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ABSTRACT

We consider the problem of routing broadcast messages in a loosely-coupled
. - store-and-forward network like the ARPANET. Dalal [2] discussed a solution to this

problem that minimizes the cost of a broadcast; in contrast, we are interested in
performing broadcast with small delay. Existing algorithms can minimize the delay
but seem unsuitable for use in a distributed environment because they involve a high
degree of overhead in the form of redundant messages or data-structure space. We
propose the schemes of center-based forwarding: the routing of all broadcasts via
the shortest-path tree for some selected node called the center. These algorithms
have small delay and also are easy to implement in a distributed system.

To evaluate center-based forwarding, we define  four measures of the delay
associated with a given broadcast mechanism, and then propose three ways of
selecting a center node. For each of the three forms of center-based forwarding
we compare the delay to the minimum delay for any broadcasting scheme and also
to the minimum delay for any single tree. In most cases, a given measure of the
delay on the centered tree is bounded by a small constant factor relative to either of
these two minimum delays. When it is possible, we give a tight bound on the ratio
between the center-based delay and the minimum delay; otherwise we demonstrate
that no bound is possible. These results give corollary bounds on how bad the
three centered trees can be with respect to each other; most of these bounds are
immediately tight, and the rest are replaced by better bounds that are also shown
to be, tight.

KEYWORDS: Distributed networks, Distributed algorithms, Message routing,
BrOadCast,  Spanning trees, ARPANET





1. Introduction.

In a loosely-coupled store-and-forward network like the ARPANET, a message
is routed from one node to another along some series of links starting at the source
and ending at the destination. The problem of selecting the best route for a given
message has been considered in detail, and a simple but effective mechanism is
provided by the ARPANET[6,7].  Much of the recent work on the problems of
effectively using such a network ([1,3,5,8])  has assumed the existence of an additional
mechanism that provides message broadcast-sending an identical message to every
node in the network. No explicit facility for message broadcast is provided by the
ARPANET.

Two important criteria for evaluating a routing algorithm are cost and delay.
Dalal [2] considers several methods of message broadcast but concentrates on a
scheme for minimizing the cost. He models the network as a weighted graph in
which the weight on an edge represents the cost to the network of sending a message
over that link; then a broadcast can be done at minimum cost by routing it over
the branches of a minimum spanning tree. Dalal describes a distributed algorithm
by means of which a network can construct its own minimum spanning tree. The
result is that each node records a OLocal Image” that specifies which of the links. -
incident to that node are branches of the tree. A node can then initiate a broadcast
by sending one copy along each incident branch; a node forwards a broadcast by
sending a copy along each incident branch except the one on which the broadcast
arrived.

In contrast to Dalal, we are interested in mechanisms that provide broadcast
with small delay. We define two measures for the delay associated with a given
broadcast. The first is the maximum delay D, the time required for the broadcast to
reach the most distant destination; the second is the average delay A, the expected
time required to reach a destination. We want the algorithms not only to provide
good values for these measures, but also to be suitable for use in a dynamic network
on which the delays across a link may change. Such an environment requires that
the routes used be repeatedly updated in order to reflect the changing delays, so we
want a broadcast mechanism for which this does not require a lot of computation.

One approach to the problem of broadcasting with low delay is simply to send
an individual message to each destination via the shortest path. This method of
singly-addressed messages has the advantage of conceptual simplicity, especially
because a mechanism for sending to a single destination may be assumed already
to be present in a network. However, it has the disadvantage that it results in
redundant transmissions: several copies of the same message may be sent over
the same link. This problem can be removed by changing to multiply-addressed
messages, in which each copy of the message contains a list of destinations; the
extra information in the address header allows all the copies sent across a single
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0 Cen termBased Broadcasting

link to be coalesced into a single copy, but it involves the overhead of a complicated
message header that must be processed for each and every broadcast.

Another approach is source-based forwarding. We can model the network as a
weighted graph whose weights represent not costs but delays across the links. Then ~
for any vertex r we can define a shortesQath tree ‘pp as a spanning tree such that
the path via T, from r to a vertex u is a shortest path from I” to u in the network
as a whole. We will call r the roof of its shortest-path tree Tr. In source-based
forwarding, each broadcast is sent via a shortest-path tree for the source of that
broadcast; as a result any broadcast will reach each destination in the smallest
possible time, thus minimizing both D and A. Unfortunately, the shortest-path
trees for two different vertices are unlikely to be the same. To give each vertex
a Local Image of a shortest-path tree for each vertex in the network is a large
investment of time and data structure space; moreover it is hard to change this
structure in the face of changing network conditions. Nonetheless, source-based
forwarding is worth considering because it provides an optimum algorithm with.
which other algorithms can be compared.

Ae alternative approach is to select a single tree with good delay properties
and use it to forward a broadcast regardless of which vertex initiated the broadcast,

’ - just as the minimum spanning tree is used in Dalal’s approach. This gives a simple,
uniform mechanism that is easy to maintain in a distributed environment. Unlike
source-based forwarding, it may not minimize the delay for all broadcasts; however,
we can still choose a tree that gives a fairly small delay.

In this report we discuss three ways of selecting a single tree with good delay
properties. Each of our approaches involves using the shortest-path tree for a vertex
that is in some sense “in the center” of the network; we will call this class of
approaches center-based  %otwarding.  For each form of centered tree, we will show
that the delay is tightly bounded by a small factor relative to the delay for the best
possible single tree and relative to the minimum delay, which is that attained by
source-based forwarding, We also show tight bounds on the delay of each form of
centered tree compared to that of the other forms.

We begin by defining some notation and terminology in section 2. Section 3
describes the three types of centered trees and briefly discusses how each might be
constructed. Section 4 establishes some essential lemmas, and section 5 gives some
simple bounds on the delay for a given broadcast over a given type of centered tree.
The main results deal with the delay measures that apply to broadcast techniques
rather than simply to individual broadcasts. These results begin in section 6, where
we give bounds on these measures applied to centered trees, relative to the best
possible broadcast mechanism and relative to the best single spanning tree. In
section 7 we give bounds for the three kinds of centered tree relative to each other)

I
and in section 8 we give examples that demonstrate the tightness of some of the
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2. Notstioa  and Terminology 0

bounds in the previous sections. Section 9 discusses in more detail the problems of
constructing the centered trees in a distributed environment, and section 10 presents
some conclusions we have drawn from this research.

2. Notation and Terminology.
Let G = (V&t) be a connected weighted undirected graph consisting of a set

V containing IL vertices, a set E C V x V of edges, and a positive weight t(u, W) =
t(w, u) associated with each edge {u, w}. This weight function will represent the
time associated with sending a message across a given link. Let d(v, w) = d(ur, u) be
the delay between w and w in the graph; namely the sum of the times on the shortest
path between u and to. Similarly, for any tree r in G, let d(T, u, w) = d(T, w, u)
be the delay between u and w via the tree T; namely the sum of the times on the
unique path between them in T.

Define the diameter  of a tree to be the longest acyclic path in the tree, and
denote it by diam(2’).  Thus

diam(T)  = ygt. d(T, u, w).
WEV

Let Ts be a shortest-path tree for 8. Note that on this shortest path tree, the
delay from s is d(T,,  8, u) = d(s, v); that is, the path from 8 to some other node via
8’s tree is in fact a shortest path in the graph as a whole.

Given a source node 8 and a tree T we can define  two measures of the delay
associated with’a broadcast from s via T. The first measure is the maximum delay

D(s,  T) = max d(T, a, v)
VW

which is the time necessary to get the broadcast to the most distant destination.
The second measure is the average delay

A(s, T) = it c W,v)
VW

which is the expected time to get the broadcast to a destination.
The functions D and A are measures of the delay for a specific broadcast. To

compare one tree to another tree or to source-based forwarding, we need measures
that depend only on the structure of the broadcast mechanism, and not on the
broadcast source. Four such general delay measures are simply the worst-case and
average-case behaviors of D and A. Define the maximum D for a tree to be

MaxD(T)  = max D(s, T)
@EV
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0 Cen termBased  Brosdcds  ting

and the maximum A to be

MaxA = max A(e, T).
8EV

Thus the MaxD (or MaxA)  for a tree is the worst value of D (or A) over all possible
broadcast sources. Similarly, define the average D and A to be

AveD(T) = 4 c WlT)
8EV

and
AveA(T) = i pw*

8EV

Since A and D are well-defined for any deterministic forwarding scheme, we
can define these measures for source-based forwarding as well We will define

MaxD(SBF) = max D(s, T#),
@V

MaxA(  SBF) = malt A(4 Te)#
8EV

AveD(  SBF) = k c m, u
8EV

and
Aveii( SBF) = * c A(s9 IF,).

8EV

a’hus  in source-based forwarding we are considering the maxima and averages
over all possible broadcast sources, for a broadcast done via the source’s own
shortest-path tree.

3. Trees Considered.
We want our method of selecting a center to be one that works well in a

distributed environment. This leads us to impose two locality restrictions. First,
we want to be able to make the selection with relatively little interaction among
the vertices. Second, each vertex should be able to do its share with relatively
little information, all of it local: for instance, with only the information in the local
routing tables for the underlying single-message mechanism. Ideally, each vertex
will do a small amount of local computation that produces a numerical value for
some criterion that tells how good a center that vertex would be; the vertices then
pool these values by means of a simple protocol that compares these criterion values
and decides which vertex would be best.
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4. Useful Lemmas D

In contrast, constructing the tree that minimizes any of the four general delay
measures in a distributed environment is more difficult. The problem of constructing
the tree with minimum AveA, in fact, is NP-complete 141,  as is the construction of
the tree with minimum MaxA 191.

Two of the most obvious candidates for center are the vertex dc such that
D(dc, Tde) is smallest, and the vertex UC such that A(ac,  T,,) is smallest. The
measures D and A are easy to compute locally using the underlying single-message
tables, and later we will discuss a simple protocol to select the vertex with the
smallest value and construct its shortest-path tree. We will call these nodes the D-
center and the A-center respectively, and their shortest-path trees the D-centered
tree and the A-centered tree.

The third candidate for center is the node diumc which has the shortest-path
tree of least diameter. We will see later that the diameter of a vertex’s shortest
path tree need not pass through that vertex, and so the vertex might not know the
diameter of its own shortest-path tree. As a result, it is not obvious that we can
compute a criterion that selects such a diamc using only the underlying local tables.
Nevertheless we will see that the proper center can be selected in a manner that
is consistent with our locality requirements. We will call this center the diameter-

. - center and its shortest-path tree the diameter-centered tree, denoted by Tdiomc.
In the following sections we compare the delay associated with broadcasts on

these three forms of centered tree with that of the optimal algorithm of source-based
forwarding, and with that of any single tree. In addition we compare the delay for
each form of centered tree with that of the other centered trees.

4. Usefbl Lemmas.
There are a number of general observations about trees that will be useful in

deriving the bounds in this paper. First of all, we note that shortest paths satisfy
the triangle inequality.

Triangle Inequality. For any vertices u, w, and z, the delays between them in the
graph satisfy

and the delays between them via any tree T satisfy

d(T, v, 4 5 d(T, u, w) + W, uf, 2).

Proof. The delay is defined to be the time of the shortest available path between
the two points; in the case of a tree this is the only acyclic path. If the triangle
inequality did not hold, the path from u to z via w would be shorter than the
shortest path, which is impossible. I
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Cl Cen termBased Broadcasting

When we are considering the maximum delay D associated with a broadcast
from a particular vertex it is useful if we can pin down some specific vertex that
is farthest from that vertex. The following lemma gives us a better grip on that
problem.

Diameter Lemma. Given a tree T, a diameter of T whose endpoints are o and 8,
and a vertex II, then either the vertex u or the vertex Q is as far from u via T
as any vertex in T.

Proof. Let w be a vertex maximally far from u via the tree T and consider the
unique path in T between them. This path may or may not cross the diameter,

If the path does not intersect the diameter,
then there is some single point on this path that
is closest via T to the diameter; let z be this ver-
tex, and let y be the vertex on the diameter to
which it is closest. These two vertices are unique
because we are dealing with a tree. If the path
does cross the diameter, the two may share several
edges before separating again, but once they sepa-

- rate they will not intersect again since T is a tree.
In this case let z and y both refer to the last vertex
on the path from t) to w that is also a vertex on
the diameter. Assign the names u and b to the
endpoints of the diameter in such a manner that
the path from u to y intersects the path from y to
b only at the point y, Path and Biameter

Since the path from u to 6 is a diameter, we know that Q is as far from Q as
any other vertex, and in particular that d(u, 6) > d(u, w). Subtracting d(u, v) from
both, we see that

4Yt b) 2 d(Y) WI* (a)

Similarly, since w is maximally far from u, it is at least as far as b is, so
d(u, w) 2 d(u, b) and hence subtracting d(v, z) from each gives us

But we can add d(z, y) to each side to get

d(y, w) 2 d(z, Y) + db, b) = 2d(z,  y) + d(y, b)
and hence

4Y9 4 2 d(Y) b)* (2)
6



4. Useful Lemmas Cl

Relations (1) and (2) tell us that these two delays are in fact equal:

This also shows that the path and the diameter must always intersect, since (2) is
an equality only if d(z, y) is ‘tero.

But now we simply work back to the vertex u. We note first that

4% b) = 4%  Yl+ d(Y) a)

= 4% Yl + d(Y, fd

= 24%  Y) + 4% 4

and so

Adding d(u, z) to each gives us

d(u, b) 2 d(u, w), (4
. -

but since w is maximally far from u this means that b is just as far, which completes
the proof. I

This result tells us that if we are considering the values of D(s, T) for various
vertices 8 on some spanning tree T, it suffices to select a diameter whose endpoints
we will call u and b, and consider only d(T, 8, a) and d(T, 8, b), since one of these
two will be the maximum.

The next lemma tells us that two vertices that are far apart cannot both have
small average delays.

Sum of Averages Lemma. Given a graph G and two vertices u and w, the delay
d(u, w) between u and w is no bigger than the sum A(u, TV) + A(w, T,) of the
average delays for broadcasts done from u and w via their own shortest-path
trees.

Proof. The triangle inequality tells us that for any vertex z,

45 4 5 4% 2) + d(w, 4.

If we average this over all z, we see that

which is the desired result. I
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Cl Cen ter-Based  Broadcasting

Corollary. Given a tree 2’ and two vertices u and w, the delay d(Td u, w) between
the vertices via T is no bigger than the sum A@,  T) + A(w,  T) of the average
delays for broadcasts done from u and w via T.

Proof. This is a special case of the Sum of Averages Lemma, in which the graph
is simply a tree T and hence the averages via the shortest-path trees are exactly
the averages via T itself. 8

The final lemma has a rather specific purpose, but may be of general interest
nonetheless.

A-PIUS-D  Lemma. For any tree CF, the measure AveD(T) is no more than the sum
A(s, T) + D(a, T) of the A and D for a broadcast from any node 8 via T.

Proof. For any vertices u and 10, the triangle inequality tells us that

- . If we maximize this over w we see that

D(u, T) 5 d(T) u, 8) + D(e, T)

and then averaging over u gives us

AveD(T) < A($, T) + D(s, a) *

which is what we claimed. I

Informally, this lemma is true because at worst we could do any broadcast by
sending it to 8 via T and letting s initiate the broadcast. In that case the delay
would be the time it takes to get the message to 8, which on the average is A@, T),
plus the delay for a broadcast from 8 via T.

5; Delay for Single Broadcasts.
We will first consider some results about single broadcasts on centered trees, If

a broadcast is being performed from a given source vertex 8, we incur the minimum
delay by routing the broadcast via the shortest-path tree Ta for a. Bow bad can
the delay be via a centered tree compared to the minimum?

Since we have two delay measures A and D, and we have discussed three
different kinds of centered tree, we can produce (at least) six different answers
to that question. Here is one answer, dealing with the maximum delay B for a
broadcast via the diameter-centered tree.

8



5. Delay for Single Broadcasts 0

Theorem. The maximum delay D(s, Tdicrmc) for a broadcast from 8 routed via the
diameter-centered tree is at worst twice the minimum value D(s, T,); further-
more, there exist networks for which this bound is attained.

Proof. For any vertex u, the definition of a tree’s diameter means that

Hence
d(Td iamct  8, U) 5 diam(Ta)

since the diameter-centered tree has as small a diameter as any shortest-path tree.
If u and b are endpoints of a diameter of Te, this means that

d(Td iamcj  8, u) 5 d(TS9 ‘9 b,
5. d(T,, 8, a) Y!- d(Ts,  8, b)

by the triangle inequality. Each of these latter two delays is no more than D(s,  T,),
so we see that

d(Td iomcj 8, U) L We, T,)*

Maximizing this over u gives us

the desired bound.

This bound can be attained by any complete diamc A
graph of three or more vertices, with edge weights l Tdiamo

that are all unity. Any shortest-path tree then
gives a D of 2 for any vertex s other than the root,

/\

L
but a D of 1 is possible by using a9s own shortest T.
path tree. Thus the bound we proved above is b l l

tight.
D(sp  Tdiamc)  = SD(s)  T,)

This completes the proof. I

Similar results for the remaining combinations of the three kinds of tree and the
two delay measures can be proven with equal ease. These bounds are summarized
in Table 1, which for each form of centered tree gives the bound on the ratio of each
single-broadcast delay measure compared to its minimum value for a broadcast from
that source; this minimum is attained by routing the broadcast via the shortest-path
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0 Center-Based Broadcasting

tree for the source. All the bounds in this table are tight, though some can only be
attained by defining a class of graphs and considering the limit as the number of
vertices increases, A bound of infinity indicates that the measure can be arbitrarily
bad with respect to the minimum value; again, examples exist that demonstrate this
fact. The last column of this table contains bounds that apply to any shortest-path
tree; the fact that these bounds are somewhat worse than those for the specific trees
shows that we do gain something by going to the effort of selecting a center.

Table 1.

T- Tat Cc Tdicrmc any TI

w, T) 2 3 2 3
A(s,T)  00 3 00 OQ

Single-broadcast delay measures. Bounds on the delay
for certain shortest-path trees compared to the minimum delay.

Proofs of the validity and tightness of the remaining bounds in Table 1 can be
found in Wall’s dissertation [9].

. - 6. Delay for Broadcast Mechanismsb
In a sense the situation is actually better than the previous results would lead

us to believe: those results compare the delay for a given source node to the best
delay for any broadcast from that source, and in general there is no single tree that
can perform that well for every source. We will see in the results to come that even
source-based forwarding cannot be that much better for every source.

We are concerned here with the four measures MaxD,  MaxA,  AveD, and AveA,
and with how bad they can be for each type of centered tree when compared with
the minimum technique of source-based forwarding and when compared with the
best possible single tree. In addition we can prove certain bounds on these measures
for any shortest-path tree. These results are summarized in Tables 2 and 3. Again,
all these bounds are tight, including the cases where we have no bund; as before,
however, some can only be attained in the limit as the number of vertices increases.

Tdc Tcu Tdiamc any Tr

MaxD 2 2 2 2
Mati 3 3 3 3
AveD 2 3 2 3
AveA 00 2 00 00

Table 2. General delay measures. Bounds on the delay of
certain shortest-path trees compared to source-based forwarding.

10



6. Delay for Broadcast Mechanisms 0

MaxD 2 2 2 2
Mati 3 3 3 3
AveD 2 0 2 3
AveA 00 2 00 w

Table 3. General delay measures. Bounds on the delay of
certain shortest-path trees compared to any single tree.

These bounds are better thanTable  1 might have led us to expect. For instance,
the value of Mati for a centered tree is at worst three times the minimum mlue,
even though the A for any single broadcast can be arbitrarily worse than the
minimum for that source. This indicates that if there is a source for which the
centered tree gives a large A, then there is also a source (not necessarily the same
one) for which even source-based forwarding must give a large A.

In proving the validity and tightness of the bounds in Tables 2 and 3, the
. - following observations are useful. With one exception, the bounds in Table 3 are

immediate corollaries of the bounds in Table 2; that is, if a given measure for a given
tree can be no worse than (say) three times its value for source-based forwarding, it
can surely be no worse than three times its value for any single tree, since source
based forwarding minimizes the D and A for each source independently and is
therefore at least as good as any single tree. We will therefore prove the validity
of the bounds in Table 2 first. On the other hand (with the same exception),
an example that shows the tightness of a bound in Table 3 also demonstrates its
tightness in Table 2. We will postpone a discussion of the examples that attain
these bounds until section 8.

We begin with a result that gives us the entire first row of Table 2.

Theorem. The MaxD(T,)  for any shortest-path tree T, is at most twice that of
source-based forwarding.

Proof. For any vertices u and w, the triangle inequality tells us that

4% u, w) < 4% rr v) + d(T,, rr w)-

If we maximize this over w, we see that

and maximizing over u gives us that

MaxD(T,)  S D(r, T,) + D(r, T,) = 2D(r,  T,).

11



0 Center-Based Broadcasting

Since MaxD(sBF)  is the largest delay for a source via its own shortest-path tree, it
follows that D(r, T,) 5 MaxD(SBF) and therefore that

MaxD(Tv)  5 2MaxD(sBF),

which is the desired result. I

A slightly more complicated proof gives us the second row of Table 3.

Theorem. The MaxA for any shortest-path tree T, is at most three times that
of source-based forwarding.

Proof. For any vertices u and w, the triangle inequality tells us that

d(T,, u, w) 5 d(T,, r, u) + d(l”,,  6 w).

If we average over w this gives

A@, T,) 5 4% r, u) + A(r, T,)

and if we then maximize over u we see that

Mati 5 W, T,) + A(r, T,). (1)

This says in effect that we can always do a broadcast over T, by sending it to P and,
letting r initiate the broadcast, in which case the average would be the delay to get
it to r, which is at most D(r, T,), plus the average for a broadcast from r.

We wil% consider two cases. First, suppose that A(t, T,) 2 &D(r,  T,). Then
relation (I) tells us that

5 3 max A(u,  TV)

= 3MlA(SBF), t-2)
which is the bound desired.

On the other hand, suppose that A(r, T,) < hD(r, T,). Then

@(p, Tp) 5 D(r, T,) - A(r,  T,).

If we let z be some vertex farthest from r. i.e. some vertex at a distance of D(r, T,),
then this is the same as

@(p, T,) L 42, t) - A(r, T,)
12



6. Delay for Broadcast Mechanisms cI1

and hence

by the Sum of Averages Lemma. But (1) tells us that

since A(r, T,) is less than half of D(r, T,). Combining these two relations we see that

Mad(G)  L 342, Tz)
5 3Mad( SBF) (3)

since as before Maxli(SBF)  must be at least as big as any individual A(u, TV). Thus
the bound holds regardless of the relative values of A(r, T,) and D(r,  T,). 1

The third row of Table 2 is not uniform; the value of the bound depends on
the tree to which it applies. Nonetheless there is a simple relationship between this
row and the first row of Table 1, which is expressed in the following result.

. -
Theorem*  Given a tree T and a bound k such that D(s, T) 5 k D(s, T,J for every

source vertex s, then the same bound k holds in AveD(T) 2 k AveD(SBF).

Proof. By assumption

Averaging this relation over s gives

AveD(T) <, k AveD(SBF)

which is the desired bound. I

Thus when Table 1 gives a bound on D(s, T) that applies to 811 trees T in a
given class, this theorem allows us to place the same bound on AveD(T) for all trees
T in that class.

The fourth row of Table 2 contains only one finite bound, given by the following
result.

Theorem. The AveA(T,,)  for the A-centered tree is at most twice that of source-
based forwarding.

Proof. The triangle inequality tells us that for any vertices u and w,

d(T,,, U, W) 5 d&c, UC, u) f d(L QCt w)*

13



0 Cen termBased  Bzvadcssting

Averaging this over w gives

A( u, a,,) 5 d( Tart, QC, u) -I- A(ac, T,e)

and then averaging over u gives

The definition of the A-center tells us that for any vertex P, A@, Tat) 5 A(r, Tp)
and hence averaging over r, that A(crc, Tae) 5 Av&(sBF). Thus

AveA(T,,)  ,< 2heA(SBF).

This completes the proof. I

We have shown that all the bounds in Table 2 are valid. This means that
they would also be valid bounds to use in the corresponding places in Table 3, since
source-based forwarding is at least as good as any single tree. However, in one case

. - we can improve the bound for Table 3, as seen in the following interesting theorem.

Theorem. The AveD(T,,)  of the A-centered tree is at most % times that of any
single tree T.

Proof. Choose some diameter of T and let its endpoint vertices be u and b.
Consider a point p at the midpoint of this diameter. There need not be a vertex
here. Nonetheless, this midpoint lies on some edge and we could imagine adding
an (n + l)St vertex at that location; the delays both in the graph and in the tree
T between this imaginary vertex and the other vertices would then be well-detied.
Thus it makes sense to define the quantity

Q = f

which. is the average delay from p to the vertices via the tree T.
This quantity Q looks rather like A(u,  T) for some vertex u; in fact if there is a

vertex at p then Q is precisely the A for that vertex. So it comes as no surprise that
cz is at least as big as the minimum average over the vertices, namely A(ue, Tad),
which we show as follows.

Xf p coincides with a vertex u then the proof is trivial since Q is exactly the
average A@, T) for that vertex, which is at least as big as the average A(u, TV) for
v over its own shortest-path tree, which in turn is at least as big as the minimum
such value A@, T,,). .

14



60 Delay for Broadcast Mechanisms (7

Assume, therefore, that p lies on some edge
rather than on a vertex. That edge divides the tree
T into two pieces which we will call the big and the
little pieces such that the big piece has at least as
many vertices as does the little piece. Specifically,
suppose that there are kb vertices in the big piece
and kl 5 kb vertices in the little piece. Let {u, w}
be the edge on which p lies, with u in the big piece
of the tree, and let 6 be the delay from p to u; that
is the delay over the portion of p’s edge running
between p and u. Then

lit tie piece:
kt vertices

big piece:
kb vertices

What p’s Edge Does

a = *~d(T,P,4

= &((kb - krV + c w, u, 41
= i(kb - k,)6 + A&, T)

2 A(v,  T)

s i n c e  kb > kl. But this leads us back to our previous reasoning: A(u, 2’) >
A(v, TV) > A(ac,  T,,). Thus

Q 2 A(% T,,). (1)

Now the reason we chose to consider this midpoint in the first place is that we
can use it to give an exact expression for the AveD of To The Diameter Lemma tells
us that for any vertex u, one or the other of the endpoints (L and b of the diameter
we chose is as far from u via T as it is possible to get. This means in particular that
the delay D(u, T) for a vertex u in one piece of the tree is exactly equal to the delay
from v to the endpoint u or b in the other piece. As a result, the path associated
with this delay must pass through p* In other words, for any u,

D(u, T) = d(T, u, p) + frdiam(T)

and if we average this over u we see that

AveD(T) = a + idiam(T). 0

We want to know how bad the AveD can be for an A-centered tree Toe
embedded in the same graph. To accomplish this, we will derive a pair of upper
bounds for AveD(T,J in terms of a and diam(T).

15
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First of all, the A-Plus-D Lemma means that

and hence that
AveD(T,,)  5 Q + WC, Toe)

by (1) above* But D(uc, T=,) 5 diam(?‘),  since T contains a path from BC to any
other point, of length at most diam(T), and each path in UC’S own shortest-path
tree can be no longer (or it would not be a shortest-path tree). Thus the longest
such path, whose length is D(uc, T,,), is also no longer than &am(T). Hence

AveD(T,,)  5 a + diam(T).

We can get a different bound by going in a slightly different direction. The
A-Plus-D Lemma again says that

We know that the graph contains a path of length at most &diam(T)  from p to any
vertex. Thus there is a path of length at most d(uc, p) + $diam(T) from UC via p
to any other vertex. The shortest paths from UC can be no longer than that, and
so D(uc, T,,) 5 d(uc,  p) + hdiam(T).  Thus (4) implies that

The same reasoning that gave us the Sum of Averages Lemma tells us also that
d(uc, P) 5 WC, L) + a, and so

AveD(TL)  5 A@, Toe) -I- (Ah T,,) -I- a) i- @m(T)

and since (1) tells us that A(uc, TJ 5 a, this gives us

AveD(T,,)  5 3a + hdiam(T).

0

Combining the two bounds in (3) and (6) with the formula for AveD(T) given
in (2) gives us the two relations

AveD(T,,)  < a + diam(T)
AveD(T) - a + &diam(T)
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and
AveD(TL) < 3a + &diam(T)

AveD( T) - a + &diam(T) ’ (8)

For any value of diam(T), the right-hand side of (7) is a decreasing function of Q
and the right-hand side of (8) is an increasing function of a.

The behavior of these functions leads us to consider two cases. First, suppose
that a 2 fdiam(T).  For a in that range, the decreasing function in (7) is maximized
when u = adiam(T). Thus

AveD(T,,) < 4I+1 5
AveD(T) - t+3 = 3’

On the other hand, if a is in the range 0 < a < &iam(T),  the increasing
function on the righthand side of (8) is maximized when a = idiam(T). Thus

AveD(L)  < 4“+3 z

AveD(T) - t+3 = 3’

Hence for Q in either range we see that

AveD(T,,)  < tAveD(T),

which is the asserted bound. I

As this is a rather surprising bound-it is,
for instance, the only non-integral bound in this
report-a bit of informal discussion may be in or-
der Perhaps we can gain some intuitive grasp of
this bound by considering a case for which it is at-
tained* h the example at right, we force UC to be
the A-center by perturbing each unit edge slightly 1+a

and having sufficiently many of the middle ver- 2
tices.  Thus on Toe almost all of the vertices have
a delay D of 5, for the path leading to UC, and G

. l oo- 0

k
Tee

1-C
Qco

then to u, and finally to z. If we had picked u as
the center instead-in fact a is both the D- and
the diameter-center-these vertices would have a
delay of only 3; thus the ratio is f. Attaining the 1 Bound

How could we change this example to increase this ratio? We might shorten
the edge to z, but this decreases the delay of 5 without decreasing the delay of 3,

17
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so their ratio gets smaller. We might lengthen the edge to z, but this increases
both delays by the same amount, which decreases their ratio. We might shorten
the edge between u and UC, but this again decreases the 5 but not the 3. We cannot
lengthen the edge between u and UC, since it would cease to be the shortest path
between them and would not be used in any trees

We might move the middle nodes closer to either u or UC, but the Sum of
Averages Lemma says that to do this without changing the distance between a and
UC we must make the middle nodes farther from the other of the two. If we move
them closer to UC, we decrease the 5 and increase the 3, which again reduces the
ratio. Our last hope is to move the middle nodes closer to u, and doing this does
in fact make the ratio larger-but it also changes the A-center from UC to u, so the
whole example falls apart.

So we might claim in passing that this bound holds because of the Sum of
Averages Lemma, but it must be admitted that the connection is subtle enough to
be visible only on close examination.

7. Comparing the Kinds of Centered Trees.
It should be noted that although for a given measure one kind of centered tree

- may have a better bound than another with respect to either the minimum or the
best single tree, it does not follow that the first kind of tree is always better than the
second. Table 4 gives tight bounds on the ratio of each measure when comparing
pairs of centered trees.

bound on: TdC Tad

w.r.t.: Tac Tdiame ad, CPdiamc

kame
Tdc Tae

MaxD 2 2 2 2
MaxA 3 3 3 3

AveD 2 2 1 0
AveA 00 aI 2 2

*better bound than implied by Table 3.

1’ 1’
2’ 2”
2 2

00 00

Table 4. General delay measures*  Bounds comparing pairs of centered treeso

In almost all cases a bound in Table 4 is a simple corollary to the results in
Table 3; that is, given a measure and two types of centered tree it is possible to
find an example for which one type is the best possible tree for that measure and
the other type is the worst. There are four exceptions. The first two are trivial-a
moment’s consideration will reveal that the measure MaxD  of a tree is precisely the
diameter of that tree. This leads immediately to the following result.

18
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Theorem. The MaxD(Tdiamc ) of the diameter-centered tree is at least as small as
that of any other shortest-path tree.

Proof. The diameter and the MaxD  of a tree are synonymous. The diameter-
centered tree, since it was selected explicitly to be the shortestpath tree with the
smallest diameter, must therefore have a MaxD  at least as small as any other
shortest-path tree. I

This accounts for the pair of ones in the first row of Table 4. The other two
exceptions are more surprising. Not only is the MaxD of the diameter-centered tree
better compared to other centered trees than Table 3 leads us to expect, but so is
its MaxA. Table 3 implies a bound of three, but the tight bound is only two.

Theorem. The MaXA(Tdiamc ) of the diameter-centered tree is at worst twice that
of any other shortest-path tree.

Proof. Given a tree T, the definition of D tells us that for any u and w,

WI u, 4 5 w, q
and averaging over w gives us

A(% T) < w, n
so we know that

MaxA <, MaxD(T)

by maximizing over u. On the other hand, if u and b are endpoints of a diameter
of T then

MaxD(T) = d(T, u, b)

5 A(% T) + A(4 T)

by the Sum of Averages Lemma. Each of these averages can be no more than
MaxA, so

MaxD(T)  < WaxA(

Thus we see that
MaxA s MaxD(T)  5 OMazA(T). (1)

So for any shortest-path tree T,, we see that

MaxA(TdiamJ  < MaxD(Tdicwnc)
5 MaxD(T,)

since the diameter-centered tree has the smallest diameter and hence the smallest
MaxD of any shortest-path tree. I
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0 Center-Based Broadcasting

8. Demonstrating Tightness of the Bounds.

So far we have shown the tightness of only one of the bounds given in Tables
2, 3, and 4. A complete discussion of the examples that attain these bounds would
be tedious, but we may profitably consider a few of them-

As an illustration, consider the bounds for Tdiamg in the third column of
Tables 2 and 3 and in the last two columns of Table 4. Three examples suffice
to demonstrate the tightness of all these bounds.

The first example deals with the measures
MaxD  and MaxA for Tdiamc compared to the other
two forma of centered tree. In this example the
A- and D-centers are identical. There are a large
number of vertices adjacent only to this center, at
a distance of 6. Thus we see that the diameter-
centered tree has both a MaxD  and a MarrA of
4- C, given enough c-edges incident to UC.  The
A- and D-centered tree, on the other hand, has a
MaxD of 4 and a MaxA of essentially 2+~. VVe can

. - make the number of nodes arbitrarily large and
c arbitrarily small, to bring the ratios arbitrarily
close to the bounds of f and 2 given in Table 4O

The second example deals with MaxD and
MagA  for Tdiame  when we compare them with
those of any single tree. It consists of a rectangle
whose long sides and diagonals all have weight 1,
and whose short sides have weight C. In addition
there are a large number of c-edges incident to the
two bottom corners. In this case either bottom
corner may be the diameter-center; the diameter==
centered tree contains two adjacent sides and a
diagonal, giving a MaxD of 2 + c and a MaxA  of
# + C. The best tree, on the other hand, contains
two short sides and one long one, giving a MaxD
of I+ 2~ and a MaxA of 3 + 2~. Again, the ratios
can be made arbitrarily close to the bounds of 2
and 3.

Tau Tdwns

MaxD and MaxA
h Table 4

beat tree

MaxD and Mati
In Table 3

It should be noted in the previous example that the best tree is not a shortest-
path tree. This is consistent with the proofs of the bounds on MaxD(T&,&  and
Mati(Tdicrmc)  in Table 4, which show that no shortest-path tree can be as much
better than Td iume as Table 3 allows. To show that the bounds in Table 3 are tight,
we have no choice but to use a tree that is not a shortest-path tree.
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0. Distributed Construction of Centered Trees g%

It should be noted in addition that this example also demonstrates tightness of
the bounds in the corresponding positions of Table 2. Since source-based forwarding
is at least as good as any single tree, an example that attains the bound when Tdiarnc
is compared to another tree must also attain that bound when Tdiorne  is compared
to source-based forwarding.

The third and final example deals with the
measures of AveD and AveA. This example is
sufficient for all three tables, since we have the
same pair of bounds whether we compare Tdicrmc  to

._Pc= UC

the other centered trees, to other trees in general,
4

0 l l P

or to the optimal scheme of source-based forward- \

T’o
0

ing. This example has three vertices linked in an rPdicrme
almost-equilateral triangle together with a large
number of vertices that can be reached from the

1

dim;
/1 - 2e

I/
diameter-center in 1 and from the D- and A-center
(which are the same vertex) in 6. In addition there
is a single c-edge incident to dc that cannot be
reached directly from diamc. AveD and AveA

The AveD and AveA of the diameter-centered tree are each essentially 2. The
D- and A-centered tree has an AveD of 1 + 6 and an AveA  of 2~. Thus the ratio
of the AveD’s is essentially 2, which is the bound given in the tables. The ratio of
the AveA’s,  on the other hand, is l/c, which can be made arbitrarily large; thus no
bound is possible.

Thus we see that the bounds claimed for the diameter-centered tree are indeed
tight. A more precise discussion of the preceding examples, together with examples
that attain the rest of the bounds, may be found in Wall’s thesis [9).

9. Distributed Construction ob Centered Trees.

As we discussed previously, our scheme for constructing a centered tree has
two phases. First, each vertex independently looks at the routing tables for the
underlying single-destination mechanism and computes the criterion by which the
center will be picked. Then a distributed protocol pools these results, selects the
vertex that minimiaes this criterion, and constructs the appropriate shortest-path
tree. The same protocol suffices for each of the three forms of centered tree.

The underlying tables are assumed to have information that allows a message
to be forwarded to the appropriate neighbor, but not global information about the
structure of the network far away. Specifically, the tables at a given vertex u will
include, for each other vertex 10 in the network:

(a) the length of the shortestpath from u to w, and
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(b) the identity of each neighbor of u that is the first vertex on a shortest
path from u to w.

The latter consists simply of each neighbor z such that d(v, w) = t(u, z) + d(z, w),
where t(u, z) is the time associated with edge {u, z} and d(z, w) is the delay on the
shortest path from z to w.

Given this information, it is easy for a vertex u to calculate its own D(v, TV) or
A(u, &)-it simply takes the table of distances and finds its maximum or average
value. However, computing diam(TV) from this information is not possible because
the diameter need not pass through V, and the vertex u may not be able to tell
whether it does or not. The diameter-centered tree may still be constructed,
however, because a vertex can tell whether or not one of the incident branches of
its shortest-path tree contains the midpoint of a diameter; and furthermore there is
at least one vertex which has this property and whose tree is a minimum-diameter
shortest-path tree. This is enough information to allow a vertex to tell whether it is
a candidate or not; such vertices contribute their diameter to the pool, and others
contribute intiity. Wall’s dissertation [9] contains details of this construction.

We must also specify the protocol by means of which this pool can be used
to select the center. A complete description of this protocol is beyond the scope
of this paper but in brief the idea is this: if a vertex could somehow know that
it is the center) it could send out a multiply-addressed message announcing the
fact, A vertex that receives this message could note which edges it uses to forward
it, and thereafter a broadcast message could be forwarded by forwarding it along
those same edges; thus the shortest-path tree is constructed and future broadcast
messages need not have the multiple-address header.

But there is no way for a vertex to know by magic that it is the center We can
accomplish the same thing, however, by letting every vertex send out a multiply-
addressed message containing its value of the criterion. When all these messages
are finished, each vertex knows the criterion value for every other vertex, and can
minimize this to discover which vertex is the center and hence which of the sets of
forwarding edges it should use thereafter.

This is an unnecessary amount of work, however; in fact it is essentially the
scheme we would use to set up the tables for source-based forwarding! We can
reduce it considerably since many of the messages will be telling a vertex about a
criterion value that is larger than another value the vertex has already seen, There
is no need for the vertex to forward such a message, since the source of the message
cannot possibly be the center. Moreover, there is no need to remember several sets
of forwarding edges; it suffices to remember only those edges associated with the
smallest criterion value seen so far. This results in a significant reduction of the
number of messages sent and the amount of storage needed to set up the tree.

A protocol that can be used in an actual network environment must be rather
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more complicated, since it must also allow for the fact that as edge weights change,
the routing tables may become inconsistent from vertex to vertex; the path actually
followed by a message may loop back on itself if a weight has changed but the fact
has not yet propagated through the entire network. These difficulties are discussed
in more detail in Wall’s thesis [9].

10. Conclusions.
Source-based forwarding can be used to minimize the delay associated with

broadcasting, but it incurs a large amount of overhead and is not easy to make
responsive to changing network conditions. Broadcasting can be done without these
drawbacks by routing over a single spanning tree, but this tree should be selected
carefully if the delay is to be small. Constructing the spanning tree that minimizes
one of the four delay measures we have discussed is in general hard to do, especially
in a network environment in which the necessary information may be distributed
among the nodes.

Center-based forwarding provides a broadcast mechanism that is easy to main-
tain in a distributed environment. Furthermore, by selecting the type of centered

. - tree according to what measures of the delay concern us, we can provide a delay
which is a small constant times the minimum delay. Thus some form of center-based
forwarding seems an excellent choice for a broadcast mechanism.

The bounds shown in this paper give us some information that may help in
selecting which center-based algorithm to use. The measures of MaxD and Mati
demonstrate an advantage to using the diameter-centered tree rather than either of
the other two, in that Tdiomc has a MaxD at least as good and a MarrA, at worst
twice that of Tde or Tae, while the latter two can have a MaxA three times as bad
as that of the diameter-centered tree. However, no better bound can be shown
comparing it to the best tree or to source-based forwarding. The measures MaxD
and MaxA  do not distinguish between the A- and D-centered trees.

If in selecting a center-based algorithm the overriding concern is to finish a given
broadcast as soon as possible, so that the measure D is much more important than
the measure A, using the D-centered or diameter-centered tree may be acceptable.
However, the A-centered tree may still be better, since it gives a guaranteed bound
of 2 for the worst- and average-case A, while the other two cannot give any bound.
Moreover the A-centered tree gives as good a bound on the average-case D, though
the other two give a better bound on the worst-case D. The final decision must
be based on the question of which delay measures are more important to the
applications using the broadcast mechanism. .
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