
COMPUTER SYSTEMS LABORATORY
1

STAl’iFORO ELECTRONICS lABORATORIES
DEPARTMENT OF ELECTfMAL ENGINEERING

STANFORD UNIVERSITY - SlANFORD, CA 94305

DESIGN AUTOMATION AT STANFORD II

Edited by

W.M. vancleemput. -

TECHNICAL REPORT NO. 184

February 1780

DESIGN AUTOMATION AT STANFORD II

Edited by

W. M. vancleemput

TECHNICAL REPORT NO. 184

. -

February 1980

COMPUTER SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

.

. -

DESIGN AUTOMATION AT STANFORD II

An overview of Design Automation at Stanford University

Edited by

W. M. vancleemput

TECHNICAL REPORT NO. 184

COMPUTER SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

ABSTRACT

This report contains a copy of the visual aids used
by the authors during the presentation of their work at the
Second Workshop on Design Automation at Stanford, held on
February 19, 1980.

The topics covered range from circuit level simulation
and integrated circuit process modelling to high level languages
and design techniques. The presentations are a survey of the
activities in design automation at Stanford University.

-i-j-

TABLE OF CONTENTS

Page

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Languague and Environment for Multi-Level Simulation
Dwight D. Hill

Timing Verification in the Scald System
Tom McWilliams

Verification of Design Correctness with ADLIB & SDL
Warren Cory

Automatic Synthesis of a System Controller from DD-L to PLA
Sungho Kang

The use of Hierarchical Design Information in Partitioning
Digital Circuits
Thomas Payne

VLSI Circuit Parameters Computed from Process Variables
Robert Dutton

Hierarchical DRC
Mark Horowitz

SUDS-I I
Wayne Wolf

On-line DRC of PC Designs
Tom Bennett

Chip Planning
Eric Slutz

CROCODILE
John Beetem

Design Automation Data Base
Markus Bayegan

Bus Router
Tom Blank

A High Performance Microcomputer Raster-Scan System
Andreas Bechtolsheim

1

13

19

28

39

43

53

54

55

59

61

63

65

66

Appendix: List of Workshop Attendees

LANGUAGE AND ENVIRONMFNT

FOR

MULTI - LEVEL SIMULATION

bY

Dwight D. Hill

ABSTRACT

A methodology is proposed for modeling and
simulating computer systems. It makes use of a new
language called ADLIB for specifying the behavior of
computer subsystems, and a special environment, SABLE,
for modeling the way that they interact. The ADLIB
language is designed to be compatible with existing
computer languages, since it is a proper superset of
PASCAL. The union of behavioral and structural design
specifications makes it possible to apply type checking
to hardware design. Several examples illustrate the
description and simulation of systems ranging from
distributed computer networks to individual logic gates.

-l-

== == ======= ===============t==== =======================
==
== CURRENT TECHNIQUES (PART I!: ==

= ?'lANY LHNGUAGES FOR DESCRIPTION, SIMULATION =
OF A SINGLE TARGET SYSTEM ==

= =
= --> OVERHEAD, ERRORS =
= =
= HIGH LEVEL LANGUAGES (GPSS,SIMULA), =
= INTERMEDIATE LEVEL (ISPS), =
= REGISTER TRANSFER (DDL,CDL), =
= GFiTE LEVEL CD-LASAR> =
= CIRCUIT LEVEL cMSIPIC,SPICE> =

= --> EACH USED INDEPENDENTLY, =
= AND ARE INCOMPATIBLE =
= =
= HIGH ABSTRACTION MODELS =
= =
= -4 POOR RESOLUTION Z
= =
= HIGH DETAIL MODELS =
= =
= --> POOR EFFICIENCY f
= =
=--=
= CURRENT TECHNIQUES SPECIFICATION & SIMULATION =---w?P ='=,,----------==----
==== ""'==== --e-w -----====,,,,,================----------m -----aw--s- --.e-------
= =
= CURRENT TECHNIQUES (PhRT 2): =
z =
= - C~W?FW&T LANGUAGES HAUF CONSTRAINTS =
= "DESIGN SPACE =
= =
= EITHER: =
= =
= BEHAVIOR OR STRUCTURE SPECIFICATION =

SYNCHRONOUS OR ASYNCHRONOUS TIMING,
OR NO TIMING SUPPORT AT ALL

= =
= PROCEDURAL OR NON-PROCEDURAL CONTROL =
= =
= REGISTERS, BITS, OR MULTI-VALUES =
= =
= HARDWARE OR SOFTWARE IMPLEMENTATIONS =
= =
= =
= =
= =
= =
= =
= =
=--- --w-w=
ZZ CONSTRAINTS IN CURRENT CAD LANGUAGES =
-"^"-"^--"-""'"""=== ---s------------_______________ ==========--------------s-m====

-2-

--------------------““----------’-””--------======
------------------ ------------------------------

= =
= =
= OBJECTIVES: == == - CONSISTENT DESIGN SPECIFICATION FORMAT =
= FROM START THROUGH CWIPLETION == == - STRUCTURE AND BEHAVIOR CAPTURED == == - EFFECTIVE SIIULATIOri == == LITTLE ADDITIONAL EFFORT == Z= WORK DIRECTLY FROM DESIGN SPECS. == == SIMULATE EARLY \ == == ABSTRACT AND REFINED DESIGNS == CONPATIBLE == == SIMULTANEOUSLY SIMULATE == MULTIPLE LEVELS == =
=
=

=
=

=--=
= OBJECTIVES: MAKE CAD MORE USEFUL =----------------------------====== a---------===========-------------------------.a----------
--------------------________I_______- -----==t=t=======r=====

= =

= =

= =

= =

= ADLIB ---4 SABLE <--- SDL =

=

t

=

=

5

=

=

=

=

=

RDLIB = f9 DESIGN LANGUAGE FOR
INDICATING BEHAVIOR

SABLE = STRUCTURE AND BEHAVIOR
LINKING ENUIRONrlENT

SDL = STRUCTURAL DESIGN LANGUAGE

=
=

=
I

=

=
=

=--=

= "ADLIB," "SABLE,". AND "SDL" =

-3-

“m-t --w--------^---m-s ========r==---------------------------“----‘“--“-=========t==

= =

Z t

= =.

QLGOL
i,\

f
=

PASCAL SIMULM7 t

= SDL -y RDLIB PASCAL =
=
= MODULA

=

= ORIGINS OF ADLIB =
======================r============== ==f t==zz==t====----m-w.-=

“------
------- =============---

---===========t===================

=: t

= Z

= +

= =

= =

Z =

Z =

= ADLIB = PASCAL + t

= t

= CONCURRENT PROCESSES t

= =

= TIMING =

= =

= INTERPROCESS LINKS (NETS) =

= =

t =

= =

= =

= ADLIB MUST BE USED WITH A =
= =
= STRUCTURE SPECIFICATION SYSTEfl =
Z =
P =
f =
= =
=,,,-,---,---=
= WHAT IS ADLIB? =
==t ===tt============t====ZPPt======== =s:=t=a== ==OOt=ZPtPt==

=
= CMO;CO;I&OF ! DECODE INSTRUCTION AND EXECUTE =

:= RGANDMX,MCIZJ>; =
= THD:: =
= BEii: := RGADD(ACCJltIZ7); =
= IF RGCARRY 0 LINK THEN LINK := 1 == ELSE LINK :=0; =
= END; =
= rsz: BEGIN =
= lJAITFOR TRUE DELAY I: =
= <INCR(MCIZJ>;

IF MfIZJ=O THEN INCR(PC):
=

= =
END; =

FE:
BEGIN MLIZJ:= ACC; ACC := 0 END; =

: BEGIN MCIZJ:= PC; PC := 12-f-l END; =
JMP: PC:= Z;
IOT: IF TRACE THEN DUMPC' IOT',CDCACC$

= ENCODED : ! NEXT SLIDE= END; (x CASE OPCODE 33
.=

=
= =
= =
= =
= =
=--------------------~~~~~~~~~~~~~~~~~~~~~~~~-~------~
= PDP8 SLIDE 2 - INSTRUCTION DECODE =-------------_---------------------- -B--m"===========--------"----------------------------------

t t

"WAITFOR" COr?STRUCT ALLOWS A COMPONENT
TO PAUSE UNTIL SOME CONDITIOH IS MET

EXAMPLES :

WAITFOR BUSADDR = MY-ADDR CHECK BUS;

WAITFOR MANTISSA <> 0 SYNC PIPE-CLK;r

5

+
t
=
=
=
t
=
=
=
=
t
=
=
=
t
=

WAITFOR DELAY 15.0E-9;

= =
= =
= =

=--------------------~~~~~~~~~~~~~~~~~~--------------~
= LONGUAGE FEh..jRES : HOLDING A PROCESS =
------t------ ==5===="""""""'---"'1---"-..------------ ===t==============t==

-5-

COMPONENT NET COMPONENT
-> -> -> -> -> -> ->

ONE TWO

NETS ARE USED FOR BOTH DATA AND CONTROL

USER SPECIFIES REAL PROPAGATION DELAY

= REDUNDANT UPDATES RIJTOMATIC~JLLY DELETED =
= =

NON REDUNDANT UPDr?TES STIMULATE COMPONENTS =

“-‘--“-----‘“““--‘=====‘--===----’==---===””---===========--===-- w-w -.m--- - -

= =
= =
= =
= =

RFlLPH
PLAYER

CARD
-h

= =
f =

LIGHTS ’

CNTRL

DEALTCARD JOE
DEFILER

LIGHTS

L CNTRLl

PETER
PLAYER

CARD
I

CNTRLi?

LIGHTS L

= =

f

=
=
= =
= =
= =
= =

=
= =
= =
= =
= =
= =

= STRUCTURE OF A BLACKJACK GAME

-6-

- - - - - - - - - - - --------=================rtlfPtPr===..------------------

= =

= t

f =

= =

= SUBPROCESSES =
=
=

5

=:

= RUN INDEPENDENTLY OF MAIN BODY OF == COMPONENT, BUT CAN BE ENABLED OR f
= DISABLED AS NEEDED =
=
=

=
=

= UNBURDEN MAIN CONTROL LOGIC =
= OF COMPONENT =
= Z

CQN BE USED TO DESCRIBE INTERNAL =
TIMING OF COMPLEX COMPONENTS f

=
=

=
=

=,,,,,,,-,,,,,,,,,,,------------------------------o-~=

= LANGUAGE FEATURES : SUBPROCESSES =
====f=---“““‘---‘“‘-“‘--“==---------==--_------------------------ --================t==
=--“---‘-“--‘-‘=I=‘==---- -----------c---- -----------L--------____________

SUBPROCESS
TTYJW~R : UPON CHAR,RDY CHECK TTY-LINE DO

B-POS :
BUFFERC
I:TK
wfAKEZr1

END;

= B,POS -t
B,POSJ :=
OS) BUFF
INEXH IN
AIN,PROCE

1;TTY,
ER-SI
CESC

ss;

LINE+CH;
ZE) OR
,CR,LF3> THEN

CHANNELI: TRfiNSMIT DISK,BUS,DATA CHECK DISK-BUS
TO MAINJEM DELAY 1+5E-6;

=--=
= LANGUQGE FEATURES: USE OF SUBPROCESSES =
'---"'-'^""-""-"======E===-'---------------------- ,,==============='===I

-7-

- - - - - --s-m--- -==t==t===t===P==----.B--------- =============I==========

= COMPTYPE PLAYER;
= INWARD CARD : CARD-BUS;
= OUTWARD LIGHTS : DISPLAY-LIGHTS;
= EXTERNAL CNTRL : CONTROL-LINE;
= UAR SCORE : 0,431; HOLDING-ACE : BOOLEAN;
= BEGIN:
= WHIk;o;EUE DO BEGIN= := 0; HOLDING-ACE := FALSE;= REPEAT= REPEAT= ASSIGN HIT TO LIGHTS,= lJAITFOR CNTRL=CARD,R6Y CHECK CNTRL;=
= IFS;C;;.RANK<JACK THEN

:= SCORE + ORDVZARD.RANK> t 1= ELSE SCORE := SCORE t 10;= IF (CARD+RQNK=ACE> QND (NOT HOLDING-ACE 1 THEN= BEGIN SCORE:=SCORE t 10; HOLDING-ACE:=TRUE END;= UNTIL SCORE>=17;=
= IF [;;;;;>21’ AND HOLDING-ACE THEN BEGIN

:= SCORE - 10; HOLDING-ACE := FALSE END;= UNTIL SCORE>=174= IF SCORE<=21 THfN ASSIGN STAND TO LIGHTS= ELSE ASSIGN BROKE TO LIGHTS;= END; !ldHILE TRUE
= END; !COMPTYPE PLAYER=--=
= ADLIB DESCRIPTION OF BLACKJACK MACHINE =
===='=r===='II--==,,,,,,,,,,-,-,------------------------------------_----------------______c_________

MULTI-LEVEL SIMULATION:
"DATA-LEVEL" OF COMPTYPE DETERMINED BY
ITS "NETTYPES"

INTERNAL DETAILS OF CODE ARE IRRELEVANT
NETTYPE MISMATCH -> MULTI-LEVEL SIMULATION
"TRANSLATOR" COMPONENTS MEDIATE MISMATCHED
NETS

TRRNSLATORS MfiY BE INSERTED AUTOMATICALLY

EXAMPLES :
BUS SPLIT TO INDIVIDUAL BITS
MULTI-VALUE COMPRESSED TO BOOLEAN

P

=

=

=

=

=

=

=

=

I

=

=

=

=

t

=

=

P

=

=

t

=

=

=

=

=--=
= MULTI - LEVEL SIMULATION IN ADLIB/SABLE =----------------------II-------------------_-- "'--ar-====O==f========PfDltr

-8-

E:MBLE (HELD HIGH)

(MTE: TRWiSLATOR
NEEDEL’ ON THIS NET)

CLOCX

SIGfiAL

17

SOURCE FROfl
TTL LIBWWY
<TWO UALUE:)

- ----------=o=============----e-m -

= =

= =

= @EX SEUEN,HILL:ASSIST
= PASCAL/LOTS: SEVEN C MULTIJAL 1 PAGE 1.A 500,=

(PASCAL COMPILER MESSAGES OMMITTED FOR BREVITY) =
1 PLEllSE ENTER SHORT AND FULL DELhYS (REAL NUMBERS):=
= PLEASE ENTER DEFAULT INITIAL VALUE FOR NETS KR=S)=
= NAFlE OF TOPOLOGY FILE WITHOUT EXTENTION) : CRC =
= STRRT OF RUN, TIME=0+0, Z9MAXEUENTS=9999,Z9MHXTIME=
= ENTERING SABLE MONITOR, TYPE '?' FOR HELP =
= FOR HELP TYPE “?’ =
= COMMHND: EVENT 100 =
= COMMAND: TRACE YES E
= SETTING TRACE TO TRUE =
= COMMANDS RUN =
= RESTARTING SIMULATION =
= SIWLATED EVENT LIMIT REACHED =
= TIME= 7.100000023Et01 NUMBER OF EVENTS= 100 =
= TIME LIMIT= 9+998999953E+02 EVENT LIMIT= 100 =
= COMI’IAND: QUIT =
= QUITING,. +
= END OF SIMULATION, TIME= 7.100000023Et01 NUN EU= 10;
= CPU TIME = 1,194 ELAPSED TIME= 20.318 =
= NUMBER OF ACTIVATIONS= 224 =
= EXIT FROM SABLE =
=--=
= RUNNING ADLIB/SABLE (MESSAGES EDITED FOR BREVITY) =---^------------------ ==='=========f='=

-9-

===“== L-I-------

@ADLI
FOR

%-EVE

B
;E;WLTYPE

l

FINISHED: NETTYPES.., REPORTER TOMULTI
l'ILT,X
SIGNA
NO ER
EXIT
@SABL
FOR H
XCRC.
DATAB

14
14

I IdSE
8

1 T
NO E

MLT-NAND2 MLTAND2 MLT-OR2

EXIT

OR
L
RO

2 MLT
MLT

RS DETE
,DFFL
-CONS
CTED

E
ELP TYPE "?"
SDL,SEUEN/LIST
HSE SUCESSSFULLY READ IN
IN = BSOURCE,OUT,XRl+A;
RTING TRANSLATOR TO XRl!
STUB NET(S) INSERTED
RANSLATOR(S> INSERTED
RRORS DETECTED

OP MLT,INU
T PlLT,PULSE

A

TOBOOL=
;~'W&OR;=

=
=
=

:--:
COMPILING ADLIB AND SDL:===--===-----w====.w----- ==================--"-------=r='=='---9-------

=
=

1 = IN =
2=
3 =

;;l;;bER =
=

4
= Eb;yl

=
5= =
6= DELAY2 =
7= OUT =
8 = TO-ENAB =
9 = CLK =

10 = XFROM TRAN =
11 = X%STUBBYJ%

11111 11111 22222 22222 33333 3335
TIME 1234 56789 01234 56789 Of234 56783 01234 5678

0 FHHH HHHHX HXXXX XXF =
0 FHHH LHHLX tiXXXX XXF =
0 FHLH LHHLX HXXXX XXF =
0 FHLH HHHLX t(XHXX XXF =
0 FHLH HHHLX HXHXX XXF =
5 FHLH HHHLU HXHXX XXF =
5 FHLH HHHLH HXHXX XXF =

10 THLH HHHLD HXHXX XXF =
10 THLH HHHLL UXHXX XXF =

=
=--=
= SEVEN VALUE SIMULATION WITH INTIAL VALUE "H" =
--------------^---------------========'==================~~============

-lO-

.s---====-----m ““..‘=“=-es- em ==========f======= m e - -==s==========t,,--

= =

= =

= =

= =

= IMPACT ON COMPUTER AIDED DESIGN (PART 1): =
=

= Z

= CONSISTANT FORMAT AT ALL LEVELS =
= =
= ADLIB -> BEHAVIOR =
= =
= SDL -> STRUCTURE =
= =
= UNIFIED IN SABLE ENVIRONMENT =
= =
= =
= =
=: SIMULATION DIRECTLY FROM DESIGN =
= =
= ELIMINATES TRANSLATION ERRORS =
D =
= COMPATIBLE WITH OTHER CAD TOOLS =
P =
= =
= =
=--=
= CONCLUSIONS =
===============t===t========== ========================
m m - - - - --=r=====et============O===‘--‘t=- - I -- - - - - v =====Dt====z==E--

==
==
==

= EXPERIMENTS: =
==

=
= - ARPANET (PERFORMANCE EUALURTION) 490:==
=
t

PDP 8 (ARCHITECTURE LEVEL & 200=
BIT SLICE IMPLEMENTATION) 340=

t=
= - TERMINAL CONCENTRATOR= (ALGORITHM TESTED AND 2301
= GATE LEVEL DESIGN) 880=
=
= - DATA ACQUISITION SYSTEM 160:
=
= - BLACKJACK MACHINE 120:
=
= - SEVEN VALUE GATE LIBRARY 430:== == == == ==
=--=
= EXPERIENCE WITH ADLIB =

w-m.----- -m-----======t======----------=============--- em-- =========f==

-ll-

=============--------------------====== =---------------------===---------------------
=
=
=
= FUTURE WORK:
=
= CIRCUIT SIMULATION=
= AUTOMATIC HARDWARE SYNTHESIS
=
= LANGUAGE ENHANCEMENTS
=
= - DEFAULTS=
= - BIT MANIPULATION=
= - PASCAL DERIVATIVES (PASCALM,ADA)=
= FAULT SIMULATION - TIMING VERIFICATION
=
= BEHAVIORAL/STRUCTURAL VERIFICATION=
=
=
=
=
=,,,,,,,,,,,,,,,,,,,---------------------------------=
= FUTURE WORK =
---w--,-,-e-z ======e==================--------===============t==

-12-

TIMING VERIFICATION

IN

THE SCALD SYSTEM

Tom McWilliams

ABSTRACT

A new approach to the verification of the timing
constraints on large digital systems has been developed.
The algorithm is computationally very efficient and also
provides early and continuous feedback about the timing
aspects of synchronous sequential circuits as they are
designed. It also allows for the design to be conveniently
verified in sections, permitting the verification of designs
which would otherwise be too large to do on existing computer
systems. A system using this algorithm has been implemented,
and has been used to verify the timing constraints on the
design of the S-l Mark IIA processor, which consists of
10,000 ECL chips, and is comparable in performance to the
Cray-1 CPU.

-13-

SCALD TlMlNG VERIFIER GOALS K!

l To verify all timing constraints in large clocked digital systems

l To verify timing constraints early and throughout a design .
l Avoid finding timing errors at the end of the design
9. Automatically provide timing information about part of design already com-

pleted, for use in completing design

l To eliminate the necessity to generate complex files to drive the verification
(such as is needed in conventional logic simulation) .

l To allow additional timing constraints to be specified in the prints
l For example, the specification of when interface signals can change

l To verify as much as possible of the timing in a “value-independent fashion”
l In order to minimize the number of cases that need to be tested
l To reduce CPU time

l In order to minimize the problem of driving the verification
O. Machine doesn’t need to be microcoded to check timing
l Can verify incomplete designs

TIMING VERIFICATION IN THE SCALD SYSTEM ql&ii

l Checks all timing constraints in large digital systems,
taking into account:
- Component timing properties
l Propagation delays
l Setup and hold constraints
l Minimum pulse width constraints

- Wire delays
l User-specified limits
l Calculated values based on routing, capacitance, and

transmission line characteristics
- Additional designer-specified constraints

l Oriented toward clocked digital systems

14-

TIMING VERIFIER - SIGNAL VALUES Li.p!

Value

0
I
S
C
R
F
U

Meaning

False
True
Stable
Changing
Rising edge
Falling edge
Undefined (Initial value)

I
r SIZE)sEwHou)cJu

1<0:SIZE-1r /P Sl
I

I SEW’-4.6:
HXD --t.e

DEFINE

x STEP - SIZE

m?NJ%CWR

F

SETW RISE

me:3 09 WXDFR-LCkK
I S3

SETUP-3.6; llIN PLLSE WIDTH

la-D -1.0 I WI

CK klICH~4~0i
LEN I Lcu 4.B

* ,

-15-

PN?GWTER DEFINE WIWKTURER

m0:s1zE-1)
lfB;SIzE-1,

S

X STEP - SIZE MS

T<B:SIZE-1,

B<B:SIZE- 1, /p

1~0:STzE- 1, /p

TcB:SIZE-1, /P

DELAY=B. 3, 1.2

S/P
,TSS I03 Al

sErwwLDct-M

PFtRmER

10 L<B:SIZE-1,
11 L<B:SIZE-1,

T<B:SIZE-1, A

DEFINE

X STEP - SIZE

PWiFlMETER DEFINE

I<B:SIZE-1, ’
CK

X STEP - SIZE

T<B:SIZE-1, /‘J

FMS

T LcBtSIZE-1,

wAY=1.0,2.9

10 L<B:SIZE-1, /P

1 1 L<B:SIZEil, /P T L<B:SIZE-1, A’

SE
TU

P
AN

D
HO

LD
 E

RR
OR

S
FO

UN
D

S
el

~p
,

llo
ld

 a
nd

 M
in

im
um

 P
o
lr

r
U

td
th

 e
rr

or
s

.
.

.
.

S$
~~

PA
~m

e
 :

r~
;;

r;
 S

et
up

 T
im

e
=

3.
5,

 H
ol

d
T

im
e

=
 1

.0

D
A

TA
 IN

PU
T

=
A

D
R

(t
0
.0

)
(t

0
.0

)

z;
t;

I;
,{

+
m

e
:r

;;
;;

&
tu

p
 T

im
e

n

2.
5,

 B
ol

d
T

im
e

=
1.

5

D
A

TA
 IN

PU
T

*
R

A
M

I’
:*

:;
+

.

0
:0

.0
,

R
:l

l.
S

,
1:

15
.5

,
F

:1
7.

8,

0:
21

.8
S

:0
.0

,
C

:0
.5

,
S

:l
l.

S
,

C
:2

S
.S

,
S

:3
6,

5

R
:0

.0
,

1:
3,

0,

F
:2

4.
0,

0

:2
8

.0
,

R
:4

9.
0

S
:0

.0
,

C
:5

.0
,

S
:2

2
.5

,
C

:3
0.

0,

S
:4

7.
5

SI
GN

AL
 V

AL
UE

 S
UM

MA
RY

 L
IS

TI
NG

V
al

oe
s

o
f

 a
ll

 r
i~

oa
ls

AD
R<

0:3
>

.
.

.
C

K
.P

O
-4

.
.

.
C

K
.P

2
-3

.
.

.
CK

.P

4-
8

.

O
U

TP
U

T<
0:

31
>

:

:
RA

M
<0

:31
>.

;E
$D

C
[;R

.S

4-
9:

0:
3>

:
&D

AT
A

.S

&
6<

6i
31

>

:

UR
lT

i!
.S

0:
6

:
:

UR
lT

E
AD

R
.S

0-
6<

0:
3>

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

.

. . . .

.

.

:5
.5

C

:2
S

.S

S
:3

0.
5

:2
4.

&

0:
26

.b

R
:4

9.
0

h
1
3
.4

,
F

:1
7.

b,

0:
19

.8
;‘

,“
j”

,
1:

26
.0

,
F

:4
9.

0

:2
&

S
,

C
:3

0.
0,

S

:4
5.

5
:2

5.
0

:2
4.

0,
0

:2
6

.0
,

R
:4

9.
0

1:
13

.5
,

F
:1

7.
8,

0:
19

.8

(o
on

st
an

t
v

al
u

e)
to

on
ot

aa
t

rf
il

ue
)

(o
on

ot
en

t
va

lu
e)

OPERATION OF THE SCALD TIMING VERIFIER Lal*

@ Does case analysis to handle logic where the values of
signals affect timing, and values of signals are not sym-
metric from cycle to cycle

l For a given case, assumes that the signal behavior is
periodic over the cycle time of the circuit

0 Evaluates circuit for the first case, and then only re-
evaluates those parts of the circuit that change in going
from one case to the next

Experience in Usina Timinp Verifier u‘L
l Provides daily feedLack about t.LGg errors as the deeign

proceedea

l Check8 desi,gn to 6ee that no timing errore have been
introduced
l lisea rule to estimate wire delay initially
l After layout of boards ia done, it ueee accurate‘wire

delay predictiorss based on layout

l Meeting both* . . minimum and maximum delaya required
qmfmnt amount of work

l Typically two or three timing errore are introduced in a
given day of design work
l With constant feedback, designers learned to make

fewer tin&g errora
o Dcrisg titid port of design, many errors would be

made during a day’8 work
l A number of circuits bad to be entirely redesigned to

meet worst cse timing constraint4

l S-l JIark IIA processor was verified in two 5,000 chip
eections

0 Rrcpired 20 rntititea of CPU time to verify a given
.5WiiOIl
l Executed on S-l hlark I processor
l Comparable in performance to 370/168

l Recpircd 7 to 8 Megabytea of memory

l The Timing Verifier allowed constant feedback to the
dcaigner with very little cost

o Use of the Timing Verifier encouraged conventiona which
greatly improved design readability

l The system resulted in a significant reduction in design
time

o When designing a new section, etiting signala can be
looked up in a summary bting to see when they are
changing

l Timing errors are found early in the design, before they
have a chance to propagate

l A significant amount of time was saved by not needing
to do ae many hand calculation.8 while doing the design

l The system allowed a design to be done which executes
faster

l By providing quick feedback about timing, design could be
optimized ior execution speed more reatiy

-18-

VERIFICATION OF DESIGN CORRECTNESS

WITH ADLIB AND SDL

Warren Cory

ABSTRACT

A designer may use Adlib and SDL in a hierarchical fashion
to describe a design from its initial phase to the detailed logic
design phase. However, the designer must rely on simulation to
verify the correctness of each refinement in the design. More
formal verification techniques are required.

A verification experiment involving a UNIBUS interface
design is currently in progress. This experiment will help to
evaluate a proposed approach in which the verification problem
is partitioned into two simpler sub-problems. This approach is
suggested by the similarity of this problem to that considered
by IBM in the verification of LCD.

-19-

Adlib features of interest for verification

- Components interact only through well-defined
interfaces

- Adlib allows description over wide range of levels
of abstraction

- Correspondence between levels of abstraction
may be defined with translators

Top-down hierarchical design with Adlib/SDL

(1) Write Adlib description specifying desired
behavior of system.

Top-down hierarchical design with Adlib/SDL

(2) When satisfied with this specification, design
a structure for implementing this behavior.
Describe structure with SDL.

-2O-

Top-down hierarchical design with Adlib/SDL

(3) Describe behavior of components used in
above structure using Adlib. This step
corresponds to step (1) at the next lower
level in the hierarchy.

Top-down hierarchical design with Adlib/SDL

(4) Repeat to obtain a detailed logic design which
uses available physical components or
components to be fabricated with other DA
tools.

Where does verification come in?

After steps (2) and/or (3).

- Show that structure described in step (2) can
support the behavior specified in step (1)

m and/or -

- Show that system described in steps (2) - (3)
meets the specifications given in step (1).

Simulation is currently used for this purpose.

This top-down design with Adlib/SDL is similar to
design techniques used at IBM with LCD. The major
differences between Adlib/SDL and LCD are

1) LCD may be used only for fully synchronized
systems,

2) All LCD descriptions are written at the same
level of abstraction (non-procedural RTL), and

3) In Adlib/SDL, the structure of a system is
described explicitly, while in LCD, inter-
component connections are implied by the
communication of components through
global facilities.

IBM has done extensive work on verification with
LCD. More on this later...

. -

We often view the top-down design process as a one-
dimensional refinement.

High level of abstraction
Low level of detail

Low level of abstraction
High level of detail

-22-

For verification, it is advantageous to view the design
process as a refinement in two dimensions.

Level of detail
Low (structural complexity) High

High

Level of
abstraction
(encoding
of data)

Low

We may now consider transitions to lower levels of
abstraction separately from the introduction of more
detail.

High

Level of
abstraction
(encoding
of data)

Low

Level of detail
Low (structural complexity) High
\
\
\ \&

\
\ \

\
‘\‘\ \ \\ k

This partitions the verification problem, as shown in
the following example.

-23-

UNIBUS design example: a verification experiment

(1) At high level of abstraction, designer describes
interface between UNIBUS and core memory
card.

UNIBUS

r
Bus Address

Ilata
master Fct

(Adlib) . Strobe

Caddresc Core
Interface

Cread
7 (Adlib) Cwrite (Adlib)

UNIBUS design example: a verification experiment

(2) Designer writes translators which define
correspondence between crude bus protocol
used above and detailed UNIBUS protocol.
This is a transition to a lower level of
abstraction.

r Address
Data

A B
Fct
Strobe

c I

(3) Automatically verify that UNIBUS protocol
proposed in step (2) is feasible. That is, show
that signals are properly passed between A
and B.

-24-

UNIBUS design example: a verification experiment

Model after step (3)

Strobe

UNIBUS design example: a verification experiment

(4) Merge INTERFACE and T-l, yielding a
description of the interface at a lower level
of abstraction.

Interface

(Adlib)

-25-

I

UNIBUS design example: a verification experiment

Model after step (4)

UNIBUS design example: a verification experiment

(5) Use SDL to specify internal structure of
INTERFACE. Use Adlib to describe behavior
of components used in INTERFACE.

(6) Verify that structural/behavioral description on
the right meets behavioral specifications on the
left.

-26-

UNIBUS design example: a verification experiment

What techniques will be used?

Verification of translators in step (3):
By symbolic simulation, show that proposed
protocol properly transmits data.

Comparison of descriptions in step (6):
Symbolically simulate the descriptions in
parallel; compare values on nets.

UNIBUS design example: a verification experiment

This last step looks like the original verification
problem, but there is an important difference:

The nets in the two descriptions to be compared in
step (6) are at the same level of abstraction, and
there is a one-to-one correspondence between the
nets in the two descriptions.

The techniques used at IBM to verify LCD might now
be successfully applied to this simplified problem.

-27-

AUTOMATIC SYNTHESIS OF A SYSTFM CONTROLLER

FROM DDL-P TOaPLA

bY

Sungho Kang

ABSTRACT

Direct hardware synthesis from a higher level description
of a digital system is one of the ultimate goales of all design
automation activities. As an attempt in that direction, a
system, which automatically generates the PLA's for the control
circuit of a digital machine from a DDL-P description, has been
developed. This is a very convenient tool for the design of a
finite state machine. Roughly, the control circuit of any
digital system for which a state diagram can be drawn can be
designed easily using this system.

-28-

CONTROL CIRCUITRY in a digital system
__________-_---____------------------

1. distributed control

- random Logic

2. localized control (for a complicated system 1

- random logic

- PLA

3. centralized control

- random logic

- ROM

- PLA

- PAL

Random Logic

PLA
-a-

l. combitional
network

2. sequential
circuit

3. # of basic
elements

4. minimality

5. optimality
in VLSI

6. a u t o m a t i c
design

YES YES

YES YES
(with FF's)

Large ?

YES, but hard NO
to achieve (2 Level Logic)

(multilevel logic>

??? attractive
(interconnections)

difficult YES

7. design
too Is

s o m e some

-29-

RON PLA
em- B-B

1. fundamental uses atI input
difference combinations

2. minimality sometimes very
wasteful

XtX used in a controller XXX

3. addressing
logic

usuatly very
complicated

4. readability
of format

easier

5. changeability

A. code simple

B. structure difficult

6. automatic
generation

reported

does not need all
input combinations

difficult to achieve
for a large # of inputs
and outputs

may be simple

easy

difficuLt

less difficult

YES

O B J E C T I U E S
- - - - - - - - - -

' automatically synthesize the controller of a digita\

system using PLA’s ’

1, want to use a higher LeveL language description of a

digital system

- DDL-P : register transfer Level
(has been used successfully) _

2. efficient PLA mapping

- chip area

- speed

' reduce the burdon of a desiginer

as much as possfbLe '

-3o-

DDL-P description

translator

I
I

I

&
Boolean equations t ?

mapper

I I
f II
I SPAM II
I I
1 I
t---------------t

4
&

PLA’S

Chracteristics of DDL-P

1. register transfer language

- can be used more LiberaLLy

- if carefuLLy used, can contain aLL the structuraL

information as well as functional behavior

2. based on ASM theory

- MeaLy model + Moore model

- cf. Designing Logic systems using state machines
by Christopher r. clare

3. suitable for finite state machines

- whole system synchronized

4. cLear boundary between data flows and control flows

- painful to a designer who wants to describe

a digital system in DDL-P

- good for a designer who wants to synthesize

a physical hardware from a DDL-P description

-31-

DDL WiCHINE HODEL

-. FINITZ STATE PXCHINZ signals

i

inputs --
Qunlificrs

BtiSKJACK InWXiiNE j QUllLIFIERS
10 CONTROL SIGNALS

S'l!ATE MAC;!INE- ---

-__----____ --_------ ---- ----- -.---__ -
I_ -- -.--------- ---- -Next-state

Function

1

output
Function

-- ~~~----,j-yz+

i

fizz.+

state
t i m e

_x_I.--___--- --- r

outputs
-3
Instruct

r 1

'ions

Instructions
Combinational

-32-

' B L A C K J A C K M A C H I N E . '

REGISTER SCORECSJ, CARDBUFC53, FF.
TERMINAL HIT, BROKE, STAND,

UALUECl:51 = INPUT(l,UALUE),
YCRD = INPUT(l,YCRD),
YL17 = SCORE(l7, YL22 = SCORE<22,
NACE = CARDBUF#l.

OPERATION
TPT = CCARDBUF _ 5Dl03, TNT = CCARDBUF _ 5D22J,
TUC = CCARDBUF _ UALUEJ, IHIT = CHIT=lBl1,
ISTD = CSTAND=lBl1, IBRK = CBROKE=lBl1,
CLS = CSCORE - 5D03, ADD=CSCORE ,(SCORE(+lCARDBUF)TAIL 5J,
KFF = CFF,IDBJ, JFF = CFF _ lD1 3 .

CONTROL '
;j CLS, KFF, ->B/

IHIT, TUC, ~YCRDA ->C; ->B./
c: AYCRDA ->C; ->D./
;; ADD, ANACEtFFA ->F ; ->E./

JFF, TPT, ->D/
F: "YL17" ->B; ->G./
G: "YL22" ->K; ->H./
yi KFF, TMT, AFFA ->D; ->J ./

IBRK, AYCRDA ->A; ->J./
K: ISTQ, AYCRDA ->A; ->K./.$

XX%%XX%XXX

CONTROL
;; CLS, KFF, ->B/

IHIT, TUC, AYCRDA ->C; ->B./
;; ~Ycf?Dh ->C; ->D./

ADD, ~t'ificE+FF~ ->F ; ->E./
E: JFF, TPT, ->D/
F: "YLl7" ->B; "YL22" ->JK; AFFA ->D., KFF, TMT../
JK: hYL22" ISTD; IBRK., AYCRDA ->A; ->JK./.0

DDL-P ------ simulator

/ \

contra 1 operation
. 1

interpret

state assignment

manual design
generate eqn's

minimization

mapping

PLA's -------------------

-33-

m-s CIRCUIT !

EX. LIGHT CONTROLLER

(from ‘ Introduction to VLSI systems "
by Mead & Conway 1

I I
I I
I I

HIGHWAY
/

Cm-
tector

FARMROAD

t-------t
C B-m>I ’ I ---> ST

I I ---> HLO
TL ---> I PLA I ---> HLI

I I ---> FL0
TS ---> : I ---> FL1

l7-w I==Tl

I HLO HLI
-e--m- +--------
Green I 0 0
Yellow! 0
Red I 1 iit-------t

t-------t

PI LIGHT CONTROLLER "

TERMINAL
C,TL,TS,ST,HLB,HLl,FL0,FLl.

C O N T R O L
HG : I F C X TL T H E N ->HY,S+@,FLB@

ELSE ->HG,FL06 ENDIF/
HY : I F T S T H E N ->FG,HLIC,FLBC,ST

ELSE ->HY,HLl@,FLBC ENDIF/
FG : I F -C+TL T H E N -)FY,HLB@,ST@

ELSE ->FG,HLB@ ENDIF/
FY : IF TS T H E N ->HG,HLB@,FLlC,ST

ELSE ->FY,HLB@,FLl@ ENDIFj.6

-34-

S INPUT FILE : Light.ddl

< OUTPUT EQUATIONS >

1. ST= -Q2$-QlX(C X TL) + -Q2%Ql%TS t Q2XQlX(-CtTL) t Q2!X-Ql%TS
2. FL0 = -Q2X-QlX(C X TL) + -Q2%-Ql%-(C X TL) + -Q2!XQltTS

t -Q2!XQlX-TS
3. HLl = -Q2tQIXTS + -Q2XQlb-TS

2:
HLO = Q2tQlX(-CtTL) t Q2XQl%-(-CtTL) + Q2X-QIXTS + Q2f-QlX-TS
FL1 - Q2X-QIXTS + Q2%-Qlt-TS

< D F F E Q U A T I O N S >

I. Dl= -Q2X-QlX-(-tC X TL)> + -Q2%QlX(-TS> + -Q2XQlXTS
+ Q2tQlt(-(-C+TL))

2. D2- -Q2XQlXTS + Q2bQlX(-(-C+TL)) + Q2*QlX-(-c-C
tTL>) t Q2%-QIX-TS

.S

INITIAL SPECIFICATION (F/DC) : 28 / 0 CUBES

O F I N P U T S / O U T P U T S = 51 7

<INPUTS> <OUTPUTS>

1. Q2 1. ST

;:
QI

5:
FL0

FL HLl

;: TS
4. HLO
2: FL1

7. ii

1 . 0011- I

28. 10--BI

SOLUTION : 1 0 C U B E S

1. I---- . ..l...
2. 10--0l.l
3. 10--l l...l..
2: 0011- 1110- l....l. I1

6. 01--- ..l..l.
7. 110-- l..*..l
8. ii-l- I.....1
9. 01--l l.l..ll

10. 0---- .l**...

-35-

’ I N T E L 8 0 0 8 M I C R O P R O C E S S O R ”

CONTROL
MiTi : HSI, P C L O U T , ^INTh H S O , CLCY, SIFF; INCPCL, CIFF./
MIT2 : HS0, S P C I , P C H O U T , I N C P C H , INTC/
MlTW : R D Y E , ^RDY^ F E T C H , S T O I R , S T O R B , ->MIT3; ->FllTW./
RlT3 : H S 2 , R D Y C , I N T E , AfiPRtROTA ARA.,

ARSTJ’ P U S H , CLRRA,,
AHLTA HSl, AINT^ ->MlTl; ->MlT3.;

+‘M2A ->M2Tlr, J’RCFA ->MlTI../
MIT4 : H S 2 , HSl, H S O , ASSC ̂ SSSRB., hINR+DCRh D D D R A . ,

ARTCA P O P . , ARSTA R A P C H . , ^LMRA ->M2Tl./
MIT5 : HS2, HSO, ALRRA RBDDD., AINRA INRADD., ^DCR ̂ DCRSUB.,

-‘APRh ALUOP., AROTA ROTRA., ARSTA RRBPCL., -> MIT11
12Tl : HSl, hflRIA LOUT; AINP+OUTA AOUT;

P C L O U T , AIFFA HS0, CLCY; INCPCL.../
M2T2 : HSO, ^flRI^ ^LMRA SPCW; SPCR., HOUT;

AINP+OUTA R B O U T ; S P C R , P C H O U T , INCPCH.,/
M2TW : RDYE, ARDYA ALTARS R B O U T ; A-OUTA F E T C H , STORB..,->M2T3;

->M2TW./
M2T3 : H S 2 , R D Y C , “APfltfiPIA ARA.,

^fl3” ->M3Tl., ALflR+ouTA ->MlTi./
fl2T4 : HS2,HSI,HSB, AINPA FF0UT.i
M2T5 : HS2, HS0, ALRfl+LRIA RBDDD., "APfl+APIA ALUOP.,

AINPA RBA., ->MlTl/
fl3Tl : HSl, “LMI”
M3T2

LOUT; PCLOUT, AIFFA HS0, CLCY; INCPCL../
: HS0, “LfiIA S P C W , HOUT; S P C R , P C H O U T , 1NCPCH.j

fl3TL.I : RDYE, ARDYA ALflI” R B O U T ; F E T C H , STORA., ->R3T3;
->M3TW./

M3T3 : HS2, R D Y C , ACALSUBA P U S H . , ALflItJCt=~~ ->MlTl./
fl3T4 : HS2,HSl,HSB,RAPCH/
M3T5 : HS2,HS0, RBPCL, ->MlTl/.I

Do 01 02 03 04 h 06 h

Yyf”i”Yfl I N T E R N A L D A T A B U S

f
8 BIT DATA 8US -

S? ADDRESS
SSS OR DOD

I N T E R N A L D A T A B U S I

REGISTER a
(a 1317s)

t tr-
-

I ACCUMULATOR
REGISTER b MEMORY CYCLE AN5

(8 BITS) CONTROC CODING
4 SCRATCH PAD

1 MEMORY

LOOK AHEAD
(8 BITS)

t

PEGISTER

AND

ARITHHET:C

UNIT

CONTROL

7 WORDSw 6 B ITS

!NSTRUCTION

DECODER

I ’ I J
MEMORY #

AND I
I MEMORY 1

B - BIT P A R A L L E L a

ARITHMETIC
--F UNIT -G

AMPLIftERS
I

F L I P - F L O P S L?,C,S,P) ;
- ’ AND CONDITION

LOGIC

P R O G R A M COilNTER

B WORDS I 14 BITS

READY INTERRUPT

-36-

SAHS----

1, TRAFFIC LIGHT i 5/ 7) 28
CONTROLLER

2. ;gkJ;cK I 9/14) 4002 >

3. INTEL 8008 (31/46) 148(+3)

4. INTEL 8080 fX5/661 181(+3)

A A: II

tin/out) initial

SPAN---a

-> 10 (0+51 s>

-> 18 (1.30 5)

-> 68 (19*31 s>

-> 129 (43.00 s>

A

final
of products # of products

SAHS
--e-w-

(Stanford Automatic Hardware Synthesizer)

1. Interpret : source input : DDL-P

- accept a subset of DDL-P

- prefer a strict register transfer level description

- hopefully can be used for other languages (ADLIB ..I

2. state assignment

- manual, interactive or automatic (simple)

- what would be real criteria ?

3. generate Boolean equations for the control part

- operation part should be designed manuaLly

(for automatic design, fundamental philosophy
would be different>

-37-

1. PLAl

2. PLA2

3. PLA3

4. PLA4

5. PLfi5

6. PLA6

7. PLA7

8. PLA8
w---w-

9. PLA9

10. PLA10

SPAM
-a----

(Stanford Programmable Array Minimizer)

1. input : Boolean equations, truthtable or SAHS result

- some options are available

2. minimizer

- heuristic

- simple cost function : equal weight to each product

- 72 inputs, 144 outputs (practical !!! >

- essentially for shallow funtions

3. PLA mapper

- obJective : chip area efficiency, speed

- 5oIution : partitioning, folding

(8/6) 31 ->

(6/8> 9 ->

(16 / 7) 18 ->

(16 / 61 25 -1

(16/7) 83 ->

(16/8> 67 -)

(13 / 6) 28 ->

(15 / 8) 17 ->

(13 1 61 6072 ->

(23 / 40) 273(+273)

EMIN----
(IBM 370/158 ?I

31 C 2.23 s)

9 (0.81 s)

13 (18.10 s>

20 (193.26 s>

44 (86.15 s)

18 (37.71 5)

21 (5.08 s>

14 C 20.16 s>

140 t 3.05.00 1

->

-38-

SPAM-m-w
(DEC 20)

30 (3.73 5)

9 (0+51 s)

13 C 1.30 s>

20 t 1.59 s>

42 C 8.46 s)

18 C 6.75 sl

21 (3.97 5)

14 (1429 5)

141 C 1.40.00)
140 t+ .20.00)
165 (6.30.00)

THE USE OF HIERARCHICAL DESIGN INFORMATION IN

PARTITIONING DIGITAL CIRCUITS

Thomas Payne

ABSTRACT

New algorithms that use hierarchical logical design
information are being developed for the partitioning of
digital systems. Information about functional relationships
and structural relationships inherent in a hierarchical
logical design are used to increase the effectiveness of the
automatic partitioning algorithms. Emphasis has been placed
on the generation of partitioning algorithms that handle a
variety of constraints and realize a variety of partitioning
quality criterion. These algorithms generate hierarchical
physical realizations. Both an interactive algorithm where
the user is required to make the partitioning decisions and
an entirely automatic algorithm are being developed.

-39-

A Definition

pay-5 i t, ioning is the process of dividing a circuit

into rhysic;ally realizable subpal-Is+

Minimum Costs

- D e s i g n C o s t s

- Partitioning Costs

- Placement, Layout, and Rout ing Cos ts

- Production Costs

- Repeated Types

- Part and Connector C o m p l e x i t y

Maximum Perf okmance

- Interconnect P a t h Lengt,

-Signa\ Delay

- P o w e r (Drivers 1

- MZ intenante Costs

- Testability

- F?el-iability

- Parts Cost

- T e s t a b i l i t y

- T e s t P o i n t Availability

- Functiona I Partitioning

- Reliability

- Connection complexity,:

- Power Dissipation
-4o-

Hierarchical Design

- A design done at several levels of abstraction

- Natural for designer

- More popular as designs bei;ome more complex

Information in a Hierarchical Design

- CompletOdP interconnectivity

- Logica '1 entity interrelationships

- F:J.nctional groupings

- St.:~uctura! grouping 5

Interactive Partitioning

- User makes the decisions

- Accurde bookkeeping

- Both the logical and physical designs are hierarchical

Automatic Partitioning

- Tradeoff Assessment

- Planning

- Special Cases

- Critical Signals

- Regular Logic

- Top Down

- Goa\ Directed Asignment with Backtracking
-41-

Conclusions

- No benchmark results yet

- Interacti ve Partitioning

- Imp~cvzd Efficiency

- Imj2r~~d Accuracy

Fut.ure LJovk

- Complete Autcmatic Partitioning Implementation

- Look at Erisineering Change Problem

Graphics Drawing

Data
Base

-42-

VLSI CIRCUIT PARAMETERS COMPUTED

FROM PROCESS VARIABLES

bY

Robert Dutton

ABSTRACT

The use of process models such as SUPREM
to predict device structures and parameters,
interaction with process control. Use of process
and device models to predict circuit and system
performance.

-43-

L '
A

i
U
T

I

. -W- 1
1 I II I’!

f

I I 3 1

.

-,

.M
OS

 P
R

O
C

E
S

S
M

O
DE

L’
IN

G IIJ
TE

RC
,O

NN
EC

T

.
\

-.
”,

C
H

A
N

N
E

L
W

PL
A

N
T

.

1
J
-
.

i
-
-
Y

.
1o

18
c :
.
-

S
U

P
R

E
M

.
&

 4
 b

S
P

R
E

A
D

IN
G

1
0
”
:

R
E

S
IS

TA
N

C
E

.-
F

-
 S

U
P

R
E

M

.
*

D
E

P
TH

(p

m
)

’

STANFORD UNIVERSITY fiOCESS UJGINEERIiJG LODELS PR0GR.M

AN IC FABRICATION SIMULATOR WHICH ACCEPTS PROCESS
STEPS AS INPUT AND PRODUCES A ONE-DIMENSIONAL IMPURITY
PROFILE AS OUTPUT,

.

PCOND ORnFR CONSIIlEbZUG

ION IMPLANTATION
PREDEPOSITION
CX!DATION/DIFFUSiON
EP I TAXY
ETCHING/OXIDE DEPOSITION

MULTIPLE SPECIES B, P, AS, SB
SPECI;S COUPLING - AS-B, P-B
OXIDATION ENHANCED DIFFUSION @gs)
CONCENTRATION DEPENDENT OXIDATION
AS CLUSTER1 NG

.

*** BELL SUPREM II *** INPUT ***

TiTL
::::GRID
3 . . . SUBS
4 . . .

;:-~!g

;:::pLDT
9 . . .

CCMM
1I):::STEP

:::::CDMM
PLOT

:::::PRINT
16...

19...

2::
STEP

COMM
f::::GRID
24...
25.. .COMM
26.. .MODEL

;;--
STEP

29:::COMM
30.. .STEP

?STEP
33::.
34.. .COMM

STEP
~STEP
37.. .PLOT
38.. .STEP
39...
40.. .COMM

MODEL
t::::STEP

:t:::%:L
45.. .STEP

CMOS P-WELL SIMULATION
DYSI=O.Ol, DPTk0.6, YMAXz2.5
ORNT=lOu, ELEM=-, CONC=lElS

STARTIF!G OXIDE THICKNESS OF 500A.
TYPE=DEPO, TIME-l, GRTE=0.0500

TDTL=Y, CMIN=14, NDEC=3, WIND=3

P-WELL IMPLANT
TYPE=IMpL, ELEM-B, DOSE=5E12, PKEV=200.

--- STOP PLOTTINGG, START PRINTING ---
TOTL=N
HEAD=Y

DRIVE-IN IN N2 FOR 1.5 HOURS
TYPE=OXID,TEMP=llOO, TIME-90, MODL=NITO

TYPE=ETCH, TEMP=25

---EXTEND GRID SPACE---
DYSI=0.015, DPTH=l., YMAX=7.0

DRIVE-IN FOR 15 HOURS IN 10% DRY 02
NAME=DRYl,,PRES=O.l
TYPE=OXID, TEMP=llOO, TIME-900, HODL-DRY1

FIELD OXID GROWTH IN WET 02 FOR 5 HOURS
TYPE=OXID, TEMP-1025, TIME=300, H@DL=WETO

TYPE=ETCH, TEMP=25

GATE OXIDATION AT 1000 C
TYPE=CXID, TEMP=lOOO, TIME-5, MODL=DRYO
TYPE=OXID, TEMP=lOOO, TIME-5, HODL=WETO
TOTL-Y, WIND=6
TYPE=OXID, TEMP=lOOO, TIME=5, MODL=DRYO

ANNEAL ---CALCULATE THRESHOLD VOLTAGE---
NAME=SPMl, GATE=AL, OSSO-4E10, CBLK=l
TYPE=OXID, TEMP=lOOO, TIME=30, MODL=NITO, MODL=SPMl
THRESHOLD TAILORING IMPLANT
NAME-SPMl, CBLK=6E15
TYPE=IMPL, ELEM=P, DOSE=SEll, AKEV=90, MODL=SPHl

~?::END

-47-

FINITE DIFFEWEMICE

STEP = 12 CMOS P-IIELL
THRESHOLD TAILORING IKPLANT

SIMULATION

ELEhFNT SILICON SEGREGATION SURF<ICE TOTAL DOSE
DIFFUSIVITY COEFFICItNT TRANS. COEF.

BDRON 9.162E-05 0.349741 2.526E-03 3.023C3E 12
PHOSPHORUS 0. 0. 0. 3.587b3E 11

2:o

DEPTH c3t&RONSJ
4.0 s:o 6:u

TRNl?EM
DOSE- 5.0000E 11 ATMSICH"2 VOLlAGE= 90. KEV RANGE= 0.097 UN
OXIDE THK= 80s A

-48-

CRTE CRPRCITFINCE
0

w’ twrrs

1

.

~~~;r~l~:.r..-  . . . . . . Jvnc, ton ._......  ;-i . . . . .

‘-.I .l3
? Substrate

Co-cm  pr/<m

cg = 5.88 pF/cm



49 E X P E R I M E N T&9 E X P E R I M E N Tmm
- S I M U L A T I O N- S I M U L A T I O N

I I I 1 I I!111
* 2 4 6 8 10 15

DRAIN SOURCE VOLTAGE VDs (V)

-5o-



PROCESS SPECIFICATIONS

I
c.4'i

’ A +
t

!C -Lh ?.?.?3 PROCESS  SIWATOR
F A B R I C A T I O N  AT e SUPRm 99* . i-

PROFILE MEAS, Y
I - SPREADING - - D O P I N G

RESMTANCE

Lo
-7\ sm.4 a

MEASUREMENT
- . SYSTEH -ELECTRICAL

TECAP PARAMETERSa

-51-



-,

,



SHORT PRESENTATIONS:

"Hierarchical DRC" by Mark Horowitz

“SUDS-II” by Wayne Wolf

"On-line DRC of PC Designs" by Tom Bennett

“Chip Planning” by Eric Slutz

“CROCODILE” by John Beetem

"Data Base" by Markus Bayegan

"Bus Router" by Tom Blank

"Graphics Terminal" by Andreas Bechtol sheim

-52-



’ i d-lIERARCHIAL  _

DESIGN RULE CHECK

(DRC)

MARK HOROWITZ .

PROBLEMS QUESTIONS

‘-WHAT  IS BOUNDARY  OF CELL
Bounding box
User defined
Merged  layer ’. .

CONSTRAINTS .

HIERARCHICAL DRC

I D E A  : U s e  information  i n  l a y o u t
cell calls
array

A D V A N T A G E S :  Cheek  cells  once
Smaller input
Faster execution

HOW:  C h e c k  b o u n d a r y  f o r  e a c h  placement

CURRENT DRC

PURPOSE: ’ Check artwork for layout violations

example: minimum
width.

INPUT TO SYSTEM: Instantiated layout .
(at rectangle  level) ’

no nesting allowed -.

PROBLEMSJ Cells are check in each placement

I
example:

C. ’ A A A A

, UIII

HIERARCHICAL  DRC

IDEA : Use information in layout
cell calls
array

ADVAMAGES* Check cells once s
Smaller  input
Faster execution

H@Wg  Check  boundary for each placement

-53-



The SUDS-II Drawing System

Wayne Wolf

Advantages of SUDS-II:

* written in transportable  language (Pascal)

* relatively low-cost terminal required

* simple to learn

* encourages  hierarchical  design (push &

POP

commands)

* access to many utility programs through

SDL

Current work:

* modify user interface

* investigate component  paramaterization

* define optimum hardware mix

-54-



DYHAI’IIC  DESIGN RULE CHECKING

IN AN INTERACTIVE

PC EDITOR

- automated routlng Is sildom  188%  compteta
- human lntarvention IS definitely needed

- batch d e s i g n  rule checking!
1) al lows addltlonal errors to be made
2 1 slow turn around

- peed for lncrementai design rule anforecmant

- prohlblt  DR v i o l a t i o n s  a t  a l l  times
- utitlze  existing Line-search technique3

- interactive routing aids for the designer

,
t,C6 Bennett '

mc
Stralwd University

Design Rule Enforcement- - - c - - - - - l - - - - - - - - - - - - -

. -

ABSTRACT

Batch design rule checking has been the standard
approach  for most DA systems.  This approach has several
major short-comings:

1. Allow DR violations to exist.

2. Requires DR checking after human intervention.

This method integrates the DRC program into the PC editing
cycle. Since DRC on an entire design is a time consuming
operation, we find this whole idea unsatisfactory.

At the outset we developed a router which does not
produce DR violations during automatic routing.  The muter
can be viewed as consisting of two major parts:

1. Automated line search algorithms.

2. DR enforcement  data structures.

The PC editor in our system is an extension of the automatic
router: it allows the user to control  the line search algoritfvns
as well as deleted critical  obstructions. With this approach
we obtain two desired goals:

1. No DR violations can be generated by human intervention.

2. Tha user her
non-d tlcal

the full power Of tJw auto router

- current  ne t  i n  tlnkcd list s t ruc ture  ’

- remalnder of daargn representqd by a bit map

- Line search based on Hlghtower atgorlthn

Dealgn Rules- - - - - - - - - - - -

- connectlvltyl
f r o m  clrcult  spec l f l ca t lon

connect
- static obstructions!

board geometry
component topo\ogy
pads

a dynamic  obstructions:
routed nets
line rcgmentr
vlas

-55-



.

,
“S&DftEffR  ~H~2,U~i,bl,S~2)  %?

ROUTE ( I’lODE  )
DELETE (MODE 1
IDENTIFY (MODE)
DISPLAY
RESET
%%”
SAuE/REStORE
QUIT

o-.
+;t: ++++++++++c+++++++++++++++

ENTER 0,lr.2 rtA'&R*3 * tt&Di$PR (H*2,U*i,C*l,S*2)  tt

ROUTE ( fIODE  1
DELETE (MODE 1
IDENTIFY (MODE)
pE&QY
CLEAN
HELP

I d
I$~/RESTORE

q

E N T E R  0,1..2  :tAVER*?
,

%$&D~EPR  tH-2,U*l,C~l,S*2)  tt

ROUTE (RODE )
DELETE tflODE  1
IDENTIFY (MODE)
DISPLAY
RESET
CLEAN
HELP
8;yF/RESfORE

-56-



1
.

~.j
ds

0

0

A

., .
XXSE~D~~~R  ~H4!,U~l,C~l,S=2)  tX

ROUTE (MODE)
DELETE (MODE)
I D E N T I F Y  ( M O D E )
DISPLAY
RESET
CLEAN
HELP

8
#jRESiORE

: ‘: : ‘: : : : : : : : + : + + + + + + +

EN=R 8,1,.2 rLCIYER+. .
%‘S&D;~PR (tb2,U~l,C~l,S~2)  tt
ROUTE (MODE)

DELETE (MODE 1
I D E N T I F Y  tflODE>
DISPLAY .

m;

-57-



1

.

i

‘%&DA@R (H=2,Ud,Cd,S=2)  Xx:
ROUTE  (MODE 1
DELETE (MODE 1
IDENTIFY (MODE 1
D ISPLAY

!Kti
HELP
8 F3 ‘RESToRE

%%S&Dd$R  (H*2,U
ROUTE (MODE 1
DELETE (MODE 1
IDEHTIFY ( M O D E )
DfSPLCiY

wi *
HELP
$fifWFi’RES’ORE

-58-



:
. -

SHAPE DETERMINATIGN

Eric A. Slutz

SUMMARY:

Hierarchical  Decomposition

Bottom Up Area Calculation

T0P Down Sh Dotarm i n a t  i o n :

* Tile E

++ Topological Placement

* Shape Adjustment

* Critical Path Abutment

-59-



I . HIERARCHICAL . lEClWOSXTION

TILE  MODEL

tl
n-1L

tl‘Il-u
0
q
c l

17
cl cl
cl q*

17
n

u
cl

4a1e1
P L A C E D

-6O-



CROCODILE

A  G r a p h i c a l  H i g h  L e v e l  L a n g u a g e  f o r
Desqribing E l e c t r o n i c  S y s t e m s

J o h n  Beetem Croradile FP.qtrlres

(1) D e s c r i b e s  b o t h  s t r u c t u r e  a n d  f u n c t i o n a l
b e h a v i o r  i n  t h e  s a m e  diagranl.

(2) GRAPHICAL

(3) PARALLEL

(4) HIERARCHICAL

(5) S e p a r a t i o n  o f  C o n t r o l  a n d  D a t a  f l o w . ,

S y m b o l s  o f  t h e  C r o c o d i l e  Lanquaqe

(1) P r i m i t i v e  C o m p o n e n t s :

LATCH Ebv ADD CHANGE

(2) N e t s :

Control

(3) E x t e r n a l  C o n t a c t s :

ii3’ -Ia

D a t a

A  s e t  o f  c o m p o n e n t s ,  n e t s ,  a n d  e x t e r n a l
c o n t a c t s  c a n  b e  g r o u p e d  i n t o  a n  Obistt:

Objec t  FFT2

(4) N o n - p r i m i t i u e  C o m p o n e n t s :

-61-



C r o c o d i l e  Summary

(1) A  few s i m p l e  objects and a general way
to connect them: produces a  s i m p l e  but
p o w e r f u l  l a n g u a g e .

(2) C r o c o d i l e  has many a p p l i c a t i o n s :
computer hardware, s i g n a l  p r o c e s s i n g ,
p a r a l l e l  s o f t w a r e ,  e t c .

The C r o c o d i l e  Proiect

Cl> E d i t o r

(2) S i m u l a t o r

(3) Interlace t o  a  d e s i g n  d a t a b a s e

Object FFT4 ,

Object FFT8

EXP<  - 3  1 n / 4  >

-62-



DESIGN AUT0)3ATION  DATA BASE

Markus Bayegan

BACKGROUND

The increasing number of Design  Automation Applications and

the growing complexity of design (LSWLSI)  make the use of

Centralized Engineering Data Bases  a necessity.

WHAT IS A DATA BASE?

A data base system is a highly structured and formalized

system in which a large  amunt of data can be manipulated

concurrently by different programs,  without detailed know-

ledge  of implementation.

ADVANTAGES OF DATA BASE

Centralized Control

The result of this is:

- Reduced redundancy.

- Increased consistency in the stored data.

-More effective data - exchange between application
programs.

- Easier to maintain data integrity.

- Easier to apply security restrictions for accessing
and updating data.

Data Independence

Programs which access the data base don't need to

be changed,  when the data base formal is updated.

-63-



L

GL3BAL-INFO
~inlLr&xa
iirne
CR!%T'I"N TIKX
L~SP~Cfll~GE~TIllX
Y:AXP: ATi
P:PE:TECT
UNIT-FLAG

3RE'TSION"A
Y: YlRK~ARrl
P:Y38K_AREl
VERSION
LEVZL

*

table

T%
texttext
count
ptr:ll
ptt:ta
iat
int
count
ptr:di
int

r
z

Lq
6

5 11
1 16St 1 11

ble 1 18
1 19
1 20
1

.r 1 ::
1 23

UOaK~AREL
PLmLLnx0
YAflP

. N:POTN"ER
P:P3INTEE

. l

tablm

Ez: !
int
pointor

LOG-DLSC
PLeln-naw

NAUE
KTUAL-NiCE
ALIAS-FLAG
N: ATT

. P:ArT
. P:PB)TEC?

Y:L>G-PIIY
P:LJG-PIN

N:EQ-GEOUP
P: ED-GROUP
P:INTLE!liAL-DISC

.

text 5 6
in? 1 11-.
count 1 12
ptr:list 1 13
otr:table 1 14

ptr:list 16
count : 17
ptr:list 1 18
ptr:table 1 19

LDG PIU
!5ela_-nnrP. " , NAnR

TIPE
. N:Arr
P:lrT
PAR'UT~BO~GROUP
N E T .

*

list 1 9/r expand yes
lIl%? ztext 5

LLKsj

An example of ScheWSubschema  language.

int 1 6
count 1 7
ptr:list 1 8

index 1index 1 lo9

The Access Routines (Data Sub-language) are:

- Data Base format independent.

- Simple for programing.

- Portable.

, UtiY NOT USING EXISTING DATA BASE SYSTEMS?

- Existing system  are often tailored for short transftlons.

Engineering  transactions are not short.

- Pmgramning  language support (COBOL).

- Parallel  processing.

- Data intzgrlty.

U HIGH LEVEL
DESCRIPTION

(SDL)

I Specifi

,6

Layout
Data

DESIGN FILE;
PHYSICAL LEVEL DESCRIPTION (BOARD/CHIP)

A CONCEPTUAL HODEL FOR THE DESIGN PMXESS

-64-



BUS ROUTER

bY

Tom Blank

I. Introduction

A. Idea - to devise a printed circuit board

technique especially for bus structures.

8. Infotmal  bus definition:  A collection of nets
that have connections on a commn group of corn$ments.

1. Route  only DIP and SIP components.

2. Let standard router cowlete  remaining
connections.

II. Int.gr~tlon  into DA .y.ten

B. Hiddle

cntitie*r multiple net
.tr lCt"rCO

C. Bottom

0 0 0
0 0 0 :
0 0 0 0

3
0

0 0 0 0

0 0
0 0

OG
0 0 0 0

entities: point to point
eonnaetion or net.

TOYtiDg: pattern natcb

1. Implications

A. Better PC bd. space  utilir4tion.

P. Ulnlnire  total  routlnC tins (comp1et* l ymtcn)

c. 1.prore percent conp1ction

0. Maximire  u.e of desidner input
1. Bus iDrormDtlon

2. p.ttcrn spaciiication

L. Could be genoralircd into IC hue rautina

-65-



A High-Performance Microcomputer

Raster-Scan Graphics System

Model of a Frame Buffer Graphics System

Andres Bechtolsheim
Computer Systems Laboratory

Applications

Design Automation (VLSI project)

Advapced  Text Processing (TEX, Metafont)

As a general departmental display system

System Architecture

Ethernetbased stations, personal or clustered

centralized file-servers and data bases

remote large-scale computing resources

Station contains

6SOtYI  microcomputer with virtual memory

high-performance graphics

keyboard, tablet

Architectures for Frame Buffer Graphicr

1. Processor-Memory Architecture

Frame Buffer is treated as standard memory

Low performance if operations not microcoded

Consumes significant fraction of main processor bandwidth L-Y-J
To unload memory bus, frame buffer needs to be dual-ported

2 Graphics Processor Architecture

Have a subsystem controlled by dedicated processor

Main processor is’unloaded

Performance criteria can be met easily

Functionality limited by Graphics Processor

.

3. Functional Memory Architecture

Adapt memory organization to Frame Buffer task

Separate Access, Operation, and Control

Provide hardware mechanisms for:

Pixel String Addressability (X,  Y, Length)

Raster Operation (Bit-Modification)

Sequential Address Generation in X/Y’

-66-

Application Update

Program Process

Frame

Buffer

Refresh

Process

Video

Monitor

Goals:

Frame Buffer Size: 1024 by 1024 Bit

Refresh Rate: 64 MBit/set  (non-interlaced monitors)

Update Rate: 16 Mbit/set  (four refresh times)

Data Path Width: 16 Bit

Implications:

Memory Bandwidth: 60 Mbit/set  = 5 MWord/sec

Update Rate: 1 MWorrl/sec  or 1 usec/update

address generation

shifting, masking

frame buffer operation

The Frame Buffer Operation (RasterOP)

COPY

Paint

Erase

Invert

COPY\

Paint\

Erase\

Invert\

Bit-Move

Bit-Set

Bit-Clear

Bit-XOR

Bit-Move-Not

Bit-Set-Not

Bit-Clear-Not

Bit-XOR-Not

Dst + Src

Dst + Dst OR Src

Dst +- Dst AND NOT Src

Dst + Dst XOR Src

Dst + NOT Src

Dst + Dst OR NOT Src

Dst + Dst AND Src

Dst + Dst XOR NOT Src

Implementation:

Dst<O:15>  + PLA(Src<O:15>,  Mask<O:l5>,  t&d&0:3))



Frame Buffer Memory Organization

64 chips @ 16 kBit  =

1,048,576  bits

1024 l 1024

512’512.4

1. Refresh Cycle

Readout M bits in parallel

into 64 bit buffer

(64 bits every 1 usec)

2 Read-Modify-Write Cycle

Readout 16 bits’

Form new data

Write back at same address I .

3. Crossing Logical Word Boundaries

* Decode each RAS separately

Strobe CAS in parallel

Wire  Data Outputs together

4. Crossing Physical Word Boundaries

Supply two sets of addresses

<&31> * Address + 1

<32363)+Address

1 Ethernet Interface
i ,8uffenng  , ~j--,  T r a n s c e i v e r

Data Out (16)
I I4

Barrel
Shifter ’

x<o:3>
” (1’3

Data (16) Function fle) RAM
’ Unit - WK.16

(64)

I

Func  Mode (3)

16 Bit Bus

Video Adrs (16)

’ Control Sync

Graphics Subsystem Data Paths

Graphics Control
Video Controller
Functional Unit

Hold Shift

(4) .

‘I-t

(6)
(6)
(4)

Lookup

b/w

Red

Grew

Blue

Intel Multibus Intermodule Bus

Components of the SUN System

-67-



CONFERENCE ATTENDEES

Amdahl Corporation

Don Mortimore

AMD

Henry Sun

AM1

Dave Clary
Bob Griffin
Dan Holt
Chi-Song Horng
Bob Kirk
Steve Sapiro

Data General

Jack Crawford
Sabin Head

Digital Equipment

Alain Hanover
Dick Helliwell
Val Pate1

Fairchild

Daniel Fabre
Hem Hingarh
Sanh Srivardhana
Robert Suaya
Dan Wilnai

Four Phase Systems

Carl Hartshorn
Dick Delp

General Dynamics

Len Gaska
Howard Springer
Jim Swenson

Hewlett Packard

Ravi Apte
Dick Dowel1
Jim Lipman
Bill McCalla
Ed Smith
Kamran Elahian
Peter Roth
Rod Price

IBM - San Jose

Gerry Watanabe
Ron Young

IBM - Yorktown Heights

F. H. Dill
Walter Kleinfelder

Intel

Robert Willoner
Todd Wagner
Christopher Goldstein



Microtechnology

Ed Porter
Hung C. Lai
Ming Young

National Semiconductor

Fred Brady
Bill Dawson
Dick Smith
Jackie Tubis
Edward vanBeever

Signetics

Carl Hage

Stanford

Guido Arnout
Ria Simons Arnout
Hugo Deman /Univ. of Leuven
Kim Stevens

Tandem Computers

Al McBride
Michael Kelly
John Barrett
Paul Barnhard

Tektronix

Tom Bohan
Bill Peek


