
COMPUTER SYSTEMS LABORATORY
STANFORD ELECTRONICS LABORATORIES

DEPARTMENT OF ELECTRICAL ENGINEERING
STANFORD UNIVERSITY - STANFORD, CA 94305

VERIFYING NETWORK PROTOCOLS

USING TEMPORAL LOGIC

Brent T. Hailpern

Susan S. Owicki

TECHNICAL REPORT NO. 192

June 1980

This work was supported by the Joint Services Electronics Project
under contract N-00014-75-C-0601. Brent Hailpern was supported by
fellowships from the National Science Foundation
and the Fannie and John Hertz Foundation

VERIFYING NETWORK PROTOCOLS USING TEMPORAL LOGIC

Brent ‘I’. Hailpern
Susan S. Owicki

TECEN-ICAL REPORT NO. 192

June 1980

COMPUTER SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

ABSTRACT

Programs that implement computer communications protocols can exhibit
extremely complicated behavior, and neither informal reasoning nor testing is

~ - reliable enough to establish their correctness. In this paper we discuss the ap-
plication of program verification techniques to protocols. This approach is more
reliable than informal reasoning, but has the advantage over formal reasoning
based on finite-state models that the complexity of the proof does not grow un-
manageably as the size of the program increases. Certain tools of concurrent

’ program verification that are especially useful for protocols are presented: history
variables that record sequences of input and output values, temporal logic for
expressing properties that must hold in a future system state (such as eventual
receipt of a message), and module specification and composition rules. The use of
these techniques is illustrated by verifying a simple data transfer protocol from
the literature.

KEYWORDS: Verification, Concurrency, Proof of correctness, Specifications,
Networks, Network Protocols, Temporal Logic.

Introduction

Programs that implement computer communication protocols can exhibit ex-
tremely complicated behavior, since they must cope with asynchronous comput-
ing agents and the possibility of failures in the agents and in the communica-
tion medium. A survey of the literature in the area of protocol verification
may be found in Sunshine [l7]. Most previous approaches to verifying network
protocols have been based upon reachability arguments for finite-state models of
the protocols. However, only protocols of limited complexity can be verified using
finite-state models, because of the combinatorial explosion of the state space as
the complexity of the protocol increases. Finite-state models also have difficulty in
expressing properties related to correct data transfer. In contrast, the approach
described here models a protocol as a parallel program, and correctness proofs
follow the Floyd/Hoare style of program verification. Logical assertions attached
to the program abstract from the representation of the state and allow reasoning
about classes of states. This avoids the combinatorial explosion, and the length
of the proof need not grow unmanageably as the protocol size increases.

In this approach, the network/protocol system is modeled by a set of inter-
acting modules that represent logical units of the system, such as the communica-

- tion medium, transmitter, and receiver. There are two kinds of modules to be
considered: processes and monitors. A process is an active program component,
and a monitor is a data abstraction with synchronization [2, 71. We exploit the
modularity of the system model in the construction of proofs. At the lowest level,
the properties of processes and monitors are verified by examination of their code.
In constructing the system proof we use these verified properties and can ignore
the internal structure of the module implementations. For example, buffers are an
abstract data type that may be implemented in many ways. Any implementation
meeting the requirements of the data type may be used in the protocol without
affecting the correctness proof of the rest of the system.

Two kinds of properties, safety and liveness, are important for parallel sys-
tems. Safety properties have the form *bad things will not happen”. They are
analogous to partial correctness and are expressed by invariant assertions which
must be satisfied by the system state at all times. Safety properties are often
expressed in terms of auxiliary variables that record the history of the interac-
tions of the modules. Since auxiliary variables are not implemented, they can
record histories of unbounded length and are an important element in our proofs.
Safety proofs are constructed as follows. One first verifies the invariants of the
lowest level modules directly from the code. One then shows that in conjunction
these invariants imply the invariants of larger components; ultimately arriving at
a proof of the invariant of the whole system.

1

Liveness properties have the form “good things will happen”. They include
termination requirements in sequential programs and recurrent properties in non-
terminating programs like operating systems. Aside from sequential termination,
there has been little work on the verification of liveness properties. Since liveness
refers to the future occurrence of a desired state, conventional logical formulas,
which only refer to a single state, are inadequate for expressing and reasoning
about liveness. To deal with liveness, we use the notation of temporal logic [13],
which provides operators for making assertions about future program states.

. -

In this paper we present the verification of a simple data transfer protocol to
illustrate the application of concurrent program verification techniques. We first
describe the protocol to be verified, then discuss two of our basic tools: temporal
logic and history sequences. The rest of the paper is devoted to a modular proof
of the safety and liveness properties of the protocol.

Stenning’s data transfer protocol

To illustrate the application of these program verification techniques to com-
munication protocols, we will discuss a simplified version of a data transfer

. -protocol presented by Stenning [16]. Stenning verified the safety properties of the
algorithm, using a non-modular proof technique. He did not consider liveness,
and, in fact, it is possible for the algorithm to enter an infinite loop and fail to
deliver messages. In the version presented here, that fault has been repaired, and
we give a proof of its liveness.

Figure 1 contains the code for the simplified Stenning protocol to be con-
sidered, and Figure 2 is a diagram illustrating the network structure. The ver-
ification of the full protocol is given in Hailpern [6]. The code consists of two
processes: a transmitter and a receiver. The transmitter takes as input an un-
bounded sequence of messages, X. It sends them to the receiver, via the com-
munication medium mtr. The receiver outputs messages to the output sequence,
Y, and acknowledges receipt via the communication medium mrt. Complications
arise because the communication media are unreliable. Messages can be lost,
duplicated, or reordered. (We assume that message corruption, if it can occur, is
detected by a lower level checksum mechanism, and that corrupted messages are
discarded.)

The protocol must ensure that the messages are ultimately delivered correctly
in spite of this unreliability. This is accomplished by attaching a sequence number
to the messages sent by the transmitter and the acknowledgments sent by the
receiver. The transmitter sends each message repeatedly until it receives an
acknowledgment of that message, using a timeout mechanism to trigger the

2

retransmission. The first time the receiver gets a message with a given sequence
number, it records the message in the output stream. It also sends the transmitter
an acknowledgment for every message, it receives.

Temporal Logic

Temporal logic provides operators for reasoning about program computations.
A computation is a sequence of states that could arise during program execution.
Informally, the first state in a computation represents the present, and subsequent
states represent the future. Computations are not restricted to starting at the
beginning of the program, so a *future” state in one computation may be the
Upresent” state in another.

The version of temporal logic we will use was developed by Pnueli [4, 13,
14, 151, and is further described by Lamport [9]. Its two basic operators are o
(henceforth) and o (eventually). The formula UP (henceforth P) means aP is true
for all states in the computation.” The formula OP (eventually P) is interpreted
as “there is some state in the computation in which P is true.” The modalities o
and o are duals, that is,

OPE WO-JP,. -

When we say that a temporal formula is true for a program, we mean that it is
true for all computations of that program.

Temporal operators can be used to express both safety and liveness properties.
For example, program termination, ,a liveness property, can be expressed by the
formula

atP 3 OufterP,

where ot P and after P are assertions that are true of states in which control is
(respectively) at the beginning or end of the program. An example of a safety
property is an inductive assertion, that is, an assertion that will remain true if it
ever becomes true. The following formula states that I is an inductive assertion

Combinations of the two modalities are also useful. For example, the formula
DO P (infinitely often P) implies that there are an infinite number of future states
for which P is true. (To understand this interpretation, note that OP implies that
P will be true in some future state. The formula OOP states that this will always
be true. In particular, if P ever becomes false, it is guaranteed to become true
again at some later time, and this means that it must be true an infinite number

3

of times.) The oo operator is especially useful for stating recurring properties of
a program, for example,

ao(the buj jet is not jdf)

The dual of infinitely often (00) is 00, pronounced eventually henceforth.
The formula OOP states that there is some point after which P remains true
forever. An example of the use of this modality concerns program deadlock.
Deadlock occurs when each process in a system is waiting for some other process
to release a resource. One could state that deadlock is inevitable by the formula

OO(all pr ocesses are waiting).

Biatories

Our proof uses history variables to record the sequence of messages that
are the input and output of the modules of the system. History variables have
frequently been used in reasoning about communication systems [5,8, 11, 121. The
-names of the history variables are indicated in the network diagram in Figure 2.
As already mentioned, X is the input history of the transmitter (and the entire
system), and Y is the output of the receiver (and the system). The input and
output histories of the message medium are a and 8, respectively, while the input
and output histories of the acknowledgment medium are 7 and 6. We denote the
ith element of X by di, since it is the tl th datum. A message consisting of the pair
i and di, that is [i, di], will be abbreviated Mi. This is the form of messages in
Q and p. An acknowledgment for message i, the pair [i, ‘(a&“] is denoted by Ai:
messages in 7 and 6 have this form.

We now introduce some notation for describing histories. Let A and B be
arbitrary history sequences. The length of A is denoted by IAI. If A has elements
U, U, v, z then we can write,

A=< uvyz > .

If I4 = IZ then we may also write

We denote concatenation of sequences by juxtaposition, that is,

A=< uu >< yz >=< uvyz >

4

.
We will often speak about sequences of repeated messages in referring to the

histories of messages sent and received. We make use of the superscripts * and
+ as defined for regular expressions:

A =< a+ > E (3 k 2 O)(A =< a’ >)
A=<a+> E (3 k 2 l)(A =< a’ >)

where < ak > denotes the message < a > repeated k times. These notations
can be combined, for example

A=< ai+ >;!I
=< aI+ >< aa+ > “‘< a,+ >’

We write A -< B, if A is an initial subsequence of B. This means that IAl <
IBl, and the two sequences are identical in their first IAl elements.

Finally, there are certain temporal assertions about histories which we will
0 use often in reasoning about liveness. The first is an assertion that the size of a

given history will grow without bound. It is abbreviated as u(A), where
!r . _

u(A) = Vn(olAl > n),

or equivalently
u(A) = Vn(o(lAl = ti 3 olAl > n)).

.
The second assertion states that a particular value occurs an unbounded number
of times. Letting c(A, m) be the number of occurrences of m in A, we have

uc(A, m) = Vn(oc(A, m) > n).

Communication Medium

The communication medium used by the protocol is not defined by program
code; it is essentially a black box about which we have limited information. In
fact, what we know about the medium is its specifications, and these might be
verified by examining the code of lower level components of the system, just as
the specifications of the transmitter and receiver can be verified from their code.

The medium specification involves three kinds of information. First, there is
an inmrisnt, an assertion about the medium that is true at all times in the com-
putation. The invariant describes the safety properties of the medium. Second,

5

liveness properties are specified by temporal logic assertions called commitments.
Commitments describe conditions that the process causes to become true. Finally,
the services provided by the medium (sending and receiving a message, checking
for the presence of messages) must be precisely defined.

Since the communication medium we are considering is an unreliable one, it
has a very weak invariant: nothing comes out that was not put I’D. More precisely,

where m is any message. This safety assertion describes a medium which may
lose, duplicate, and re-order messages: the only assumption is that it does not
create spurious ones.

The invariants above would be satisfied by a medium that never delivered
any messages, and in that case no output would ever appear. The medium has
two independent commitments that guarantee that some messages ultimately get
through. The first is an assertion that if an unbounded number of messages are
sent, then messages are infinitely often available to be received.

44 1 00 mtdhi8t8ikf

u(7) 3 0 0 mrt.EzistsM

(m t r 2)

(mrt2)

The second commitment asserts that if the same message is .sent over and over
again, it will eventually be delivered (provided that the receiving process keeps
accepting messages). This is expressed by the formulas

(uc(u, m) A u(p)) 3 Om E p

(u47, m) A u(6)) 3 On2 E 6
These are about the weakest assumptions we can make and still be able to show
that the protocol is able to deliver messages.

To precisely specify the services of the medium we give pre, post and Iive
assertions about each operation. Pre and post give safety (partial correctness)
conditions for the operations. If the pre-condition holds when the operation is
invoked, and if it terminates, then at termination the post-condition must hold.
The variables in these assertion must be private to the process that invokes the
operation, in the sense that no other process can modify their values. This avoids
the complexity that can arise when dealing with variables that are shared between

6

several processes. (A general discussion of private variables is given by Owicki
[ll].) The live assertion describes the effects that the operation causes when it is
invoked. This may be a conditional commitment (as shown for receive below) and
it may involve variables that can be modified by other processes.

The medium we are assuming provides three services: send a message, receive
a message, and check to see whether any messages are waiting to be received.
The specifications of these services are given below for the medium mtr; the
specifications for mrt are essentially the same.

send(m)

* pre: a = A
post: a =A<m>
live: at mtr.send 3 Oa jter mtr.send

receive(var m)

pre: p = B
- post: p =B<m>

live: (at mtr .r eceive A Omtr.hi8t8M) 1
O(a jter mtveceive)

existsM

pre: true
post: true 1
live: at mtr.ezi8t8hf > Oafter mtr.ezistsM

Note that a send operation always terminates, and receive terminates if a
message is available. The pre and post conditions of mtr.ExistsM are both Yrue”,
which gives no safety information about the operation. In fact, we will only use
mtr.existsM in reasoning about the liveness property that a receive terminates.

The timer is another black box, and we could define its properties in a similar
way. However, since we will not be doing detailed proofs, it suffices to state that
if the timer is set and never canceled then eventually a timeout notification will
be received.

Safety: Transmitter and Receiver

Safety specifications of processes are given by invariant assertions about the
variables of the process. To verify a process invariant, one shows that it holds ini-
tially, and is preserved by each operation of the process. This is a straightforward
sequential verification problem. We do not give the details of these verification
steps here; we merely state the invariants and explain them informally.

The safety specification of the transmitter consists of two invariants.

The first invariant states that when n items have been input to the transmitter, the
output to the mtr medium is a sequence of repeated messages: one or more copies
of Ml, then one or more copies of Mz, and so on, ending with zero or more copies
of M,. The last term is Mm*, rather than M,+, because just after the operation
read(X) in the transmitter, the nth piece of data has been read in, but the message
M, has not yet been sent out. To see that assertion Tl is invariant, note that
it holds initially (when all sequences are empty) and that it is preserved by each
-operation of the transmitter. A formal proof that the transmitter maintains these
invariants would include reasoning about the transmitter’s changes to Q and 6,
using the the pre and post conditions of mtr.send and mrt.receive given in the
last section.

The invariant T2 states that the kth input item is not read until after the
acknowledgment for the k - let message has been received. This is obvious from
the transmitter code.

The receiver has two invariants that are similar to those of the transmitter

(mEPXj(m=Mj)) 3
(jn(Y -(<do;=,) /\ d&Y 3 h&E/Y),-

m

Roughly speaking, the invariant Rl states that the receiver output Y will be
legitimate if its input p is legitimate. More precisely, if #I contains only messages
of the form [i, di], then Y will be a sequence of data items < di >I?_,, and each
datum in Y must correspond to a message that appears in /9. To see that the
receiver satisfies this invariant, observe that it will add the ith element to Y only
after it receives a message with sequence number i, and the value that is appended
to Y is the one contained in the message. Since each message in /Y has the form
[i, di], the ith element of Y must be di.

8

>

\

. The second invariant states that if acknowledgment i is in the output history
d 7, message i is in the input history /3, and the associated datum di is in Y. This

is obvious from the flow of control in the receiver. An acknowledgment is only
sent after the corresponding message has been received and its datum appended
to Y.

Safety: System .

The system safety specifications are also given by an invariant assertion:

Y 4x.- w

This assertion states that the output values are some initial sequence of the
input values. It does not imply that any output values are ever produced; that
requirement is given in the liveness specifications to be discussed later.

The system safety specifications are not verified by examining the program
code. Instead, we show that the invariant of the system is implied by the invariants
of its components. This approach lessens the level of detail which must be dealt
with at each step. It has the further advantage that the system proof remains
valid if any component is replaced by a different implementation that meets the
same specifications.

Let us now proceed by assuming the invariants for the transmitter, the
receiver, and the communications medium, and showing that the system invariant
must follow. As a first step, we note that the hypothesis of the receiver assertion
Rl

REP 3 3i(m=MJ

follows immediately from the safety properties of the transmitter and receiver.
Since the transmitter only puts legitimate messages into the medium (Tl), and any
message that comes out of the medium must have been put in by the transmitter
(mtrl), the receiver can only obtain legitimate messages.

Now let
n = max{i:Mi E @}.

Since the hypothesis of Rl is satisfied, we know that the conclusion of RI holds,
namely

Y -(< di >;=I l

But by mtrl,
M,EP 3 M&a

9

and by Tl,

Thus we can conclude

which implies the system safety assertion Sl.

Liveness: Transmitter and Receiver

Liveness specifications of processes, like those of monitors, are given by com-
mitments. Verifying that a process satisfies its liveness specifications requires
reasoning based on assumptions about the liveness properties of program state-
ments. Our assumption is that processes execute fairly, that is, each process
makes progress unless it is blocked. More precisely, let 8 be an unblockable action
in the program, at 8 be the assertion that 6 is ready to be executed, and after 8
the assertion that control has finished 8. Our basic liveness assumption can be
expressed in temporal logic by

at8 3 Oajter 8.

In the protocol system we are discussing, a process can only become blocked
while trying to execute a receive operation on a communication medium which
has nothing available to be received. The liveness specification for the receive
operation (of mtr) states that receive will terminate if a message is available, that

(at mtrreceive A mtr.EzistsM) 3 Oa jter mtweceive

Starting from these assumptions about program actions, one can derive rules
for proving liveness properties of larger program statements. For example, con-
sider a program statement of the form

loops end loop

where S is a statement that does not contain any loops or actions that could be
blocked, For such a statement, one can prove

atS 3 q OatS,

that is, control will infinitely often be at the beginning of S, (This is exactly
the form of the loop in the transmitter program.) On the other hand, consider
the receiver program. Here again we have a loop, but its body S’ contains the

10

statement mtr.receive, which could be blocked. For this loop we can prove

(ut S’ A q Omtr.EzdstsM) > noat S’.

The assertion q omtr.Ezists M guarantees that whenever mtr.receive is started,
a message will eventually be available so that it can finish execution. Thus the
receive cannot be permanently blocked, and the loop body is executed infinitely
often.

So far, we have only talked about liveness properties that involve making
progress in the program. More general liveness properties include the effect of
program actions on the program variables. For example, from the pre and post
condition of send, plus the fact that send can never block, we can conclude

(at mtr.send A Ial = k) 3 O(ujter mtr.send A)a1 = k + 1).

For the transmitter, in which mtr.send is embedded in a loop whose body is
executed infinitely often, we can conclude

o(lal = k 3 olol = k + I),
. _

which implies u(a). Formal rules for proving liveness properties from program
code are given by Lamport and Owicki [lo]. Here we merely state the specifica-
tions, and give informal arguments that they are satisfied by the process code.
More detailed proofs are given by Hailpern [6].

’Now let us consider the liveness specifications of the transmitter. They consist
of three commitments. First, the transmitter output history Q grows without
bound:

u(a) (T3)

This commitment is independent of any assumptions about the environment. To
see that it is satisfied, we note that the transmitter code is a repeating loop which
can never be blocked: the only operation that could cause blocking is receive,
and receive is only performed when an acknowledgment is known to be available.
Given that there is no blocking, the timeout mechanism guarantees that messages
are sent out at least once every timer interval.

The second transmitter commitment is

oo(mrt.Ezists M) 3 u (6) (T4)

This states that the transmitter will increase the size of 6 provided that the en-
vironment keeps making acknowledgments available in mrt. This follows from

11

the absence of blocking, and the fact that the transmitter will accept an acknowl-
edgment each time around its loop if one is available.

The third commitment is a promise to start sending the next data item as
soon as the current one has been acknowledged.

Vi(Ai E 6 3 1x1 2 i) 3
Q j(Aj E 6 3 (L(c(QI, Mj+l) V O(Aj+l E 6)))

WI

The hypothesis of this commitment is an assertion that the rest of the system
must satisfy: an acknowledgment for message i is not received before the trans-
mitter has started to work on message i. Under that assumption, once the trans-
mitter receives acknowledgment j, it starts to send message j + 1, and it will
send that message an unbounded number of times unless it eventually receives
acknowledgment j + 1.

Next we consider the liveness specifications of the receiver. Again we have
three commitments, and they are quite similar to the commitments of the trans-
mitter. First, the receiver will cause /9 and 7 to grow unboundedly as long as it
is able to receive messages from mtr.

q omtr.Ezists M 3 47) (R3)
oomtr.EzistsM 1 u(P) VW. -

The receiver code satisfies these assertions because the repeated availability of
messages implies that the receiver can not be blocked at its receive operation.
Therefore it repeatedly executes its loop body, and each time it increases the
length of /3 and 7. Note that the transmitter commitment T3, which corresponds
to R3, did not require an assumption about the rest of the system in order to
guarantee that the size of Q keeps growing. This difference between T3 and R3
comes from the fact that the transmitter uses a timeout mechanism and the
receiver does not.

The receiver’s third commitment is to acknowledge each message it receives.
(Vi(MieP 3 IYI 2 i-l)~u(P)) 3

(R5)
.

W Mj E P 3 (o(lY) 2 i) A (47~Ai) V OMj+l E /VI
This is analogous to transmitter commitment T5, Assuming that message i does

not arrive until the receiver has processed i - 1, and that ,8 grows unboundedly,
the receiver will acknowledge each message it receives until the next one arrives,
and will add dk to the output sequence Y. (It is necessary to assume uv) because
the receiver can block if messages do not arrive; such an assumption is unnecessary
for the transmitter, since it can never block.)

12

Liveneas: no starvation

Our first step in establishing system liveness is a proof that all of the medium
history variables grow unboundedly.

44 (T3)
u(a) 3 q O(mtr.EzistsM) (mtr2)
q O(mtr.EzistsM) 3 u(7) WI
q o(mtr.Exists M) > u(p) VW
u(7) > oo(mrt.ExistsM) (mrt2)
q o(mrt.ExistsM) 3 u(6) (W

In combination, these assertions imply that all of the history sequences grow
without bound, that is,

and that input is infinitely often available for mrt.receive and mtr.receive.

Liveness: System

The system liveness property we ultimately want to prove is that each message
is eventually output. Since the safety property tells us that any output produced
is an initial segment of the input sequence, all we need to establish is that the
output stream gets arbitrarily long, that is,

u(Y) (s2)

We prove this by induction on the length of Y. The induction step is to show
that if Y contains k messages at some point, then it will eventually contain k + 1
messages:

o(lYI = k 3 olYl > k)

The first step in the proof is to establish the hypotheses of assertions T5 and
R5, which state that messages and acknowledgments do not arrive before the
recipient is ready to handle them. This is actually a safety property of the system
(it often turns out that liveness proofs require additional safety properties). It can
be proved easily from the safety specifications of the modules.

13

AjEb > Aj E 7 (mrtl)
3 IV 2 j Fw
3 Mj f P w
3 Mj E Q (mtrl)
3 1x1 2 i W)
3 Aj- lE6 (T2)
3 Aj- A7 (mrtl)
3 IV L j - 1 UW

This implies both hypotheses, that is,

MjEP 3 lYl2 j - 1

We now know that the conclusions of T5 and R5 hold, so we can reason with
the simpler forms

V j(Aj E 6 > (UC(Q, Mj+l) V O(Aj+l E 6))) (W

V j(Mj E p > (o(lYl 2 j) A (UC(VtAj) V O&$+1 E IW VW

Now let us prove the induction step. Suppose that at some point IY 1 = k.
Then, applying R5, either

uch, Ak), or (1)

O&+1 E P- (2)

Case 1 implies O& E 6 (from mrt3), and using T5’ this in turn implies

uch Mk+l), or (1)a

NOW case la implies O&+1 E B (using mtr3), so case la reduces to case 2. But
case 2 implies oIY 1 > k + 1 (using R5’). Finally, the system safety relations
proved above show that case lb implies oIY 1 2 k + 1. This completes the proof
of the system liveness property.

14

Conclusion

In addition to the protocol presented here, we have proved the correctness of
three additional protocols using this approach: Stenning’s full data transfer pro-
tocol 1161, the alternating bit protocol (as stated by Bochmann [l]), and Brinch
Hansen’s multiprocessor network [3].

We have found that program verification techniques can be used to prove the
safety and liveness of network protocols that handle an unreliable medium. By
insisting on modular decomposition and restricting the view of implementation
details, we are able to manage the complexity of program proofs. Temporal logic is
an important tool, which allows us to state liveness properties in a clear, consistent
manner.

References

[l] Gregor V. Bochmann and Jan Gecsei. A unified method for the specification
and verification of protocols. Proceedings of FLP Congress 77, pages 229-
234. North Holland Publishing Company, 1977.

.’ - [2] Per Brinch Hansen. Operating System Principles. Prentice-Hall, Englewood
Cliffs, New Jersey, 1973.

[3] Per Brinch Hansen. Network: A multiprocessor program. H!XE nsnssctions
on Software Engineering, SE-4 (3):194-199, May 1978.

. [4] Dov Gabbay, Amir Pnueli, Sharon Shelah, Yonatan Stavi. On the temporal
analysis of fairness. Seventh Annual ACM Symposium on Principles of
Programming Languages, (Las Vegas) pages 163-173, Association for Com-
puting Machinery, 28 January 1980.

[5] Donald I. Good and Richard M. Cohen. Principles of proving concurrent
programs in Gypsy. Sixth Annual ACM Symposium on Principles of Pro-
gramming Languages, (San Antonio) pages 42-52, Association for Compu-
ting Machinery, 29 January 1979.

[6] Brent T. Hailpern. Verifying Concurrent Processes Using Temporal Logic. In
preparation, PhD Thesis, Stanford University, 1980.

[7] C. A. R. Hoare. Monitors: An operating system structuring concept. Com-
munications of the ACM, 17(10):549-557, October 1974.

[8] John H. Howard. Proving monitors. Communications of the ACM, 19(5):273-
279, May 1976.

15

[9] Leslie Lamport. ‘Sometimen is sometimes *not never? On the temporal logic
of programs. Seventh Annual ACM Symposium on Principles of Program-
ming Languages, (Las Vegas) pages 174-185, Association for Computing
Machinery, 28 January 1980.

[lo] Leslie Lamport and Susan S. Owicki. Proving liveness properties of concur-
rent programs. In preparation, 1980.

[ll] Susan S. Owicki. Specifications and proofs for abstract data types in concur-
rent programs. In F.L. Bauer and M. Broy, editors, Program Construction,
pages 174-197. Springer-Verlag, 1979.

[lZ] Susan S. Owicki. Specification and verification of a network mail system. In
F.L. Bauer and M. Broy, editors, Program Construction, pages 198-234.
Springer-Verlag, 1979.

[13] Amir Pnueli. The temporal logic of programs. The 18th Annual Symposium
on Foundations of Computer Science, (Providence, Rhode Island) pages
46-57, Institute of Electrical and Electronic Engineers, 31 October 1977.

[14] Amir Pnueli. A temporal semantics for concurrent programs. Unpublished,
University of Pennsylvania, November 1977.. -

[15] Amir Pnueli. The temporal semantics of concurrent programs. The Interna-
tional Symposium on the Semantics of Concurrent Computation, (Evian)
July 1979.

[lS] Norman V. Stenning. A data transfer protocol. Computer Networks, 1(2):99-
110, September 1976.

[17] Carl A. Sunshine. Formal techniques for protocol specification and verification,
Computer, 12 (9):20-27, IEEE Computer Society, September 1979.

16

.

Transmitter (x : unbounded input stream of message) : proceso

begin

< initialize 3
WaitingForAck : = 1
HighestSent := 0

loop

C send message 3
if HighestSent < WaitingForAck then

HighestSent := HighestSent + 1
data := read(X)
mtr.send ([HighestSent, data J)
timer&art

fi

(service acknofedgements 3
if mrt.ExistsM then

mrt.receive ([,acJcno,ack])
if ackno = WaitingForAck then

timer. cancel
WaitingForAck := a&no + 1

fi
fi

(service time-outs 3
if timer. Timeou tsExist then

timer.csnceJ
mtr.send ([HighestSent, data])
timer.8 tart

fi

end loop

end process

Figure 1

17

Receiver (y : unbounded output stream of message) : process

begin

< initialbe 3
NextRequired := 1

loop

C: get message 3
mtr.receive ([messno, data])

if me6sno = NextRequired then
(service new message 3
Y :=yQ data
NextRequired := NextRequired + 1

fi

C send acknowledgment 3
mrt.send([NextRequired - 1, ‘kck”])

end loop

end process

Figure 1

18

Figure 2

