstra-style semaphore operations P(SEM[n]) and V(SEM[nl). So, AWAIT(n) will be
used to await a signal on channel n, and SIGNAL(n) sends a signal on channel n. Notice that the
signal channels contain counters, so more than one signal may be outstanding on a channel. In this
example, AWAIT(n) will be used to wait for a signal from process n that it is finished with the next
row’s worth of column group. Given these definitions, the partitioning discussed above might be
expressed in this code fragment as follows:

for K := KMN to KMX do
begin
if PR > 1 then AWAIT(PR-1);
for L := LMN[PR] to LMX[PRl do

begin
A[K,L] := QJK,Ll/ A[K,L-11;
B[K,L] :- (q[K,L-l]wB[K,L-11) I A[K,L-I&
end;

if PR < MAXPROC then SIGNAL(
end (*for K>ic);

for K := KMN to KMX do
begin
if PR c MAXPROC then AWAIT(PR+l);
for L := LMX[PR] downto LMNIPRI do (* note stepping by -1 *t)

begin
TCK,Ll := A[K,L]>rcT[K,L+ ll+B[K,Lk
end;

if PR > 1 then SIGNAL(
end (*for K>ic);

There exists an alternative to the above frequently synchronizing structure for partitioning
the sweeps. It would be possible to transpose the mesh quantities needed, perform the sweeps in the
“easy” direction (up and down columns}, and then transpose back. This unwieldy sounding
approach could actually be quite feasible in practice when compared to the high overhead method
outlined above, if the problem of efficiently transposing a matrix on the multiprocessor can be
solved. At the moment this problem appears to be quite complicated, since it must attempt to keep
all of the processors busy at the same time as avoiding delays from simultaneous access to any single
central memory unit. Some further analysis of how much time the high overhead method spends in
waiting will be presented below in the section on analytic speedup computation. Also, a new
hardware-supported mechanism will be proposed in the section on synchronization and
communication which should eliminate most of the overhead associated with loops like this one, thus

7 Partitioning SIMPLE 19

obviating the need for such a transpose mechanism.

The above examples tend to blur the distinction between variables which are shared by all
processes and variables which are private to each process. In any actual implementation, of course,
this distinction must be explicitly specified by the user to the system software. For SIMPLE, shared
variables include the mesh quantities, the EOS lookup tables, and miscellaneous globally known
scalars. Private variables include loop indices and temporaries.

20

8 Multiprocessor SIMPLE simulation

As part of this study, a modest simulation of the SIMPLE code running on a multiprocessor
has been implemented. One of the major goals of this simulation was just to force the process of
considering the entire code line by line, to be sure there were no major conceptual problems in
partitioning it for a multiprocessor. Another goal was to study in general the effectiveness of the
previously discussed approaches to partitioning, with particular emphasis on the viability of a static
mesh partitioning. The simulation is accurate in the sense that it still actually solves exactly the
same problem as that solved by the uniprocessor code, but it is incomplete in its consideration of the
complexities of the multiprocessor environment.

The basic approach of the simulation was to begin with the code of SIMPLE (translated into
Pascal from Fortran), and to start by considering how to partition each stage for multiprocessor
execution. However, each code segment which was intended to run independently in different
processes is actually enclosed in a loop which executes the code segment successively for each process,
varying the process number over all possible values. Variables which were private to each process
(and had a useful lifetime long enough to justify keeping the values across major processing steps)
were changed into arrays indexed by the process number.

To this structure were added timing, synchronization, and statistics gathering functions. The
main timing function is assignment of CPU time spent in mesh computation to the simulated process
which is spending that time. This is done by surrounding each code segment with calls to start and
stop charging of CPU time to a specified process. The only synchronization function simulated at
present is the synchall function described earlier. It is simulated by a procedure call to update
timing statistics at each synchall point. The most interesting statistic is of course the speedup
achieved. It is computed by assuming that wallclock time advances at the same rate as the
maximum CPU time used by any process at each stage. Again, this assumes essentially that each
process has its own dedicated processor. Other statistics gathered include per-process CPU usages,
which may be examined to determine how successfully the workload is being balanced among the
processes.

The results of sample runs of the simulation were quite encouraging. The per-process CPU
usage was very well balanced, indicating that the static mesh partitioning appears to be a reasonable
choice. The speedup reported for a small mesh on a 16 processor system varies between 9.7 and ,
14.5, depending on how it is chosen to account for CPU time which was spent but not attributed by
the simulation to any particular process. Both the accuracy of the simulation and the speedup value
are expected to increase as the size of the mesh increases.

There are a number of ways in which the simulation to date is incomplete, and so future
improvements could increase the accuracy of the simulation. One minor improvement would be to
accurately model the subtotal accumulation part of each summary data gathering step; at present
these parts are assumed to be negligible and are not included. Also lacking is a detailed study of
exactly which synchall points are absolutely necessary; at the moment they are scattered liberally
throughout the code wherever there is any possibility that global resynchronization might be needed.
The influence of the caches was included in some analytical study (discussed later), but the

8 Multiprocessor SIMPLE simulation 21

simulation assumes uniform access to all of shared memory. The critical points in SIMPLE where
cache misses will happen due to column group boundary crossing have been isolated but not yet
included in the simulation. Probably the most important omission in the present simulation is
accurate accounting for the complicated interactions in the heat conduction forward and backward
sweeps. At present the simulation assumes that a no cost mesh transpose is done; this is obviously
unrealistic.

22

9 Allalytic speedup computation

The simulation studies of SIMPLE to date have ignored the implications on memory access
times imposed by the per-processor caches of the S-l. The presence of the caches is quite important
to consider due to the possibility of a more than tenfold increase in access time for a word not in
cache over the access time for a word in the proper cache. In particular, accessing a word in cache
takes only about 50 nanoseconds, whereas accessing a word from the cache of another processor will
probably take about 300 nanoseconds (averaged assuming all words of a cache line will be accessed,
corresponding to a cache line access time of 4 to 5 microseconds).

To augment the simulation results, some analytic study has been done of potential speedup of
portions of the SIMPLE code, allowing for the presence of the caches. The portions chosen for
analytic study are the sweep steps in the heat conduction pass and a time-consuming nested loop
representative of the hydrodynamics pass. The sweep analysis is simplified by only considering the
overhead implied by cache misses and cache line transfers, and not considering any overhead
associated with process synchronization. The next section of this report proposes a mechanism
which can reduce both types of overhead.

the
T h e sweep analysis will be presented for the forward

slightly simplified code fragment which appeared earlier
sweep only.
is repeated

The
below

forward sweep part of
for reference:

for K := KMN to KMX do
begin
for L :- LMN to LMX do

begin
A[K,L] := q[K,L] / A[K,L-11;
B[K,L] := (~[K.L-IIuB[K,L-~~) I A[K,L-11;
end;

end (*for K*);

It is assumed that the two dimensional arrays are stored by columns, i.e. that element A[&11 is
followed in memory by element A[2,1]. Thus each S-l 16 word cache line contains 16 elements of a
column of an array. Since cache transfers happen in units of 16 word lines rather than single
words, it is reasonable to assume that the overhead would be less if each process computes the above
recurrence on a block of rows within its column group before letting the next process start on those
rows, rather than synchronizing on each single row. This blocked approach allows more than one
word to be used from each cache line each time it is transferred across from one processor to
another at a column group boundary. For simplicity, the unit of time used here will be the length of
time it takes one processor to execute a single loop iteration with no cache misses.

Define the following parameters:

B = blocksize = number of rows in a block
W = time to compute the recurrence over one block of one column group
P = number of processors

9 Analytic speedup computation 23

R = number of rows (KMX-KMN+l)
C = number of columns (LMX-LMN+l)
TSP - elapsed time for entire forward sweep on single processor
TMP - elapsed time for entire forward sweep on multiprocessor

The speedup for this section of code is then defined by:

TSPSpeedup - TMP

By the definition of the unit of time,

TSP = R l C

Similarly, notice that since a block is B rows high and C/P columns wide, W would be equal
to B*C/P in the absence of cache misses.

To formulate the value of TMP, the exact sequence of the multiprocessing sweep execution
must be observed. Each of the P processors computes the recurrence at each element in all R rows
in its assigned column group of C/P columns. In other words, each processor computes over R/B
blocks, taking time W*R/B for the whole computation. If all the processors could execute for the
whole sweep fully in parallel, W*R/B would also be the elapsed time of the entire computation.
However, no processor can begin its computation until the previous processor has finished
computing on its first block. So, processor P must wait for P-l block computations until it can start
on its first block. From then on all processors can run in parallel, assuming that each block
computation takes the same amount of time. Thus, accounting for the delayed startup of processor
P, the total elapsed time is:

TMP = W l (P-l + ;I

In formulating W, processor to processor cache line moves must be accounted for, in addition
to the basic iteration compute time. The basic iteration time (of the real code in SIMPLE) is
estimated at about one microsecond, and a cache line move takes 4-5 microseconds, so it seems a
reasonable estimate that a cache line move takes about the same time as 4 basic iterations.
Assuming that a previous step computed values for the array 9, causing its data to reside in the
caches of assigned column group processors, the read-only use of q[K,L-1 J in each iteration causes
each processor to participate in two cache line moves (one from the previous processor and one to
the next processor) every 16 rows. So, the contribution to each block computation of accessing
qlK,L- II is twice B/ 16 times the cache line move time, i.e. 2*B/16*4.

Each iteration also uses the values of A[K,L-I] and B[K,L-I], but not in a read-only fashion,
i.e. each value used was written on a recent earlier iteration. So, the cache lines containing these
values at column group borders must be moved between processors (twice) for every block which is
processed, not just every 16 rows. In other words, when processor p finishes computation on a block,
the cache line containing the last column of that block must be moved to processor p+l, and if the

24 9 Analytic speedup computation

next block to be computed by processor p also contains any part of that cache line it must be moved
back to processor p. So, where /‘xl (“ceiling of x”) is the smallest integer greater than or equal to x,
the contribution to each block computation of accessing both A[K,L-II and B[K,L-11 is twice
2*rB/ 161 times the cache line move time, i.e. 2*2*[B/161*4.

Therefore, the final formula derived for W is:

C*Bw= 7+2*; 04 + 2*2*[$1’4
C*B

‘P+2!! + 16.r $1

From all of the above, the speedup can be expressed:

‘PeeduP = C.B B
RG

(p+ B + lS*[; 1) l (P-l + ;)

P=
(I+ & + L#Ll.!t,.(l+ Ep,

Notice that this formula has the expected quality that as the number of rows and columns in
the mesh approaches infinity, the speedup approaches the number of processors.

For determining some numeric values of the speedup formula, some interesting parameter
values can be substituted. Specifically, by letting P=16, choosing sample values for R and C, and
then maximizing over B, the following speedups are obtained:

R C speedup max occurs at 8 -
128 128 7.0 4
128 1024 11.4 2

1024 1024 14.1 4

Now, a time-consuming nested loop representative of the hydrodynamics pass will be
analyzed. The loop chosen performs the function listed earlier in the SIMPLE overview as “for
each mesh point, calculate new velocities.” This loop forms the majority 0f.a subroutine which uses
397. of the CPU time used in the hydrodynamics pass, and 26% of the total CPU time in SIMPLE.
It is also in the class of easily partitioned loops in SIMPLE, since it requires no potentially costly
synchronization calls within the loop body. Thus, the major factor which might limit speedup for
this section is the overhead of cache misses due to shared array access. For reference, the exact text
of the loop in question appears below:

for L := LMN to LMX do
for K :- KMN to KMX do

begin
AU := (P[K,Ll+QK,LI) * (Z[K,L-I]-Z[K-l,L]) +

(P[K+ l,Ll+q[K+ l,Ll)1;(2[K+ l,Ll-Z[K,L-11) +

9 Analytic speedup computation 25

(P[K,L+ Il+QjK,L+ ll)s(Z[K-l,LI-ZCK,L+ 11) +
(P[K+ l,L+ ll+qjK+ l,L+ lI)*(Z[K,L+ II-Z[K+ 1,Ll);

A W := (P[K,Ll+QK,Ll) L (R[K,L-ll-R[K-1,Ll) +
(P[K+ l,LI+QK+ 1,LI) F (R[K+ l,LI-R[K,L-11) +
(P[K,L+ II+q[K,L+ 11) t (R[K- l,Ll-R[K,L+ 11) +
(P[K+ l,L+ l]+QJK+ l,L+ 11) * (R[K,L+ II-R[K+l,Lh

AUW := RHO[K,LI*A J[K,Ll+RHO[K+ l,Ll*A J[K+ 1,Ll
+RHO[K,L+lI~AJ[K,L+l]+RHO~K+1,L+l~*AJ~K+l,L+ll;

AUW := Z.O/AUW;
AU := -AU*AUW;
AW :- AW*AUW;
U[K,L] :- U[K,Ll+DTNeAU;
V[K,L] := V[K,Ll+DTN*A W;
if A BS(U[K,Ll) <- VCUT then U[K,Ll :- 0.0;
if ABS(V[K,Ll) <= VCUT then V[K,Ll :- 0.0;
end (*for L,K*);

Define the following parameters:

P = number of processors
R - number of rows (KMX-KMN+l)
C = number of columns (LMX-LMN+l)
K - number of cross-cache references within one row of a column group
S = time for a single inner loop iteration with no cache misses
V - time to move one word from one cache to another
T - total time spent on all iterations on single processor

First, observe that:

T=R*C*S

Now, there are K cross-cache references within one row of a column group. There are R rows
and P column groups. Each cross-cache move takes time V. So, the total time spent moving cache
words on the multiprocessor is K+P*R. But, this time is divided evenly among the P processors,
so the cache word moving overhead contribution to the elapsed time is K*V*R. Assuming this is
the only overhead and that the normal iteration time is also divided evenly among the processors,
the speedup can be expressed as:

Speedup = T T

- + K+RP
PrC

1 + KeV*P*R
T

26 9 Analytic speedup computation

P=
1 + K*V*P

C*S

For the above code fragment, K can be computed by simply counting the number of different
accesses of adjacent columns, i.e. column L-l or L+l. In this case, K - 12 (not counting duplicate
references to the same off-column element). The average value of V was estimated earlier to be
about 300 nanoseconds. The value of S for this loop could be about 1200 nanoseconds. So, the
speedup can be estimated:

Speedup = P

1 + 3*pc

Now, again letting P-16, and choosing the same sample values for R and C as for the sweep
analysis, the following speedup estimates are obtained:

R C speedup
128 128 1 1 . 6
1 2 8 1024 1 5 . 3

1 0 2 4 1024 1 5 . 3

And finally, a speedup estimate for the entire code can be computed, assuming that the sweep
speedup is a good estimate of the heat conduction pass speedup and that the sample hydrodynamics
loop speedup is a good estimate of the hydrodynamics pass speedup. The heat conduction pass
consumes about 301. of SIMPLE CPU time, and the hydrodynamics pass consumes about 70%. The
speedups are combined using the equation:

Speedup = 100
percent1 percent2
speedupl + speedup

This yields the following entire code speedup estimates:

R C speedup
1 2 8 128 3 . 7
1 2 8 1024 1 3 . 9

1 0 2 4 1024 14.9

27

10 Synchronization and cotn In unication

The above studies have pointed out that a variety of process synchronization and
communication mechanisms may be desirable for use under varying circumstances. The most
obvious form of communication between processes on a processor like the S-l is through the use of
shared memory, which is implemented on the S-l multiprocessor as several shared main memory
modules and a cache coherence algorithm to keep the state of main memory and local caches
consistent throughout all read and write accesses.

Shared memory does not necessarily directly implement the desired synchronization primitives,
however. The (statically) most frequent synchronization primitive used in partitioned SIMPLE is
the synchall call described earlier. Recall that it forces each process to wait at a given point of
execution until all processes have arrived, after which all processes may continue. Synchall can be
easily implemented in terms of classic Dijkstra-style P and V semaphore operations. For example,
letting MAXPROC be the number of processes, if SLEEPINGPROCS is of type integer and
MUTEX and SLEEP[l..MAXPROC] are semaphores, the following code can be used to implement
synchall on process number PR:

(* Initially SLEEPINGPROCS=O, MUTEX=O, SLEEP[l..MAXPROCl=O *)
P(MUTEX);
SLEEPINCPROCS := SLEEPINCPROCS + 1;
if SLEEPINCPROCS = MAXPROC then

begin
for I :- 1 to MAXPROC do V(SLEEP[Il);
SLEEPINGPROCS := 0;
end;

V(MUTEX);
P(SLEEP[PR]);

The performance of this code in practice would of course depend very greatly on the
underlying implementation of the P and V primitives. Also, it is important to note that in this code
one process (the last one to execute the synchall) is responsible for issuing the V’s that wake up all
of the other processes. If the CPU time required for executing a V primitive is large enough
compared to the CPU time between synchalls, and if the number of processes is large enough, this
can be a severe performance bottleneck.

For allowing the implementation of synchronization primitives, the S- 1 architecture contains
“conditional move” instructions. One such is the MOVCSF (“move conditionally, skip on failure”)
instruction. This instruction tests to see if the values of its first and second operands are equal. If
so, the contents of the first operand are replaced by the contents of register 37.12 (decimal). If not, the
first operand is left unchanged and a skip is taken to the skip destination. The instruction operates
indivisibly, so that nothing can change the value of the first operand before it is (conditionally)
replaced.

Synchall can also be implemented in terms of the MOVCSF instruction. The following

28 10 Synchronization and communication

example implementation is written in S-l assembler code. It is implemented at a very low level,
without any operating system calls such as might be desired for a more general implementation - all
waiting is busy-wait looping. Notice that the process local index SW is used to toggle between the
first and second words of SLEEPINGPROCS on successive synchalls, to avoid race condition
trouble if one process reaches its next synchall before another process has realized it is time to wake
up from the previous synchall.

:;; I n i t i a l ly (SlJ)=0, (SLEEPINGPROCS)=B, (SLEEPINGPROCS+4)=0
I N C S L E E P : MOV A,SLEEPINGPROCS(SW)

INC X12. ,A
MOVCSF SLEEPINGPROCS(SW1 ,A, INCSLEEP ;Increment S L E E P I N G P R O C S i n d i v i s i b l y
SKP.NEQ %lZ.,MAXPROC,SLEEP
MOV SLEEP1 NGPROCS (SW 1, #0 ; If i n c r e m e n t e d t o M A X P R O C , z e r o i t

SLEEP: JMPZ.NEQ SLEEPINGPROCS(SW) ,SLEEP ;Wait for SLEEPINGPROCS - 0
SUBV SW,SW,#4 ;Swi t c h : SW:-4-SW

For some kinds of synchronization and communication, it appears that a mechanism other
than simple shared memory is very desirable. The cache line size of 16 words requires a substantial
amount of overhead per cache line moved from one processor to another. This overhead can be
amortized over the 16 words if the memory access pattern causes most of the 16 words to be used
before the cache line must be moved again. This type of amortization is the reason that SIMPLE
arrays were assumed to be stored by columns, and then the rows were processed in blocks in the heat
conduction sweep analysis. In a straightforward non-blocked implementation, the sweeps in
SIMPLE would require that about 4 words per C/P microseconds be transferred between processors.
Especially for small numbers of columns, the “bulky” 16 word cache moves can be a significant
bottleneck.

Also, timing cache line mesh data moves only includes communication overhead, and does not
account for any synchronization overhead (mentioned in the “partitioning SIMPLE” section as
A WA IT and SICNA L primitives). So, it is reasonable to propose a new general purpose
mechanism which combines the functions of communicating small packets of data at high
bandwidth and providing synchronization between the processes sending and receiving the data.

The new proposal is a simple inter-processor message sending mechanism. Messages are
transmitted on one-way “links,” which are allocated in I/O memory space much like normal I/O
mechanisms. The I/O memory allocation is performed by the operating system, so that transparent
reallocation can be done if it becomes necessary to move a process from one processor to another.

Once the link is set up, the user processes can use it at high speed via special instructions without
substantial operating system intervention.

The user instructions are called SNDMSC and RCVMSG. They are specified to operate on
small messages (doublewords) at very low overhead per message transmission. The hardware
contains a small amount of buffering for smoothing the message flow, but both instructions have
failure returns, indicating that either the buffers are momentarily full (for SNDMSC) or empty (for
RCVMSG). It is expected that both instructions can execute in the 100-200 nanosecond range, with

10 Synchronization and communication 29

a message latency between processors limited largely by physical factors such as interprocessor cable
lengths.

As an example, a possible implementation of the forward sweep part of the slightly simplified
SIMPLE code fragment which appeared earlier using AWAIT and SIGNAL is included below:

for K := KMN to KMX do
begin
if PR > 1 then RCV2WORDS(LINK[PR-l],AKLM 1,BKLM 1) else

begin
AKLM l:=A[K,LMN[I~l~;
BKLM I:-B[K,LMN[l]-I];
end;

for L := LMN[PR] to LMX[PR] do
begin
A[K,L] := q[K,L] / AKLM 1;
B[K,L] := (QJK,L-l]*BKLM 1) / AKLM 1;
AKLMl := A[K,L];
BKLMl := B[K,Ll
end;

if PR < MAXPROC then SENDZWORDS(LINK[PRl,AKLM i,BKLM 1);
end (*for Ku);

30

11 Directions for future study

In a broad ranging study such as this, there will always remain interesting problems to be
addressed. There is more work to be done in each of the areas discussed in this report, and there
are also many other related areas requiring study.

The simulation of partitioned SIMPLE is still incomplete in several ways mentioned earlier,
especially in simulating the overhead time required for cache line moves and/or synchronization
primitive execution. Also, a higher-level simulation could be done which does not actually solve the
physics equations, but still models the multiprocessor behavior of the code for various mesh sizes
and other parameters. The analytic studies of SIMPLE could be continued in several directions,
including detailed analysis of other code sections, or studying previously analyzed sections under
different assumptions, such as the use of SNDMSC and RCVMSC primitives. A more quantitative
statement about the sensitivity of the speedup of various code segments to variations in the mesh
size would also be useful.

Further detailed study of synchronization and communication mechanisms is desirable. Such
mechanisms should be as easy to use and as general as possible, but must not sacrifice performance.
It has already been observed that a variety of mechanisms with a variety of functional and timing
characteristics is likely to be needed. In conjunction with these mechanisms, more study should be
done on general techniques for partitioning of applications. The special issues arising in debugging
a multiprocess implementation are particularly important. More tools need to be developed for
evaluating the effectiveness of alternative implementations.

Another important dimension of study is the range of applications chosen for partitioned
implementation. Study of partitioning in detail should be done (as it was for SIMPLE) for several
other real-world applications, such as those mentioned in the section on “selection of a sample
application.” Also, several entirely different non-numerical areas of application should be
considered in more detail for multiprocessing feasibility.

One final area of investigation needed is the implications of trying to use the S-i
multiprocessor hardware as cost-effectively as possible. A major topic is the interaction of the
partitioned multiprocessing approach with the powerful vector processing capabilities of the S-1
Mark IIA. One other topic mentioned earlier is researching the possible implementation of a very
efficient multiprocessor matrix transposition algorithm, for possible use in situations where matrix
processing does not efficiently align with the chosen data partitioning of matrices.

12 Comlusiorl

This study to date has added to the evidence in favor of the partitioned application mode of
multiprocessor use. It has demonstrated that applications representative of real-world large scale
problems can reasonably be considered for multiprocessor partitioning. Some simulation and
analytic estimates of code speedup have been obtained. Some general methodologies for partitioning
have been suggested, and some specific mechanisms for multiprocess cooperation have been
proposed.

It seems certain that general purpose multiprocessors will play a large role in the future
spectrum of the world’s computing needs. Part of this role will be assumed by large scale
multiprocessors executing some of the most compute-intensive applications, partitioned across
multiple processors to gain valuable increases in raw computing power per wallclock hour.

32

13 AckmowledgtneMs

I am indebted to many of my fellow staff members of the S-l Project for encouraging this
research, and particularly to Mike Farmwald, whose stimulating advice and helpful comments from
beginning to end of this work have been most warmly appreciated. Professor Cio Wiederhold also

provided much useful guidance. I am also grateful to the Fannie and John Hertz Foundation for a
Hertz Fellowship, which provided personal support during much of the time that this research was

conducted.

The S-l Project is sponsored by the Naval Material Command, through the Office of Naval
Research and the Naval Electronic Systems Command. The Lawrence Livermore Laboratory is
operated by the University of California for the US Department of Energy under Contract
W-7405-Eng-48.

33

14 Referewes

111 Baudet, Gerard M., The Design and Analysis of Algorithms for Asynchronous
Multiprocessors, Ph.D. thesis, Carnegie-Mellon University, April 28, 1978.

[23 Chazan, D. and W. Miranker, Chaotic Relaxation, Linear Algebra and Its Applications, 2,
1969, 199-222.

131 Crowley, W. P., C. P. Hendrickson, and T. E. Rudy, The SIMPLE Code, Lawrence
Livermore Laboratory report no. UCID-17715, February 1, 1978.

141 Flynn, M. J., Very High-Speed Computing Systems, Proceedings of the IEEE, 54(12),
December 1966, 1901-1909.

[51 Forslund, D. W., and C. W. Nielson, Vectorized PIC Simulation Codes on the Cray-I,
Proceedings of the 1978 Workshop on Vector and Parallel Ptocessors, Los Alamos, New
Mexico, September 20-22, 1978.

C6l Hammersley, J. M., and D. C. Handscomb, Monte Carlo Methods, Wiley, N. Y., 1964.

171 Jones, Anita K. and Peter Schwarz, Experience Using Multiprocessor Systems: A Status
Report, technical report, Carnegie-Mellon University, October 14, 1979.

ISI Kershaw, David S., The Incomplete Cholesky-Conjugate Gradient Method for the Iterative
Solution of Systems of Linear Equations, Journal of Computational Physics, 26(l), January
1978, 43-65.

[91 Langdon, A. Bruce and Barbara F. Lasinski, Electromagnetic and Relativistic Plasma
Simulation Models, Methods in Computational Physics 16, 327-366.

I103 Plechaty, Ernest F., and John R. Kimlinger, TARTNP: A Coupled Neutron-Photon Monte
Carlo Transport Code, Lawrence Livermore Laboratory report no. UCRL-50400 vol. 14, July
4, 1976.

[l 11 Raskin, Levy, Performance Evaluation of Multiple Processor Systems, Ph.D. thesis,
Carnegie-Mellon University, August 1978.

1 I21 S-l Project Staff, Advanced Digital Processor Technology Base Development for Navy
Applications: The S-l Project, Lawrence Livermore Laboratory report no. UCID-18038,
1978.

cl31 Widdoes, L. C., High-Performance Digital Computer Development in the S-l Project,
Proceedings of IEEE CompCon, Spring 1980, in press.

[I41 Zimmerman, George B., Numerical Simulation of the High Density Approach to Laser
Fusion, Lawrence Livermore Laboratory report no. UCRL-74811, October 17, 1973.

