
COMPUTER SYSTEMS LABORATORY
I I
STANFORD ELECTRONICS LABORATORIES

DEPARTMENT OF ElECTRiCAl ENGINEERING
STANFORD UNIVERSITY - STANFORD, CA 94305

An Exponential Failure/Load Relationship:
Results of a Multi-Computer Statistical Study

bY

Ravishankar Krishnan lyer

Steven E. Butner

Edward J. McCluskey

Technical Report #CRC-81-6

(CSL lx #214)

July 1981

Center for Reliable Computing
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305

This work was supported in part by the Air Force Offke of Scientific Research under
Contract F49620-79-C-0069, the National Science Foundation under grant MCS-7904864,
and by CSlRO (Australia).

-

utiqg

An Exponential Failure/Load Relationship:
Results of a Multi-Co,mputer Statistical Study

bY

Ravishankar Kr ishnan lyer

Steven E. Butner

Edward J . McCluskey

Technical Report #CRC-81 -6

(CSL TR #214)

July 1981

Center for Reliable Computing
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305

This work was supported in part by the Air Force Office of Scientific Research under
Contract F49620-79-C-0069. the National Science Foundation under grant MCS-7904864,
and by CSIRO (Australia).

An Exponential Failure/Load Relationship:
Results of a Multi-Computer Statistical Study

bY

Ravishankar Krishnan Iyer Steven E. Butner Edward J. McCluskey ,

CRC Report AM-6
(CSL TR #214)

July 1981
I

Center for Reliable Computing
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305

Abstract

In this paper we present an exponential statistical model which relates computer failure
rates to level of system activity. Our analysis reveals a strong statistical dependency of
both hardware and software component failure rates on several common .measures of
utilization (specifically CPU utilization, I/O initiation, paging, and job-step initiation rates).
We establish that this effect is not dominated by a specific component type, but exists
across the board in the two systems studied. Our data covers three years of normal
operation (including significant upgrades and reconfigurations) for two large Stanford
University computer complexes. The complexes, which are composed of IBM mainframe
equipment of differing models and vintage, run similar operating systems and provide the
same interface and capability to their users The empirical data comes from identically-
structured and maintained failure logs at the two sites along with IBM OS/VS~ operating

a system performance/load records. The statistically strong relationship between failures
and load is evident for many equipment types, including electronic, mechanical, as well as
software components. This is in opposition to the commonly-held -belief that systems
which are primarily electronic in nature exhibit no such effect to MY significant degree.
The exponential character of our statistical model is significant not not only in its
simplicity, but also due to its compatiblity with classical reliability techniques.

Keywords: statistical failure models, perforrmance-reliability models, computer failure data.

- Table of Contents

1. Introduction 1

2

2.
1.1 Basis and Perspective
Sources of Data

2.1 Performance and Utilization Data
2.2 Failure Data

5
5
6

3. Preliminary Analysis

3.1 Load Profiles
3.2 Failure Profiles

7

3.3 Analysis and Discussion of Preliminary Results
Some Reliability Measures

Detailed Analysis

5.1 Validation of Preliminary Study Results
5.2 Component-Level Modelling
Views on Observed Results

6.1 Discussion of Measured Results
6.2 Conjectures on the Model

7
8
9

4.
5.

13
17
17
20

6. 23

6.2.1 Latent Discovery Effect
6.2.2 Load-Induced Hardware Failures
6.2.3 Load-Induced Software Failures

Probabilistic Models

Concluding Remarks

23
24
25
25
26

7.
8.

29
31

A c k n o w l e d g e m e n t s -

’Appendix I. Preprocessing Steps

I.1 Raw Data
I.2 Required Data Attributes
I.3 Processing Techniques
i.4 The UNIMERGE Program
I.5 Lagged Data

Appendix II. SLAC and CIT Load Profiles

Appendix Ill. Component Type and Usage Groups Failure Charts

References

32
33
33
33
34
35
36

37
43
64

List of Figures .

Figure 3- 1: SLAC 1978 Virtual Day Load Profiles
Figure 3-2: SLAC 1978 Failure Profiles
Figure 5 1: CIT 1978 Load Profiles
Figure 5-2: SLAC 1978 Failure-Time CPU and Paging Profiles
Figure 5-3: SLAC MEDIA and CPU Failure Histograms
Figure 7- 1: Augmented Bathtub Curve
Figure II- 1: 1978 EXCP Profiles
Figure U-2: 1978 Batch CPU Profiles
Figure 11-3: 1978 Batch Paging Profiles
Figure 11-4: 1979/80 Job Step Profiles
Figure 11-S: 1979180 EXCP Profiles
Figure 11-6: 1979/80 Batch CPU Profiles
Figure H-7: 1979/80 System CPU Profiles
Figure II-& 1979/80 System Paging Profiles
Figure III-l: CIT 1979/80 Failure Histogram for Component Type ‘CARD’
Figure M-2: SLAC 1979/80 Failure Histogram for Component Type ‘CARD’
Figure 111-3: CIT 1979180 Failure Histogram for Component Type

8
9

18
19
21
30
37
38
38
39
39
40
40
41
44
44
45

‘CHANNEL’
Figure 111-4: SLAC 1979180 Failure Histogram for Component Type 45

‘CHANNEL’
Figure 111-5: CIT 1979/80 Failure Histogram for Component Type ‘DCTL’
Figure 111-6: SLAC 1979180 Failure Histogram for Component Type ‘DCTL’
Figure III-7: CIT 1979/80 Failure Histogram for Component Type ‘DISK’
Figure 111-8: SLAC 1979/80 Failure Histogram for Component Type ‘DISK’
Figure 111-9: CIT 1979/80 Failure Histogmm for Component Type ‘MCTL’
Figure III-IO: CIT 1979/80 Failure Histogram for Component Type

45
46
46
47
47
47

‘MEMORY’
Figure III-11: SLAC 1979180 Failure Histogram for Component Type 48

‘MEMORY’
Figure 111-12: CIT 1979180 Failure Histogram for Component Type ‘OPRL’
Figure 111-13: SLAC 1979180 Failure Histogram for Component Type ‘OPRL’
Figure III-14: CIT 1979180 Failure Histogram for Component Type ‘PCTL’
Figure 111-15: CIT 1979/80 Failure Histogram for Component Type ‘PRINT’

* Figure W-16: SLAC 1979180 Failure Histogram for Component Type ‘PRINT’
Figure JII-17: CIT 1979/80 Failure Histogram for Component Type ‘SWBE’
Figure 111-18: CIT 1979180 Failure Histogram for Component Type ‘SWFE’
Figure 111-19: CIT 1979180 Failure Histogram for Component Type ‘SWOP’
Figure 111-20: SLAC 1979/80 Failure Histogram for Component Type ‘SW’
Figure 111-21: CIT 1979180 Failure Histogram for Component Type ‘TAPE’
Figure 111-22: SLAC 1979180 Failure Histogram for Component Type ‘TAPE’
Figure M-23: CIT 1979180 Failure Histogram for Component Type ‘TCTL’
Figure 111-24: SLAC 1979180 Failure Histogram for Component Type ‘TCTL’
Figure 111-25: ClT 1979/80 Failure Histogram for Component Type ‘TELE

48
48
49
49
50
50
51
51
52
52
53
53
53
54

ii

Figure 111-26: SLAC 1979180 Failure Histogram for component Type ‘TELE 54
Figure 111-27: CIT 1979/80 Failure Histogram for Component Type ‘TLCT’ 55
Figure 111-28: CIT 1979/80 Failure Histogram for Component Type ‘3CPU’ 55
Figure 111-29: SLAC 1979/80 Failure Histogram for Component Type ‘8CPU’ 56
Figure W-30: SLAC 1979/80 Failure Histogram for Component Type ‘9CPU’ 56
Figure 111-31: CIT 1979/80 Failure Histogram for Usage Group ‘CPU’ 57
Figure W-32: CIT 1979180 Failure Histogram for Usage Group ‘CPU*’ 57
Figure W-33: SLAC 1979180 Failure Histogram for Usage Group ‘CPU*’ 58
Figure 111-34: CIT 1979180 Failure Histogram for Usage Group ‘MDCTL’ 58
Figure M-35: SLAC 1979/80 Failure Histogram for Usage Group ‘MDCTL’ 59
Figure III-36: CIT 1979180 Failure Histogram for Usage Group ‘MED*’ 59
Figure 111-37: CIT 1979/80 Failure Histogram for Usage Group ‘MEDIA’ 60
Figure 111-38: CIT 1979180 Failure Histogram for Usage Group ‘MEMORY’ 60
Figure 111-39: SLAC 1979180 Failure Histogram for Usage Group ‘MEMORY’ 61
Figure W-40: CIT 1979/80 Failure Histogram for Usage Group ‘SOFTWARE’ 61
Figure 111-41: SLAC 1979/80 Failure’ Histogram for Usage Group 62

‘SOFTWARE’
Figure 111-42: CIT 1979180 Failure Histogram for Usage Group ‘TLCHN’
Figure 111-43: SLAC 1979180 Failure Histogram for Usage Group ‘TLCHN’
Figure III-443 SLAC 1979/80 Failure Histogr‘am for Component Type ‘OCTL’
Figure 111-45: SLAC 1979180 Failure Histogmm for Component Type ‘RLTM’

62
63
63
63

List of Tables

Table 3-1: Notation Md Definitions for Simple Regression
Table 4-1: Comparative Reliability Measures for CIT or. SLAC in 1978-80
Table 5-1: CIT 1978 Load-Failure Correlations
Table 5-2: Regression Results by Usage Groups -- 1979/80 SLAC & CIT .

10
14
18
13I-k

. . .
111

1

1. Int reduction

The last decade has seen an explosion in the application of computers in many key

commercial, military and industrial environments. Our society has become increasingly

reliant upon the error-free performance of such systems. As a consequence enhanced

reliability, high performance and overall availability have ail assumed increasing

importance in computer design.

It is well known that as a system approaches high levels of utilization, degradation in

performance occurs. A more interesting question, however, is whether an increased level

of utilization results in a real or apparent degradation in system reliability, i.e. is there an

inherent load versus failure relationship? This question has strategic significance;

particularly since many security and defense systems are required to have maximum

reliability at precisely the time of their peak load or stress. Significant as this question is

there are few studies available in this area [Beaudry, 1978a] [Butner, 19801 [Castillo, 19811.

It is a wide-spread belief that since these systems are electronic in nature no such effect

exists on a significant scale.

Analytic failure modelling and simulation appear un-attractive at this stage due to a

lack of understanding of the processes involved. One alternative is statistical analysis.

Accordingly, we embarked on a project to measure and ‘analyse data on system load and

failures. In undertaking a potentially large-scale project of this nature it is generally

advisable to conduct a preliminary study on a smaller scale. Our preliminary study

‘analysed the Stanford Linear Accelerator Center (SLAC) computer facility which is an IBM

multi-processor system. The study was based on prior research at the Center For Reliable:

Computing at Stanford University [Beaudry, 1978a]. In our more comprehensive study we

also include the IBM/3033 at the Stanford Center for Information Technology (CIT).

It is the purpose of this paper to present the results of both our preliminary study and

the subsequent comprehensive statistical analysis of failures and system utilization.

2

1 .I Basis and Perspective

The Stanford Linear Accelerator Center is engaged in the study of high energy

elementary particle physics. A two mile long linear accelerator and associated real-time

data concentration network provide a vast amount of physical data for analysis. In an

average day nearly 4000 batch jobs are executed. The complex is essentially a batch

system (although it does have a measurable real-time and interactive load). The system is

composed of two IBM 370/168’s and one IBM 360191 in a triplex arrangement. It has an

interactive “front end” text editing and job entry subsystem (WYLBUR) [SCIP, 1975a] as

well as a time-sharing executive (ORVYL) [SCIP, 1975b].

,
The CIT system is a uniprocessor consisting of a relatively large 1~~/3033 mainframe.

It is a functional twin of SLAC, i.e. with WYLBUR, ORVYL, and IBM OSNS~-(SVS) [IBM,

19721 components. Differences exist in system redundancy and system usage. In

particular, CIT is oriented more toward production and general user services than SLAC.

The SLAC system is considerably more complicated due to its asymmetric multiprocessor

arrangement. The complex’s three host processors are fully interconnected by channel-to-

channel adapters (a device that connects a channel of one host to a channel of a second

host allowing high-b‘andwidth traffic to flow between the two machines). Important
A system structures, including queues and communication areas reside on commonly-

accessible disk volumes. All SLAC hosts can access these volumes via multi-port

controllers? From a reliability point of view, the non-redundant front end components

of the subject systems are a predictable source of availability problems. The redundancy

of two independent, dedicated batch servers at SLAC makes that system’s batch component

reliable ‘and highly available.

e.
In 1976, a program for collecting reliability data on the SLAC and CIT computer

systems wcas initiated. Under this program component and system failures have been

systematically logged, causes have been meticulously tracked, and ensuing repairs noted.

The data base containing this information is called the UNTLOG. The availability of a

1 An exception is the 360/91 CPU which cannot connect to the newer block multiplexer devices due to its
age and design.

3

failure log such as this on two physically unique, but logically similar systems has proven

invaluable for reliability research. The differences in equipment type and interconnection

allow us to draw inferences about the reliability of varying architectures while the basic

logical similarities of the two systems permit direct comparisons between them.

An early study of SLAC UNILOG data [Beaudry, 1978b] indicated that the

conventionally used constant failure-rate model was not appropriate in an environment

with a widely fluctuating load. It was proposed that the system be modelled as two distinct

Poisson failure processes, one occurring in prime time and the other in non-prime time. A

more comprehensive study wcas deemed riecessary before such results could be considered

representative. Accordingly, we conducted a preliminary statistical analysis of SLAC

failure and load data. In particular we sought to determine if there was an inherent load

versus failure relationship [Butner, 19801.

Before describing our <analysis in detail, it is appropriate to indicate related research

-in the general area of reliability-performance modelling. Recently a theoretical definition

and computation of “performability” [Meyer, 19781 [Meyer, 19801 has appeared in the

literature. Performability models attempt to express the effect of failures on performance.

Our goal is quite distinctly opposite, i.e. to investigate the influence of system activity on

component ‘and system reliabilities.

Some recent work on performance and reliability modelling [Castillo, 19801 has been

reported. During development of performance measures for a large DEC-IOA time-sharing

system, it was found that the assumption of a constant system failure rate did not agree

with measured data. The -authors report a four-to-one range in failure rate which they

attribute to system load.

Subsequent research by the same authors [Castillo, 19811 involves use of a doubly-

stochastic Poisson process to model failures. The model assumes that the instantaneous

failure rate of a system resource can be approximated by a deterministic (cyclic) function

of time plus a zero-meM stationary Gaussian process, both depending on the usage of the

resource considered.

4

Our approach presumes no model a priori, but rather starts from a substantial body

of empirical data. We report the statistical trends and relationships observed in that data

with the hope of discovering a descriptive modelling method. It is significant that our data

comes from two distinct systems with differing physical equipment and workload.

At the time of our analysis (mid 1979) 1978 was the latest full year’s data available.

Hence our preliminary analysis at SLAC was for 1978. We begin by describing the sources

of raw data used in our study.

5

2. Sources of Qata

The raw data for our studies came from two distinct sources: the operator-

maintained failure and event log (UNILOG) and the operating system’s performance and

accounting database (IBMISMF).

2.1 Performance and Utilization Data

Information on system utilization came from IBM System Management Facility (SMF)

records. These data are logged in real-time by the operating system software. There are

approximately 50 different types of SMF data. The data contain information on the

initiation, processing, ‘and termination of jobs, on batch streams, on interactive user

sessions, and on other important events.

For our preliminary study, the SMF batch job step record was used.2 This utilization

information depicts only user jobs in the hutch system. Any load due to interactive or real-

time activities is not included. Since SLAC is a heavily batch-oriented computation center,

such a batch-only view wcas deemed adequate for our preliminary study.

From the job step record, four data elements were chosen for study:

PAGING the sum of page-ins cand page-outs for the step;

EXCPS the count of all I/O initiations for the step;

CPU the central processor time used for the step;

HOUR the hour of the day during which the job started.

Job steps which were never executed and those corresponding to continuously-

running system jobs (e.g. WYLBUR, ORVYL) were discarded.

In our more detailed follow-on analysis we considered system-level information as

well as the batch load data. The system wait time record (in SMF) gave unused CPU time

2A “job step” is the basic unit of activity in the batch system.

6

. and overall system paging rates. When combined with the detailed batch load data, these

factors provide a better picture of overall system activity.

2.2 Failure Data

The failure data for our study came from an operator-maintained system database

called the UNILOG [Butner, 19801. It contains component failure data as well as

maintenance and engineering change tracking records. Entries in the UNILOG are time-

stamped events depicting individual failures or other significant happenings. Each

UNTLOG failure event is given a type which indicates a hardware failure, a software failure,

a utility problem, an operator error. or an unknown. Each event is categorized as new or

recurrent b‘ased upon whether or not a “repaired” component h‘as remained in operation

for at least one hour. There are approximately 1800 records for each year of activity.

All failures ‘and other significant system events at SLK and CIT are carefully logged

by the system operators. In addition to routine training for operations personnel, an on-

l&e tutorial or1 UNILOG data entry exists. The failure logging is performed via a “fill-in-

the-blanks”, prompting style of man-machine interface. Due to the similarity of the SLAC

and CIT systems and the close cooperation of their management, the UNILOG records kept
A at both sites are similar in form and function.

7

.

3 .

The

Preliminary Analysis

We began our analysis by developing profiles of utilization and failure rate behavior.

profiles provided a visualization of significant trends and led us to hypothesize

various models for subsequent statistical testing. Additionally, they enabled comparison

of the merits of candidate measures of system utilization and provided a sound basis- for

statistical analysis.

It is to be expected that utilization measures will be cyclic over the day. Accordingly,

it is meaningful to examine failure rates over the same period. In our calculations we

average the whole year’s data to produce a “virtual day”.

3.1 Load Profiles

The volume of load/performance data was far too large to allow direct analysis and

-comparison with the corresponding failure data. For a time period spanning one year,

there were fifteen magnetic tapes of utilization data with only about two thousand failure

records for the same interval. It was therefore necessary to reduce the load data to a size

that would allow effective, yet meaningful, ‘analysis.

We reduced the utilization data significantly by computing, for each hour of the day,

the average value of each load me,asure. Due to the volume and structure of the raw data,

the averaging was performed on a month-by-month b‘asis. Appendix I discusses the

processing steps in detail. The resulting load profiles are called the “virtual day” since

they represent the expected load patterns for each hour of the day. There was initially a

concern that such massive averaging would not provide a meaningful indication of actual

system loads. We feared that fluctuations in system load were large and that the maxima

and minima were important factors affecting the failure of equipment and software. After

conducting a detailed study on a month-by-month basis, it was found that the virtual day

model was representative of the SLAC and CIT system loading.

Figure 3-1 gives the profiles of two important utilization measures (batch system

paging and job step processin,0 rate) for SLAC in 1978. Profiles for EXCP rate and total

batch CPU time per hour were also developed (see Appendix II).

8

SLAC 1978 Load Profiles

Figure 3-1: SLAC 1978 Virtual Day Load Profiles

Visual inspection of the SLAC load profiles yields an indication of the nolma.l work ing

day. Early morning is a low-utilization period, with activity beginning to build promptly

at 8 AM. The lunch-time dip and the end of the working day are clearly visible. Evening

hours are spent working off the queues of batch jobs. The higher level late-night

utilization is due to the scheduled processing of large, resource-hogging jobs. This is

A reflected in the profiles of EXP and CPU usage rate.

3.2 Faiiu re Profiles

In order to simplify the comparison of failure and load data, we computed the failure

profiles also on a virtual day basis. This allowed the hourly load averages to be paired

with 24 corresponding hourly failure rates. Separate failure profiles for hardware and

software were developed based upon the UNILOG failure type codes.’ Figure 3-2 gives

sample failure profiles for hardware and software failures at SLAC in 1978.

It would appear from the shape of the failure profiles that the load imposed by

interactive services has an effect on the failure rate. The failure rates are the lowest in the

non-prime hours. They increase just after 8 AM ‘as the working day begins and peak before

and after lunch time. The end of the working day is also noticeable.

3 Together, the failure types for hardware and software accounted for 9% of all failures.

SL4C Component Failure Profiles

5 10 15 20 ‘> -“3
Zour of the kv

Figure 3-2: SLK 1978 Failure Profiles

3.3 Analysis and Discussion of Preliminary Results

It is clear from the load and failure profiles that job step processing and paging rates,

and, to a lesser extent EXCP counts, have some effect on failures. Regression techniques

[Draper, 19661 were used in an effort to quantify this effect. Each group profile was

statistically tested for correlation with one or more utilization profiles.

We computed linear, quadratic, ‘and exponential regressions of load versus hardware

and software failures. We used the same general model equation for all three types of

regression; it wCas of the form
n

Y = zAiXi+B (1)
i=i

where Y is the failure rate (or its logarithm for exponential models), the Xi are utilization

) meCasures (and their squares in the quadratic model), and the Ai and B are coefficients.

Each model was computed with one (and with multiple) utilization factor(s) as the

independent variable(s). The SAS statistical analysis system [Barr, 19761 was used for

testing both linear and non-linear models.

The simple or multiple correlation coefficient, R2, [Draper, 19661 provides an

effective me‘asure of the goodness of the model being tested. Quite simply, it meCasures the

amount of variability in the data which is accounted for by the model. Values of R2 > 0.6

10

(corresponding roughly to R>0.75) are typically interpreted as strong relationships4

[Younger, 19791. Table 3-l gives notation ‘&-td definitions for simple regression.

Table 3-1: Notation and Definitions for Simple Regression

X

x

‘ij

Y

B

0

‘j

%x,

SY Y

SXY

R2

the independent random variable (a load measure)

estimate of the mean of X

j* observed value of Xi

t_he dependent random variable (failure rate)

estimate of the mean of Y

predicted value of Y

jth observed value of Y
n

= 23 xij - x>* corrected sum of squares of X
j=l (corrected for the mean)

= i (Yj - Q2 corrected sum of squares of Y
j=l (corrected for the mean)

= ~ (Xij - x)* <Yj - u>* corrected sum of cross products
j=l (corrected for the means of X and Y)

correlation coeffkient

P
With a linear model, paging rate accounts for 70% of the variability in hardware

component failure rate and 69% of the software rate, i.e. the correlation coefficient, R2, for

our linear model using paging rate as the only independent variable is 0.70 for hardware

and 0.69 for software. Paging, CPU, and EXCPS together correlate with hardware at a 77%

(i= I)

4More specifically, the range of IRl from 0 to I is divided as follows: 0 = no relationship, 0.25 =
moderately weak. 0.5 = moderate, 0.75 = moderately strong, 1.0 = perfect.

11

level. The best correlations obtained with a non-linear exponentiaz regression model were.
0.81 for hardware and 0.82 for software. This model was our best for so&are failures. On

this basis, the single variable5 model is

predicted software failure rate, 9 = 0.0134 e paging * o*oooz60.

Since the high detection rate early in the morning (i.e. the 8 o’clock phenomenon)

does not exist at any other time, we found it reasonable to assume that the pre-noon and

post-noon usage periods behaved differently. Accordingly, we tested separate models for

the two periods. The quadratic model (using the square of paging ‘and job-step rates) was

found to give the best fit. The pre-noon failures correlated at the 0.95 level while the

.afternoon period was at the 0.85 level.

The model in (1) (with unknown coefficient B) is estimated using a function of the

mean values of the Xi and Y. Inspection of our regression data revealed points close to the

_ origin. This led us to consider the simpler model where the intercept, B, is zero. The

explicit ‘assumption that B= 0, when appropriate in the system beirrg modeled, allows a

different algorithm to be used for the computation of Ai [Younger, 19791. In particular,

the algorithm uses the actual values of the variables (rather than deviations from their

means)! This linear zero-intercept model yields much better correlations; R* values were

0.92, 0.90, and 0.94 for hardware, software, and combined failures, respectively. The

justification we propose in support of a zero-intercept model is that equipment and

software must, in general, be exercised in order for failure detection to occur. It should be

kept in mind that overall utilization is a multi-dimensional quantity, U(X,,X,, . . . ,X,J. The

function U(X,,X,, . . . ,XJ depends strongly on system configuration. When

U(X,,X,, .‘. ,XJ is zero or nearly so, the system is inactive. In such a case it is reasonable

to assume an insignificant failure rate.

‘Paging rate (page count per hour) is used for this model since it had the best correlation coefficient with
software failure rate.

6The intercept model (B non-zero) uses the corrected sum of cross products while the through-the-origin
model uses the raw sum of cross products.

12

Paging was the most dominant utilization measure in our 1978 SLAC analysis. This is

possible because paging indirectly measures the concurrency of the system. An increased

level of concurrency implies ‘an increased usage of hardware and software paths, and, thus,

an increase in general exercise of the system. To underst‘and why paging rate best

indicates general exercise in our study, it is necessary to briefly discuss the internal make

up of the IBM OSNS~(SVS) operating system as modified at SLAC.

svs supports a hierarchical task structure. The batch system is composed of a

number of special tasks called initiators. Each initiator, when idle, selects a user job

according to its priority and job class.’ An impoi-tant bounding criteria of a job is region

size. This p,irameter expresses the maximum address space-size for the job. At SLAC, the
region size estimate is used in the initiator’s decision whether or not to start a job. Since

each initiator runs a user job to completion, the number of active initiators corresponds to

the level of multiprogramming in the batch system. The higher this level the more tasks

we have sharing the machine’s physical memory. More sharing increases the probability

that a memory reference will require a page which is not currently in memory: paging goes

up as sharing goes up. Thus, higher paging rates are indicative of higher levels of

multiprogramming. Clearly. as the number of independent, concurrent activities (the level

. of multiprogramming) increases, the overall level of system exercise also rises. As it is this

overall level we seek to measure, a metric for measuring multiprogramming works well.

Note that while the paging rate at SLAC is strongly linked with failures, this should

not be taken to mean that reduced paging (due to reconfiguration) will decrease failure

rates. Any reconfiguration requires re-evaluation of U(X,,X,, . . . ,XJ. In support of this

hypothesis we later show that in the last year of otir study period, due to a differing job

mix, CPU speed, physical memory size, and very conservative paging policy the CIT system

nearly eliminated paging. We find, indeed. that another metric replaces paging rate cas the

best load me‘asure correlating with CIT failures. Unfortunalely, our data is not detailed

enough to isolate the contribution of each system activity measure in order to find the

function U(X,,X,, . . . ,XJ.

7 Job classes xe used to partition the work load. Typical classes indicate express, small, medium, or large
jobs. They further reflect estimated CPU time, region size, and 110 line limits.

13

4. Some Reliability !iUleasu res

Since all failures occur within some specific component, we classify all failures as

component failures and logically attach the failure log record to that component. The

failures that cause an unscheduled interruption in system service form a subset termed

system failures. Each UNILOG failure is categorized as either a component-only or system

failure, as well as new or recurrent. With these categorizations we can calculate both

component and system-level reliabilities.

We define the fault toierance level of a system, FT, as the probability that a

component failure will not lead to a system failure. A simple but coarse estimate of this

probability is

FT=l-
System failures during interval t

All failures during interval t ’

For SLAC in 1978, the estimated fault tolerance level was found to be 0.759.

In a similar fashion an estimate of the effectiveness of the mainten‘ance procedures

(which we define to be the maintenance effectivity) is given by the ratio:

E, =.
MTBF with new & recurrent failures

MTBF with new failures

From UNILOG data, we estimate the ratio for SLAC in 1978 to be 0.867.

Comparative reliability measures for the two systems are tabulated in Table 4-l. The

table is broken into four sections corresponding to major categories of failures (all failures,

all new failures, all system failures, and new system failures). Each such section has three

rows of values. one for each of the hardware-only, software-only, and all failure types.

Note that there are other failure types besides hardware and software, (e.g. utility, operator
induced unknown). This explains why the percentages for hardware and software do not

add up to 100%.

By making comparisons within the basic reliability data of Table 4-1, we find some

14

Table 4-1: Comparative Reliability Measures for CIT & SLAC in 1978-80

SLAC 1978 SLAC 1979-80 CIT 1978 CIT 1979-80

All failures, new & recurrent
Type No. MTBF % No. MTBF % N o . M T B F % No. MTBF %

All 1797 4.87 100% 2064 5.66 100% 1124 7.80 100% 1607 7.28 100%

H/W 1318 6.64 73.3% 1395 8.38 67.6% 780 11.17 69.4% 1002 11.68 62.3%

S/W 388 22.6 21.6% 641 18.26 31.1% 244 35.55 21.7% 302 38.38 18.8%

All failures, new only

Type No. MTBF % N o . IMTBF % So. M T B F % No. MTBF %

Ail 1610 5.43 100% 1806 6.48 100% 882 9.94 100% 1275 9.17 100%

H/W 1189 7.36 73.8% 1190 4.33 65.9% 612 14.16 69.4% 781 14.98 61.2%

S/W 339 25.8 21.0% 589 19.87 32.6% 195 44.53 22.1% 242 47.94 19.0%

System failures, new & recurrent
Type No. MTBF % No. MTBF % No. MTBF % No. MTBF %

All 433 20.2 100% 505 23.19 100% 392 22.40 100% 653 17.70 100%

H/W 154 56.5 35.4% 129 90.28 25.5% 176 47.93 44.9% 322 36.15 49.2%

S/W 237 36.6 54.8% 354 33.10 70.1% 192 45.23 49.0% 248 47.77 37.9%

. System failures, new only

Type No. MTBF % No. MTBF % iuo. MTBF % No. MTBF %

All 376 23.3 100% 445 26.30 100% 297 29.59 100% 509 22.78 100%

H/W 133 65.5 35.4% 106 110.1 23.8% 119 71.08 40.0% 233 50.00 45.7%

S/W 206 42.0 54.5% 318 36.86 71.5% 157 55.37 52.9% 202 57.47 39.6%

15

important trends. Because of age and quantity of equipment, the SLAC components

together are more prone to failure than those at CIT. In spite of this fact, the SLAC system

is more reliable than CIT (MTBF: 23.2 hours vs. 17.7 at UT). Over the three years studied,

the SLAC system as a whole has grown more reliable (by approximately 15% based upon

M‘TBF) while the CIT system has become slightly less reliable (6%).

An important fact is that between the 1978 ‘and the 1979180 study periods the CIT

system was extensively upgraded. The major component, an IBM 3033, is of a newer, more

reliable technology than SLAC's 168s and 360191. The peripherals, particularly the disks,

are also newer at CIT.* The results o’f this upgrade show an increase in hardware

component-level reliability by approximately 5% but a net decrease of nearly 25% in system
reliability for failures attributed to hardware. Thus, while the new components exhibit

marginally better failure rates, the structure of the new system seems to be less fault

tolerant. The FT measures for the two systems are:

SLAC FThrdWa,: 0.89 (197X) * 0.91(1979/80)

CIT FT * 0.77 (1978)hardware’ * 0.68 (1979/80)

We attribute this to the fact that a tight linkage exists between peripheral equipment

‘and the central processor at CIT. The SLAC system, on the other h‘and, is much more

loosely connected. A great deal of the computational load is served by the background

batch machines, those processors currently configured as pure batch stream servers. Many

unit record device failures (i.e. line printers, plotters, card readers) and failures in software

resident in the front-end processor simply do not affect the work flow in these background

machines. 111 iike manner, failures within tilese machines do not affect the rest of the SLAC
a system. This accounts for the system’s relatively high fault tolerance (FT) mecasure.

The software components of our systems tend to be critical resources upon which the

overall system reliability depends. CTT’s software is measurably more reliable (358 total

failures versus 641 at SLAC in the same interval). However, since the CIT system is a

8 We allowed four months of operation with the new equipment before skating to gather failure data.
Presumably. most of the initial problems with the new system were ironed-out during that period.

16

uniprocessor, it is much less tolerant of soFtware failures than SLAC. This is clearly

indicated by the FT measures for the two systems.

SLAC FTSofiware: 0.39 (1978) * 0.45 (1979180)

CIT FTSoBware: 0.21(1978) * 0.29 (1979180)

The system is more likely to fail due to a software component failure at CIT than at

SLAC.

17

5. Q&ailed Analysis

In order to put our results in a more general perspective, we studied another system.

In particular we wished to determine whether the strong correlations exist only at SLAC or

if they may be evident on other large computer complexes. Additionally, it was important

to test the assumption that the “virtual day” load profiles were representative of the load

at time offailure. Finally, our preliminary study showed that all failures taken together are

correlated with load. The question ‘arises whether our results are biased due to dominant
effects of one component type or if the relationship with load is more general ‘and across

the board. For example, we

dependent.

In our main study we

performed detailed analyses

starting 1 September, 1979)..

.
wish to know whether CPU and memory failures are also load

analyzed a second system (CIT) for 1978 and subsequently

for the two systems for a different period (a 16 month period

A 16 month period was needed in order to get a statistically

significant amount of failure data on a component by component basis. Additionally, the

combined effects of a differing sample size and sampling interval tend to make our

statistics more reliable.

5.1 Validation of Preliminary Study Results

Since our SLAC study was for 1978, we thought it appropriate to use data for the same

year in our CIT study. Our objectives were

l to test whether or not strong correlations exist between failures and load;

l to determine the best single measure of computer system utilization;

l to offer feasible explanations for any significant differences found with respect
to the SLAC results.

During 1978, the CIT system used an IBM 370/168 host. In order to make a fair

comparison with our preliminary ‘analysis, we used the programs from our SLAC study to

produce failure ‘and load profiles. As in our preliminary study, we computed linear zero-

intercept regression models. Table 5-l gives the correlation results. The very strong

correlations found were quite encouraging.

18

Table 5-1: CIT 1978 Load-Failure Correlations

DeDendent Variable Independent Variable(s)

Hardware Failure Rate EXCPS, CPU

Correlation
Coefficient, R2

0.93

Software Failure Rate PAGING, EXCPS, CPU 0.91

Hardware & Software PAGING, EXCPS 0.93

Input/output activity (measured by the variable EXCPS) and paging rate were the best

utilization measures for the 1978 CIT models’. Figure 5-l displays these load profiles;

there is significant similarity with those of smc.

CIT 1978 Load Profiles

:2500

10000

‘is00

5000

2500

0
t ; '\&I ,x-Y I
1 , ' , , ..wi"-- i 1 I I

I !
I (, I

!,,//!, ,I,, 0
0 5 10 15 20 25

3our of the 3ay

Figure 5-1: CIT 1978 Load Profiles

.

Our second objective was to determine if the virtual day profiles were, indeed,

representative of the load at the time of failures. To do this we needed to show that the

load at the time of failure was, on the average, very ciose to the virtual day load values for

the corresponding hour. Accordingly, we computed the average load readings during a

9 Unfortunately. these wz not the same two measures that were found dominant for SLC. For reference, all
load profiles se given in Appendix II.

19

one-hour interval preceding each UNILOG failure. Based on the time-stamp of each failure

record, we retrieved the exact load measures from the performance/load database. The

only data conveniently accessible in this mode was system paging rate and system CPU

utilization. These values are averaged, over approximate lo-minute intervals by the

operating system before logging. We computed the average load over the one-hour

immediately preceding each failure and attached it to the UNILOG record. In order to

facilitate comparison with the virtual day, we computed profiles of this failure-time load

data; Figure 5-2 depicts these for SLAC in 1978. The procedure used is further described

in Appendix 1.5.

SLAC Failure-Time Load Profiles
I
t x = CPU Time

3500 r + = Paging Rate

I-
2000 ' ' ' ' '

r-F-$(, , , / , , , 1] , , j
' ' ' 1 ,,a, j I !I

0 3 10 . 15
0

20 25
Flour of the Day

Figure 5-2: SLAC 1978 Failure-Time CPU and Paging Profiles

The curve shapes are observed to be similar to our virtual day profiles”, thus

justifying the use of the virtuai day in our regressions. It is important to notice also that

the entire curve of CPU utilization (in seconds per hour per mu) is above the 80% level.

On the average the load was quite heavy (as measured by central processor utilization.
alone) at the time of component failure.

‘*The spike in failure-time CPU load at 3 AM is due, in large part. to periodically scheduled CPU
diagnostics.

20

5.2 Component-Level Modelling

The final objective of our more detailed analysis was to investigate if strong

correlations exist at the component level in our systems. We grouped UNILOG failures into

component types according to equipment model numbers, e.g. IBM 2314, 3330, and 3350

were placed in the component type "DISK". Components types with similar usage and

potential influence on failures in the system were classed together as usage groups. For

example, usage group "MEDIA" is composed of component types "DISK", "TAPE",

"PRINT", "CARD", and "RLTM" (real-time experimental station equipment). Appendix III

lists the complete set of component types and usage groups. For each component type and

usage group, we computed failure profiles (refer to Appendix III). Figure 5-3 presents

sample failure histograms for two representative usage groups at SLAC: MEDIA and CPU.

In determining load profiles we used system-level data in addition to our preliminary

batch job-step data. This eliminated any possible bias due to a batch-only view of the

system. -The new measures, system wait time (unused CPU time) and system paging rate,

wSere obtained from the SMF system wait record. Note that in subsequent tables these new

system-level measures are indicated by SYSCPU and SYSPAGING, respectively. Table 5-2

Oives correlation results for linear zero-intercept regression models. Parenthesized values5

1
next to the first independent variable indicate the correlation coefficient of that factor

alone with respect to the dependent variable.

The importance of the correlation results of Table 5-2 lies in the fact that the group

failure rates each individualIy follow load.

We have found no single dominant device type or usage group at SL4C or CIT. The

general relationship between failures and load appears to exist across the board. This

result wcas a goal of our detailed analysis. The high correlation of each usage group across

both our systems gives strong evidence of a general load versus failure relationship. We

proceed by offering qualitative explanations for the effects.

21

SLAC 1979/80 Failure Histogmn for Usage Group ‘MEDIA’

FREQUENCY

I
70 +

I

*
*
* * *

60 + * * * * * *

I
50 +

I

* * * * * *
* * * * * *
* * * * * *

40 4 *******al *

I * * * *******
30 + * * * * * * * * * * * * *

I * * * * * * * * * * * * * *
20 + * *

I * *
* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * *
* *
* *

0 2 4 6 8 10 12 14 16 la 20 22

HOUR

SLAC 1979/80 Failure Histogmrn for Usage Group ‘CPU’ .

FREQUENCY

15 + *
14 + *
13 -t * *
12+ _ * * * *
11 + * * * * * *
10 t * * * * * * * * *
9 + ************
a + * * * * * * * * * * * * * a
7+*** * * a * * * * * * * * * * *
6 + * * .* * ******a*******
5+***** * *******a :a * * * *
4+ * * * * * * * * * * * * * * a * * * * * *
a+***** *************** *
2+****** * * ***************
1 + *********************$**

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 5-3: SLAC MEDIA and CPU Failure Histograms

22

Table 5-2: Regression Results by Usage Groups -- 1979180 SLAC & CIT

CIT1979/80

Dependent Variable
@row3 failure rate)

CPU .

CPU” 5

MDCTL 5

MEDIA

MEMORY 3

SOFTWARE

Independent Variables

JOBSTEPS(.63), PAGING

Correlation
Coefficient, R2

0.72

SYSCPU(.f@), SYSPAGING 0.81

SYSCPU(.90), JOBSTEPS 0.91

SYSCPU(.86), PAGING 0.89

SYSCPU(.75), EXCPS 0.76

SYSCPU(.~~), PAGING 0.82

TLCHAN SYSCPU(.79), SYSPAGTNG

5 Not a significant sample size.

0.87

SLAC1979180

Dependent Variable
&row failure rate)

CPU

CPU* 5

MDCn

MEDIA

MEMORY 5

SOFTWARE

nCHAN

IndeDendent Variables

JOBSTEPS(.92), SYSCPU

JOBSTEPS(.73), SYSCPU

SYSCPU(.88), EXCPS

JOBSTEPS(.91), SYSCPU

susc~U(.78), PAGING

JOBSTEPS(.92), SYSCPU

SYSCPU(.79), JOBSTEPS

Correlation
Coefficient. R2

0.94

0.75

0.90

0.91

0.79

0.94

0.83

3 Not a significant sample size.

23

6. Views on Observed Results

6.1 Discussion Qf Measured Results

Before discussing our results, it is important to consider the differences in

environment and usage in our two systems. The CIT system is oriented more toward

production (with a heavy 110 component) and general user services than SLAC.

Accordingly, the load at CIT is more interactive, less CPU-bound than SLAC. Recall that

the SLAC computer center supports a physics research community while CIT'S users have

much more generally distributed coniputational needs. In terms of peripheral

complements, the two systems are largely equivalent. We see in excess of twenty large-

capacity disk units at each site along with more than ten high-performance magnetic tape

drives and several unit record devices. The fundamental architectural difference between

the two systems lies in the connection of peripherals to central processing facilities. At CIT,

a tight linkage exists between peripheral equipment and the on-going computational load

of the uniprocessor system. The SLAC system, on the other h‘and, is relatively loosely

coupled with two largely autonomous background processors dedicated to batch service.

As we look tit the trends for the two computer systems across the three-year sp,an of

our study, one substantive effect is clear. The failure profiles at CIT have changed

significantly between the 1978 and 1979/80 study periods. In mid-1979, the system was

connected to a nationwide access network and accounts were made available to east coast

universities and research groups. As a result, the sharp rise in failures previously seen at 8

AM became spread with a substantial effect at 5 AM (8 AM-EST) followed by a gradual

build-up until the local load start-up at 8 AM-PST. As would be predicted by our
a hypothesis, the relationship between load and failures continues to be strong.

We find strong correlations across the board for each component type cand usage

group. The measures correlating the strongest at the component level, however, are not

the same at SLAC and CIT. Because of the multi-dimensional complexity of work flow

within a large computer system, no one measure of utilization can describe the situation

adequately. lt appears that system CPU usage ‘and job step processing rate together

provide the best aggregate measure of system load (refer to Figure 5-2). We conjecture

24

that this is so because of the type of exercise depicted by job step processing rate as

compared with the type for CPU usage. The system can be modelled as a load-flow graph

[Shooman, 19681 wherein we have increased path utilization as the system load increases.

Following such a hypothesized graph model with failure discovery rate approximately

linear with the fraction of the graph in exercise, we would expect the load that most

completely exercises the CPU to correlate with the highest CPU failure rate. Measuring just

CPU usage rate tells us little about the diversity of instruction types or the completeness of

exercise of circuitry within the CPU. Job step rate, on the other hand, indirectly measures

the system concurrency and, thus, is greatest when the overall system load is worst case.

This tends to be late afternoon with much I/O interrupt activity and maximum CPU

multiplex rate (among ready user jobs). This time is the period of most complete exercise

of the CPU. The raw measure of CPU usage indicates that midnight is heaviest. This

corresponds to the release and processing of large CPU and r/o-bound batch jobs.

During the three-year study, both systems were reconfigured to optimize throughput.

Memory was added. region sizes were adjusted, dedicated and virtual memory allocation

schemes were tuned. The effect has been a dramatic decrease in paging rate. Accordingly,

that metric is no longer the best index of system activity. It does, however, continue to
. measure interactive load. Via tuning, its effect has been minimized in our subject systems,

but it still appears as a second or third choice measure in some regression models. It is

important to point out that there is some degree of overlap in all of our measures.

Accordingly, one measure is sometimes selected over another for a better correlation.
,

6.2 Conjectures on the Model

) Clearly, some type of relationship exists between system load and failures. We

believe there to be several effects interacting to produce the observed phenomena. The

first of these effects is the well-known constant failure rate Poisson model which is

essentially load-independent. Such a model, however, cannot by itself entirely explain the

effects we have observed at SLAC and CIT. We hypothesize that the other effects are load-

induced and discuss them in the following sections.

25

6.2.1 Latent Discovery Effect

As failures in equipment within our systems occur, they must be detected in order to

affect the statistics. Many failures can only be detected when the particular module or

subsystem of which they are a part is exercised. Even if failures may not be caused by

increased utilization, they are revealed by this factor. The time between the occurrence of

a failure and its manifestation as a system error has been referred to as the “error latency”

[Shedletsky’, 19731.

This latent discovery effect allows us to explain the “8 o’clock phenomenon”; viz.

the failure rates rise strongly with increased load at 8 AM and drop during lunch, then

never get up as high again even though the load may rise to a level higher than the pre-

lunch peak. Resident failures (latent errors) from the early morning lower-utilization

hours are revealed after the system utilization starts to increase at 8 AM. The strong

correlations in the pre-noon period show that latent discovery is ,a.n important factor. The

. continued, although somewhat weaker, correlations in the afternoon strongly suggest that

latency is not the only effect. The constant failure rate model does not itself significantly

correlate with load; it serves to explain the observed failures during low usage periods and

provides the undetected failures that are revealed as latent errors after utilization increases.

6.2.2 Load-Induced Hardware Failures

There are three environmental aspects of computer systems that are effected by

utilization and that, themselves, have an effect on hardware failures.

l Electronic noise . . . as more activity is taking place per unit volume, there is
more electronic noise in the environment. This noise adds to the normally
present variations in the analog signals which are interpreted as digital logic
levels. A higher noise level contributes to a higher rate of faulty detections in
memories and to timing and synchronization anomalies on busses and in
cables.

o Temperature rise . . . as the activity per unit volume increases within a computer
system, so does the number of average exercises per second of any given
device (even within chips). Higher rates of exercise lead to higher
temperatures at the devices themselves. Since temperature affects
semiconductors in a variety of ways, we can only point out that statistically we
expect to see higher failure rates at higher temperatures.

26

l Mechnical stress, vibration . . . many peripheral devices rely upon mechanical
assemblies for their correct operation. Vibration in mechanical systems is
largely equivalent to noise in electronic equipment. We believe that
mechanical stress and vibration behave statistically as temperature and noise in
semiconductor devices.

These effects are primarily significant for marginal devices. The existence of such

devices can also explain transient errors, i.e. situations where under normal operating

conditions all components perform correctly but, ocassionally, non-repeatable failures

occur [McConnell, 19791.
.

6.2.3 Load-Induced Software Failures

Many of the typical software design and implementation errors [Myers, 19781 are

present at SLAC and CIT. These problems divide into two groups, those triggered under

high-load and those that are load-independent but appear to be load-induced because of

an increased execution time effect [Musa, 1980]. Because our systems are quite mature,

however, errors in the latter group have in large part been repaired. We conjecture that

there are four general phenomena that affect software ‘and explain sensitivity to system

loads. These are

l Interrupt handlers or device drivers may be sensitive to fluctuations in time or
sequence of events.

l Human interface effects and interactions with tmnsient phenomena.

l Mishandled, load-induced hardware failures.

l Typical software design and implementation errors (two classes: load-
dependent and load-independent)

L

Low-level operating system software, in particular that which handles I/O and

interruptions is time and sequence critical. Out-of-sequence interrupts can cause

unexpected execution of code. Due to the time-critical nature of interrupt-time software

and the ever-present pressure for increased throughput, checks for the miriad of possible

errant sequences are usually not made. Instead, the channel programs and interrupt-time

routines are made ‘as robust and error tolerant as is possible and economically feasible.

The peaks of very high load cause a statistically higher software failure rate due to the

27 ,

increased stress on these programs and, thus, the increased probability of unsolicited,

missed, or multiple interrupts occurring. With the use of data concentrators, local and

nationwide network access, and other computer front-end equipment, the host’s interrupt-

time software is even more likely to see wide fluctuations in timing and, in some cases,

sequence of interrupts. Such fluctuations are purely load-induced. If some software is

sensitive to such fluctuations and a failure results, then the failure will appear to be due to

load.

Often a transient failure or other unknown problem will result in the need for an

operator to manually reset a piece of equipment. Such operator actions can sometimes

result in software failures in the SLAC and UT systems. The hardware reset action is

intended to clear the error condition, but often the action confuses the software and results

in a software failure. There are varying levels of reset that may be performed, including

control console requests to the software. operation of a reset/clear switch on the

equipment, or manual cycling of the power to the equipment. Some reset switches.
accomplish their mission internally by momentarily removing power from the logic so that

its built-in start-up cycle performs the initialization. Such actions are rather harsh in an

operating environment and can affect the correct operation of near-by equipment. The

availability of software interfaces for carefully clearing such situations would reduce the

failures rates in this area.

The class of software errors triggered under high-load include array bounds

violations, queue overflow/underflow, accessing memory via pointers after memory had

been freed, etc. Some of these only can occur when loads are high. Others occur

constantly, but have no undesired effects; they go un-noticed until the system becomes

heavily loaded.

Due to the organization of the SLAC and CIT software, many events which are logged

as software failures are probably caused by the inability of software to adequately respond

to hardware malfunctions. As we have mentioned earlier, there are two major interactive

subsystems (WYLBUR and ORVYL) and a background batch system. Both WYLBUR and

ORVYL were developed at Stanford. During the period of their development, the 2301

drums (upon which they “page” user files and programs) were extremely reliable. The

28

equipment literally did not fail in a four year period. Consequently, correct operation of

WYLBUR and ORVYL depends quite heavily upon the reliable operation of the paging

devices (now largely 230%). Failures in these devices can cause the software to crash or

abort. Policies such as the first-fit memory allocation technique used in ORVYL result in

low utilization of certain sections of the paging devices (except during high-load periods).

Hence, latent paging device failures can cause what appears to be load-induced software

failures.

Many software failures are in an area of the code involved with error condition
handling. Preliminary software testing is often functional testing and may not involve

simulation of all error conditions. Thus, when a hardware failure or transient causes such

‘an error condition to arise, the software fails. In this case, the problem lies in software, but

the discovery is triggered by a hardware failure.

29

7. Probabilistic IModels

In this section we propose a simple probabilistic model to describe the increase in

failure rate with system load as measured by one of the proposed utilization factors. This

_ allows us to estimate the underlying statistical relationship between the two variables.

We note from our regression model that the mean failure rate is linear with

utilization (viz. system CPU); i.e. the slope of the line which is the ratio

Failure Rate
System CPU Usage Rate

= Failures per unit CPU usage

is constant. We refer to this ratio as the utilization or load-inducedfailure rate (A,). As a

consequence, we may employ an exponential distribution to describe the probability of a

utilization-induced failure: i.e. we have the cumulative distribution function

FutilizationfuJ = ’ - e
-A, u

where “U” denotes the utilization factor (in our case system CPU usage rate).

This can also be confirmed through a Kolmogorov-Smimov Test [Daniel, 19781 on

UNILOG and SMF data. For CIT in 11979180, we obtain

hu (hardware) = 2.28 X lo-* failures/unit CPU

h, (software) = 4.62 X 10s3 failures/unit CPU

It is important to note that the overall failure rate still follows an exponential

distribution (now with load as a parameter), a fact which allows classical models to be used

in reliability computations.

Alternatively, we could view the overall failure rate as being composed of two

separate quantities. The first is the system inherent failure rate, Z(t), as determined

through classical reliability models. If this is consta!;dturing the useful life of the system,

the associated failure cumulative distribution is 1- e i .

The second is the utilization-induced failure rate depicted by the regression and

30

lization and, hence, isprobabilistic models. This failure rate is dependent upon system uti

cyclic on a daily basis.

Thus, the overall cumulative probability of system failure (assuming independence)

is
-Ait -h&Y

F(t,U) = I - e e .

Figure 7-1 depicts these effects on the conventional “bathtub curve”. Note that the

observed range in failure rate is large (21).

Failure
Rate

(per hour)

T

0.40 _
0.08 -

Infant Mortality Useful Lifetime Wear-out

Daily Utilization

Time __)

Figure 7-1: Augmented Bathtub Curve

31

8. Concluding Remarks

We have studied three years of real data on reliability and performance for two major

computer complexes at Stanford University. We find strong correlations between

observed failure rates (both foe hardware and software components) and the average

values of several measures of system utilization. This behavior is across all componefit

types (e.g. media, CPU, telecommunications). During the course of our study, significant

changes to the systems occurred, (e.g. major acquistion of new equipment, substantial

system reconfigurations, tuning changes for optimized performance, user load pattern

shifts) and in all cases, the failure profiles (both at the system and component-level)

continued to correlate strongly with average measures of load. The observed changes did,

however, cause different measures of load to be most significant in our correlations.

Additional substantiaiion of our studies can be deduced from the results presented in

[Castillo, 19801. In their studies toward developing a Poisson model for a varying load

environment, the authors found that their model was only appropriate at specijk times of
day, i.e. at particular load levels. They also found a four-to-one difference between

minimum and maximum failure rates which they attribute, in major part, to load.

We made some simplifying assumptions regarding the effect of averaging (viz. the

virtual day profile). Our detailed analysis validated these assumptions Md, in addition,

indicated slightly higher than average load levels at time of failure. There was a strong

agreement in shape with our virtual day profiles.

Although we are not in a position to state exactly the reasons for this observed

L dependency, there is sufficient grounds for speculation. Our proposed models include

several combined effects: a load-independent Poisson model with latent discovery effect

and load-induced effects for both hardware and software failures. - It should be noted that

the latent discovery effect which is predominate in new software will be minimal in a

mature piece of software of the type we studied. It is our belief that other problems such

as timing, synchronization, and inadequate software processing of hardware failures are

the leading causes of software malfunction.

32

It is clear from our results that more detailed investigations are necessary and

worthwhile, In particular it is important that lower-level analyses of both hardware and

software failures be conducted in order to learn more about the mechanisms of fai lure.

More challenging would be the development of simple analytical models to represent the

load-failure dependency. These would be invaluable for comparisons with the statistical

models.

There are many potential uses of reliability and performance models in computer

design. One straightforward application is in making reliability projections under

changing load situations. The Stanford Center for Information Technology is planning to

implement a continuing program based on our methodology for use in future reliability

and perfornxance evaluations.

A particularly crucial and challenging component of future work involves the

mathematical formulation of the multi-dimensional utilization function. U(X,,X,, . . . ,X,),

which ielates the many varied measures of load to the single concept of system activity.
Our data reflects a number of performance optimization attempts. In most cases, the

performance increased, but the failure rate followed. Clearly, we cannot continue the

push for ever higher performance without considering reliability. Since increased

performance involves higher utilization, there exists a strong tendency for increased failure

rates. A more detailed understanding of the utilization function, U(X,,X,, . . . ,X,), would

allow the simultaneous optimization of both performance and reliability in large, general-

purpose time-sharing systems.

This work w,a.s supported in part by the National Science Foundation under grant

MCS-7904864, the Air Force Office of Scientific Research under Contract F49620-79-C-

0069 and by CSIRO (Australia). The resources and assistance given free!y by SLAC and

CIT personnel are also greatly appreciated. In particular, we acknowledge Ted Johnstoti,

Richard Carr, and Dave Rossetti at SLXC, and Larry Rivers, Bill Bradley, and Barry

Benight at CIT for their help.

33

Appendix I. Preprocessing Steps

1.1 Raw Data

The raw data for our analysis came from two distinct sources: the operator-

maintained failure and event log (UNILOG) and the operating system-generated

performance and accounting records (SMF). For a number of reasons, the raw data was

not directly useable.

l The UNILOG data was not kept on-line. Two or three times per year the
dataset containing the log was archived to magnetic tape. Thus, a one-time
collection process was performed to retrieve the archived UNILOG data ‘and
organize it as a single on-line dataset.

l The UNTLOG serves a number of purposes and, as such, contains records of
significant events other than failures. Some editing of the collected log was
performed to discard non-failure data. During this process. the overall
UNILOG record was reshaped to make it more manageable. Fields containing
data not pertaining to our study were eliminated. The result was a card image
(SO byte) record with date/time stamps for down and up time, the operator-
assigned failure t,vpe code, the component type ‘and component address, can
indication of new/recurrent and whether or not the system failed due to the
component failure. There were approximately 1200 records for each year of
activity.

l The SMF records of interest to our study were of four types: the system IPL
record (type 0), the system wait time record (type l), the batch user job step
record (type 4), and the system end-of-day record (type 12).

l These records were interspersed with other SMF accounting and performance
data and, thus, had to be selected from a large dataset. This effort was
complicated due to the volume of records and the fact that they were spread
across many magnetic tapes, each one holding from 24 days to one month of
system SMF data. At SLAC, the data from three distinct CPUS was merged
together in the same dataset.

1.2 Required Data Attributes

The requirements for the data to be used in the processing steps of our study were:

1. Dataset should be on-line. This meant they must be of a size suitable for
disk storage rather than the enormous multi-volume datasets we began with.

34

2. Records within datasets should be of a single fixed layout. This was not true of
SMF records which are of fifty differing types, each with a unique record
layout.

3. Data should be efficiently processable. Since many statistical runs would be
made, it wCas important to be able to read-in the data efficiently without having

to select the interesting portions while p‘assing over unrelated records.

1.3 Processing Techniques

In our preliminary study we computed a “virtual day” by obtaining the average value

of four load measures for each hour of the day. The data used was SMF batch user job step

records (type 4) for SLAC in the year 1978. The processing steps performed were:

1. Month by month, select the type 4 records from the appropriate archived tape
volume and place the datasets on disk?

2. For each month’s job step records (approximately 125,000 of them) extract the
paging, CPU time, elapsed time. and I/O start-ups (the so-called "EXCPS").
SLUR these data and maintain a count of the observations for eventual
averaging. ,

3. After all months are run. combine the results by computing the arithmetic
mean ‘and standard deviation. Obtain 24 observations (one for each hour of
the day). Each observation consists of HOUR, JOBSTEPS, PAGING, EXCPS, ‘and
CPU variables.

4. Save the 24 points as our SLAC 1978 virtual day load profiles and plot the four
separate load measures versus time (HOUR).

Our follow-on study was to be more detailed. We wished to perform a similar virtual

day-style analysis on SLAC 1979-80 and CIT 1979-80 data. During the more detailed study,

we hoped to validate our preliminary findings. The added detail came from the system
level SMF records. Recall that our preliminary work was purely based upon batch user job

step data (type 4 SMF records). Much other activity was occurring in the computer system

in addition to the batch semice. For example, the interactive front end edit/fetch/submit

processing (WYLBL'R) and the timesharing component (ORVYL) presented a substantial

load on the system.

11 A general-purpose SMF record selection program written by D. X. Johnson at SLAC was used for this
purpose.

35

To validate our preliminary findings and more accurately depict overall system

activity, we chose to process the system level load records. These measure the total

utilization of the CPU and provide paging counts for the entire system.

The processing of these records was more involved than that performed in our

preliminary study. Most of the complexity arose from the way in which SMF system

statistics are collected. The IBM operating system software collects statistics on overall

performCance in terms of a time interval. This interval is nominally ten minutes, but its

exact value varies considerably and is not stored within the record. The interval can only
be discovered by remembering the time stamp from the previous system statistics record.

The time stamp contains only time-of-day (with no date information) and records are

(obviously) not written while the CPU is halted even though the time of day clock

continues to run. These facts make it important to recognize system halts (type 12 end-of-

day records) ‘and IPLS (type 0 records) and to incorporate that information into the

computation of the exact interval. Since SLAC has three CPUS, each with their own clock

(and, thus, their own version of time), and since the SLAC SMF data contains all three CPUs

data intermixed, a program was written to extract the required infomlation.

1.4 The UNIMERGE Program

Once the decision to write a special-purpose program was made, it became

convenient to perform two relatively unrelated processing steps in the same pCass through

the SMF data. The program, UNIMERGE, computes hourly averages by CPU of system wait

time ‘and paging rates and merges UNILOG failure data with smoothed and lagged load

data.

.
The averaging is straightforward and involves only summing and counting the data

involved. This is easily done once the interval has been determined. It is necessary to

compute the interval since the measured values of CPU wait time and paging counts must

be converted to rates and, therefore, must be divided by the measurement interval.

The interval is computed by logging the time/date of the last event on the current

CPU and correctly processing system halts and IPLS (also by CPU). This is, in principle. not

36

difficult except for the fact that the 360191 has a different operating system and a less-

detailed time-stamping method. In fact, on the 360/91 the exact measurement interval

cannot be precisely determined and must be “guessed” by examining the “time-written”

field of the record and computing the total number of whole ten minute intervals that

elapsed since the previous 360/91 record. Following this heuristic, it was necessary to do

reasonability checks and log/discard suspect data. On the average, two to three suspect

intervals were reported per month of triplex data

1.5 Lagged Data

In order to study the precise system load immediate ly preceding a component or

system failure, it was necessary to merge the time-ordered da&sets containing failure and

load data. For each UNTLOG failure record, we wished to obtain the CPU wait time and

system paging rate at the time of failure. We also wished to record average va!ues of the

two load measures during one, two, and three-hour intervals preceding the failure.

The UNIMERGE program computes the desired values by keeping a “lag buffer” of

readings for each CPU as the SMF data is processed. As each SMF record is obtained,

readings are recorded and stored into the (circular) lag buffer until the time-stamp of the
.

latest record indicates a time past the time of the current UNILOG failure. Then, the lag

buffer values for each CPU are used to compute the average values during the one, two,

and three-hour lag intervals. Finally, the merged failure/load record is written to the

output dataset and the process is repeated for the next UNILOG failure record.

When all failure records have been merged, the UNIMERGE program terminates. The

lagged data can then be used to obtain load profiles indicating the measured system

utilization at the time of failures. This is done as a validation that the virtual day style of

‘analysis is valid. Also, more intensive studies of failure as a function of load are possible.

37

Appendix II. SLAC and CIT Load Profiles

This appendix contains the virtual day load profiles’* for the two systems and the two

study periods (1978, 1979/80). The smooth curves are presented only as an aid to

visualization; the actual data points are plotted with markers. Each graph consists of two

profiles, one for CIT and one for SLAC.

EXCP Rate (1978) by Hour
300000

c 250000
<
2
2 200000
al

7il
E: 150000

al4
62 100000

!2w 50000

dr*

b\/
b * 4 Y = CITI

-k = SLAC

E I I, I I I I A, I I1 I I I I/ I I I I t I I I tl
0 5 10 15 20 25

Hour of the Day

Figure II-l: 1978 EXCP Profiles

I2The data presented within this Appendix is provided by and property of Leland Stanford, Jr. University.

38

CPU Time (1978) by Hour

aJ
E 1000
g
3 500z2

0 5 10 15 20 25
Flour of :he Clay

Figure H-2: 1978 Batch CPU Profiles

Batch Paging (19’78) by Hour

0 5 10 15 20 25
Hour of the 3ay

Figure 11-3: 1978 Batch Paging Profiles

39

Job Step Rate (1979/8(l) by Hour

I-
*“‘l~!‘ll’ I:lllllrlllIAl:d

0 5 LO 1 5 20 25
Hour of the Day

Figure H-4: 1979180 Job Step Profiles

EXCP Rate (1979/80) by Hour.

0 5 10 15 20 25
Hour of the Day

Figure 11-5: 1979/80 EXCP Profiles

40

Batch CPU Time (1979/8(l) by Hour
3000-l,

- x = CIT
2500 .c 9 = SLAC

i- 4

, !
3 10 15 20 25

Xour of the Day

Figure H-6: 1979180 Batch CPU Profiles

System CPU Time (1979/80) by Hour

3400

3300

3200

3100

3000

5 10 15 20 25
Hour of the Day

Figure H-7: 1979/80 System CPU Profiles

41

System Paging (1979/80) by Hour
8000

”
0 5 10 15 20 25

Hour of the Day
.

Figure 11-8: 1979/80 System Paging Profiles

43

Appendix III. Component Type and Usage
Groups Failure Charts

The data presented here13 are failure frequency count plots for each hour and for

various component type and usage groups. Each hourly reading represents the count of

failures for the specified component type or usage group during the given hour of the day.

Note that many component types do not contain enough failures to be considered

statistically significant.

The list of all possible component types is given below:

XcPU

MEMORY

DISK

CHANNEL

TAPE, PRINT, CARD

XCTL

TELE

RLTM

component is ‘associated with a system central processing
unit, (QCPU = 3701168, ~CPU = 360/91, ~CPU = 3033);

component is associated with the system main memory;

component is associated with a disk subsystem;

component is associated with an I/O channei;

component is associated with a magnetic tape, line printer, or
card reader/punch subsystem;

m

component is associated with a disk, tape, or printer
controller, (x= D, T, or P);

component is associated with telecommunications (user front
end or RJE);

component is associated with SLAC'S real-time experiment
stations;

SWE, SWFE, SWOP, SW component is back-end, front-end, or operating-system
software; SW is used for all software at SLAC.

A usage group is a higher-level aggregate of component types. The significant group

are:

CPU includes groups ~CPU, ~CPU, CPU;

CPU* equipment associated with system operator stations;

13The data presented within this Appendix is provided by and property of Leland Stanford, Jr. University.

44

includesgroups DISK,T~PE,PRINT,CARD,RLTM;~~MEDIA

MDCTL

MEMORY

SOFTWARE

media controllers, includes DCTL, PCTL, TCTL;

same ‘as group named MEMORY;

includes component types SWBE, SWFE, SWOP; no usage
group was formed for SLAC, component type SW is
equivalent.

telecommunications and channels, includes TELE, CHAN.TLCHAN

FREQUENCY

+
+
+
+
+
+
+
+
--

* * * * * *
*
*

* *
* *
* *
* * *
* * *

* * * * * * *
* * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * ** * *
*********** * * *
* * * * * * * * * ** * * * * * *

-e--w-

6
------ --------------------
a IO 12 14 16 la 20

------ -
0

we
2 22

HOUR

Figure III-l: UT 1979/80 Failure Histogmm for Component Type ‘CARD’

FREQUENCY

3+ * 8
29 * * *
1 + * * * * * * * * * *

-------9------------------------------------ -----
0 2 4 6 a 10 12 14 16 la 20 22

HOUR

Figure 1X1-2: SLAC 1979180 Failure Histogram for Component Type ‘CARD’

14This grouping differs at the two sites: at CIT we have formed an interactive media usage group and a batch
usage group. The first is composed of DISK only; the second has PRINT and TAPE. At SI K the single media usage
group contains PRINT, TAPE. DISK;, and RLT~~ component types,

45

FREQUENCY

7+*
6+*
5 + *
4+**
a+****
2+**** *
1+******

I --------------

*
* * *

* * * * * * *
8 * * * * * * * *
********** * * *
---------------------------------Be

0 2 4 6 a lo 12 14 16 la 20 22

HOUR

Figure M-3: CIT 1979/80 Failure Histogram for Component Type ‘CHANNEL’

FREQUENCY

7+ * *
6+ * *
5 f * * * *
4+ * * * * * *
3+ * * * * * * * * * * *
2+ * * * ******Ml**** * * *
lt ** * * * * * * * * * * * * *******

0 2 4 6 a lo 12 14 16 la 20 2?

HOUR

Figure 111-4: SLAC 1979/80 Failure Histogram for Component Type ‘CHANNEL’

FREQUENCY

2+ *
It** * * * * *

0 2 4 6 a lo 12 14 16 la 20 22

HOUR

Figure 111-5: CIT 1979/80 Failure Histogram for Component Type ‘DCTL

46

I FREQUENCY

15 +
14 +
13+* *
12+* *
ll+* *
lO+* *
g + * * *
8+*** *
7+*****
6+**+**
5+*****

* *
* * *
* * * +
* * * * *
* * * * * *
* * * * * * * *
* * * * * * * * * * *
* * * * * ******* *

* * * * * ******* *

***********lb* *

* * * * * * * * * * * * * * * *
4+**
3+ * *
2 + * *
1+ * *

* * * * * * * * * * * * * * * * I(* * *
************* * * * * * * * * *
* *
* * ******* * * * * * * * * * * * * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-6: SLAC 1979150 Failure Histogram for Component Type ‘DCTL

.

FREQUENCY

11 i- *
10 + * * *
9 + * * * * *
8+ * * * * * * *
7+** * * * * * * * * *
6 + * * * * * * *
5+*******

* * *
* *

4+***** * * * * * * * * *
3+ * * * * * * * * 8 ****** * * * * * *
2+************* * * * s * * * * *
l+************** * * * * * * * * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 111-7: CIT 1979180 Failure Histogmm for Component Type ‘DISK

47

FREQUENCY

25 + *
20 + * * *
15 + * * * * * *
10 + ******** * *
5+*** a l * * * * * * * * * * * * * * * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR MIDPOINT

Figure 111-8: SLAC 1979180 Failure Histogram for Component Type ‘DISK’

FREQUENCY

3 + * * * * *
2 + * * * * * * * * *
I+ ** ************ * * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 111-9: CIT 1979/80 Failure Histogmm for Component Type ‘MCTL’

FREQUENCY

5 + * *
4 + * 8 *
3+* * I *
2+** * * * 8 * * *
I+***** * * * * * * a*****

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-IO: CIT 1979180 Failure Histogram for Component Type ‘MEMORY’

48

FREQUENCY

2t'
1 + *

* * * *
* * * * *

* *
* * *

* *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-11: SLAC 1979180 Failure Histogram for Component Type ‘MEMORY

FREQUENCY

6 t6 t **
5 t5 t ** ** **
4t" *4t" * ** * ** *
3t***3t*** * ** * ** * ** * * * ** *
2t***2t*** * ** * ** * ** * ** * ** * * ** *
1+****1+**** * ** * ** * ******** * * * ** * * a* * a * *

---------------------- --
0 2 40 2 4 6 8 10 12 14 16 18 20 226 8 10 12 14 16 18 20 22

HOUR

Figure 11X-12: CIT 1979/80 Failure Histogram for Component Type ‘OPRL’

FREQUENCY

7 t *
6 t *
5 + *
4 t *
3 t * * * * *
2t* * ****** It * *
it*** * * * * * * a * * * * * * * *

-------------_-----------------------------------
0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 111-13: SLAC 1979/80 Failure Histogram for Component Type ‘OPRL’

49

FREQUENCY

2+ * * 0
l+ * * * * * * * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-14: CIT 1979180 Failure Histogram for Component Type ‘PCTLT

FREQUENCY

18+ *
16 + * * * *
IA+**** * * * *
12 t * * * * * * * * * * J(
10 + * * * * * * * * * * * * * rt
8+"**'*** * * * * * * * * * *
fj+***"*** *********** * *
4+**** *************a******

2 t *..a *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 111-15: CIT 1979180 Failure Histogram for Component Type ‘PRINT’

50

FREQUENCY

24 + *
22 + *
20 + * *
18 + * * * *
16 + * * * * * *
14 + * * * * * * * *
12 + * * * * * * * * * * *
10 +
8 +
6t *Q *
4 + *
2+**

*

* * *
* * *

* * * *
* * *

* * * * *
* * *
* * *

* * * * lb******

*lb*********

*
*

a********
I * * * * * * * * * * * *

* 0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 111-16: SLAC 1979/80 Failure Histogram for Component Type ‘PRINT’

FREQUENCY

4 + *

3 + * * * * * *

2+**** * * * * * * * * *

1+**** * * * * * * * * * * * * * *

0 2 4 6, 8 10 12 14 16 18 20 22

HOUR

Figure 111-17: CIT 1979180 Failure Histogram for Component Type ‘SWBE’

51

FREQUENCY

30 + *
25 + *
20 + *
15 + * * *
10 + * * 4 * * * * * * * *
5+* * * ****************

----_-----------_--------------------------------
0 2 4 6 8 10 12 14 16 18 20 22

HOUR
Figure III-18: CIT 1979180 Failure Histogram for Component Type ‘SWFE

FREQUENCY

14 + *
13+* *
12+ * *
11-t * *
10 t * *
g t * * *
a+*“*”
7+****
6+* * * *

* *
* *
* *

5+**** * * * *
4+**** * * * * *
3+**** * * * * * * * * *

2+****** * * * * ******* * * *

l+****************** * * * * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-19: CIT 1979180 Failure Histogram for Component Type ‘SWOP’

52

FREQUENCY

60 + *
50 + *
40 + * * * * *
30 + * *********
20+** *************** *
I()+** ** * **a ** * *** ** ** *** ***

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 111-20: SLAC 1979/80 Failure Histogram for Component Type ‘SW’

FREQUENCY

15 + *
14 + * *
13 + * *
12 + * * * *
11 + * * * *
10 + * * * * * * *
g t * * * * * * * * *
8-k** * * * * * * * r(r * *
7+**** * * * * * * s * * * * *
Et”*“** * * * * * * * * * * * * * * *
St***** ******** * * * * * * * * *
4+***** * * * * * * * * *********
St***** * * * * * * * * * * * * * * * * * *
z+************************
I+************************

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 111-21: CIT 1979180 Failure Histogram for Component Type ‘TAPE

53

FREQUENCY

30 + *
25 + * * * * *
20 + * * * * * * * *
15 + * **********
10 + * * * * * * * * * * * * *
s+************************

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-22: SLAC 1979180 Failure Histogram for Component Type ‘TAPE

FREQUENCY

2t ** * * * * *
it*** * * * * * ******

---- ---
0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-23: CIT 1979/80 Failure Histogram for Component Type ‘TCTL’

FREQUENCY

l+ * * * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 111-24: SLAC 1979180 Failure Histogram for Component Type ‘TCTL’

54

FREQUENCY

16 +
15 +
14 +
13 +
12 +
11 +
10 +
9 +
8+
7+
6+
5-t
4+
3+
2-t *
1 t * *

*
*
*
* * * *

* l * * * *

1 * * * * * * *

* * * * * * * * * *

******** * * * *

* * * * * * * * * * * *

******** * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * a

* * * * * * * * * * * * * * * * * * * *

****************** * * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure M-25: CIT 1979180 Failure Histogram for Component Type ‘TELE

FREQUENCY

8+ * *
7+ * *
6+ * * *
5+ * * * *
4+ * * * * * * * *
3+* * * * * * * * * * * * * *
2t* * ********* **********
l+* *********** * * * * * * * * * * *

--------------------____________________---------
0 2 4 6 8 10 12 14 16 18 20 22

L

HOUR

Figure III-26: SLAC 1979/80 Failure Histogrcvn for Component Type ‘TELE’

55

FREQUENCY

1 + *
_--

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-27: CIT 1979180 Failure Histogram for Component Type ‘TLCT

FREQUENCY

18 + *
17 + *
16 + *
15 + *
14 + *
13 + *
12 + *
11 + * *
10 + * *
g t * * *
8 + *
7 f *

* * *
* * * *

a+***‘* *
St****** * * *
4+******* * * * * * *
a+********* * * * * * * *
2+**************** * * * *
I+********************* * *

-_--_--_---------_-------------------------------
0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-28: CIT 1979/80 Failure Histogram for Component Type ‘3CPU’

56

FREQUENCY

55 ++ **
4 +4 + ** **
3+ *3+ * ** ** * ** * **
2+ *2+ * * ** * ** * ** * * ** * **
it***it*** * * ** * * * * * ** * * ** * * * * * * ********

--------------------______________9_____-----------------------------______________9_____---------
00 22 44 66 88 1010 1212 1414 1616 1818 2020 2222

HOUR

Figure 111-29: SLAC 1979/80 Failure Histogram for Component Type ‘8CPU’

FREQUENCY

12 + * *
11 + * * * *
10 + * * * * *
9 + * * * * * * *
8 + * * * * * * * * *
7 + * * * * * * * * * * *
et* * * * * * * * * * * * * * * *
5 + * * * * **************
4 + * * * * * ************** *
3+***** * * * * * * * * * * * * * * *
2+****** * * * * * * a * * * * * * * *
1+ ****** * * * * * * * * * * * * * * * * *

------------- --em --------------------------------
0 2 4 6 8 10 12 14 16 18 20 22

. HOUR

Figure III-30: SLAC 1979180 Failure Histogram for Component Type ‘9CPU’

57

FREQUENCY

18 t *
17 + *
16 + *
15 + *
14 + *
13 + *
12 + *
11 + * *
10 + * *
g t * * *
at*** *
7+*****
fj+***** *
lj+****** * * *
4+******* * * * * * *
a+********* * * * * * * *
2+**************** * * * *
1 + ********************* * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 111-31: CIT 1979/80 Failure Histogram for Usage Group ‘CPU’

FREQUENCY

5t5t **
4t* *4t* * **
3+***3+*** * ** * ** * ** *
2t***2t*** * ** * ** * ** * ** ** * ** *
I+****I+**** * * * * * ******* * ** * * ** * * ** * * ** *

---------------------~--~---------------------------
00 22 44 66 88 1010 1212 1414 1616 1818 2020 2222

HOUR

Figure 111-32: CIT 1979180 Failure Histogmm for Usage Group ‘CPU*’

58

FREQUENCY

7+ *
6+ *
5+ *
4+ *
3-t * * * * *
2t* * ****** * * *
it*** * ********** * * * *

---- ---
0 2 4 6 8 10 12 14 16 18 20 22

HOUR '

Figure 111-33: SLAC 1979/80 Failure Histogram for Usage Group ‘CPU*’

FREQUENCY

3+ *
2t*** * * * * * * * *
It*** * * * * * * * * * * * * * *

_------------^-----------------------------------
0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-34 CIT 1979/80 Failure Histogmm for Usage Group ‘MDCTL’

59

FREQUENCY

lO+* *
g t * * *
at*** *

* * * * * * * *
* * *
* * *
* * *
* * *

* * * * *
* * ******

7+***** ******
fj+***+* * * * * 1 ******
5+***** * * * * * * * * * * * * * * *
4 + *
3 + *
2 + *
1 + *

* * * * * * * * *
* * *
* * *

* * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* *

-------------- -----------------------------------
0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-35: SLAC 1979180 Failure Histogram for Usage Group ‘MDCTL’

.

FREQU ENCY

5 t *
0 + *
5 + *
0 + *
5 + *

--Be
0

* * *
* *
* *
* * *
* * *

*
* * * * * * * * *
****** * * * * * * *

****** * * * * * * ** * * * *

-------------- w-w---

2 4 6 8 10

HOUR

12 14 16 18 20 22

Figure 111-36: CIT 1979/80 Failure Histogram for Usage Group ‘MED*’

c

60

FREQUENCY

21 + *

20 + *

19 + *

18 + * *

17 + * *

16 + + * *

15 + * * * *

14 + * * * * *

13 + 1 * * * *

12 + * * * * * * *

11 + * * * * * * * * *

10 + * * * ********* * *

g t * * * * * * * * * * * * * * * * *

8t** * * * * * * * ****** * * * * *

7+** * * * * ********* * * * * *

6+“***“*

St******

4+******

3+******
2+******
I+******

----------w---
0 2 4

. Figure III-37: CIT 1979/80

* *******
* *******
* * *******

* * *******
* * *******

6 8 10 12 14

HOUR

Failure Histogram for

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

16 18 2

* * *

* * *

* * *

* * *

* * *

* * *

--e-m

0 22

*
*

- Usage Group ‘MEDIA’

FREQUENCY

8+ *
7+ *
6+ * *
5+ * *
4+* * * * *

. 3t** * * * * * * * * * * * *
2+**** ******* * * * * * * *
I+**** * * * * * * * * * * * * * * * * * * *

------_----------------------------~-------------
0 2 4 6 8 10 12 14 16 18 20 22

HOUR MIDPOINT

Figure 1X1-38: CIT 1979180 Failure Histogram for Usage Group ‘MEMORY’

6 1

FREQUENCY

5+
4 +
3+
2+*
l+*

we--
0

* *
* * *

*
* * *

*******a

*

* * * * *
--------------------____________________---
2 4 6 8 10 12 I4 16 18 20 22

HOUR

Figure 111-39: SLAC 1979/80 Failure Histogram for Usage Group ‘MEhJORY’

FREQUENCY

35 + *
30 + *.
25 + * *
20 + * + * * * * *
15t** ** * * * * * * * * * *
10 + * * * * * * * * * * * * * * * * * *
5+************************

0 2 4 6 8 10 12 14 16 18 20 22

HOUR MIDPOINT

Figure III-40: CIT 1979180 Failure Histogram for Usage Group ‘SOFTWARE

62

FREQUENCY

60 + *
I *

50 + * 4 *
I * * * *

40 + * * * * *
I * * * * * *

30 + * * * * * * * * * *
I * ********* *

20 t * * * **************** *
I * * * **************** 8

lo+** * * * *** *** * * * * ********+
I *********** * * * * * * * * * a * * *
-------------------------- -----------------------
0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 1X1-41: SLAC 1979180 Failure Histogmn for Usage Group ‘SOFTWARE

FREQUENCY

18 + *
16 + * * * * *
14 + * * * * * *
12 + * * * * * * *
10 + ******** * * *
8+* * * * * * * * * * * * *
6 t * * * * * * * * * * *******
4t* * * a l * * * * * * * * * * * * * * * * * * *
2+*************** *********

0 2 4 6 8 10 12 14 16 18 20 22

HOUR MIDPOINT

Figure M-42: CIT 1979/80 Failure Histogram for Usage Group ‘TLCHN’

63

FREQUENCY

13 + *
12 + *
11 + * *
10 + * * * *
9 + + * * * * *
8 + * * * * * * *
7+ * * * * * * *
6 + * * * * * * * * *
5 + ******a * * * * * * * 8
4 + ******** *********+
at*** ********************
2+*** ********************
I + *

-------------- -----------------------------------
0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-43: SLAC 1979180 Failure Histogram for Usage Group ‘TLCHN’

FREQUENCY

1-k * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure 111-44: SLAC 1979/80 Failure Histogram for Component Type ‘OCTL

FREQUENCY

3 + *
2 + * *
1-t * * * * * *

0 2 4 6 8 10 12 14 16 18 20 22

HOUR

Figure III-45 SLAC 1979180 Failure Histogram for Component Type ‘RLTM’

64

References

[Barr, 19761 Barr, Goodnight, Sal1 & Hellwig. A User’s Guide to SAS ‘76 SAS
Institute, Raleigh, North Carolina, 1976.

[Beaudry, 1978a] Beaudry, M. D. Performance Considerations for the Reliability Analysis
of Computing Systems. PhD thesis, Stanford University, 1978.

[Beaudry, 1978b] Beaudry, M. D. Performance Considerations for Reliability Analysis: A
Statistical Case Study. Technical Report 126, Center for Reliable
Computing, Computer Systems Lab, Stanford University, May, 1978.

[Butner, 19801 Butner, S. E. and Iyer, R. K. A Statistical Study of Reliability and
System Load at SLAC. Technical Report 188, Center for Reliable
Computing, Computer Systems Lab, Stanford University, Jan, 1980.

[Castillo, 19801 Castillo, X. & Siewiorek, D. P. B, Performance-Reliability Model for
Computing Systems. In Proceedings of the Tenth Annual Fault-Tolerant
Computing Symposium, pages 187-192. October, 1980.

[Castiilo, 19811 Castillo, X. & Siewiorek, D. P. Workload. Performance, and Reliability
of Digital Computing Systems. In Proceedings of the Eleventh
International Symposium on Fuult-Tolerant Computers, pages 84-89.
June, 1981.

[Daniel, 19781 Daniel, W. W. Applied Nonparametric Statistics. Houghton Mufflin
Co., 1978..

[Draper, 19661 Draper, N. & Smith, H. Applied Regression Anai’jsis. Wiley, 1966:

[IBM, 19721 Introduction to Virtual Storage in System/370 IBM Corp.,
Poughkeepsie, N.Y., 1972.

[McConnell, 19791
McConnell, S. R., Siewiorek, D. P. & Tsao, M. M. The Measurement
and Ana!ysis of Transient Errors in Digital Computing Systems. In
Proceedings of the Ninth Annual International Symposium on Fault-

L Tolerant Computing, pages 67-70. June, 1979.

[Meyer, 19781 Meyer, J. F. On Evaluating the Performability of Degradable
Computing Systems. In Digest of Papers: The Eighth Annual
International Symposium on Fault-Tolerant Computing, pages 44-49.
June, 1978.

[Meyer, 19801 Meyer, J. F. On Evaluating the Performability of Degradable
Computing Systems. IEEE Transactions on Computers C-22:720-731,
August, 1980.

65

[Musa, 19801

[Myers, 19781

[SCIP, 1975a]

[SCIP, 1975 b]

Musa, J. D. The Measurement and Management of Software
Reliability. Proceedings of the IEEE 68 No. 9:1131-1143, September,
1980.

Myers, G. J. Advances in Computer Architecture. Wiley & Sons, 1978.

WYLBURl370 Reference Manual SCIP, Stanford University, 1975.

OR VYL/370 Reference Manual SCIP, Stanford University, 1975.

[Shedletsky, 19731
Shedletsky, J. J. & McCluskey, E. J. The Error Latency of a Fault in a
Combinational Digital Circuit. In Digest of Papers, The Fifth Annual
International Conference on Fault-Tolerant Computing. June, 1973.

[Shooman, 19681 Shooman, M. L. Probabilistic Reliability - An Engineering Approach.
McGraw Hill, 1968.

[Younger, 19791 Younger, bl. S. A Handbook for Linear Regression. Wadsworth, Inc.,
1979.

