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ABSTRACT

Consistency among processors is vital for fault-tolerant

multiprocessors. This report describes modular communication inter-

processor interface units which implement distributed consistency

schemes such that failures within a single processor module cannot

affect the consistency of data transferred among the remaining

processors. Furthermore, one scheme provides concurrent and

consistent self-diagnostic data on the integrity of the units

themselves. Another scheme is tolerant to almost all failures within

+ two processor modules. The theory of the schemes are explained and

their implementations in LSI circuits are described in detail. The

interprocessor communication structure defined by any of these schemes

serves well as a critical element in highly reliable multiprocessor

systems.
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CHAPTER I. INTRODUCTION

A. Motivations

As more computers are put to use in critical elements in such

applications as aircraft flight controls, spacecrafts, operation of

mass transit systems, power plants and others involving large

investments or safety of human lives, the reliability and availability

of these computers are of utmost importance.

Redundancy is the means to achieve fault tolerance in

computers. The use of error detecting and correcting codes in data

- transfer or storage is an example of redundancy at a low level in a

computer system. As hardware cost goes down and processing power per

module is increased, the use of replication at the computer module

level in a fault-tolerant system becomes very attractive. Examples

abound, such as Pluribus [Kas78] for highly available communications

processing, Tandem [Kaz78; Bar781 for "Non-Stopl' on-line transactions

processing applications, SIFT [Wen78] and FTMP [~0p78] for commercial

aircraft flight-critical control.

With the use of increasingly higher level modules as the basic

units for redundancy as in these multiprocessor systems, new problems

arise. The most crucial of these is the problem of maintaining

consistency among the processing units in the presence of faults.

Areas in which consistency is vital in a multiprocessor system include



the concept of time in each of the processors (affecting

synchronization,) their output (affecting reliable performance,) their

concept of the integrity of the stored data (affecting consistency of

distributed databases) and their concept of the integrity of the whole

system (affecting reliable reconfiguration.)

This report presents a general solution to this problem. A

communication structure is defined in which consistency algorithms are

performed in communication interface units that handle information

transfers among the processors. With such a structure, highly

reliable multiprocessor systems can be constructed.

B. Related Problems
.

In this report, the following related problem areas are

addressed in order that the solution can be complete and practical.

1) There are many ways in which computer systems may fail. The major

concern here is hardware faults causing system failures. Hardware

faults may be broadly classified as either permanent or temporary

faults. The latter type is more difficult to handle, due to the

random nature of their occurrences and the short duration when they

can be detected. The algorithms and designs implemented here consider

only fault occurrences and not the nature of these faults. Hence they
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are equally effective for both kinds of faults, under the same

constraints as to the location where they may occur.

2) Traditionally, systems such as TMR (triple modular redundancy) and

TMR with stand-by spares (Hybrid) are tightly synchronized systems.

The consistent systems described in this report, along with many

highly reliable systems are designed to be loosely synchronized. One

advantage is the absence of lock-step operations, so that errors in

different modules are less likely to be correlated to external

interference. This also enables the modules of a system to be

physically distributed, increasing the survival probability of the

system when physical damage or interference occurs to a part of it.

In general, greater flexibility such as variable fault-tolerance for

different tasks via different number of replications is possible,

because the modules are more independent during the longer intervals

between synchronization.

3) In a multiprocessor system designed to be fault-tolerant, the most

critical element is the communication structure among the computer

modules. This is the element which physically supports massive

c redundancy, fault isolation and system recovery and reconfiguration.

The design of a "consistent multiprocessor system" is centered around

providing fault-tolerance to this critical element.

4) In designing for high fault tolerance, extreme care must be taken

to ensure that the circuits that implement the fault-tolerant

4



functions are not susceptible to faults causing system failures.

In this report, functions are implemented in large-scale integrated

(LSI) circuits. In LSI, circuit constraints are minimal, allowing the

use of a larger number of simpler circuits on a single chip for higher

reliability and testability. In this context, parallelism is also

exploited for efficiency and performance. A distributed control

structure is used, resulting in minimal inter-dependency among the

various control functions, allowing them to be effectively testable

concurrent with normal operation.

C. Overview of the Report

This report describes the theory and design of constructing

consistent fault-tolerant multiprocessor systems using specialized
.
units that interface each processor to a set of interprocessor buses.

Although the algorithms employed can be extended to larger

systems with more processors, only systems with four processors are

described. Figure 1.1 shows the general structure of such a system.

Chapter II demonstrates the use of an LSI circuit to implement

the basic consistency algorithm for multiprocessors. The theory of

the algorithm is explained. The design of the circuit which employs

very large-scale integrated circuit (VLSI) design techniques is fully

described. Called a Consistency Unit (CU), it was actually designed

5
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and tested as an NMOS circuit. (The work reported in this chapter was

presented at the FTCS-10 conference [Fu801.)

Chapter III describes an expanded design of the CU called the

fault-tolerant Consistent Interprocessor Communication Interface (CI).

The CI is regarded as central in the critical communication structure

of highly fault-tolerant multiprocessors. The aspects of fault

detection within the CI, double fault tolerance and concurrently

testable hardware are addressed. Algorithms are described in detail

and a block diagram design for LSI implementation is presented.

Chapter IV concludes the report with opportunities for further

research and summarizes some implications of the design of the CU and

the CI in the realm of fault-tolerant computing.



CHAPTER II. THE BASIC FRAMEWORK FOR CONSISTENCY

B-w THE CONSISTENCY UNIT (CU)

A. Achieving Agreement among Processors

1. The Consistency Problem

As computer systems become more modularized, the modules

themselves interact at an increasingly higher level. The consistency

of common data shared among the modules is then a critical issue.

In massive redundant fault-tolerant systems, processing units

. are replicated and are run in as independently a manner as possible so

that any fault in the system can be properly detected, contained, and

its effects eliminated from the output of the overall system.

However, complete independence is not possible in practice.

The operations in all the units need to be synchronized, either

tightly or loosely, and inputs to them need to be consistent to within

a certain tolerance. Without these conditions being met, the

disagreement among processors will eventually be large enough to

constitute an error in the system.

Take, for example, the problem of clock synchronization across

all the units of a system. Simple majority voting is insufficient.

Consider three processors A, B and C, which would advance their own



independent clocks when a majority of them sets its own boolean flag

to true to indicate that it is time to make the advance. The

independent clocks will vary. If C fails in such a way that its

boolean flag appears to A as true and to B as false at a time when

clock A is ahead of clock B, then processor A and B will drift apart

even though only C is failing. This is analogous to the digital clock

synchronization problem in [Da173].

2. The Consistency Algorithm

A solution to the problem of achieving consistency was

-developed by Pease, Shostak and Lamport [Pea801 from a general

treatment of reliable synchronization and matching in redundant

systems CDav78; Dav79]. It involves an algorithm that guarantees data
.

consistency provided that the number of processors (n) is strictly

greater than three times the number (m) of faulty processors in the

system. That is, for n > 3m, by m+l rounds of information exchange

among the n processors, and subsequent computations, the consistency

conditions discussed below will hold.

Let Pl, P2, . . . , Pn be the processors, and let i, j, and k be

integers between 1 and n. At some given times, each Pi holds an

internal datum that it wishes to communicate to all the other

processors through the consistency process. Pi's datum is called its

private value, denoted as PV[Pi]. After the exchanges and
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computations, details of which are described later, Pj will have

derived a vector of n values, the interactive consistency vector (of

Pj), denoted as ICVj, with each element ICVj[Pk] corresponding to the

private value PV[Pk] of processor Pk.

The consistency conditions are as follows:

CONDLTION 1. All nonfaulty processors will compute exactly

the same ICV. That is, ICVi = ICVj for all i,j such that Pi and Pj

are nonfaulty.

CONDITION 2. A nonfaulty processor Pi will be able to derive

the true private value PV[Pj] held by a nonfaulty processor Pj. That

is, ICVi[Pj] = PV[Pj] .

In this chapter, only the single fault case (m=l> for four

processors (4 = n > 3m> will be discussed. The general procedure for

multiple faults (m>l> is a recursive one.

The system thus consists of four isolated processors, of which

no more than one is faulty. The processors can communicate by

messages, with the sender of the message always identifiable by the

receiver.

Two rounds of information exchange are required. In the first

round, the processors exchange their private values. In the second

round, they exchange the results obtained in the first round. The

faulty processor, if any, may rllietr, or refuse to send messages. In

10



the latter case, the receiver chooses a value at random to substitute

for the missing value.

Having completed the exchanges, each nonfaulty processor Pi

records its private value PVcPi] for the element of the vector

corresponding to Pi itself, ICVi[Pi]. The element corresponding to

every other processor Pk is obtained by choosing the majority of the

three received reports of Pk's private value (one of the three was

received directly from Pk in the first round and the other two were

received from the remaining two processors in the second round.) If

no majority exists, a default value such as 'NIL' is used.

Figure 2.1 details an example. Each column represents one

processor. Each row represents the information contained in each

processor at each step. Each processor Pi holds a 4x4 matrix Mi and a
.

1x4 ICV vector of values. Each matrix element Mi[j,k] represents the

value Pi received from Pj that corresponds to PV[Pk]. Elements

irrelevant for the algorithm is represented by "-r'.

The only faulty processor is P4. Initially (row 11, each Pi

has its PV[Pi]. After the first round of data exchanges (row 21, eache

Pi has obtained values directly from the remaining three processors.

After the second round (row 31, each Pi has additionally the pertinent

values obtained indirectly from the other processors. For example, Pl

has obtained from P2 the values of P3 and P4 that P2 has obtained in

the first round. Finally (row 'I>, the ICV*s are computed using

11
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Fig. 2.1 Illustrative Example of the Consistency Algorithm
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majority voting. If no majority exists, and such would be the case if

P4 has sent three different values to Pl, P2 and P3 in the first

round, 'NILv would be used. Comparing ICVl, ICV2 and ICV3 with each

other and with PV[Pl], PV[P2], PV[P3] and PV[P4], it is clear that

conditions 1 and 2 are satisfied.

To see that this procedure does assure consistent vectors to

be computed in each nonfaulty processor, consider the computation in

nonfaulty processor Pi for ICVi[Pk], the element in ICV corresponding

to processor Pk:

1) If Pk is nonfaulty, Pi will receive PV[Pk] both from Pk and from

the other nonfaulty processor(s). Pi will therefore determine that

there is a majority of values and its ICVi[Pk] should be PV[Pk];

2) otherwise, Pk is the only faulty processor. Two cases follows:

2.1) if all nonfaulty processors find no majority in their received

values for Pk, then they will report NIL for their ICV[Pk] and

thus they are consistent;

) 2.2) otherwise, for nonfaulty Pi to conclude that ICVi[Pk] is the

value V (non-NIL), it must have received V from at least two

other processors. Again, there are two cases:

13



2.2.1) if these two are nonfaulty, then they must receive V from

every processor other than Pi (and possibly also from Pi.)

Thus all nonfaulty processors compute V to be their ICV[Pk];

2.2.2) otherwise, Pi receives a value VV not equal to V from

nonfaulty processor Pj. Then Pj receives V from all

processors except Pk. Hence Pj determines that its ICV[Pk]

is V. All other nonfaulty processors received V from all

processors except Pj, hence they will compute V to be their

ICV[Pk].

14



B. Hardware Implementation

1. Advantages of Using Hardware

Advances in integrated circuit technology have enabled more

and more circuitry to be placed in a single IC package. These

developments can be put to use advantageously in the design of

fault-tolerant systems. The concept of fault-tolerant building blocks

[Ren78] is an example of the use of specialized LSI circuits. However

the current trend is towards software implementation of fault

tolerance as in Pluribus [Kas78], Tandem [Kaz78; Bar78], and SIFT

_ [wen781  l

While there are advantages in performing fault-tolerant
. functions in software, such as more flexibility and lower cost, many

such functions do lend themselves well to hardware implementation with

respect to efficiency and testability. Consider the following points:

* Algorithms requiring some computational complexity on a

single processor may be simply performed in hardware as concurrent or

parallel operations. In fact, the era of VLSI ushers in a new realm

of cheap computation where performance is limited mostly by circuit

communications [FOS~O].

15



* While it is possible to verify programs performing a given

fault-tolerant function, it is considerably more difficult to prove

that they will run correctly on a processor that also performs other

system functions.

* Since hardware is the basic structure supporting fault

tolerance, fault characterization in dedicated circuits at this level

is more practical and reliable.

* Hardware provides a real physical level of system hierarchy

above which the fault-tolerant function is transparent to levels

above. Higher modularity aids fault diagnosis and fault location.

* While software algorithms might integrate well with

application programs, hardware algorithms might also integrate well

with the system structure.

The design of the Consistency Unit described in the following

sections is an attempt to illustrate some of these points.

16



2. Design of the Circuit

This section shows the design of the Consistency Unit (CU>

which acts as a bus interface unit serving one processor in a four-

processor system using massive redundancy for fault tolerance. The CU

implements the consistency algorithm described in section II.A.2

above.

The processors communicate by means of four dedicated

interprocessor buses, each of which is assigned to be output from only

one processor through one CU. Each processor together with its

associated CU and bus constitute a module. The system is then

single-fault-tolerant with respect to any fault in any one module.

The concern here is data consistency, in the sense of the two

.
. conditions described in section II.A.2. The detailed timing for

transactions on the bus is assumed to be synchronized with a

fault-tolerant clocking scheme such as the one proposed in [Dav78].

Figure 2.2 shows the detailed connections for such a system.

Note that four CUYs are used. These CU's are identical but are
e
connected to the buses in the symmetrical manner shown.

Thus the CU consists of four ports that connect to the

interprocessor buses. They are 01, the output port, 12, 13 and 14 the

input ports. There is also the PI0 bidirectional port that connects

17
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Fig. 2.2 Detailed Bus Connections of Four CU's in

a Four-Processor System
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to the processor. All these ports and the buses are of the same

bit-width. There are 12 internal CU registers; each again has the

same bit-width as the ports. Table 2.1 lists all the ports and

registers and describes the function of each. The naming convention

used is tailored to describe the operation of CUl conveniently.

Table 2.2 shows that the CU goes through eight clock cycles,

PHO through PH7, for each computation of the interactive consistency

vector with elements ICV[Pl], ICV[P2], ICV[P3] and ICV[P4]. In the

first cycle, PHO, the first round of exchanges takes place. Each

processor Pk outputs its private value PVk and CUk then broadcasts

this value to all the other CUYs through the bus Bk. At the same

time,‘all the other CU's broadcast their values obtained from their

respective processors over their respective interprocessor buses.

Thus, from the input ports 12, I3 and 14, CUk is able to obtain the
.

communicated values of all the other processors directly, that is

without going through other modules. CUk then stores these values in

R2, R3 and R4 respectively. This constitutes round one of the

algorithm.

In round two, there are six values to be communicated in ane

orderly manner. The six values are values of each of the other three

processors received indirectly through the two remaining modules. In

this implementation, these values are transferred in three cycles,

namely, PHI, PH2 and PH3. To describe these transfers, consider, for

example, the transfer that takes place during PHl on 82 for GUI.

19



NAME FUNCTION

PI0 Bidirectional port connecting to processor Pk;
CUk receives PVk and sends out the resultant
vector, ICVk, through this port.

01

12,13,14

R2,R3,R4

Table 1. CU Ports and Registers

Output port to bus, Bk; broadcast values.

Input ports connecting to the other buses.

Registers to hold results of first round from 12, I3
and 14 respectively; (for CUl, they will
correspond to PV2, PV3 and PV4.)

R2l,R23,R24 ) Registers to hold results of second round:
. R31 ,R32,R34
R41,R42,R43

Rij is the value PVj obtained from CUj via CUi
where i=2,3,4; j=1,2,3,4; and'i not equal j.

20



CYCLE

PHO

PHI

PH2

PH2

PH4

PH5

PH6

PH7

Table 2. CU Cycle Functions

FUNCTION

OIGPIO; Pk outputs its private value PVk and CUk outputs
this from PI0 onto Bk for the first round of
exchanges.

R2<-12;
R3<-13; receiving from other CU's for first round.
R4<-14;

OlGR2; Contents of R2 broadcast onto Bk.

R23G12;
R34<-13; first part of second round
R4IG14;

OIGR3; Contents of R3 broadcast onto Bk.

R24<-12;
R31<-13; second part of second round
R42GI4;.

OIGR4; Contents of R4 broadcast onto Bk.

last part of second round

PI0 <- maj(R2,R32,R42) (9) ; for CUl this is ICVI[P2].

PI0 <- maj(R23,R3,R43) (*> ; for CUl this is ICVl[P3].

PI0 <- maj(R24,R34,R4) (*> ; for CUl this is ICVl[P4].

PI0 <- maj(R2I,R31,R41) (*>; for CUl this is ICVl[Pl],
it is redundant, but can
serve as a check for CUl.

(*> where maj(Ri,Rj,Rk)  is the majority value of the contents of
Ri, Rj and Rk if such exists; otherwise it is 'NIL'.
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B2 is always driven by CU2, and, at this moment, CU2 is outputing the

contents of its R2. This is the communicated value of PV[P3] from CU3

during PHO, the first round. (This is evident from the way the CU's

are connected as shown in Figure 2.2.) Now, for GUI, this value is

received on 12 to be stored in CUl's R23. Thus R23 will contain the

communicated value of P3 indirected through CU2. (R23 is thus named.)

Besides the six necessarily communicated values, three

additional values can be communicated through the interprocessor buses

within the three cycles of the second round. For CUk, these are its

own PV[Pk] received indirectly through the other three modules. They

serve as further checks for the whole system.

During the remaining cycles PH4, PH5, PH6 and PH7, the word-

by-word majority voter determines if a majority of identical values

exists for the appropriate sets of three registers. For example, in

PH4, the values in R2, R32, and R42 are compared. (See Table 2.2.)

In CUI, these three values correspond to the value of P2 obtained in

the first round, the same value obtained indirectly through CU3 in the

second round and the same through CU4 respectively. Hence, the second

component of the ICV vector, ICVI[P2] for GUI, can be determined.

This is then output on PI0 to be received by processor PI.

Figure 2.3 shows the logical block diagram of a CU. The

sequence of the above operations is indicated by the labelled cycles

(PHO through PH7) at which the registers are being loaded from the

22
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buses or their contents gated onto the buses. The sequencing of the

cycles is done by a self-starting ring counter with an enable control.

Both the majority voter circuit and the ring counter can be

implemented quite compactly using the n-channel MOS (NMOS) technology

of current LSI circuits. Figure 2.4 shows the former.

An experimental IC chip design was done implementing a CU with

a word width of four bits. The block diagram of this chip is shown in

Figure 2.5. The following modifications of the basic design are made.

First, the PI0 and 01 ports are merged, since 01 is basically used in

the first four cycles and PI0 in the last four cycles. Secondly, R21,

- R3I and R41 are eliminated, as they serve only secondary purposes.

Lastly, and most importantly for testing purposes, all the ports are

made bidirectional, thus making all the internal registers and the

majority voter circuit accessible from the pins; this is a necessary

consequence of the design of the data flow in the circuit.

A photomicrograph of the chip is shown in Figure 2.6 and

details of the layout is shown in Figure 2.7. Using a 5 micron

technology, it measures about 100 mil square. It has been fabricated

and tested. There were some layout problems at the registers and

hence these do not function in the test chip. Otherwise, the control

circuit and the majority voter functions as designed.

24
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Fig. 2.6 Photomicrograph of CU Chip
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3. Enhancements of the CU

The basic design can be enhanced in two ways. Two CU's can be

connected in parallel to increase the performance of the CU function

by a factor of two when many private values are to be communicated.

An extra register, Rl, is needed to store PV[Pk] from Pk at PH7 to be

used in PHO of the next group of 8 cycles. Given this, the CU would

perform data exchanges on the interprocessor buses only in PHO through

PH3, and compute the ICV and communicate with the processor only in PH4

through PH7. Thus, two CU's can interleave their uses of the buses

and the bandwidth of the buses can then be fully utilized.

Another enhancement involves bringing out the majority voter

-internal signals, A=B, C=A and B=C, to external pins in open-drain

condition for NOR-tieing with additional CU chips. (See Figure

2.4(b).) This allows expansion to wider data bit-width than is.
possible on a single chip due to pin number limitations.



4. Applications of the CU

The major function of the CU is in its ability to arrive at

identical data values despite a single faulty module. For replicated

input sensors on distinct modules, this provides perfect input

synchronization because each nonfaulty processor can compute exactly

the same mean value given an identical ICV vector. For timing

synchronization, the same advantage applies: given that the processors

communicate their concept of time, synchronization is provided on the

system level. The operation of any reconfigurable multiprocessor

depend on the crucial ability to reliably determine system

configuration status and to effect system changes. The CU can also

provide this needed function.
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CHAPTER III. FULL CONSISTENCY IN COMMUNICATIONS

e-w THE CONSISTENT INTERPROCESSOR COMMUNICATION INTERFACE (CI)

A. Purposes and Goals

The CU described in Chapter II provides a multiprocessor

system with a guarantee of consistency in the data communicated among

the processors. With such a communication link available, nonfaulty

processors can reliably arrive at agreement with all other nonfaulty

processors. However, the constrain in such a system is, of course,

that there can only be at most one module (the processor, the CU and

the associated bus) that is faulty. During the occurrence of such a

fault, the CU gives no good indications as to which module is faulty.

And, if a fault remains to be undetected, the CU would no longer

guarantee consistency in the event of a second fault. These

shortcomings are dealt with in the design of a fully consistent

communication scheme made possible by the Consistent Interprocessor

Communication Interface (CI) described in this chapter.

e Also, section III.B.3 in this chapter describes a double

fault-tolerant scheme which can be implemented using the communication

structure of the CI.

The Communication Interface (CI) can be considered as an

extension of the CU, the functions of the latter being a subset of
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those of the CI. The basic assumptions and organization of the

overall fault-tolerant multiprocessor system are the same as that of

the system using the CU (see sections II.A.2 and II.B.2.) Again, for

fault location purposes, the processor, its associated CI and the bus

dedicated to it are considered to be one processor module.

The CI has three modes of operation. In the first and

elementary mode, it acts simply as a buffer: a message from the local

processor is broadcast and the received messages from the other

processors are sequentially sent back to the local processor. This

mode is provided for system initialization.

In the second mode, the messages received from the other

processors are re-broadcast. Simultaneously, other re-broadcast '

messages from the other processors are received. This is called two

rounds of message exchange. In this mode, the CI is functionally

similar to the CU.

In the third mode, there is a third round of message exchange,

the purpose of which is to reliably derive the integrity of each

individual connection in the communication structure.
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B. The Algorithms

1. Definitions and Identification of Messages

In order to describe the algorithms involved, the following

definitions are convenient. Let Pl, P2, P3 and P4 be the computers,

and let i, j, and k be integers between 1 and 4. At some given times,

each Pi holds an internal data item that it wishes to communicate

reliably to all the other processors through the communication

process. Pi's data item is called its private value, denoted as

PV[Pi].

After the rounds of exchanges and computations, details of

which are described later, Pj will have derived four vectors of four

A values. The first of which is the interactive consistency vector (of

Pj), denoted as ICVj, with each element ICVj[Pk] corresponding to the

private value PV[Pk] of processor Pk. This ICV is identical to that

of the CU. The other three vectors are the consistent connectivity

vectors (of Pj), denoted as CCVj,m (where m ranges from 1 to 31, with

each element CCVj,m[Pk] corresponding to the private value PV[Pk] of
c
processor Pk as seen by its m-th (circular left-most) neighbor

processor. For example, CCVl,3 is the CCV of Pl corresponding to the

private values of all processors as seen by P2.
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For all four vectors, the consistency conditions given in

Chapter II will hold for any single module fault condition. However,

the three rounds of message exchanges also support a consistency

scheme yielding a fifth vector of four values similar to that of the

ICV, and satisfying the consistency conditions with only a high

probability, given the possibility of two module faults. The

procedure for obtaining this particular vector is given in section

III.B.3 below.

The three rounds of exchanges take place as follows. In the

first round, the processors exchange their private values. In the

second round, they exchange the results obtained in the first round.

In the third round, they finally exchange the results obtained in the

second round. The faulty processor, if any, may send an erroneous

message, or different messages to different processors, or does not

send a message at all. In the last case, the receiver processor

simply chooses a value at random to substitute for the missing value.

c

The procedure is symmetric among the four processors assuming

a similar symmetric connection of the CU's in Figure 2.2. Thus it is

sufficient to describe the operation of the whole system by examining

that of CIl, the CI attached to Pl. Each message is identified

uniquely by its origin and its path through the processors. Thus a

string of one to three digits represent a message, with the rightmost

digit being its origin, the next digit to the left being its stop

during the first round and the leftmost digit its stop during the

34



second round and an always omitted fourth digit being its final

destination (since we are referencing Pl, this digit is always 1.)

For the sake of uniformity, all message names are made to be three

digits by padding l's on their left if there are less than three. For

example, 423 is the message that originated at P3, was at P2 after the

first round, at P4 after the second round and is now at Pl after the

third and last round. 112 is the message that originated from P2 and

after the first round and thereafter is at Pl. 111 is the message

originating from Pl.
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2. Details of Message Exchanges and Computations

Table 3.1 details the message exchanges during the three

rounds. In each round, the messages broadcast on bus 81 is shown on

the first line and those received from buses B2, B3 and B4 are shown

in the same column in the following three lines. All four CI's

operate identically in synchrony and that is the basis for deriving

which messages are received from the other modules.

Table 3.1. Details of Three Rounds of exchanges at CIl

ROUND 1

Output to Bl: 111
Received from B2: 112
Received from B3: 113
Received from B4: 114

ROUND 2

Output to Bl: 112 113 114
Received from B2: I23 124 121
Received from B3: 134 131 132
Received from B4: 141 142 143

ROUND 3
c

Output to Bl: 123 234 141 124 131 142 121 132 143
Received from B2: 234 241 212 231 242 213 232 243 214
Received from B3: 341 312 323 342 313 324 343 314 321
Received from B4: 412 423 434 413 424 431 414 421 432
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The procedure for arriving at the ICV and CCV's from the

exchanged values can best be understood if the three rounds are

considered as two overlapped levels of two-round exchanges: The first

two rounds are then identical to the two rounds in the CU. The last

two of the three rounds are simply three two-round exchanges operating

on the three received messages received in the very first round.

First examine the results of round 2, which could be

rearranged as shown in Table 3.2. Here, messages originating from the

same computer Pi are placed on the same row with the appropriate

label. The consistency algorithm calls for a majority function to be

applied on precisely each of the three rows corresponding to P2, P3

and P4. The majority function is defined as the majority of identical

messages, or if there is no majority, a 'NIL' value to stand for a

null message. The results are named C2, C3 and C4. Thus ICVl is

. simply:

ICVl = (Cl c2 c3 CL0

where Cl is the message 111.

Table 3.2.

PV'S MESSAGES

PVCPII: 141 131 121
PV[P2]: 112 142 132 ->
PV[P31: 123 113 143 ->
PV[P4]: 134 124 114 ->

Computations After Round 2

COMPUTATIONS

c2 = maj(ll2, 142, 132)
c3 = maj(123, 113, 143)
c4 = maj(l34, 124, 114)
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Similarly, the results of round 3 can be processed by

rearrangement and applying the same majority function, as shown in

Table 3.3. The difference here is that three vectors of values are

obtained:

CCVl ,I = CC41 Cl2 C23 C34)
ccv1,2 = CC31 C42 Cl3 C24)
CCVl,3 = CC21 C32 C43 Cl4)

In reality, C2, C3 and C4 computed earlier can be used as C12, Cl3 and

Cl4 respectively, under the assumptions stated for this system.

Hence, C12, Cl3 and Cl4 need not be computed.

These connectivity vectors provide a consistent view of the

- messages considered received by each CI from one another in the first

round.

Table 3.3. Computations After Round 3

PV'S MESSAGES

PVCPl]: 341 241 141
PV[P2]: 412 312 212
PV[P3]: 123 423 323
PV[P41: 234 134 434

. PV[Pl]: 231 131 431
PV[P2]: 342 242 142
PVcP31: 413 313 213
PV[P4]: 124 424 324

PV[Pl]: 121 421 321
PvCP21: 232 132 432
PV[P3]: 343 243 143
PV[P4]: 414 314 214

->
->
->
->

->
->
->
->

->
->
->
->

COMPUTATIONS

c41 = maj(341, 241, 141)
Cl2 = maj(412, 312, 212)"
C23 = majW3, 423, 323)
C34 = maj(234, 134, 434)

C31 = maj(231, 131, 431)
C42 = maj(342, 242, 142)
Cl3 = maj(413, 313, 213)*
C24 = maj(l24, 424, 324)

c21 = maj(l21, 421, 321)
C32 = maj(232, 132, 432)
C43 = maj(343, 243, 143)
Cl4 = maj(414, 314, 214)"

* --- see text
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The results for all three rounds of exchanges and computations

can be nicely summarized in the following Consistent Communication

Matrix (CCM):

Cl Cl2 Cl3 Cl4
CCM = c21 c2 c23 c24

C31 C32 C3 C34
C41 C42 C43 C4

where C12, Cl3 and Cl4 are simply 112, 113 and 114 respectively.

They are the messages received during the first round. Each row of

the CCM represent the four messages received at each of the four CI's.

Each column represent the same message as received by each of the

four CI's.
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3. Procedure for Double Fault Tolerance

The structure for the three rounds of exchanges also supports

a double module fault tolerant scheme that guarantees consistency with

a high probability. In the original paper on the consistency

algorithms [Pea8G], a scheme was discussed where cryptography was used

to attach an authenticator to each message issued from any computer

module so that any alteration of the messages enroute can be detected.

In addition, the origin and path of the message can be verified with

arbitrarily high probability. Given the above, consistency can be

arrived theoretically with m+l rounds of messages, where m is the

number of faulty modules.

A simplified version of this scheme is possible for the CI.

Here, the authenticators are simply replaced by a good error-detecting

code. This often is not an extra overhead since coding may already be

employed in the communication hardware. Verification of the origin

and path is partially accomplished by appending a code of the origin

into the message and using the fact that a message received from a

particular dedicated bus must come only from the associated computer.

The procedure for arriving at a double fault tolerant

interactive consistency vector, denoted as <2F>ICV, follows. In Table

3.4, the components of <2F>ICVl for CIl are shown. Each <2F>ICVl[Pk]

is derived from a set of 5 different messages. Majority function is

not applied on this set. Instead, those messages are found to be in
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error upon decoding are set to NIL values and the rest are compared

for equality. If these are all identical, the message value is taken

as the appropriate element in the <2F>ICV. If they are not all

identical, or if all messages are in error, the NIL value is used.

Table 3.4. Components for Double Fault Tolerant <2F>ICV

Pk MESSAGES <2F>ICVl[Pk]

PI: 111 -> <2F>C 1
P2: 112 142 132 342 432 -> <2F>C2
P3: 113 123 143 423 243 -> <2m3
P4: 114 134 124 234 324 -> <2F>C4

To see that this procedure does assure consistent vectors to

be computed with high probability in each nonfaulty processor,

consider the computation in nonfaulty processor Pi for <2F>ICVi[Pk],

(the element in <2F>ICV corresponding to process Pk):

1) If Pk is nonfaulty, Pi will receive PV[Pk] from Pk. With high

probability, all other values received will either be the same or

NIL, by the fact that corrupted messages are detected and set to

NIL.

2) otherwise, Pk is faulty, and at most one other processor is also

faulty. Suppose Pi received a message with a value V (non-NIL)
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from Pk, the following shows that another nonfaulty processor Pj

will also receive V from Pk.

2.1) If Pj is in the path of the message, then Pj must have already

received V from Pk.

2.2) otherwise, Pj is not in the path. Again, there are two cases:

2.2.1) if the message is received in the third round, two CI's other

than Pj is involved. One of them must be nonfaulty, and it

would have passed the value V to Pj directly;

2.2.2) otherwise, the message is received in the first or second

round. Hence, Pi will be passing this on to Pj directly in

the next round.

The above shows that any non-NIL value received by a nonfaulty

processor will be identical to the same value received by another

nonfaulty processor. Since the NIL values are eliminated if non-NIL

values are received, this fulfills consistency condition 1. Also,

with point 1) above, consistency condition 2 is also satisfied.

Optionally, this scheme can be superimposed onto the CI as a

degraded mode of operation once a single module fault is determined.

42



C. An Implementation of the CI

In this section, one implementation of a CI chip design is

described. The VLSI design principles of exploiting parallelism,

regularity of circuit structure and distributed control [Mea801 are

utilized. Moreover, an effort was made to render the chip fully

testable and, for the control part, concurrently testable as well.

Table 3.5 shows a translation of the algorithmic three rounds

of information exchange and the subsequent majority computations into

a practical procedure by allotting specific time slots from a sixteen

time interval cycle for each operation. The time slots are named TO,

Tl, ;.. , to T15. The middle column lists messages to be broadcast

onto bus Bl by CIl at each time slot. The right column lists message

values transmitted between computer PI and CIl.

Mode one operation will comprise of TO, Tl, T2 and T3. Mode

two operation will comprise of TO through T7. Mode three operation

will comprise of the full sixteen time intervals, TO through T15.
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Table 3.5. Timing of CI Functions

Time To
Interval Port 01

From/To
Port PI0

TO
Tl
T2
T3
T4
T5
T6
T7
T8
T9
TlO
Tll
T12
T13
Tl4
T15

111
112
113
114
123
134
141
124
131
142
121
132
143
w-w

111 (from PI)
112 (to PI)
113 (to Pl)
114 (to PI)
c2 ( to  PI>
c3 ( t o  Pl)
c 4  ( t o  PI)
C23 (to PI)
c 3 4  ( t o  Pl)
c41 (to Pl)
C24 (to Pl)
c31 (to PI)
C42 (to Pl)
c21 (to PI)
C32 (to PI)
c 4 3  ( t o  Pl)

A block diagram showing the internal structure and timing of

the CI is shown in Figure 3.1. Registers are shown with the names of

the messages that they will hold. Internal buses are either direct

connections to external buses or are buses that connect to the

word-by-word majority voter. The voter circuit is identical to that

used in the CU as described earlier in Chapter II, where bit-by-bit

comparators are used to build word-by-word comparators. The outputs

of the word-by-word comparators are then gated to choose the majority

message. If there is no majority, a NIL signal is generated.
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The actual implementation follows very closely to the layout

of the block diagram. Sequencing is accomplished by two synchronous

ring counters of the type shown in Figure 3.2. NMOS logic is assumed.

Once ENABLE'd, a single logic '1' will ripple through the shift

registers until the end of the distributed NOR gate as defined by the

mode selection signals MODE1 and MODE2. If MODE? is asserted, the

rippling '1' will go back to TO after T3. If MODE2 is asserted, it

will go back after T7 and for mode 3 operation, it will traverse the

whole length. Two such ring counters will be used. By comparing

matching signals from the two, the sequencing control can be checked

concurrent with normal operation.

In Figure 3.3, the distributed control structure is shown

imbedded among the registers. (The data paths are deleted for

clarity.) One ring counter lies parallel to the input buses 12, 13

and 14. It controls the loading of the registers from these buses, as

indicated by the arrows on the left of all the registers. The second

ring counter interleaves the top four rows of registers. These

registers have two independent output ports for outputing to the

output bus 01 and to the majority voter.

There are three separate buses, MV2, MV3 and MV4, that connect

to the majority voter. All registers except the top row are like

associative store registers in that they are read by matching their

key to keys on the buses. Each register has hard-wired four-bit keys

that correspond to the right two digits of their names. Each register
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primed by the second ring counter to output to a majority voter bus

will provide the four-bit key on all three buses. For example, at

T12, register 142 will be primed, and the key is then '42', causing

registers 242 and 342 to output. However, the 11x registers (those on

the first row), when they are priming other buses, uses the name of

the bus as the second digit of the key. For example, at T5, 113 will

be primed to output and thus the key '13' will generate keys '23',

'33' and '43' on buses MV2, MV3 and MV4 respectively, causing

registers 123 and 143 to output.

The necessary hardware to compute the double fault ICV is not

illustrated. It can be implemented by adding an accumulator-like

-registers that have access to the input buses. It is expected that

decoders would screen out corrupted messages. Hence these

accumulators need simply make equality checks as uncorrupted and

relevant messages arrive one at a time. A fourth mode of operation is

needed to transmit the double fault ICV to the computer Pl.

.
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D. Applications and Merits of the CI

While there are in existence numerous means and techniques to

interconnect multiprocessors, especially in light of the trend towards

distributed processing [Luc78; Jen76], most of them are designed to

address the multiple goals of achieving resource sharing, higher

performance in throughput, smaller response time and higher

reliability. Reliability requirements center around the two aspects

,of high availability and integrity. But most systems can afford a

trade-off between these two requirements or there may be a recourse to

a larger system [Jon80 (pp. 143, 14413.

When computers are applied to critical tasks, they need to

maintain high integrity and availability simultaneously. As mentioned

in the introduction, the key element in a fault-tolerant system for

such application is the communication structure among the multiple

computers. The use of the CI generates one such structure to serve as

the backbone for the redundant computers to achieve the system goal of

ultra-high reliability.

c Most applications for control of highly critical tasks do not

have high volumes of data to process. Hence, the multiplicity of the

rounds of data exchanges may be tolerated.

The most significant function of the CI is its implementation

of consistency for the messages communicated among the computers.
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Consistency is also implemented for the diagnostic findings on the

integrity of the communication structure. With consistency, the

individual computers can operate on the same SET of input values,

thereby guaranteeing identical results given that the same

computational procedure is used on the inputs for any redundant

computations. This provides relief to the problem of output voting,

which is often difficult when the results range over a range of

values. A more valuable benefit is the possibility of concurrent

detection of errors, thus reducing fault latency, which present

serious problems to system recovery.

Although mode 3 operation is four times slower than mode 2

operation, the former is the preferred mode for two reasons. Firstly,.

concurrent error detection in the communication structure is afforded

by the consistent connectivity values supplied by the CI, without

waiting until a low activity period when mode 3 is switched on to

function as the diagnostic mode. Secondly, studies have shown that

there is a correspondence between the amount of system activity and

its reliability [ButsO; Cas801. Hence, it is prudent to maintain an

approximate stable load on the communication hardware and software.

The CI also tackles temporary (or transient) faults, noted

as problematic for fault-tolerant systems in the introduction. The

error detection capability, besides being concurrent, operates on the

actual data being communicated. The effect is the detection of these

51



faults, which may not be truly determined through diagnostics, which

runs either at other times or on different data.

The CI may fail itself. In this case, system integrity is not

compromised since this is effectively the same as a processor module

failure. It is possible to employ two CI's in parallel, interleaving

their functions on the same set of buses or provide an alternate set

of buses.

The CI can also be used as a passive unit as a listener on the

inter-computer buses. One application is to drive output processors,

taking advantage also of consistency. Another application may be a

* watchdog monitor for the buses, perhaps used for human interface to

report the status of the computers for human intervention, if needed.
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CHAPTER IV. CONCLUSIONS

A. Summary of the Report

Communication interfaces for use in a highly fault-tolerant

multiprocessor environment are described. They implement consistency

algorithms that enable different processor modules to compute on

precise data even though there is the possibility of faults in a

single module. A scheme which is tolerant to faults in two processor

modules is also presented. All the processors are otherwise

independent of one another, thus fault tolerance is enhanced in this

way also.

In the CU, the basic algorithm is implemented in an LSI

circuit. The very reliable interprocessor communication scheme is.

transparent to the processors involved, which only participate in

broadcast and receiving messages as if the CU is simply a buffer.

Full testability of the CU is integral in its design.

In the CI, the means to provide an ultra-reliable

~communication  structure is based on concurrent checking using the

actual data being communicated. The processors are provided with

consistent information on the communication structure in order to

perform consistent diagnosis and reconfiguration of the system.
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For both the CU and the CI, the algorithms used can be

extended to multiprocessor systems with more than four processors.

B. Further Research

This paper has not addressed itself to managing the ICV and

CCV's received from the CI in an efficient manner. In a wider

context, the message processing in the CI share some architectural

similarities with data flow computers [Den801 in that messages are

queued to be operated on by majority or equality operation units or to

be re-sent to a bus. Thus, the CI structure may provide a compatible

. reliable communication system for data flow multiprocessors. On the

other hand, a data flow architecture may free the CI's from operating

in synchronous mode, which require some synchronization on the bus

level among the CI's in order to operate.

C. Implications on Fault-Tolerant Computing

Looking beyond the problems of designing reliable VLSI

circuits, the design of the CU and the CI demonstrates that there is

much to be exploited in VLSI for the enhancing fault tolerance. This

will have impact on the future of massive redundancy systems, which is

still the most viable approach for achieving high SYSTEM reliability.
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Although the design of the CI addresses itself mainly to

providing a highly fault-tolerant communication structure for

multiprocessor systems, it actually has wider implications. The use

of concurrent checking minimizes error latency in error detection.

The ability to consistently reconfigure permits very reliable repair.

Overall, the highly reliable communication structure actually

generates highly reliable multiprocessor systems.
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