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ABSTRACT

This report contains a survey of testability conditions in
m croprocessor - based design. General issues of testability, testing
methods, and fault nodeling are presented.  Specific techniques of
testing and designing for testable mcroprocessor-based systems are
di scussed.
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1 | NTRODUCTI ON

Testability refers to the ease with which the presence and
perhaps the location of a fault or faults within a system can be
discovered. It has come to be a significant factor influencing the
total life-time cost of a digital systemas well as the initia
manufacturing cost. Current design trends enphasize the use of
conpl ex conponents enploying |arge-scale integration (LSI). The key
conponent in nmany such systens s a nicroprocessor, which is a
programmabl e processor consisting of a small nunber of integrated
circuits (1cs), often just a single IC. The entire digital system has
the form of a mcroconputer conprising a mcroprocessor which acts as
the central processing unit (CPU) or system controller, menory
circuits (ROVs and RAME), and input/output (10O circuits. The
probl ens of testing mcroprocessor-based systems and designing them
to be easily testable are surveyed in this paper

A digital systemis tested by applying a sequence of input
patterns (tests) which produce erroneous responses when faults are
present. Fault detection or go/no-go tests are intended to determne
whether or not a system contains a f a u |Fault |ocation tests
attenpt to isolate a fault to a specific conponent; it is usually
desired to isolate faults to easily replaceable conponents

A system is considered to have good testability if a high
| evel of fault coverage can be achieved at an acceptably | ow cost
[(50]. Fault coverage neans the fraction of faults that can be
detected or located within the unit under test (UUT). Several
related factors contribute to the cost of achieving good testability.

1. The cost of the external test equipnent and personnel
needed to apply the various test procedures to the UUT.

2. The extra equipment built into the UUT to facilitate
testing. This can include special logic circuits, extra IO
connections used as test points, and nenory space occupied by test
prograns.

3. The additional design and devel opment costs needed to
nmake the system testable. Included here is the cost of obtaining the
test patterns needed to exercise the system

4. The tinme required to apply the test patterns and to
anal yze the responses produced. The relative inportance of each of

the above cost factors depends on the system being designed, its
intended applications, and the manner in which it is to be tested

M croprocessor-based systens are difficult to test for
several reasons



1. The number of' possible faults is extremely large. An LSI
circuit contains thousands of basic  conponents (gates) and
interconnecting lines which are individually subject to failure.

2. Access to internal conponents and lines is severely
limted by the number of 10 connections available. A typical mcro-
processor may contain 5,000 gates but only 40 IO pins. Thi s neans
that many layers of potentially faulty logic circuits can separate a
particul ar conmponent from the points at which the test patterns can
be applied and the responses observed

3. A consequence of the large nunber of possible faults is
the need for very large nunbers of test patterns. This may require
ways of encoding this information to reduce its size

4. The system designer may not have a conplete description
of the ICs being used. Mcroprocessor specifications are typically
register level descriptions consisting of block diagrams, a listing
of the mcroprocessor's instruction set, and some information on
systemtimng. Test procedures nust often be designed using meager
data of this kind.

5. New and conplex failure nodes such as pattern sensitivity
occur. The inpact of the foregoing difficulties can be greatly
reduced by using design techniques that enhance testability, and by
mat ching the test generation and application processes to these
design techniques. The inherent ability of a m croprocessor to
execute conplex programs can also be exploited

M croprocessor testing is of interest in many different
situations: semconductor conponent manufacturering, test equipnent
design, system design, and system maintenance. We will be primarily
interested in testing from the design viewpoint. W also restrict
our attention to functional testing, which is only concerned with the
logical behavior of the UUT. (This is often contrasted with
paranetric testing which deals with electrical properties such as
voltage levels and signal delays.)

2 TESTI NG METHODS

Every testing procedure involves the generation of test data
(input test patterns and output responses), application of the test
patterns to the DUT, and evaluation of the responses obtained. Mny
different approaches to digital systemtesting have evol ved, which
are distinguished by the techniques used to generate and process the
test data. They can be divided into two broad categories which we



term (1) concurrent or inplicit and (2) explicit. In the concurrent
testing approach, the data patterns appearing during norma

conputation serve as test patterns, and built-in monitoring circuits
are used to detect faults. Thus testing and normal conputation can
proceed concurrently. Parity checking is the nost common form of
concurrent testing. In explicit testing special input patterns are
used as tests, so that normal conputation and testing occur at
different times. Explicit tests can be applied by test equipment that
is external to the UUT (external testing), or they can be applied
internally (self-testing:). Most conput er-based systens have little
self-testing ability. Conplete self-testing has hitherto been
limted to applications such as spaceborne conputers and electronic
swi tching systens where stringent reliability requirements justified
the extra cost of self-testing. The  advent of | ow cost
mcroprocessors wth significant processing abilities has greatly
increased the nunmber of systems where self-testing is both desirable
and economically feasible

2.1 Concurrent Testing

Concur rent testing is comonly inplenented by coding
techni ques which allow the signal patterns generated during norma
conputation (with nminor nodification if necessary) to serve as test
patterns. Thus a word to which a single parity bit is appended
becones a test for single-bit faults affecting the word in question.
Parity generation logic circuits are used to produce the expected
response pattern, which may then be conmpared with the actual
response, the entire operation occurring in parallel wth norm
conputation. Self-checking circuits, which are discussed in Sec. VI
also enploy coding techniques to achieve concurrent testing. \Very
high fault coverage can be obtained by a concurrent testing technique
in which the functional units are replicated and run in parallel wth
the outputs being conpared and perhaps voted on. This technique is
used in systens such as telephone offices in which very high
availability is inportant. It is sonewhat simlar to the explicit
testing technique called conparison testing to Dbe discussed
subsequent|y.

2.2 Explicit Testing

Explicit methods are used when theextra circuits and
interconnections needed for concurrent testing are too costly, or
when the signals produced during normal conputation are inadequate
for testing purposes. In the latter case, specific test pattern
generation procedures are required. The test patterns are produced



either manually by a design or test engineer, or else specia
hardware- or software-inplemented algorithms, called test-generation
programs, are used. Manual test generation is widely used

Test-generation programs typically make use of a simulation
nodel of the target system This nodel can range in conplexity from
a detailed logic nodel specifying every gate, to a crude heuristic
nmodel that approximates the behavior of a few major subsystens.

If the test patterns are difficult to generate, i.e., if
substantial conputation is necessary to construct them then they are
usual ly conputed in advance (off-line), and stored in the tester
along with the expected response to each test pattern. The stored set
of test patterns and responses is called a _fault dictionary. The
fault dictionary may also identify the faults corresponding to
specific test pattern and response conbinations. Testing based on
stored test data of this kind is often called stored response
testing. It is typically inplemented in three steps

1. A sequence of one or nore test patterns T is retrieved
fromthe fault dictionary.

2. Tis applied to the UUT and the response R is recorded

3. R is conpared to the fault-free response RO stored in the
fault dictionary and appropriate action is taken if they differ. The
mai n drawbacks of this approach are the cost of conputing the fault
dictionary, and the nenory space needed to store it in the tester
However, the test patterns need only be conmputed once, an advantage
when no sinple way is known for obtaining suitable test patterns.
Figure la illustrates stored response testing

The cost of storing the the test pattern responses can be
reduced by using a technique called conparison testing. Note that it
may sStill be necessary to store the test patterns thenselves.
Comparison testing nakes use of several copies of the UUT, each of
whi ch processes the same input signals; faults are detected by
conparing the responses of all the units. A response differing from
that of a known fault-free unit serves to pin-point a faulty unit.
This technique can be inplenented with as few as two copies of the
WT, one of which, the so-called _gold unit, acts as a reference
agai nst which the other unit is conpared. Figure Ib illustrates this
type of testing. If there are three or nore copies of the UUT, the
mpjority response may be taken as the correct one, allowing voting
circuitry to be used for concurrent fault diagnosis

Stored response testing may be contrasted with nmethods in
which the test data is conputed each time the UUT is tested;, we refer
to these as algorithmc testing methods. The algorithnic approach
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requires some rapid and therefore sinple method for determning test
dat a. A common test pattern source is a high-speed (hardware or
software) counter that generates sequences of test patterns in a
fixed or pseudo-random order. For exanple, an n-input conbinationa

component can be tested by applying all possible 2  binary patterns
to it. These patterns can easily be obtained by incrementing an n-
bit counter through all its 2 states. The correct response RO to a
particular test T may be determined rapidly by conparison testing
using a gold unit (see Figure tb). An exanple of a commercial tester
for mcroprocessors based on this kind of conparison testing is the
Megat est Q8000 [11].

Anot her way of obtaining the good response R, is for the test
pattern generator to conpute it. Such an approach i§ feasible if the
test generator contains a conputer (a mni- or mcroconputer
suffices) and there is a fairly sinple function or algorithm relating
Tand R.. For example, an adder may be tested with a test pattern
comprising two nunbers A and B that are to be added by the UUT.  The
correct response A+B is conputed independently by the tester and
conpared to the sum conputed by the UUT. This approach is well-
suited to testing microprocessors, because many of the functions to
be tested are defined by algorithns programmed into the UUT.
M croprocessor testers are therefore often designed to enulate, i.e.
to execute directly, the instruction set of the UUT's m croprocessor
This allows the tester to control the UUT conpletely during testing,
tenporarily overriding the mcroprocessor in the UUT. This technique
which is very useful for design debugging, is called in-circuit
emulation. It is a feature of many microconputer devel opment systens
[447].

2.3 Compact Testi ng

Hi gh-speed test generators, particularly algorithmc testers,
can produce huge amounts of response data whose analysis and storage
can be quite difficult. Conpact testing methods attenpt to conpress
the response data Rinto a nore conpact formf(R), from which the
information in R about the fault status of the UUT can be derived
The conpression function f is one that can be inplenented with sinple
circuitry. Thus conpact testing entails little test equipnment, and so
is especially suitable for field maintenance

Figure 2 illustrates two representative conpact testing
techniques. In each case, a fixed sequence T of tests is applied to
the UUT and the output response is conpacted to obtain f(R) which is
recor ded. The  conpacted response is then conpared either
automatically or manually wth the precomputed conpact response. By
using a series of different test points and standard signal tracing
techniques, a fault can be detected and | ocated
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The first method, called transition counting, conputes the
number of logical transitions (a O changing to a 1 and vice versa)
occurring in the output response at the test point. Al this
requires is a sinple transition detection circuit and a binary
counter connected as shown in Figure 2a. Transition counting has
been implemented in a nunber of commercial testers, and appears to
provide fairly good fault coverage [27, 37, 46]. It has the
advantage of being insensitive to normal fluctuations in signa
duration, and so is especially useful for testing asynchronous
circuits. Simlar conpact testing schemes such as ones counting have
al so been proposed [30, 38, 531].

Recently hew ett-Packard Corp. has proposed a conpact testing
scheme called signature analysis intended specifically for testing
m croprocessor -based systens [33, 65]. As illustrated in Figure 2b,
the output response is passed through a 16-bit |inear feedback shift
register. The contents f(R) of this shift register after all the
test patterns have been applied is called the (fault) signature, and
i s recorded or displayed as a U4-digit hexadeci mal nunber. Thus an
output response of arbitrary length is conmpressed into four digits.
The conpression function f inplenented here is such that every
single-bit error in the response stream as well as many nultiple-bit
errors, cause f(R to differ fronwf(RO), t he precomputed correct
compact response. A 99.998% probability of detecting a faulty output
response has been claimed for signature analysis [33]. (Note that
.99998 is essentially an estimate of the factor by which the fault
coverage is reduced due to the use of the |inear feedback shift
register to conpact the output response data). The correct compact
responses for each test point are recorded on the system schematics;
a mintenance person can conpare the obtained response with that
given on the diagrans to determne whether or not a fault has been
det ect ed.

3 FAULTS AND TESTS

Every testing procedure ainms at diagnosing sonme particul ar
class of faults, although in practice these faults are not always
wel | -defined. An explicit fault nodel is necessary, however, if the
fault coverage of a set of tests is to be determined. The conplexity
of LSI circuits makes it necessary to reconsider sone of the fault
model s that have traditionally been enployed for digital system
testing.



3.1 Functional Faults

The UUT can be regarded as an n-input, moutput, s-state
finite-state machine, an (n,ms)-nmachine for short. Perhaps the nost
general of the useful fault nodels, which we may call the functiona
fault nodel, allows an (n,ms)-machine to be changed by a fault to
any (n,m,s')-machine, where s' does not exceed s. (Note that some
restriction on the nunber of states of the faulty machine is
necessary.) Under this nodel a combinational circuit, which is an
(n,m,1)~-machine, always remains conbinational when faults are
present. To test a conbinational «circuit Mfor all functiona
faults, it is necessary and sufficient to apply all 2" possible input
patterns to Mwhich, in effect, exhaustively verifies its truth
table, and thereby provides rather conplete fault coverage. Al though
the nunber of tests is often very large, they can be easily and
rapidly generated using the algorithmc technique nentioned earlier.
This type of testing can sonetines be applied to the combinationa
subcircuits of a sequential UUT. \Wen the circuit under test nust be
treated as sequential (s>1), complete detection of functional faults
requires a special type of test called a checking sequence. The
theory of checking sequences is well-devel oped [29, 391, but unless s
Is very small, checking sequences are extrenely long and difficult to
generate. W now illustrate an application of the functional fault
model to a specific class of mcroprocessors

Exanple 1: Testing a sinple bit-sliced mcroprocessor [64]

A bit-sliced mcroprocessor is an array of n identical ICs
called (bit) slices, each of which is a sinple processor for operands
of length k bits, where k is typically 2 or 4. The interconnections
between the n slices are such that the entire array forns a processor
for nk-bit operands. The sinplicity of' the individual processors,
and the regularity of the array interconnections make it feasible to
use systematic methods for fault analysis and test generation
Unfortunately, the nore widely used non-bit-sliced mcroprocessors do
not share these properties.

Figure 3 shows a circuit nodel for a |-bit processor slice
whi ch has nost of the features of a commercial device such as the
Am2901 [1]. (The main omssions are the logic circuits for
i mpl enenting shift and carry-lookahead.) This circuit consists of
five basic conponents or nodules, tw of which are sequentia
(registers A and T), and tnree conbinational (the two multiplexers
and the ALU). The ALU can perform addition, subtraction and the
standard |ogical operations. Each nmodule may fail according to the
foregoing functional nodel, but only one nodule is allowed to be
faulty at a time. A conplete test set for this circuit nust apply
all possible input patterns to each conbinational nodule, and a
checking sequence to each sequential nodule. In addition, the
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responses of each nodul e nust be propagated to the two primry output
l'i nes. The tests required by the individual nodules are easily
generated because of the sinplicity of the nodules, a direct
consequence of the small operand size (k=1). The nodule tests can be
overlapped in such a way that 82 test patterns suffice for testing
the entire circuit [64]. Note that the 6-input ALU alone requires 64
test patterns. The nunber of test patterns produced in this nmanner
is ao6nsaderably less than the nunber generated for conparable
processors by conventional heuristic techniques [49].

An inportant property of this type of processor slice is the
fact that the tests for a single slice can easily be extended to
tests for an array of the slices, for exanple, the 4-bit array
depicted in Figure 4. In fact, an array of arbitrary length can be
tested by the same nunber of tests as a single slice, a property
called Gtestabilitv [28]. OQher conponents of a conputer system
such as menories and mcroprogram sequencers [1] can al so be bit-
sliced, and thus share sone of the good testability features of a
bit-sliced processor.

3.2 Stuck-Line Faults

The nost widely wused fault nodel for logic circuits is the
single stuck-line (SSL) nodel, which allows any interconnecting line
to be stuck at logical 1(s-a-1) or stuck at zero (s-a-0). Only one
line is allowed to be faulty, and the circuit conponents, gates,flip-
flops and the like, are assunmed to be fault-free. Clearly SSL faults
forma smal|l subset of the functional faults. Many common physica
faults are covered by this nodel, and several distinct methods have
been devel oped for generating tests for SSL faults [13].  The best
known test generation nethod for this purpose is Roth's D-algorithm
[56, 59]1. Conpl ete test sets of near-mnimal size can be generated
for SSL faults in conbinational logic circuits. Sequential circuits,
even those of noderate complexity, still present serious problens.

Since a mcroprocessor-based systemis a very conplex
sequential circuit, it is generally not feasible to analyze it
completely using the classical gate-level SSL nodel. The nunber of
possi ble SSL faults of this kind is enornous. Furthermore, an
adequate logic circuit of the UUT at the gate |l evel may not be
avail abl e. Nevert hel ess, because so many common faults, such as
broken connections and short circuits to ground, can be be nodel ed
accurately by s-a-Q| lines, it is desirable to generate specific
tests for at least some of the SSL faults occurring in such systens.

In practice, tests for SSL faults are often restricted to the
follow ng cases.

11
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1. Faults affecting the external 10 pins of each IC, and the
| O connections of the principal conbinational or sequential nodul es
within the IC

2. Faults causing the main information transm ssion paths,
e.g., buses, to becone s-a-1/0

3. Faults causing the major state variables to becomes s-a-
/O such faults usually correspond directly to SSL faults in the
associ ated registers and nenory elements. Note that these SSL-type
faults can be identified froma register-level description of the
UT. They define a restricted SSL fault model which is wdely, if
inplicitly, used in testing conplex digital systens. To detect these
restricted faults, it is necessary to verify that the |lines and
variables in question can be set to both the 0 and the 1 values. Thus
a basic test for a nmenory elenment such as a microprocessor register
is to verify that a word of 0s and a word of 1s can be witten into
and read fromit.

3.3 Pattern-Sensitive Faults

Another useful way to nodel faults in LSl circuits is to
consi der interactions between |ogical signals that are adjacent in
space or time. Such a fault occurs when a signal x causes an
adjacent signal y to assume an incorrect value. Faults of this type
are terned pattern-sensitive faults (PSFs). There are many physica
failure modes that result in pattern sensitivity. For exanpl e,
electrical signals on conductors that are in close spatial proximty
can interact with one another. This problemis aggravated by the very
hi gh conponent and connection densities characteristic of LSI
Anot her instance of pattern sensitivity is the failure of a device to
recogni ze a single 0 (1) that follows a long sequence of Is (0s) on a
particular line; this tinme-dependent PSF is a consequence of unwanted
hysteresis effects. PSFs are particularly troublesone in high-
density RAM 1Cs. Since mcroprocessors often contain noderately
| arge RAMS, they too are subject to PSFs [34].

A variety of heuristic procedures have been devel oped to
detect PSFs in nenories [7, 13, 26, 42]. Figure 5 illustrates two
representative types. The RAMis viewed as a 2-dinensional array of N
i ndependent storage cells. The test called Checkerboard (Figure 5a)
wites an alternating pattern of 0s and 1s into the RAM this
requires a total of N wite operations. Then the contents of each
RAM cell is read out and verified, requiring N read operations. These
wite and read steps are repeated with the positions of the 0s and Is
reversed. If each |-cell read or wite command is regarded as a
test, then Checkerboard contains approxi mately 4N tests. Checkerboard

13
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verifies that a 0 (1) can be transferred correctlyto O from a cell
that is "surrounded" by 1s (0s), intuitively a worst-case condition
for spatial pattern interference. The second representative PSF test
is called Galloping 0s and 1s or Galpat (Figure 5b). Galpat
initially wites a 0 (@ into all cells. A 1(0) is then witten
into a test cell C  Each cell c*# Cis read in turn to determne
whether its contents have beeen disturbed by the wite operation
addressed to C. After reading every c', Cis again read to ensure
that it is still correct. Thus Galpat moves back and forth or "ping-
pongs" between the test cell C ana all other cells, checking for
unwanted interactions. The process is repeated with with every cel
in the RAM playing the role of the test cell C

Mbst PSF tests were derived enpirically, and their underlying
fault nodels are unclear, making it very difficult to deternmine the
fault coverage of the tests. Attenpts have been made to devel op
formal fault nodels for sone kinds of PSFs [ 36, 51].

PSFs provide a good illustration of the testing problens
caused by the rapidly increasing conponent densities in nodern ICs.
The Galpat test described above requires about 4N° patterns to check
an Nbit RAM If each test pattern takes 100 ns to apply, then A u4K-
bi t (u096281t) RAM can be tested by Galpat in about 2 s. However, a
IM-bit ('2°"-bi't) RAM  which is expected to appear on a single VLS
chip |n the near future [14],would require about 30 hours for one
application of Galpat at the same 100 ns-per-test rate.

4 TESTI NG M CHOPRGCESSOR- BASED  SYSTEMS

In practice, tests for microprocessor-based systens are
designed to exercise the UUT by applying a representative set of
input patterns, and causing it to traverse a representative set of
state transitions. In each case the decision on what constitutes a
representative set is based on heuristic considerations. The faults
bei ng di agnosed may not be specifically identified, but they can
often be related to the fault nodels discussed earlier. Two exanples
will serve to illustrate the heuristic nature of this approach.

The following list describes the 2n+4 test patterns used to
test every data path and register in the Plessey System 250, a
conputer system designed for fault tol erance [45].

1. The all 0s pattern

2. A pattern of alternating 0s and 1s (a one-dinensional
checkerboard pattern)

15
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3. The n patterns containing a single 1 and n-1 0s

4., The logical conplements of the preceding patterns. These
tests detect all s-a-of/l faults associated With the data |ines and
state variables, as well as certain kinds of PSFs.

The program counter (PC) which generates the address of the
next sequential instruction to be executed is a key conmponent of a
M Croprocessor. It can be tested by increnenting it sequentially
through all its states, and verifying that the correct state is
reached after each increnent or, equivalently, that the proper
address is generated [18]. This test thus checks for the existence of
every possible state of the PC, and verifies the mbst conmmon state
transitions. Note that it does not verify all possible state
transitions resulting fromthe execution of branch (jump)
i nstructions.

4.1 Programmed Tests

Mich of the uniqueness and power of a mcroprocessor-based
system lies in the fact that it is programcontroll ed. Thus a
natural tool for testing the systemis a test program executed by the
internal  mcroprocessor of the UUT. This programis designed to
apply appropriate test patterns to the major register-level nodules
of the UUT, all of which should be accessible via its instruction
set. Typically, these nodules are exercised by input patterns
derived heuristically, and based on the functions perforned by the
modul es under test. Note that in exercising these conponents, the
microprocessor's instruction set is also exercised and therefore
tested.

A disadvantage of this heuristic exercising approach to
mcroprocessor testing is the absence of a suitable register-leve
fault nodel establishing a correspondence between instruction or
modul e failures and the underlying physical faults. Consequently it
is extrenely difficult to determine the fault coverage of a test
program  The need for a useful instruction-oriented fault nodel has
| ong been recognized [48]. Recently sone interesting work towards
such a nodel has been done by Thatte and Abraham [67, 68].

A test program for a mcroprocessor is usually organized into
a sequence of steps, each of which tests a related group of
instructions or conponents. Once a group nas been proven fault-free
it may then be used to test other groups. The sel ection and
sequenci ng of these steps is conplicated by the fact that
considerable overlap exists anmobng the conponents affected by
different instructions.



Exanpl e 2: Constructing a test program for t he 8080
m croprocessor [18]

The 8080, which was introduced by Intel Corp. in 1973, is
perhaps the nost widely used microprocessor. It is an 8-bit machine
of fairly conventional design [43]. Figure 6 shows a bl ock di agram
of t he 8080nis régister-tevel  description is adequate for
applying heuristic fault nodels such as the restricted SSL nodel
di scussed in the preceding section. The 8080 contains a sinple
arithmetic-logic unit and six 8-bit general-purpose registers; the
latter may be paired to formthree 16-bit registers. (16 bits is the
main nenory address size.)

Table 1 lists the main steps in an 8080 test program[18].
The 8080 UUT is assumed to be connected to an external tester which
has access to the IO lines conprising the data, address and contro
buses of the 8080. First, the tester resets the UUT. Then the 16-
bit program counter PCis incremented through all its 65,6536 states.
This can be inplenmented by having the tester place a single
instruction NOP (no operation) on the data (input) lines of the 8080
under test, and causing the 8080 to execute it repeatedly. The
effect of NOP is to increnment the PC and cause it to place its
contents on the outgoing address |ines where they can be observed and
checked by the tester. This checking can be done rapidly by conparing
the PC state to that of a hardware or software counter in the tester
which is incremented on-line in step with the PC

The next step is to test the various general-purpose
registers by transferring 8-bit test patterns to and from them and
checking the results. Al possible test patterns nay be used,
because their nunber (256) is snall, and they are easy to generate
algorithmcally. The tests are inplenented by several data transfer
instructions (M, LXI, PCHL), which are themselves also tested in
this step. After a pattern is applied to a register r, the tester
can inspect the contents of r by transferring it to the PC via the HL
register. (The PCHL instruction which swaps the contents of PC and
HL is used; the 8080 lacks instructions for transferring data
directly between the PC and other registers.) Since the PC was tested
inthe first step, its contents can be taken to be correct , and they
can be observed directly via the address bus. (Some pitfalls of
testing 8080 registers in this way are discussed by Smith [63].) The
remai ning steps of the test program exercise the other conponents and
instructions of the 8080 in a simlar manner. Unfortunately, little
data is available on the fault coverage of this type of test program
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Table 1. The Main Steps in a Programto Test the 8080 M croprocessor

1. Reset the 8080 UUT.

2. Test the programcounter PC by incrementing it through all its
states via the NOP instruction.

3. Test the six 8-bit general-purpose registers by transferring all
possi bl e 256 test patterns to each register in turn via the PC

4, Test the stack pointer register by increnenting and decrementing
it through all its states; again access it via the PC

5. Test the accunulator by transferring all possible test patterns
to it via previously tested registers

6. Test the ALU and flags by exercising all arithmetic, |ogical and
condi tional branch (flag-testing) instructions.

7. Exercise all previously untested instructions and control |ines.

4.2 Testing the Entire System

A conplete mcroprocessor-based system can be tested by using
its mcroprocessor as the primary source of test patterns. Consider
the problemof testing a systemw th the typical bus-oriented
architecture shown in Figure 7. 10 device testing is not considered
here, since it varies from device to device. Again we assune that
there is an external tester which has access to the various system
buses. In addition, we require this external tester to be able to
di sconnect parts of the systemfromthe buses during testing; this
can often be done either electrically or nmechanically. W now outline
the main steps in a fairly general systemtesting procedure [41].

First a sinple test is performed on the mcroprocessor to
determne if one of its main conponents, the program counter PC, is
operational. As discussed earlier, this can be done by naking the PC
traverse all its states causing it to place all possible address
patterns on the system address bus. It is necessary to isolate the
m croprocessor fromthe data bus during this test so that the
external tester can supply the instructions needed to increment the
PC.  In the case of the 8080 discussed earlier, the tester need only
place a single instruction (NOP) on the mcroconputer's data input
lines in order to cause the PC to increment continuously. Wile the
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PC is being increnented, a node of operation called free-running, the
external tester nonitors and checks the signals appearing on each of
the systeml's address lines. It is relatively sinple to do this via
conpact testing techniques like signature analysis

Next the system ROV are tested with the mcroprocessor stil
in free-running node. During this test the RAMs are disconnected
fromthe data bus. Since the mcroprocessor generates all nenory
addresses, it causes every ROM location to be accessed automatically.
The tester nonitors the signals which represent the ROM contents as
they appear on the data bus. Since the ROM contents are fixed, a
fixed signature can easily be associated with each ROM

At this point the mcroprocessor, ROV and system buses have
been checked to determine if they are working. The remaining parts
of the system are checked via specific exercising progranms, which nmay
be stored in the external tester or the UUT's ROMs. The RAMs can be
tested by programs such as Checkerboard and Galpat described al ready.
The 10 interface circuits normally resenble menory devices, and can
be tested by nenory-oriented check prograns. In order to do this
under control of the mcroprocessor in the UUT, the output ports can
be connected directly to the input ports using junper connections, a
t echni que cal | ed_| oop-back [22,31]. This allows the CPU to send a
test pattern to an output port and read it back via an input port for
checki ng.

Al'l the tests outlined so far can be inplenented with a very
small  subset of the microprocessor's instruction set, nostly NOP
LOAD and STORE. It remains to exercise the other instructions, which
can be done along the lines of the 8080 tests described in Ex.2
above.

5 DESIGN FOR TESTABI LI TY

A fundanental requirement for testing any system S, be it a
m croconputer or a large systens program is the ability to be
partitioned into easily testable subsystens S(1),s8(2),...,5(k). Each
S(i) should be small enough that it can be tested directly by the
available testing procedures. Wile testing S(i), it nust usually be
isolated fromthe rest of the systemso that a tester, either alone
or in conjunction with other subsystens of the UUT (preferably those
that are known to be fault-free), can control the inputs of S(i) and
observe its responses. Thus the controlability and observability of
the various parts of the system contribute in an inportant way to its
testability.
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Controllabilitv may be defined infornally as the ease with
which arbitrary input patterns can be applied to the inputs of S(i)
by exercising the primary inputs of S Cbservability is the ease
with which the responses of S(i) can be determ ned by observing the
primary outputs of S. These intuitive concepts have been quantified
by Stephenson and G ason [66], so that measures of controlability and
observability can be determined directly froma gate- or register-
level circuit for S. These neasures can be used to predict the
difficulty of generating test patterns for S

5.1 Test Point Insertion

Perhaps the nost direct way to inprove controllability and
observability is to add extra input and output lines to S so that the
| ogi cal distance between the IO lines of S(i) and those of Sis
reduced. Added 10 access points of this kind are called test points
Usual Iy a certain anount of extra logic is needed to insert the test

points, particularly input test points. In the extreme case we can
add enough test points to convert the 1O lines of S(i) into [0/lines
of S during testing. If this is done for all S(i), then testing

becomes trivial [35]. However, in LSl circuits space for test points
is severely limted, hence testability inprovement nust be carried
out using very few test points, often only one or two.
Controllability and observability measures are useful in deternining
the best locations for a limted set of test points [6, 17, 66l
Good locations for test points include

1. The outputs of nenory elenments, particularly those used
for control purposes

2. The 10 connections of deeply buried conponents

3. Lines with large fan-in or fan-out, e.g., lines in the
system bus.

Surprisingly, a high degree of testability can be achieved
with only a very small nunber of test points, although usually at the
expense of also adding significant amounts of extra logic to support
the test points. Reddy has shown that every n-input conbinationa
function can be realized by a circuit that requires only n+l easily
generated test patterns for conplete fault detection [58]. Reddy's
circuit, which consists of a cascade of EXCLUSIVE-OR gates driven by
a set of AND gates, enploys a single input test point, and at nost
two output points. However, the |arge propagation delay of this
circuit makes it mainly of theoretical interest. A nethod called
scan-in scan-out for making a sequential circuit easily testable
using only a few test points was devel oped by WIllianms and Angel 1
[70] and is described bel ow



5.2 Logi ¢ Design Mt hods

Logic designers have conpiled a set of design guidelines to
sinplify testing which, in general, aim at increasing controllability
and observability [9, 40, 47]. The following list is representative

1. Alow all nmenory elenents to be initialized before
testing begins, preferably via a single reset line

2. Provide a means for opening feedback |oops during
testing.

3. Alow external access to the UUT's clock circuits to
permt the tester to synchronize with the UUT or to disable the UUT

Design techniques that introduce regularity into a systenis
structure, e.g., the use of programmable logic arrays [52] al so
facilitate testing. The scan-in scan-out technique nentioned above
allows a system that does not have a regular structure during norma
operation to assume a regular easily testable structure during
testing. This inportant design technique has been adopted recently
by several conputer manufacturers [21, 24, 32].

Exanple 3: Scan-in scan-out design [70]

The key concept here is to design an LSl chip such as a
m croprocessor so that all nemory elenments can be connected together
to forma single shift register SR during testing. This causes the
entire chip to appear like a |arge conbinational circuit whose |10
lines are either chip IOlines or 10 lines of SR. The system can then

be tested by loading a test pattern into SR (scan-in) , allowng the
systemto respond to the test pattern , then reading out the response
from SR (scan-out). The scan-in scan-out scheme has severa

advant ages.

1. The test generation problemis largely reduced to the
relatively easy one of testing a conbinational circuit

2. No matter what the length of SR it can be accessed via
one input and one output line which, in fact, may be normal 10O lines
of the system A special control line is needed to switch the system
between the normal node of operation and the test mpde. Thus at nost
three test points must be added to the basic system and one extra
test point may suffice

3. Relatively little extra logic circuitry is added to the
basi ¢ design, and its effect on system performance is mnimal

Figure 8 shows the design nodifications needed to inplement
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scan-in scan-out. The basic unnodified system which appears in
Figure 8a, is assuned to use clocked D (delay) flip-flops as its
nmemory elements. It is nodified for scan-in scan-out by adding a
sinple logic circuit (a nultiplexer) denoted SWto the input of each
flip-flop. SWacts as a switch which, under control of the special
input signal p, connects the flip-flop input either to the
conbinational circuit C (normal mode), or to the output of another
flip-flop (test node). Copies of SWare al so included which allow two
normal 1O lines to be used as 10 lines of the shift register SR
Thus the only added test point is for the control signal p.

The circuit S of Figure 8b is tested as fol | ows.

1. Switch to the test mbde (p = 1).

2. Shift a test pattern into SR (scan-in).

3. Return to the normal node (p = 0).

4, Cock the systemto apply the input test pattern in SR
and at the primary inputs of S. Sone responses appear at the prinary
out-puts of s; the najority are stored in SR

5 Switch to the test node.

6. Shift the output responses out of SR (scan-out).

7. Verify all responses. Return to step 2 with the next
test pattern.

A version of scan-in scan-out called LSSD (level-sensitive
scan design) was developed at |BM which uses |evel-sensitive dual-
clocked flip-flops in place of the D flip-flops of Figure 8b [24].
This results in circuits that are largely free of timng problens
li ke hazards. The increase in the nunber of gates required to
i npl ement this scheme was found to range from 4% to 20% LSSD is used
in the design of the IBM System 38 conputer [10].

b SELF- TESTI NG SYSTEMS

So far, our discussion has been concerned wth external
testing methods, where the bulk of the test equipnent is not part of
the UWT. As digital systems grow nore conplex and nore difficult to
test, it becomes increasingly attractive to build test procedures
into the UUT itself. Some self-testing ability is incorporated into
nost conputers, nmainly via coding techniques. A few machines have
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been designed with essentially conplete self-testing, notably
t el ephone switching systens [23] and spaceborne conputers [51. 1In
the last few years conprehensive self-testing features have becone
common in  mcroprocessor-controlled instruments such as logic
anal yzers [ 25]. The Conmodore PET, a personal conputer based on the
6502 microprocessor, is delivered with a self-testing program which
is considered to have sufficient fault coverage to serve as the sole
go/ no-go test used in manufacture [22].

Sel f-testing can be achieved using any of the techniques
described in Sec. Il. Oten these nethods are conbined in various
ways.  For exanple, No. 1 ESS, an early tel ephone switching system
with a high degree of self-testability, wuses duplication with
comparison (match) circuits, error-detecting codes, self-checking
circuits, and diagnostic prograns that are executed by No. 1 ESS
itself [23]. 1n self-testing mcroprocessor-based systens, on-line
or real-time self-testing procedures are generally the nost
practical. Conparison testing can be inplemented by duplicating key
subsystems, and conparing their output signals. Currently, such
duplication is usually done at the board level, and individual ICs
are duplicated. However, it is also possible to duplicate conponents
within an IC, an approach that can take advantage of the high
conponent densities of VLSl chips [ 14, 621. A gorithmc self-testing
can be achieved by having the mcroprocessor execute appropriate
self-test programs. The use of special codes and checking circuits
can be regarded as a form of hardware-inplenented self-testing at a
sonewhat | ower |evel.

6.1 Codi ng Techniqgues

Codi ng techni ques for error detection have the great
advantage that they provide a precisely-defined [evel of fault
coverage with little overhead in extra hardware or processing tine.
Codes exist which can give alnost any desired |evel of error
detection or correction, although inplenentation costs generally
increase with the fault coverage desired [54, 69].

The nmost widely used error-detecting and -correcting codes

are the parity check codes. In these codes, a set of (parity) check
bits are appended to the data itembeing tested (the information
bits) to forma codeword. The covered faults cause a codeword to

change to a non-codeword, an event that can be detected by a logic
circuit called a checker. For serial data, a special class of parity
check codes called cyclic codes are often used. These codes have the
advantage of being easy to encode and decode using |inear feedback
shift registers of the type appearing in Figure 2b. Parity check
codes are generally unsuitable for testing functional units; they are



mainly used for checking data transm ssion and storage devi ces.
Speci al codes have been devel oped for some types of functional units,
particularly arithmetic units [57].

6.2 Har dwar e- | npl enented  Sel f - Testing

The advantages of error coding techniques can be extended to
general logic circuits by designing themto be self-checking [3, 4,
15, 69]1. A self-checking logic circuit is one whose output responses
constitute an error-detecting code. The encoded outputs nmay then be
checked to detect errors as illustrated in Figure 9. A circuit Cis
formally defined to be self-checking if it has the follow ng two
properties {3]. Assume that we are concerned with detecting faults
of a specified type Fin C and that all inputs of C are drawn from a
set | of input patterns

1. If any specified fault is present, the output of Cis a
non-codeword for at least one patternin | (this is called the "self-
testing" property).

2. If any specified fault is present, no nmenber of I
produces an output from C that is a codeword (fault secureness
property). Note that if the input set | includes all patterns that
are applied to C during normal operation, then C has the desirable
property of being tested automatically during normal operation

A variety of techniques for designing self-checking circuits
are known, many of which are quite practical [69] . Indeed it is
feasible to build a conplete conmputer in which all testing is done in
the hardware by self-checking circuits and simlar coding techniques
A study by Carter et al. [16] shows that the cost of naking a large
conputer self-testing in this way is relatively low using current LS
technol ogy. They found that conplete self-testing could be achieved
for a System/360-type conputer with an increase of |ess than 10% in
the nunber of conponents used. The design for a VLSI fault tolerant
conputer proposed by Sedmak and Liebergot [62] al so makes extensive
use of self-checking circuits

A very different approach to self-checking hardware design is
the use of on-chip electrical monitors [20, 613. This technique
whi ch has been applied to ECL-type LSI chips, uses special electrica
circuits that can detect small changes in parameters such as current
or resistance. A nonitor «circuit is typically connected to each IO
line of the chip, and the conbined output signals fromthe on-chip
monitors are connected to an extra output pin. On-chip nmonitors of
this kind are primarily intended to detect short-circuits, open
circuits and simlar interconnection faults. This promsing testing
nmethod is new, and has seen little application so far.
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It is also possible to make an I C self-testing by building
intoit all the circuitry required for a conpact testing technique
like signature analysis. As Figure 2 indicates, a relatively small
amount of extra logic suffices, basically a counter for test pattern
generation, and a feedback shift register for signature generation.
The fault-free signatures may be stored in a ROMon the chip for
conparison wth the signatures produced during testing. An
experinment simulating this approach wusing a nodified version of the
AND 2901 microprocessor Slice i s described by Zwei hoff et al. [71].

6.3 Programmed Sel f - Testi ng

Al'though it is feasible to rely entirely on hardware checking
circuits for self-testing, it is often nore economcal to use self-
testing software, especially when off-the-shelf conponents with
little or no built-in checking circuitry are used. The heuristic
test programs for mcroprocessor-based systenms discussed in Sec. V
can readily be nodified for self-testing. The role of the externa
tester is taken over by the mcroprocessor under test. Thus the
m croprocessor is responsible not only for executing the test
progranms, but also for scheduling their execution and interpreting
the test results.

In self-testing systems, test program execution is usually
interleaved with normal program execution, and is designed to
interfere with the latter as little as possible. Test program
execution is generally initiated at the following times

1. Wen a fault is detected during nornmal operation, e.g., a
parity check fails.

2. At regularly scheduled intervals

3. At times when the system m ght otherw se be idle.
Several courses of action are possible when an error is detected. In
the sinplest case, the system sends an error signal to the outside
world and halts. Alternatively, the system may be progranmed to
attenpt to recover automatically by, for example, repeating the
instructions being executed when the fault occurred. Little hardware
or software is needed to inplenent this recovery scheme which is
called programretry. It is mainly useful in the case of tenporary
or intermttent faults. Recovery from permanent faults can be
attained by including spare or redundant units in the system as well
as mechanisns to switch from faulty to spare units. Recovery of this
kind has been inplemented in large fault-tolerant systems [5, 23].
We conclude with an exanple of a mcroprocessor system designed to
achieve a high-level of self- testing and sonme fault tolerance at
very | ow cost
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Exanple 4: A self-testing m croprocessor-based system[31]

This nmachine, devel oped at E-Systems Inc., was designed as a
comuni cations controller. The systemincludes a CPU, ROVs, RAMs and
O interface circuits, all of which are tested autonatically by a
self-test program This programis stored in a 1K-byte ROM within
the CPU itself. It is executed in background node, being invoked
during normal processing by a lowpriority interrupt signal. Figure
10 shows the organization of the self-test program Al najor
subsystens are tested in sequence, starting with the CPU  Detection
of a fault causes an indicator light to be turned on in an LED
di splay panel

The CPU structure is shown in Figure 11. It contains two
m croprocessors, one of which serves as a standby spare in the event
of failure of the active (controlling) mcroprocessor. The active

m croprocessor is required to access and reset a tiner T at regular
intervals. Failure to do so causes a tine-out circuit to transfer
control of the systemto the back-up mcroprocessor, and turn on the
CPU fault light. If the back-up m croprocessor is working properly,
it subsequently resets T causing the fault indicator to be turned
of f.

The menmory and IO circuits are tested wusing the general
approaches discussed earlier. The ROV are tested by accessing a
bl ock of words fromthe ROM and summing themin the CPU  The
accunul ated word is then conpared to a check word stored in the ROM
|f they differ, the corresponding ROM fault indicator is swtched on
|f desired, the ROM status can be witten into RAM, thus allow ng
the systemto identify and bypass the faulty block in the ROM This
enabl es the systemto operate even with a ROM fault present

RAMs are tested in the following way. Each RAM location X is
read in turn and its contents are saved in a CPU register. Then the
two checkerboard patterns are applied to X in the standard way. If
the test is passed, the original contents of X are restored fromthe
tenporary register, and the next RAM word is tested

IO tests are performed using the |oop-back procedure, whereby
output ports are connected to input ports one at a tine under CPU
control. Test patterns are transmtted through the resulting closed
data path and checked for accuracy.

6.4 Mul tim croprocessor Systens

If a system contains a nunber of mcroprocessors in the form
of a multiprocessor or conputer network, then it may be possible -
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and advantageous - to use the mcroprocessors to test one another.
This approach to self-testing is enployed in such fault-tolerant
conputers such as the UC- Berkeley PRI ME system [8]. Al though
relatively few self-testing systems of this type have been built,
sone interesting relevant theory has been devel oped. Much of this
theory is concerned with nmeasuring system self-testability by neans
of graph-theoretical nodels [2,12,55,60]. In the widely studied
Prepar at a- Met ze- Chi en nodel [13,55], the systemis represented by a
di agnostic graph containing a node for each subsystem that is capable
of testing other subsystems. An arc goes from node S(i) to node §(j),
if subsystem S(i) is capable of detecting all faults of interest in
subsystem S(j). This arc is labeled with a boolean variable a(i,j)
which is set to1(0) if S(i) diagnoses S(j) as faulty (fault-free).
The set of values of all the a(i,j) variables constitutes a syndrone.

Figure 12 shows a 2-node systemw th the syndrome (1,0). The extent
to which faults can be |ocated fromthe possible syndromes can be
used as a neasure of system self-diagnosability. A central

difficulty with this type of analysis is that faults outside the
subsystem being tested, e.g., a fault in the subsystem perfornmng the
test, may result in an indication of a fault where none exists, and
vice versa. Thus the syndrone (1,1) for the system of Figure 12
indicates that sS(1), S(2) or both are faulty.

The applicability of nodels of the foregoing type to existing
systems is linmted, mainly due to the fact that the testing function
in most current systems is highly centralized. This situationis
likely to change as nultimcroprocessor systens become nore common,
allowing a high-level testing capability to be distributed throughout
a system An application of diagnostic graphs to a hypothetical bit-
sliced microprocessor system is described by Conpi and Sinoncini
[19].
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