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ABSTRACT

This report contains a survey of testability conditions in
microprocessor-based design. General issues of testability, testing
methods, and fault modeling are presented. Specific techniques of
testing and designing for testable microprocessor-based systems are
discussed.
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1 INTRODUCTION

Testability refers to the ease with which the presence and
perhaps the location of a fault or faults within a system can be
discovered. It has come to be a significant factor influencing the
total life-time cost of a digital system as well as the initial
manufacturing cost. Current design trends emphasize the use of
complex components employing large-scale integration (LSI). The key
component in many such systems is a microprocessor, which is a
programmable processor consisting of a small number of integrated
circuits (ICs), often just a single IC. The entire digital system has
the form of a microcomputer comprising a microprocessor which acts as
the central processing unit (CPU) or system controller, memory
circuits (ROMS and RAMS), and input/output (IO) circuits. The
problems of testing microprocessor-based systems and designing them
to be easily testable are surveyed in this paper.

A digital system is tested by applying a sequence of input
patterns (tests) which produce erroneous responses when faults are
present. Fault detection or go/no-go tests are intended to determine
whether or not a system contains a  f a u l t .Fault location tests
attempt to isolate a fault to a specific component; it is usually
desired to isolate faults to easily replaceable components.

A system is considered to have good testability if a high
level of fault coverage can be achieved at an acceptably low cost
[501. Fault coverage means the fraction of faults that can be
detected or located within the unit under test (UUT). Several
related factors contribute to the cost of achieving good testability.

1. The cost of the external test equipment and personnel
needed to apply the various test procedures to the UUT.

2. The extra equipment built into the UUT to facilitate
testing. This can include special logic circuits, extra IO
connections used as test points, and memory space occupied by test
programs.

3. The additional design and development costs needed to
make the system testable. Included here is the cost of obtaining the
test patterns needed to exercise the system.

4. The time required to apply the test patterns and to
analyze the responses produced. The relative importance of each of
the above cost factors depends on the system being designed, its
intended applications, and the manner in which it is to be tested.

Microprocessor-based systems are difficult to test for
several reasons.
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1. The number of' possible faults is extremely large. An LSI
circuit contains thousands of basic components (gates) and
interconnecting lines which are individually subject to failure.

2. Access to internal components and lines is severely
limited by the number of IO connections available. A typical micro-
processor may contain 5,000 gates but only 40 IO pins. This means
that many layers of potentially faulty logic circuits can separate a
particular component from the points at which the test patterns can
be applied and the responses observed.

3. A consequence of the large number of possible faults is
the need for very large numbers of test patterns. This may require
ways of encoding this information to reduce its size.

4. The system designer may not have a complete description
of the ICs being used. Microprocessor specifications are typically
register level descriptions consisting of block diagrams, a listing
of the microprocessor's instruction set, and some information on
system timing. Test procedures must often be designed using meager
data of this kind.

5. New and complex failure modes such as pattern sensitivity
occur. The impact of the foregoing difficulties can be greatly
reduced by using design techniques that enhance testability, and by
matching the test generation and application processes to these
design techniques. The inherent ability of a microprocessor to
execute complex programs can also be exploited.

Microprocessor testing is of interest in many different
situations: semiconductor component manufacturering, test equipment
design, system design, and system maintenance. We will be primarily
interested in testing from the design viewpoint. We also restrict
our attention to functional testing, which is only concerned with the
logical behavior of the UUT. (This is often contrasted with
parametric testing which deals with electrical properties such as
voltage levels and signal delays.)

2 TESTING METHODS

Every testing procedure involves the generation of test data
(input test patterns and output responses), application of the test
patterns to the DUT, and evaluation of the responses obtained. Many
different approaches to digital system testing have evolved, which
are distinguished by the techniques used to generate and process the
test data. They can be divided into two broad categories which we
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term (1) concurrent or implicit and (2) explicit. In the concurrent
testing approach, the data patterns appearing during normal
computation serve as test patterns, and built-in monitoring circuits
are used to detect faults. Thus testing and normal computation can
proceed concurrently. Parity checking is the most common form of
concurrent testing. In explicit testing special input patterns are
used as tests, so that normal computation and testing occur at
different times. Explicit tests can be applied by test equipment that
is external to the UUT (external testing), or they can be applied
internally (self-testing;). Most computer-based systems have little
self-testing ability. Complete self-testing has hitherto been
limited to applications such as spaceborne computers and electronic
switching systems where stringent reliability requirements justified
the extra cost of self-testing. The advent of low-cost
microprocessors with significant processing abilities has greatly
increased the number of systems where self-testing is both desirable
and economically feasible.

2.1 Concurrent Testing

Concurrent testing is commonly implemented by coding
techniques which allow the signal patterns generated during normal
computation (with minor modification if necessary) to serve as test
patterns. Thus a word to which a single parity bit is appended
becomes a test for single-bit faults affecting the word in question.
Parity generation logic circuits are used to produce the expected
response pattern, which may then be compared with the actual
response, the entire operation occurring in parallel with normal
computation. Self-checking circuits, which are discussed in Sec. VI,
also employ coding techniques to achieve concurrent testing. Very
high fault coverage can be obtained by a concurrent testing technique
in which the functional units are replicated and run in parallel with
the outputs being compared and perhaps voted on. This technique is
used in systems such as telephone offices in which very high
availability is important. It is somewhat similar to the explicit
testing technique called comparison testing to be discussed
subsequently.

2.2 Explicit Testing

Explicit methods are used when the extra circuits and
interconnections needed for concurrent testing are too costly, or
when the signals produced during normal computation are inadequate
for testing purposes. In the latter case, specific test pattern
generation procedures are required. The test patterns are produced
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either manually by a design or test engineer, or else special
hardware- or software-implemented algorithms, called test-generation
programs, are used. Manual test generation is widely used.

Test-generation programs typically make use of a simulation
model of the target system. This model can range in complexity from
a detailed logic model specifying every gate, to a crude heuristic
model that approximates the behavior of a few major subsystems.

If the test patterns are difficult to generate, i.e., if
substantial computation is necessary to construct them, then they are
usually computed in advance (off-line), and stored in the tester
along with the expected response to each test pattern. The stored set
of test patterns and responses is called a fault dictionarv. The
fault dictionary may also identify the faults corresponding to
specific test pattern and response combinations. Testing based on
stored test data of this kind is often called stored resnonse
testing. It is typically implemented in three steps.

1. A sequence of one or more test patterns T is retrieved
from the fault dictionary.

2. T is applied to the UUT and the response R is recorded.

3. R is compared to the fault-free response RO stored in the
fault dictionary and appropriate action is taken if they differ. The
main drawbacks of this approach are the cost of computing the fault
dictionary, and the memory space needed to store it in the tester.
However, the test patterns need only be computed once, an advantage
when no simple way is known for obtaining suitable test patterns.
Figure la illustrates stored response testing.

The cost of storing the the test pattern responses can be
reduced by using a technique called comparison testing. Note that it
may still be necessary to store the test patterns themselves.
Comnarison testing makes use of several copies of the UUT, each of
which processes the same input signals; faults are detected by
comparing the responses of all the units. A response differing from
that of a known fault-free unit serves to pin-point a faulty unit.
This technique can be implemented with as few as two copies of the
UUT, one of which, the so-called gold unit, acts as a reference
against which the other unit is compared. Figure lb illustrates this
type of testing. If there are three or more copies of the UUT, the
majority response may be taken as the correct one, allowing voting
circuitry to be used for concurrent fault diagnosis.

Stored response testing may be contrasted with methods in
which the test data is computed each time the UUT is tested; we refer
to these as algorithmic testing methods. The algorithmic approach
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requires some rapid and therefore simple method for determining test
data. A common test pattern source is a high-speed (hardware or
software) counter that generates sequences of test patterns in a
fixed or pseudo-random order. For example, an n-input combinational
component can be tested by applying all possible 2 binary patterns
to it. These patterns can eisily be obtained by incrementing an n-
bit counter through all its 2 states. The correct response RO to a
particular test T may be determined rapidly by comparison testing
using a gold unit (see Figure Ib). An example of a commercial tester
for microprocessors based on this kind of comparison testing is the
Megatest Q8000 [ll].

Another way of obtaining the good response R. is for the test
pattern generator to compute it. Such an approach is feasible if the
test generator contains a computer (a mini- or microcomputer
suffices) and there is a fairly simple function or algorithm relating
T and R . For example, an adder may be tested with a test pattern
compris!?ng two numbers A and B that are to be added by the UUT. The
correct response A+B is computed independently by the tester and
compared to the sum computed by the UUT. This approach is well-
suited to testing microprocessors, because many of the functions to
be tested are defined by algorithms programmed into the UUT.
Microprocessor testers are therefore often designed to emulate, i.e.,
to execute directly, the instruction set of the UUT's microprocessor.
This allows the tester to control the UUT completely during testing,
temporarily overriding the microprocessor in the UUT. This technique,
which is very useful for design debugging, is called in-circuit
emulation. It is a feature of many microcomputer development systems
1441.

2.3 Comnact Testing

High-speed test generators, particularly algorithmic testers,
can produce huge amounts of response data whose analysis and storage
can be quite difficult. Compact testing methods attempt to compress
the response data R into a more compact form f(R), from which the
information in R about the fault status of the UUT can be derived.
The compression function f is one that can be implemented with simple
circuitry. Thus compact testing entails little test equipment, and so
is especially suitable for field maintenance.

Figure 2 illustrates two representative compact testing
techniques. In each case, a fixed sequence T of tests is applied to
the UUT and the output response is compacted to obtain f(R) which is
recorded. The compacted response is then compared either
automatically or manually with the precomputed compact response. By
using a series of different test points and standard signal tracing
techniques, a fault can be detected and located.
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The first method, called transition counting, computes the
number of logical transitions (a 0 changing to a 1 and vice versa)
occurring in the output response at the test point. All this
requires is a simple transition detection circuit and a binary
counter connected as shown in Figure 2a. Transition counting has
been implemented in a number of commercial testers, and appears to
provide fairly good fault coverage [27, 37, 461. It has the
advantage of being insensitive to normal fluctuations in signal
duration, and so is especially useful for testing asynchronous
circuits. Similar compact testing schemes such as ones counting have
also been proposed [30, 38, 531.

Recently hewlett-Packard Corp. has proposed a compact testing
scheme called signature analysis intended specifically for testing
microprocessor-based systems [33, 651. As illustrated in Figure 2b,
the output response is passed through a 16-bit linear feedback shift
register. The contents f(R) of this shift register after all the
test patterns have been applied is called the (fault) signature, and
is recoraed or displayed as a 4-digit hexadecimal number. Thus an
output response of arbitrary length is compressed into four digits.
The compression function f implemented here is such that every
single-bit error in the response stream, as well as many multiple-bit
errors, cause f(R) to differ from f(Ro), the precomputed correct
compact response. A 99.998% probability of detecting a faulty output
response has been claimed for signature analysis [33]. (Note that
.99998 is essentially an estimate of the factor by which the fault
coverage is reduced due to the use of the linear feedback shift
register to compact the output response data). The correct compact
responses for each test point are recorded on the system schematics;
a maintenance person can compare the obtained response with that
given on the diagrams to determine whether or not a fault has been
detected.

3 FAULTS AND TESTS

Every testing procedure aims at diagnosing some particular
class of faults, although in practice these faults are not always
well-defined. An explicit fault model is necessary, however, if the
fault coverage of a set of tests is to be determined. The complexity
of LSI circuits makes it necessary to reconsider some of the fault
models that have traditionally been employed for digital system
testing.
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3-j Functional Faults

The UUT can be regarded as an n-input, m-output, s-state
finite-state machine, an (n,m,s)-machine for short. Perhaps the most
general of the useful fault models, which we may call the functional
fault model, allows an (n,m,s)-machine to be changed by a fault to
any (n,m,s')-machine, where s1 does not exceed s. (Note that some
restriction on the number of states of the faulty machine is
necessary.) Under this model a combinational circuit, which is an
(n,m,l)-machine, always remains combinational when faults are
present. To test a combinational circuit M for all functional
faults, it is necessary and sufficient to apply all 2" possible input
patterns to M which, in effect, exhaustively verifies its truth
table, and thereby provides rather complete fault coverage. Although
the number of tests is often very large, they can be easily and
rapidly generated using the algorithmic technique mentioned earlier.
This type of testing can sometimes be applied to the combinational
subcircuits of a sequential UUT. When the circuit under test must be
treated as sequential (s>l), complete detection of functional faults
requires a special type of test called a checking sequence. The
theory of checking sequences is well-developed [29, 391, but unless s
is very small, checking sequences are extremely long and difficult to
generate. We now illustrate an application of the functional fault
model to a specific class of microprocessors.

Example 1:- Testing a simple bit-sliced microprocessor [64]

A bit-sliced microprocessor is an array of n identical ICs
called (bit) slices, each of which is a simple processor for operands
of length k bits, where k is typically 2 or 4. The interconnections
between the n slices are such that the entire array forms a processor
for nk-bit operands. The simplicity of' the individual processors,
and the regularity of the array interconnections make it feasible to
use systematic methods for fault analysis and test generation.
Unfortunately, the more widely used non-bit-sliced microprocessors do
not share these properties.

Figure 3 shows a circuit model for a l-bit processor slice
which has most of the features of a commercial device such as the
Am2901 [I]. (The main omissions are the logic circuits for
implementing shift and carry-lookahead.) This circuit consists of
five basic components or modules, two of which are sequential
(registers A and T), and tnree combinational (the two multiplexers
and the ALU). The ALU can perform addition, subtraction and the
standard logical operations. Each module may fail according to the
foregoing functional model, but only one module is allowed to be
faulty at a time. A complete test set for this circuit must apply
all possible input patterns to each combinational module, and a
checking sequence to each sequential module. In addition, the
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responses of each module must be propagated to the two primary output
lines. The tests required by the individual modules are easily
generated because of the simplicity of the modules, a direct
consequence of the small operand size (k=l). The module tests can be
overlapped in such a way that 82 test patterns suffice for testing
the entire circuit [64]. Note that the 6-input ALU alone requires 64
test patterns. The number of test patterns produced in this manner. considerably less than the number generated
izocessors by conventional heuristic techniques [49].

for comparable

An important property of this type of processor slice is the
fact that the tests for a single slice can easily be extended to
tests for an array of the slices, for example, the 4-bit array
depicted in Figure 4. In fact, an array of arbitrary length can be
tested by the same number of tests as a single slice, a property
called C-testabilitv [28]. Other components of a computer system
such as memories and microprogram sequencers [l] can also be bit-
sliced, and thus share some of the good testability features of a
bit-sliced processor.

3.2 Stuck-Line Faults

The most widely used fault model for logic circuits is the
single stuck-line (SSL) model, which allows any interconnecting line
to be stuck at logical 1 (s-a-1) or stuck at zero (s-a-0). Only one
line is allowed to be faulty, and the circuit components, gates,flip-
flops and the like, are assumed to be fault-free. Clearly SSL faults
form a small subset of the functional faults. Many common physical
faults are covered by this model, and several distinct methods have
been developed for generating tests for SSL faults [13]. The best
known test generation method for this purpose is Roth's D-algorithm
[56, 591. Complete test sets of near-minimal size can be generated
for SSL faults in combinational logic circuits. Sequential circuits,
even those of moderate complexity, still present serious problems.

Since a microprocessor-based system is a very complex
sequential circuit, it is generally not feasible to analyze it
completely using the classical gate-level SSL model. The number of
possible SSL faults of this kind is enormous. Furthermore, an
adequate logic circuit of the UUT at the gate level may not be
available. Nevertheless, because so many common faults, such as
broken connections and short circuits to ground, can be be modeled
accurately by s-a-O/l lines, it is desirable to generate specific
tests for at least some of the SSL faults occurring in such systems.

In practice, tests for SSL faults are often restricted to the
following cases.
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1. Faults affecting the external IO pins of each IC, and the
IO connections of the principal combinational or sequential modules
within the IC.

2. Faults causing the main information transmission paths,
e.g., buses, to become s-a-l/O.

3. Faults causing the major state variables to becomes s-a-
l/O; such faults usually correspond directly to SSL faults in the
associated registers and memory elements. Note that these SSL-type
faults can be identified from a register-level description of the
UUT. They define a restricted SSL fault model which is widely, if
implicitly, used in testing complex digital systems. To detect these
restricted faults, it is necessary to verify that the lines and
variables in question can be set to both the 0 and the 1 values. Thus
a basic test for a memory element such as a microprocessor register
is to verify that a word of OS and a word of 1s can be written into
and read from it.

3.3 Pattern-Sensitive Faults

Another useful way to model faults in LSI circuits is to
consider interactions between logical signals that are adjacent in
space or time. Such a fault occurs when a signal x causes an
adjacent signal y to assume an incorrect value. Faults of this type
are termed pattern-sensitive faults (PSFs). There are many physical
failure modes that result in pattern sensitivity. For example,
electrical signals on conductors that are in close spatial proximity
can interact with one another. This problem is aggravated by the very
high component and connection densities characteristic of LSI.
Another instance of pattern sensitivity is the failure of a device to
recognize a single 0 (1) that follows a long sequence of Is (OS) on a
particular line; this time-dependent PSF is a consequence of unwanted
hysteresis effects. PSFs are particularly troublesome in high-
density RAM KS. Since microprocessors often contain moderately
large RAMS, they too are subject to PSFs [34].

A variety of heuristic procedures have been developed to
detect PSFs in memories [7, 13, 26, 421, Figure 5 illustrates two
representative types. The RAM is viewed as a 2-dimensional array of N
independent storage cells. The test called Checkerboard (Figure 5a)
writes an alternating pattern of OS and 1s into the RAM; this
requires a total of N write operations. Then the contents of each
RAM cell is read out and verified, requiring N read operations. These
write and read steps are repeated with the positions of the OS and Is
reversed. If each l-cell read or write command is regarded as a
test, then Checkerboard contains approximately 4N tests. Checkerboard
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verifies that a 0 (1) can be transferred Correctly to Or from a cell
that is "surrounded" by 1s (OS), intuitively a worst-case condition
for spatial pattern interference. The second representative PSF test
is called Galloping OS and 1s or Galpat (Figure 5b). Galpat
initially writes a 0 (1) into all cells. A 1 (0) is then written
into a test cell C. Each cell Cf f C is read in turn to determine
whether its contents have beeen disturbed by the write operation
addressed to C. After reading every Cf, C is again read to ensure
that it is still correct. Thus Galpat moves back and forth or "ping-
pangs 'I between the test cell C ana all other cells, checking for
unwanted interactions. The process is repeated with with every cell
in the RAM playing the role of the test cell C.

Most PSF tests were derived empirically, and their underlying
fault models are unclear, making it very difficult to determine the
fault coverage of the tests. Attempts have been made to develop
formal fault models for some kinds of PSFs [ 36, 511.

PSFs provide a good illustration of the testing problems
caused by the rapidly increasing component densi 5 ies in modern ICs.
The Galpat test described above requires about 4N patterns to check
an N-bit RAM. If each test pattern takes 100 ns to apply, then A 4K-
bit (4096#t) RAM can be tested by Galpat in about 2 s. However, a
lM-bit (2 -bit) RAM, which is expected to appear on a single VLSI
chip in the near future [14], would require about 30 hours for one
application of Galpat at the same 100 ns-per-test rate.

4 TESTING MICHOPRGCESSOR-BASED SYSTEMS

In practice, tests for microprocessor-based systems are
designed to exercise the UUT by applying a representative set of
input patterns, and causing it to traverse a representative set of
state transitions. In each case the decision on what constitutes a
representative set is based on heuristic considerations. The faults
being diagnosed may not be specifically identified, but they can
often be related to the fault models discussed earlier. Two examples
will serve to illustrate the heuristic nature of this approach.

The following list describes the 2n+4 test patterns used to
test every data path and register in the Plessey System 250, a
computer system designed for fault tolerance [45].

1. The all OS pattern

2. A pattern of alternating 0s and 1s (a one-dimensional
checkerboard pattern)
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3. The n patterns containing a single 1 and n-l OS

4. The logical complements of the preceding patterns. These
tests detect all s-a-o/l faults associated with the data lines and
state variables, as well as certain kinds of PSFs.

The program counter (PC) which generates the address of the
next sequential instruction to be executed is a key component of a
microprocessor. It can be tested by incrementing it sequentially
through all its states, and verifying that the correct state is
reached after each increment or, equivalently, that the proper
address is generated [18]. This test thus checks for the existence of
every possible state of the PC, and verifies the most common state
transitions. Note that it does not verify all possible state
transitions resulting from the execution of branch (hump)
instructions.

4.1 Programmed Tests

Much of the uniqueness and power of a microprocessor-based
system lies in the fact that it is program-controlled. Thus a
natural tool for testing the system is a test program executed by the
internal microprocessor of the UUT. This program is designed to
apply appropriate test patterns to the major register-level modules
of the UUT, all of which should be accessible via its instruction
set. Typically, these modules are exercised by input patterns
derived heuristically, and based on the functions performed by the
modules under test. Note that in exercising these components, the
microprocessorVs instruction set is also exercised and therefore
tested.

A disadvantage of this heuristic exercising approach to
microprocessor testing is the absence of a suitable register-level
fault model establishing a correspondence between instruction or
module failures and the underlying physical faults. Consequently it
is extremely difficult to determine the fault coverage of a test
program. The need for a useful instruction-oriented fault model has
long been recognized [48]. Recently some interesting work towards
such a model has been done by Thatte and Abraham [67, 681.

A test program for a microprocessor is usually organized into
a sequence of steps, each of which tests a related group of
instructions or components. Once a group nas been proven fault-free,
it may then be used to test other groups. The selection and
sequencing of these steps is complicated by the fact that
considerable overlap exists among the components affected by
different instructions.
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Example 2: Constructing a test program for the 8080
microprocessor [18]

The 8080, which was introduced by Intel Corp. in 1973, is
perhaps the most widely used microprocessor. It is an 8-bit machine
of fairly conventional designThis register[:z!el Figure 6 shows a block diagram
of the 8080. ' ' - description is adequate for
applying heuristic fault models such as the restricted SSL model
discussed in the preceding section. The 8080 contains a simple
arithmetic-logic unit and six 8-bit general-purpose registers; the
latter may be paired to form three 'l6-bit registers. (16 bits is the
main memory address size.)

Table 1 lists the main steps in an 8080 test program [18].
The 8080 UUT is assumed to be connected to an external tester which
has access to the IO lines comprising the data, address and control
buses of the 8080. First, the tester resets the UUT. Then the 16-
bit program counter PC is incremented through all its 65,536 states.
This can be implemented by having the tester place a single
instruction NOP (no operation) on the data (input) lines of the 8080
under test, and causing the 8080 to execute it repeatedly. The
effect of NOP is to increment the PC and cause it to place its
contents on the outgoing address lines where they can be observed and
checked by the tester. This checking can be done rapidly by comparing
the PC state to that of a hardware or software counter in the tester
which is incremented on-line in step with the PC.

The next step is to test the various general-purpose
registers by transferring 8-bit test patterns to and from them and
checking the results. All possible test patterns may be used,
because their number (256) is small, and they are easy to generate
algorithmically. The tests are implemented by several data transfer
instructions (MOV, LXI, PCHL), which are themselves also tested in
this step. After a pattern is applied to a register r, the tester
can inspect the contents of r by transferring it to the PC via the HL
register. (The PCHL instruction which swaps the contents of PC and
HL is used; the 8080 lacks instructions for transferring data
directly between the PC and other registers.) Since the PC was tested
in the first step, its contents can be taken to be correct , and they
can be observed directly via the address bus. (Some pitfalls of
testing 8080 registers in this way are discussed by Smith [631.) The
remaining steps of the test program exercise the other components and
instructions of the 8080 in a similar manner. Unfortunately, little
data is available on the fault coverage of this type of test program.



&b
it

 i
nt

er
na

l 
bu

s

Ac
cu

mu
la

to
r

b
Fl

ag
s

7
Bu

ff
er

,
A 4@
 8

v
Da

ta
 b

us
-f

i

4

Po
we

r

r
v

In
st

r.
re

gi
st

er

I,,
,,,

,,,
=:

I
co

nt
ro

l
lo

gi
c

l l l
b

I
B

C

IP
ro

gr
am

;o
un

te
r

I

Bu
ff

er

cI
 1

6
7

Ad
dr

es
s 

bu
s

Ge
ne

ra
l-

pu
rp

os
e

re
gi

st
er

s

Fi
g.

 6
.

Ar
ch

it
ec

tu
re

 
of

 
th

e 
80

80
 
mi

cr
op

ro
ce

ss
or

.



19

Table 1. The Main Steps in a Program to Test the 8080 Microprocessor.

1. Reset the 8080 UUT.

2. Test the program counter PC by incrementing it through all its
states via the NOP instruction.

3. Test the six 8-bit general-purpose registers by transferring all
possible 256 test patterns to each register in turn via the PC.

4. Test the stack pointer register by incrementing and decrementing
it through all its states; again access it via the PC.

5. Test the accumulator by transferring all possible test patterns
to it via previously tested registers.

6. Test the ALU and flags by exercising all arithmetic, logical and
conditional branch (flag-testing) instructions.

7. Exercise all previously untested instructions and control lines.

4.2 Testing the Entire System

A complete microprocessor-based system can be tested by using
its microprocessor as the primary source of test patterns. Consider
the problem of testing a system with the typical bus-oriented
architecture shown in Figure 7. IO device testing is not considered
here, since it varies from device to device. Again we assume that
there is an external tester which has access to the various system
buses. In addition, we require this external tester to be able to
disconnect parts of the system from the buses during testing; this
can often be done either electrically or mechanically. We now outline
the main steps in a fairly general system testing procedure [41].

First a simple test is performed on the microprocessor to
determine if one of its main components, the program counter PC, is
operational. As discussed earlier, this can be done by making the PC
traverse all its states causing it to place all possible address
patterns on the system address bus. It is necessary to isolate the
microprocessor from the data bus during this test so that the
external tester can supply the instructions needed to increment the
PC. In the case of the 8080 discussed earlier, the tester need only
place a single instruction (NOP) on the microcomputer's data input
lines in order to cause the PC to increment continuously. While the
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PC is being incremented, a mode of operation called free-running, the
external tester monitors and checks the signals appearing on each of
the system's address lines. It is relatively simple to do this via
compact testing techniques like signature analysis.

Next the system ROMs are tested with the microprocessor still
in free-running mode. During this test the RAMS are disconnected
from the data bus. Since the microprocessor generates all memory
addresses, it causes every ROM location to be accessed automatically.
The tester monitors the signals which represent the ROM contents as
they appear on the data bus. Since the ROM contents are fixed, a
fixed signature can easily be associated with each ROM.

At this point the microprocessor, ROMs and system buses have
been checked to determine if they are working. The remaining parts
of the system are checked via specific exercising programs, which may
be stored in the external tester or the UUT's ROMs. The RAMS can be
tested by programs such as Checkerboard and Galpat described already.
The IO interface circuits normally resemble memory devices, and can
be tested by memory-oriented check programs. In order to do this
under control of the microprocessor in the UUT, the output ports can
be connected directly to the input ports using jumper connections, a
technique called loop-back [22, 311. This allows the CPU to send a
test pattern to an output port and read it back via an input port for
checking.

All the tests outlined so far can be implemented with a very
small subset of the microprocessor's instruction set, mostly NOP,
LOAD and STORE. It remains to exercise the other instructions, which
can be done along the lines of the 8080 tests described in Ex.2
above.

5 DESlGN FOR TESTABILITY

A fundamental requirement for testing any system S, be it a
microcomputer or a large systems program, is the ability to be
partitioned into easily testable subsystems S(l),S(2),...,S(k).  Each
S(i) should be small enough that it can be tested directly by the
available testing procedures. While testing S(i), it must usually be
isolated from the rest of the system so that a tester, either alone
or in conjunction with other subsystems of the UUT (preferably those
that are known to be fault-free), can control the inputs of S(i) and
observe its responses. Thus the controlability and observability of
the various parts of the system contribute in an important way to its
testability.
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Controllabilitv may be defined informally as the ease with
which arbitrary input patterns can be applied to the inputs of S(i)
by exercising the primary inputs of S. Observability is the ease
with which the responses of S(i) can be determined by observing the
primary outputs of S. These intuitive concepts have been quantified
by Stephenson and Grason [66], so that measures of controlability and
observability can be determined directly from a gate- or register-
level circuit for S. These measures can be used to predict the
difficulty of generating test patterns for S.

5.1 Test Point Insertion

Perhaps the most direct way to improve controllability and
observability is to add extra input and output lines to S so that the
logical distance between the IO lines of S(i) and those of S is
reduced. Added IO access points of this kind are called test points.
Usually a certain amount of extra logic is needed to insert the test
points, particularly input test points. In the extreme case we can
add enough test points to convert the IO lines of S(i) into IO lines
of S during testing. If this is done for all S(i), then testing
becomes trivial [35]. However, in LSI circuits space for test points
is severely limited, hence testability improvement must be carried
out using very few test points, often only one or two.
Controllability and observability measures are useful in determining
the best locations for a limited set of test points [6, 17, 661.
Good locations for test points include:

1. The outputs of memory elements, particularly those used
for control purposes

2. The IO connections of deeply buried components

3. Lines with large fan-in or fan-out, e.g., lines in the
system bus.

Surprisingly, a high degree of testability can be achieved
with only a very small number of test points, although usually at the
expense of also adding significant amounts of extra logic to support
the test points. Reddy has shown that every n-input combinational
function can be realized by a circuit that requires only n+4 easily
generated test patterns for complete fault detection [58]. Reddy's
circuit, which consists of a cascade of EXCLUSIVE-OR gates driven by
a set of AND gates, employs a single input test point, and at most
two output points. However, the large propagation delay of this
circuit makes it mainly of theoretical interest. A method called
scan-in scan-out for making a sequential circuit easily testable
using only a few test points was developed by Williams and Angel1
[70] and is described below.
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5.2 Logic Design Methods

Logic designers have compiled a set of design guidelines to
simplify testing which, in general, aim at increasing controllability
and observability [g, 40, 473. The following list is representative.

1. Allow all memory elements to be initialized before
testing begins, preferably via a single reset line.

2. Provide a means for opening feedback loops during
testing.

39 Allow external access to the UUT's clock circuits to
permit the tester to synchronize with the UUT or to disable the UUT.

Design techniques that introduce regularity into a system's
structure, e.g., the use of programmable logic arrays [52] also
facilitate testing. The scan-in scan-out technique mentioned above
allows a system that does not have a regular structure during normal
operation to assume a regular easily testable structure during
testing. This important design technique has been adopted recently
by several computer manufacturers [21, 24, 321.

Example 3: Scan-in scan-out design [TO]

The key concept here is to design an LSI chip such as a
microprocessor so that all memory elements can be connected together
to form a single shift register SR during testing. This causes the
entire chip to appear like a large combinational circuit whose IO
lines are either chip IO lines or IO lines of SR. The system can then
be tested by loading a test pattern into SR (scan-in) , allowing the
system to respond to the test pattern , then reading out the response
from SR (scan-out). The scan-in scan-out scheme has several
advantages.

1. The test generation problem is largely reduced to the
relatively easy one of testing a combinational circuit.

2. No matter what the length of SR, it can be accessed via
one input and one output line which, in fact, may be normal IO lines
of the system. A special control line is needed to switch the system
between the normal mode of operation and the test mode. Thus at most
three test points must be added to the basic system, and one extra
test point may suffice.

3. Relatively little extra logic circuitry is added to the
basic design, and its effect on system performance is minimal.

Figure 8 shows the design modifications needed to implement
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Clock

Combinational circuit C

(b)

Fig. 8. A sequential (a) before and (b) after
modification to introduce the scan-in
scan-out testability feature.
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scan-in scan-out. The basic unmodified system, which appears in
Figure 8a, is assumed to use clocked D (delay) flip-flops as its
memory elements. It is modified for scan-in scan-out by adding a
simple logic circuit (a multiplexer) denoted SW to the input of each
flip-flop. SW acts as a switch which, under control of the special
input signal p, connects the flip-flop input either to the
combinational circuit C (normal mode), or to the output of another
flip-flop (test mode). Copies of SW are also included which allow two
normal IO lines to be used as IO lines of the shift register SR.
Thus the only added test point is for the control signal p.

The circuit S of Figure 8b is tested as follows.

1. Switch to the test mode (p = 1).

2. Shift a test pattern into SR (scan-in).

3* Return to the normal mode (p = 0).

4. Clock the system to apply the input test pattern in SR
and at the primary inputs of S. Some responses appear at the primary
out-puts of s; the majority are stored in SR.

5. Switch to the test mode.

6. Shift the output responses out of SR (scan-out).

7. Verify all responses. Return to step 2 with the next
test pattern.

A version of scan-in scan-out called LSSD (level-sensitive
scan design) was developed at IBM which uses level-sensitive dual-
clocked flip-flops in place of the D flip-flops of Figure 8b [24].
This results in circuits that are largely free of timing problems
like hazards. The increase in the number of gates required to
implement this scheme was found to range from 4% to 20%. LSSD is used
in the design of the IBM System/38 computer [lo].

6 SELF-TESTING SYSTEMS

So far, our discussion has been concerned with external
testing methods, where the bulk of the test equipment is not part of
the UUT. As digital systems grow more complex and more difficult to
test, it becomes increasingly attractive to build test procedures
into the UUT itself. Some self-testing ability is incorporated into
most computers, mainly via coding techniques. A few machines have
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been designed with essentially complete self-testing, notably
telephone switching systems [23] and spaceborne computers [51. In
the last few years comprehensive self-testing features have become
common in microprocessor-controlled instruments such as logic
analyzers [ 251. The Commodore PET, a personal computer based on the
6502 microprocessor, is delivered with a self-testing program which
is considered to have sufficient fault coverage to serve as the sole
go/no-go test used in manufacture [22].

Self-testing can be achieved using any of the techniques
described in Sec. II. Often these methods are combined in various
ways. For example, No. 1 ESS, an early telephone switching system
with a high degree of self-testability, uses duplication with
comparison (match) circuits, error-detecting codes, self-checking
circuits, and diagnostic programs that are executed by No. 1 ESS
itself [23]. ln self-testing microprocessor-based systems, on-line
or real-time self-testing procedures are generally the most
practical. Comparison testing can be implemented by duplicating key
subsystems, and comparing their output signals. Currently, such
duplication is usually done at the board level, and individual ICs
are duplicated. However, it is also possible to duplicate components
within an IC, an approach that can take advantage of the high
component densities of VLSI chips [ 14, 621. Algorithmic self-testing
can be achieved by having the microprocessor execute appropriate
self-test programs. The use of special codes and checking circuits
can be regarded as a form of hardware-implemented self-testing at a
somewhat lower level.

6.1 Coding Techniaues

Coding techniques for error detection have the great
advantage that they provide a precisely-defined level of fault
coverage with little overhead in extra hardware or processing time.
Codes exist which can give almost any desired level of error
detection or correction, although implementation costs generally
increase with the fault coverage desired [54, 691.

The most widely used error-detecting and -correcting codes
are the parity check codes. In these codes, a set of (parity) check
bits are appended to the data item being tested (the information
bits) to form a codeword. The covered faults cause a codeword to
change to a non-codeword, an event that can be detected by a logic
circuit called a checker. For serial data, a special class of parity
check codes called cyclic codes are often used. These codes have the
advantage of being easy to encode and decode using linear feedback
shift registers of the type appearing in Figure 2b. Parity check
codes are generally unsuitable for testing functional units; they are
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mainly used for checking data transmission and storage devices.
Special codes have been developed for some types of functional units,
particularly arithmetic units [57].

6.2 Hardware-Implemented Self-Testing

The advantages of error coding techniques can be extended to
general logic circuits by designing them to be self-checking [3, 4,
15, 691. A self-checking logic circuit is one whose output responses
constitute an error-detecting code. The encoded outputs may then be
checked to detect errors as illustrated in Figure 9. A circuit C is
formally defined to be self-checking if it has the following two
properties [33. Assume that we are concerned with detecting faults
of a specified type F in C, and that all inputs of C are drawn from a
set I of input patterns.

1 .l If any specified fault is present, the output of C is a
non-codeword for at least one pattern in I (this is called the "self-
testing" property).

2. If any specified fault is present, no member of I
produces an output from C that is a codeword (fault secureness
property). Note that if the input set I includes all patterns that
are applied to C during normal operation, then C has the desirable
property of being tested automatically during normal operation.

A variety of techniques for designing self-checking circuits
are known, many of which are quite practical [69] . Indeed it is
feasible to build a complete computer in which all testing is done in
the hardware by self-checking circuits and similar coding techniques.
A study by Carter et al. [16] shows that the cost of making a large
computer self-testing in this way is relatively low using current LSI
technology. They found that complete self-testing could be achieved
for a System/360-type  computer with an increase of less than 10% in
the number of components used. The design for a VLSI fault tolerant
computer proposed by Sedmak and Liebergot [62] also makes extensive
use of self-checking circuits.

A very different approach to self-checking hardware design is
the use of on-chip electrical monitors [20, 613. This technique,
which has been applied to ECL-type LSI chips, uses special electrical
circuits that can detect small changes in parameters such as current
or resistance. A monitor circuit is typically connected to each IO
line of the chip, and the combined output signals from the on-chip
monitors are connected to an extra output pin. On-chip monitors of
this kind are primarily intended to detect short-circuits, open
circuits and similar interconnection faults. This promising testing
method is new, and has seen little application so far.
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Fig. 9. A self-checking logic circuit.
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It is also possible to make an IC self-testing by building
into it all the circuitry required for a compact testing technique
like signature analysis. As Figure 2 indicates, a relatively small
amount of extra logic suffices, basically a counter for test pattern
generation, and a feedback shift register for signature generation.
The fault-free signatures may be stored in a ROM on the chip for
comparison with the signatures produced during testing. An
experiment simulating this approach using a modified version of the
AND 2901 microprocessor slice is described by Zweihoff et al. [VI.

6.3 Programmed Self-Testing

Although it is feasible to rely entirely on hardware checking
circuits for self-testing, it is often more economical to use self-
testing software, especially when off-the-shelf components with
little or no built-in checking circuitry are used. The heuristic
test programs for microprocessor-based systems discussed in Sec. V
can readily be modified for self-testing. The role of the external
tester is taken over by the microprocessor under test. Thus the
microprocessor is responsible not only for executing the test
programs, but also for scheduling their execution and interpreting
the test results.

In self-testing systems, test program execution is usually
interleaved with normal program execution, and is designed to
interfere with the latter as little as possible. Test program
execution is generally initiated at the following times.

1. When a fault is detected during normal operation, e.g., a
parity check fails.

2. At regularly scheduled intervals.

3. At times when the system might otherwise be idle.
Several courses of action are possible when an error is detected. In
the simplest case, the system sends an error signal to the outside
world and halts. Alternatively, the system may be programmed to
attempt to recover automatically by, for example, repeating the
instructions being executed when the fault occurred. Little hardware
or software is needed to implement this recovery scheme which is
called program retry. It is mainly useful in the case of temporary
or intermittent faults. Recovery from permanent faults can be
attained by including spare or redundant units in the system, as well
as mechanisms to switch from faulty to spare units. Recovery of this
kind has been implemented in large fault-tolerant systems [5, 231.
We conclude with an example of a microprocessor system designed to
achieve a high-level of self- testing and some fault tolerance at
very low cost.
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Example 4: A self-testing microprocessor-based system [31]

This machine, developed at E-Systems Inc., was designed as a
communications controller. The system includes a CPU, ROMs, RAMS and
IO interface circuits, all of which are tested automatically by a
self-test program. This program is stored in a lK-byte ROM within
the CPU itself. It is executed in background mode, being invoked
during normal processing by a low-priority interrupt signal. Figure
10 shows the organization of the self-test program. All major
subsystems are tested in sequence, starting with the CPU. Detection
of a fault causes an indicator light to be turned on in an LED
display panel.

The CPU structure is shown in Figure 11. It contains two
microprocessors, one of which serves as a standby spare in the event
of failure of the active (controlling) microprocessor. The active
microprocessor is required to access and reset a timer T at regular
intervals. Failure to do so causes a time-out circuit to transfer
control of the system to the back-up microprocessor, and turn on the
CPU fault light. If the back-up microprocessor is working properly,
it subsequently resets T causing the fault indicator to be turned
off.

The memory and IO circuits are tested using the general
approaches discussed earlier. The ROMs are tested by accessing a
block of words from the ROM and summing them in the CPU. The
accumulated word is then compared to a check word stored in the ROM.
If they differ, the corresponding ROM fault indicator is switched on.
If desired, the ROM status can be written into RAM , thus allowing
the system to identify and bypass the faulty block in the ROM. This
enables the system to operate even with a ROM fault present.

RAMS are tested in the following way. Each RAM location X is
read in turn and its contents are saved in a CPU register. Then the
two checkerboard patterns are applied to X in the standard way. If
the test is passed, the original contents of X are restored from the
temporary register, and the next RAM word is tested.

IO tests are performed using the loop-back procedure, whereby
output ports are connected to input ports one at a time under CPU
control. Test patterns are transmitted through the resulting closed
data path and checked for accuracy.

6.4 Multimicroprocessor Systems

If a system contains a number of microprocessors in the form
of a multiprocessor or computer network, then it may be possible -
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Fig. 10. Flowchart of a microprocessor system self-test program.
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and advantageous - to use the microprocessors to test one another.
This approach to self-testing is employed in such fault-tolerant
computers such as the UC-Berkeley PRIME system Although
relatively few self-testing systems of this type haf? been built,
some interesting relevant theory has been developed. Much of this
theory is concerned with measuring system self-testability by means
of graph-theoretical models [2,12,55,601. In the widely studied
Preparata-Metze-Chien model [13,55], the system is represented by a
diagnostic graph containing a node for each subsystem that is capable
of testing other subsystems. An arc goes from node S(i) to node S(j),
if subsystem S(i) is capable of detecting all faults of interest in
subsystem S(j). This arc is labeled with a boolean variable a(i,j>
which is set to 1 (0) if S(i) diagnoses S(j) as faulty (fault-free).
The set of values of all the a(i,j> variables constitutes a syndrome.
Figure 'I2 shows a 2-node system with the syndrome (1,O). The extent
to which faults can be located from the possible syndromes can be
used as a measure of system self-diagnosability. A central
difficulty with this type of analysis is that faults outside the
subsystem being tested, e.g., a fault in the subsystem performing the
test, may result in an indication of a fault where none exists, and
vice versa. Thus the syndrome (1,l) for the system of Figure 12
indicates that S(l), S(2) or both are faulty.

The applicability of models of the foregoing type to existing
systems is limited, mainly due to the fact that the testing function
in most current systems is highly centralized. This situation is
likely to change as multimicroprocessor systems become more common,
allowing a high-level testing capability to be distributed throughout
a system. An application of diagnostic graphs to a hypothetical bit-
sliced microprocessor system is described by Ciompi and Simoncini
D91.
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Fig. 12. A simple diagnostic graph.
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