
COMPUTER SYSTEMS LABORATORY
t
STANFORD ELECTRONICS LABORATORIES

DEPARTMENT OF ELECTRICAL ENGINEERING
STANFORD UNIVERS ITY - STANFORD, CA 94305 r

A LANGUAGE FOR MICROCODE
DESCRIPTION AND SIMULATION IN VLSI

John H ennessy

TECHNICAL REPORT NO. 193

July 1980

This research was partially supported by the Joint Services, Electronics
Program under contract no.
DAAG29-79-C-0047

A Language for Microcork Description and
Simulation in VLSlt

John Hennessy
Computer Systems Laboratory

Stanford University
Stanford, Ca. 94305

Technical Report 193

July 1980

Abstract

This paper presents a programming language based system for specifying and simulating
microcode in a VLSI chip. The language is oriented towards PLA implementations of microcodcd
machines using tither a microprogram counter or a finite state machine. The system supports
simulation of the microcode and will drive a PLA layout program to automatically create the PM.

Key Words and Phrases: microcode, VLSI, PLA, finite state machine, design automation,
compu tcr-aided &sign, simulation, layout.

-/’ This research was partially supported by the Joint Services Electronics Program under contract no.
DAAG29-79-C-0047.

1. Tntroduction

VLSI chip design has rapidly become an area of great importance and interest. Presently few
tools exist to assist the user in designing and debugging a VLSI chip. This paper discusses a
programming language useful for the design of a microcode controller which will employ PLA
implementation techniques. Microcoded engines, implcmcnted either with a finite state machine
technique or a microprogram counter, frequently form the control unit on a VLSI chip and thus
constitute a signifcant portion of the work involved in the design.

Design of a microcode controller is an error prone task for several reasons. First, the
programming language is extremely low level. The designer must deal with a binary machine
without the benefit of a human-engineered interface. Secondly, many of the microprograms are
large. This leads to a relatively complex program without a great deal of structure.

Another major difficulty is the significant level of detail which must be expressed. This leads to
one of twc pitfalls: either the microcode description is very low level and cluttered with details,
which make it impossible to understand; or the designer uses an ad hoc higher level description of
the microcode. This leads to problems, since the translation to the low level microcode must be
done by hand, and the ad hoc description tends to be too informal and vague. Hence, without a
higher level standard representation microcode programs are difficult to correctly write and virtually
impossible to understand.

For microcode machines which will be implemented with PLA’s, the process of laying out the
PLA is both time consuming and tedious, leading to unnecessary errors. However, given the
description of the PLA terms, in an equation or state table form, the process is mechanically
straightforward. Thcrcfore, such a system should provide for PLA layout as well as microcode
design.

As a solution to these problems we propose a higher level language which has the following
goals:

1. Provide a symbolic higher level language suitable for designing and documenting
microprogram and oriented towards implementation with PLA technology.

2. Provide simulation tocls to debug the microcode.

3. Provide for automatic layout of the PLA based on the microprogram.

2. Requircmcnts

the

The goals for this design aid lead to language requirements. The desire to simulate the
microcode leads to the rcquircment to bc able to dcscribc the subsystems which interact with the
microcontroller. We will rcfcr to thcsc subsystems as the etzvirornen~. Describing the environment

.

can bc
occurs

easily done in a
in a restricted

conventional programming language,
and well defined manner.

The micromachine description must be separate from the environment description. There

whose interaction with the microcode

several reasons for this:

- it increases comprehensibility of the micromachine structure;
- a specialized language is more appropiate for the microprogram design, since in general it

is impossible to determine if a given program describes a finite state machine;

- it simplifies the translation process.

Since the end product of this design is a finite state machine implerncnted with PLA
techniques, a method of incorporating details about the implementation is required. This
specification should include mappings between functional specifications in the environment and
actual PLA outputs, as well as timing specifications which force outputs to occur earlier or later
than they occur in the program. Including these details separately allows a more functional
orientation in the microcode description.

. Lastly, details concerning the actual PLA layout are needed. These include such things as the
number of PLA’s and the positioning on the PLA of each signal.

3. Environment Definition

The environment of the finite state micromachine can be described in a conventional
programming language; it must interface with the micromachinc specification both for simulation
and generation of the PLA. The environment will consist of data structures and variables which can
bc used to simulate the structure of the subsystems. The enviromcnt/controllcr interface is based on
a set of functions and procedures. The tinctions, which must be type boolean, correspond to the
inputs to the rnachinc, while the procedures correspond to output signals.

Thus a conventional programming language can represent the cnvironmcnt as well as provide
the necessary interface. We have chosen Pascal as the language for this purpose.

4. Control in the Micromachine

Control of program flow in a finite state machine uses a next-state function. Thus in the
micromachine the next-state description should be included. Since the next state for most states in
the machine is the sucessive scqucntial state, to have the designer specify the next state in these
situations is wearisome. Therefore, support for a default next state is needed even though it may
require extra work in implementation or add extra terms to the PLA.

4

The outputs associated with a given state should be conditional on a set of product terms only.
Although arbitrary boolean expressions could be used, we choose not to because it requires a
significant amount of processing to transform the expressions to a PLA oriented sum of products
form. In this process the number of product terms added to the PLA may be substantial (up to 2n
terms for an expression of length n). The property that - the number of product terms in the PLA
is approximately equal to the number of preconditions for the outputs - is very useful.

There are at least two major schemes for implementing a finite state machine which must be
considered: a standard finite state implementation with a fixed state assignment, and an
implementation based on a microcode engine with a microprogram counter. In the next section we
discuss the approaches and the required control mechanisms for each.

5. FSM ad Program Counter Implcmentstions

The following table summarizes the advantages of the two approaches:

FSM (state assignment) Microcoded (program counter)

Subroutines hard Subroutines easy

Need next state terms in PLA PC incremented by counter

Minimize states Fixed assignment

It is clear the each approach has advantages and the language should support both approaches. In
either case a method for explicitly specifying the next state is required. Additionally, in the microcoded
approach a method for implementing subroutines with call and return is needed.

6. Dcfming the Micromachine

The micromachine is defined as a set of states, which are listed scqucntially. Each state may
optionally have a label, which dcnotcs the state name. The state specifications are prcccdcd by a set
of specifications for outputs which arc state indcpendcnt. 1ln1s the micromachinc specification looks
like:

FSM
[state-specification (for state indcpcndent outputs)]
state-name (optional) : [state-specification]

state-name (optional) : [state-specification] .

A state specification is a list whose elements arc either unconditional actions or conditional
commands which arc similar to guarded commands. A conditional command consists of a guard and
a list of actions. A guard consists of a list of one or more product terms with arc joined with or. A
product term is a scrics of predicates joined with and. The predicate must be a call to a function in
the environment; it will be associated with a PLA input. The interpretation of the command is: if
all the predicates arc true the actions should be executed. If there are no predicates, the guard is
assumed to be true and the action is always executed in that state. Thus the form of a state
specification is:

action

if p1 and and pn or or q1 and and qm => action

wbpre the pi are fimction invocations and the qi are product terms, like the first term.

Each state may contain a list of such specifications; the entire state is bracketed. During
simulation the specifications are evaluated and executed sequentially; however in the actual PLA
implementation these operations will occur in parallel. Thcrcfore, side effects between procedures
which are outputs and functions which are inputs in the same state should be employed with great

6. I Actions

There arc two types of actions allowed: outputs and state change operations. A list of actions
can be used as a single action by bracketing them. Outputs are invocations of procedures in the
environment and correspond to PLA outputs. The state change directives dictate the next state: all
state change directives have effect only after the current state is complctcd. That is, all state
spccifcations with true guards will be executed in a state, regardless of any state change directives
in that state. The state change directives are:

next stn te-name - makes state-name the next state

call state-name - dots a proccdurc call to the routine at stute-rlame

return - returns to’ the state scqucntially following the calling state

6.2 A short e.ua,nple

(Multiplication of 10 bit unsigned integers)
program multiply;
const maxint = 1045576. (i e 22*)

one-half = 524288,
. .

tYPc register = O..maxint;

b+X*Y3
var x, y, z : register;

counter : O..lO; { count iterations)
procedure ZeroZ;
begin 2 : = 0 end;
procedw GetXY;
begin (Read in X and Y, for simulation only)
procedure ZeroCounter;
begin Counter : = 0 end;
procedure SHL (r: register);
begin if r > one-half then r : = r - one-ha
function MSBY: boolean;
kgin MSBY : = y > one-half end;
procedure AddXtoZ;
begin Z := z+.x end;
function LT: boolean;
begin LT : = counter < 1 end;
procedure Incr;
begin counter : = succ(counter) end;

fsm { Definition of the machine)

read (x); read (y); end;

If; r := r*2 end;

[{ No state independent actions) ;]
Start: { Start state: 2, Counier + 0; get simulation values for/U, Y)

[ZeroZ; GetXY; Zerocounter]
Loop: (Mai rru.dtiplication loop)

PHL c41
[if MSBY => AddXtoZ]

PHIa (Y)l
[if LT = > Incr; next Loop (End multiplication loop)] .

7. Defining the Relationship to the PLA

The relationship between the microcode specification of the control program and the PLA is
dcfincd by the input signals, the output signals, and the mapping bctwccn cnvironmcnt procedures
and output signals. The following sections deal with thcsc topics.

7.1 DeJrling input and output sigrlals

PLA signals are defined by means of input and output signal declarations; their relationship to
the cnvironmcnt routines is established through signal definitions. Input and output signal
declarations appear just before the definition of the environment procedures.

. 6

Signal declarations begin with the keyword inputs or outputs, as appropiate. ‘i’hc general form
of each declaration is then:

(name [‘(’ bounds ‘)’ 1) [‘:’ parameters] ‘;’

The list of names are the names of input or output signals being dcclarcd. The optional bounds
designator indicates whether a particular signal is a single line or a number of lines. In the latter
case the line is treated as an integer encoded number. “he optional parameters are associated with
all input/output names in the declaration.

There may be zero or more parameters; the following parameters are legal:

syntax

Pla (4

top
bottom

meaning permitted on input/au tput

Associate signal with pla # II both

Position signal on top of pla both
Position signal on bottom of pla both

renames (signal-name) Gives a signal another name both

earlier (n)
later (12)

Move the signal n states earlier
Move signal n states later

output
output

The optional pipelined directives, i.e. earlier and later, move an output signal forward or backward
in the state graph. This is very uscfi11 when a particular signal, which is logically associated with a
single opcrtition, must occur earlier. A frequently occurring cx‘ample of this is precharging or
enabling of alu’s. Although the operation appears to occur in a single state the alu must be enabled
one state earlier. The pipclincd directives provide a convicnent way to cxprcss such relationships
without adding necdlcss details to the microcode description. ‘I’hc rcmttncs directive gives a signal
another name, without associating the other characteristics (c.g. pipelining) of the signal.

7.2 Dwcribir~g the rehtionship between en virorunent and outputs

Since a procedure of filnction in the environment can logically correspond to one or more
signals, a method of defining the mapping bctwcen environment functions/procedures and signals is
ncedcd. Allowing this capability has two significant cffccts: it allows the microcode description to be
functionally oricntcd, and it significantly dccrcascs the amount of code necdcd to describe the PI-A
implementation of the microcode.

The mapping between an environment proccdurcs and signals to be generated in the PLA is
given in the definition section of an environment procedure. The definition section starts with the
keyword definition and appears immediately after the function or procedure header. Procedures in .
the environment without a definition section are prcsumcd to be for simulation purposes only. The
definition section consists of a list of signal definitions which arc separated by semicolons; the

8

definition section is tenninatcd by end.

A signal definition has the form:

[pattern-string :] signal-list

The optional pattern-string is used to specify different signal combinations based on the values of
the parameters to the environment procedure. The pattern string consists of a set of string pattc:ns
separated by comma and enclosed in brackets. The string patterns are used to match the substitution
list on a one to one basis. If the pattern matches the list of actual parameters, the signals in the
signal list are generated as outputs. Each string pattern can either be a alphanumeric string or a *,
the latter indicating that any actual parameter value should generate a match for the corresponding
parameter.

The signal-list may contain the names of signals which have been declared in the output
declaration Tection and other environment procedures. Each signal expression is a single signal, a
conjunction of two signals, an assignment to a signal vector (i.e. a signal with more than one line),
or a concatenation of identifiers and constants (which is then treated as a single signal).
Concatenation is indicated by the symbol &. There are two fonns that each single signal can have.
The first is a single identifier: the second format is that of a procedure invocation. in the second
case any parameters in the parameter list which correspond to environment procedure formal
parameters are replaced by the actual parameter strings. If the signal identifier is an environment
procedure and not an signal name, the definition section of the referenced environment procedure is
used for that signal. Naturally, the procedure name can be followed by parameter strings. This
facility allows multi-level procedures to produce signals by composing the definition list in each
procedure.

7.3 h example

Consider the earlier example of 10 bit multiplication. We will assume that our machine will be
controlled by PLA outputs which are defined using r as a register (which can have values O-7) as
follows:

enabler - put r on an alu input bus, this must occur one state before an alu operation

loadr - put the ah! output bus into r

shiftleft, shiftright - shift left and right

zero - send a zero to the alu

msbr - true if thi: msb of r is on

Itr - true if r is less than 1

a d d , incr - alu operations

Using these outputs the following declarations would bc added to the example for the procedure
SHL:

inputs

lt[0..7], msb [0..7]: bottom;

outputs

enable [0..7] : earlier (1) top:
load [0..7], shiftlcft, shiftright, zero, add, incr : top ;

With these output signals declared WC can specify the relationship between the environment
procedures and the signals they should generate.

procedure SHL (r: register);
. definition

enable <- r ; shiftleft ; load <- r end;
. -

procedure ZeroZ;
definition

zero and load <- 2; (z register)

procedure ZeroCounter;
definition

zero and load <- 3; {counter register)

function MSBY: boolean:
definition

msb [I]; { signal bit for Y (register 1))

procctlure AddXtoZ;
definition

.

enable <- 2; add; load <- 2; (no signal for enable x since it is 0)

function LT: boolean;
definition

Lt <- 3; (counter register)

proccdurc Incr;

, 9

10

definition
enable <- 3; Incr;

The appendix contains a more detailed ex‘ample which requires more elaborate output definition
facilities.

8. Using the Language

The description language can be used to drive a microcode simulation as well as generate a
PLA layout. In order to do simulation the microcode description is supplied with the signal
declarations and definitions. The user may supply start and end states for the finite state machine, if
they exist. The simulation is presently done by creating a Pascal program which embodies the
semantics of the microcode. Two types of simulation output can be produced:

1. Functional simulation with state tracts and outputs of additional information as dicta&d
by the environment procedures.

2. Functional simulation with input/output signal tracing.

PLA generation is a straightforward process, which is done in two parts. The first part analyzes
the microcode structure and creates product term lists for each output. The effect of signal

- definition and pipelining is integrated before making these lists. The PLA layout is then done by a
separate program which inputs the signal descriptions and the product term lists. This structure
allows the insertion of programs which optimize the finite state machine.

9. Other Uses of the System

There are several other usefU1 types of debugging and checking of microcode which can be
done in the process of simulation. Most important among these are detecting potential errors which
arise bccausc the simulation does not exactly match the PLA implementation, or because the
microcode does not employ the environment in a manner which the hardware is designed to
support. Another class of errors arises from the fact that the simulation may fail to test all possible
combinations of inputs or fail to test all states.

The major reasons why the simulation and PLA implementation might behave differently arise
from the fact that the simulation treats outputs, cnvironmcnt proccdurcs and the state as unique
entities. In the PLA these objects arc interelatcd, so problems such as assigning two next states are
resolved into a single well defined action in the simulation, but result in a potentially harmfill action
in the PLA implcmcntation. Certain classes of these errors can be caught by predcfincd microcode
independent methods, but others require a more general scheme, which we can also employ to
resolve errors concerning the use of the hardware environment by the microcode.

11

Many of the errors in the use of the hardware environment by the microcode arise f?om
situations where certain outputs arc being incorrectly used, perhaps with respect to timing, or the
hardware is being instructed to preform some task it is not physically able to complete. Many of the
latter types of errors can be caught using a strictly type checked environment specification. For
example, suppose that the register file on some microcodcd processor is divided into two sections in
such a way that two registers from the same section can not be gated to the alu (many hardware
micromachines have this property). Microcode errors which arise because two registers from the
same section are being sent to the alu can be detected by defining the machine structure with two
different types of registers and specifying that the alu environment procedures have two
parameters - one from each register section. This class of simple errors is detected at compile-time.
Other potential types of timing errors which arise with regard to pipelining, will generate warnings.

The more complex class of errors can not be detected with a straightforward compile-time
scheme. Some examples of the type of errors that may arise are: attempts to use the bus for two
different quantities in the same time frame, overlapping use of environment hardware, such as an
alu, and incorrect timing with respect to which state an output actually occurs during. These sorts of
errors can be detected during simulation if a set of assertions which are checkable during simulation
can be specified. We divide these assertions into two groups: invariant assertions and state
dependent assertions. The invariant assertions specify conditions which must hold regardless of the
current state, e.g. if an alu output occurs in this state, the alu was prechargcd in the previous state
and was not doing any other operation. State dependent assertions specify propertics which should
hold at a particular state, e.g. a certain part of the machine should have a certain value.

9. I Assertions

Anywhere an action can occur, an assertion can be specified. Although the assertion generates
code for simulation purposes, no PLA entries arc affected or generated. Thus the usage of assertions
is merely to ensure that certain properties hold. An assertion has the form assert invocation, where
invocation must be the invocation of a boolean function. Whenever execution reaches an assert
statement at simulation time, the simulation invokes the specified function. If the function returns
false the simulation is halted with an appropiate error message.

10. Conclusions

This paper has proposed a language and processing system for describing microcode whose
implcmcntation orientation is PLA based. The purposes of this language arc to document the
microcode at a reasonable logical level, while providing a firm specification; to allow extensive
simulation, debugging, and error detection: and last to automatically create the PLA layout
necessary to implement the microcode description.

There are many interesting questions concerning the applicability of this tool. Although it is
designed to support a wide variety of applications thcrc may be unknown but fundamental

12

limitations. It would also be interesting to examine its applicability to microcode machines whose
architecture is not PLA based, but whose microcontrol is extremely straightforward; a major
example of this implementation strategy is the two level microcode approach used in the Motorola
68000.

Acknowledgements

I am indebted to Jim Clark for providing motivation and insight during this research.

13

Appendix 1 Syntax of the Microcode Specification Language

This is the syntax for the non-Pascal portion of the language. Terminal symbols in the grammar
are distinguished by being in quotes.

program
-> ‘program’ ‘<id>’ program+parrns ‘;’ outer + block ;

outer+ block
-> const+part type+def+part var+decl+part io+part proc+part

fsm ;
proc + heading

9 ‘procedure’ ‘<id>’ formal+parms ‘;’ definitiowpart => proc;
func + heading

-> ‘function’ ‘<id>’ formal+parms ‘:’ ‘<id>’ ‘;’ defmitioncpart = > f%nc;
io + part

-> inputs + designators outputs + designators ;
inputs+designators 9 ;

-> ‘inputs’ designators => inputs;
outputs + designators -> ;

-> ‘outputs’ designators = > outputs;
designators

-> spec ;
-> spec designators ;

spec .
-> vectortlist ‘;’ = > io+list;
-> vectorclist ‘:’ p a r a m e t e r s ‘;’ => io+list ;

vector+list -> vet tor;
-> vector ‘,’ vector+list;

vector -> ‘<id>‘;
- > ‘<id>’ ‘[’ ‘<inO’ ‘:’ Yin0 ‘I’ = > v e c t o r ;

parameters
-> parameter ;
-> parameter parameters ;

paramc ter
-> ‘pla’ ‘(’ ‘<inO’ ‘)’ = > planumber;
-> ‘top’ => top;
-> ‘bottom’ => bottom:
-> ‘earlier’ ‘(’ ‘<in0 ‘)’ = > earlier;
-> ‘later ‘(’ ‘<in0 ‘)’ => later;
-> ‘rcnamcs’ ‘(’ ‘<id>’ ‘), => renames;

definition + part

-> ‘definition’ def+list = > definition;
-> ;

def+list
-> definition ;
-> de fini tion def+list ;

definition
-> patternmatch ‘:’ output+list ‘;’ => de f l ine ;
-> output+list ‘;’ => defline;

patternmatch
-> ‘(’ patterwlist ‘)’ = > patterned;

pattern +list
-> pattern ;
-> pattern ‘,’ pattemclist ;

pattern
-> ‘*’ = > anything;
-> ‘<id>’ ;

output+list
-> output ;
-> output ‘and’ outputtlist => andnode;

output -> plaiwoutput;
-> ‘not’ plain+output => notnode ;

plain + outpu t -> invocation;
-> invocation ‘&’ output => cat;
-> ‘<id>’ ’ = ’ constant = > vecout;
- > ‘< id>’ ‘[’ ‘<int>’ ‘1’ => bitout;

fsm
-> ‘fsm’ fsm+state ‘.’ => fsmnode;

fsm + state
-> state + indepart states ;

state tindepart - > ‘[, statetspecifiers ‘I’ = > statecindnode;
states

-> states state ;
-> state ;

state
-> label ‘[’ statwspecifiers ‘I’ => s t a t e n o d e ;

statetspecifiers
-> state+spec ‘;’ state+specifiers ;
-> statecspec ; ’

state +spec
-> ‘if or+cond ‘= >’ action = > condnode ;

14

-> action ;
orwond -> cond ‘o r ’ or+cond = > ornode;

-> cond;
cond -> cond ‘and’ invocation => andnode ;

-> invocation ;
invocation

-> ‘<id>’ parw = > invocationnode;
parms -> ;

-> ‘(’ id+or+const+list ‘)’ ;
id+or+const+list

-> constant ;
-> constant ‘,’ id+or+const+list ;

idclist -> ‘<id>‘;
->1 ‘<id>’ ‘,’ idclist;

actions
-> action ;
-> action ‘;’ actions ;

action
.

-> ‘[’ actions ‘I’;
-> ‘assert’ invocation = > assertnode;. -
-> invocation = > ac tionnode;
-> ‘next’ ‘<id>’ = > gotonode;
-> ‘call’ ‘<id>’ = > callnode;
-> ‘return’ = > re tu rnnode;
-> ;

label -> ;
-> ‘<id>’ ‘:’ = > labelnode;

Appendix 2. Two More Examples

Rppmdix 2. I - Cornputirzg GCD

program test (input,output);
Vilr x,y: intcgcr;
inputs

eql,eqO,gtx, gty: bottom;
outputs

aluop[l..Z] : bottom ;
enablex,cnabley: top carlicr (1);

proccdurc init;

16

begin
read(x);

read(y):
end;
procedure subt (var a,b: integer);
definition

enable SC a and enable & b and aluop = 1;
begin a : = a-b end;
Function greater (x,y:intcgcr): boolean;
dcfini tion

gt&x;
begin greater : = x>y end;
function equal (x,y:intcgcr): boolean;
definition eq & y;
begin eq : = x = y; end;
function ne(x,y:integer): boolean;
definition not equal (x,y);

.begut ne : = not equal(x,y);
end;

fsm

[;I
one : [init ;

a s s e r t ne(y,O); .
if cqual(x,O) = > next endstate]

[call two]
[next 01x2 J

two: [if greater(x,y) = > [subt (x,y); next two 1;
if greater(y,x) = > [subt (y,x); next two]]

three: [assert equal(x,y);
if equal(x,l) = > [writeln(l); return];
if ne(x,l) = > [writeIn(return]]

endsbte : [halt] .

Appetulix 2.2 Ttzff ic L ig/l t lkvt lple frotn Mead rued Con way

program traffic(input,output);
const short = 2;.

long = 4;
type colortype = (green,yellow,red);

signaltype = O..l;

17

vx time: in tegcr;
hl,fl: colortypc;
c: signaltype;

inputs
c,tl,ts :bottom;

outputs
st,hl[l..O],fl[l..O] : bottom;

procedure getinput; (* for simulation purposes only *)
begin

write(‘cars? ‘); read(c): end;
procedure timer; (* for simulation purposes only *)
begin

if time < long then time : = time + 1 end;
procedure highlight(color: colortype);
defhition

(green): hl = 0 ;
(yellow): hl = 1 ;
(red): hl = 2 ;

begin h l : = color end;
procedure farmligh t(color: colortype);
defiuition

(green): fl = 0 ;
(yellow): fl = 1 ;
(red): fl = 2 ;

begin fl : = color end;
procedure starttimer;
definition st;
begin time : = 0 end;
function cars : boolean;
definition c;
begin cars : = (c = 1) end;
function notcars : boolean;
definition not c;
begin notcars : = nqt cars end;
function timcout(lcngth: integer) :boolean;
definition

(long): tl ;
(short): ts ; *

begin timeout : = (time > = length) end;
function nottimcout(lcngth: integer) :boolean;

18

fsm

definition
(long): not tl ;
(short): not ts ;

begin nottimeout : = not timcou t(leng th) end;

[getinput; timer] (* state independent component *)
highgm: [highli,otit(green); farmlight(red);

if notcars or nottimeout(long) = > next highgrn;
if cars and timeout(long) = > [starttimer; next highyel]

1
highyel: [highlight(yellow); farmlight(red);

if nottinxout(short) = > next highyel;
if timeout(short) = > [starttimer; next farmgrn]

1
farmgm: [highlight(red); farmlight(green);

if cars and nottimeout(long) = > next farrngm;
if notcars or timeout(!ong) = > [starttimer; next farmyel]

1
farmycl: [highlight(red); farrnlight(yellow);

if nottimeout(short) = > next farmyel;
if timcout(short) = > [starttimcr; next highgrn]

I.

