COMPUTER SYSTEMS LABORATORY

[

DEPARTMENTS OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
STANFORDUNIVERSITY - STANFORD, CA 94305

CONSISTENCY IN INTERPROCESSOR

COMMUNICATIONS FOR FAULT-TOLERANT
MULTIPROCESSORS

Peter Lincoln Fu

CRC Technical Report No. 81-10

(CSL TR No. 219)

" September 1981

enter for
eliable

omputing

CONSI STENCY | N | NTERPROCESSOR COMMUNI CATI ONS
FOR FAULT- TOLERANT MJULTI PROCESSORS

Peter Lincoln Fu

CRC Technical Report No. 81-10
(CSL TR No. 219)
Sept enber 1981

CENTER FOR RELI ABLE COVPUTI NG
COWPUER SYSTEMS LABORATORY
Departnments of Electrical Engineering and Conputer Science
Stanford University
Stanford, California 94305

-~ This work was supported in part by the Air Force Ofice of Scientific
Reseach under Contract No. F49620-79-C-0069 and in part by the National
Sci ence Foundation under Grant. No. MCS-790u4864.

CONSI STENCY |'N | NTERPROCESSOR COVMUNI CATI ONS
FOR FAULT- TOLERANT MULTI PROCESSORS

Peter Lincoln Fu

CRC Techni cal Report No. 81-10
(CSL TR No. 219)
Sept enber 1981

CENTER FOR RELI ABLE COVPUTI NG

COWUTER SYSTEMS LABORATORY

Departnments of Electrical Engineering and Conputer Science
Stanford University
Stanford, California

ABSTRACT

Consi stency among processors is vital for fault-tolerant
mul tiprocessors. This report describes modul ar communication inter-
processor interface units which inplenent distributed consistency
schenes such that failures within a single processor nodule cannot
affect the consistency of data transferred anmong the remaining
processors. Furt her nore, one schenme provides concurrent and
consistent self-diagnostic data on the integrity of the units
themsel ves. Another schene is tolerant to alnost all failures wthin
two processor modules. The theory of the schenes are explained and
their inplementations in LSl circuits are described in detail. The
I nterprocessor comunication structure defined by any of these schenes
serves wel|l as a critical element in highly reliable nultiprocessor

syst ens.

TABLE OF CONTENTS

Page
[1 NTRODUCTI ON
A. Mtivations 2
B. Related Problens 3
C. Overview of the Report 5

I'I. THE BASI C FRAMEWORK FOR CONSI STENCY --- THE CONSI STENCY UNIT (CU)

A. Achieving Agreement anong Processors

1. The Consistency Problem a

2. The Consistency Al gorithm 9
B. Hardware I|nplenentation

1. Advantages of Using Hardware 15

2. Design of the Grecuit 17

3.Enhancement of the CU 29

4. Applications of the CU 30

11, FULL CONSI STENCY |N COVMUNI CATI ONS
--- THE CONSI STENT | NTERPROCESSOR COMMUNI CATI ON | NTERFACE (CI)

A. Purposes and Goal s 31
B. The Al gorithms
1. Definition and Identification of Messages 33
2. Details of Message Exchanges and Conputations 36
3.Procedure for Double Fault Tol erance 40
C. An Inplenmentation of the Cl 43
D. Applications and Merits of the C 50
|'V. CONCLUSI ONS
A. Summary of the Report 53
B. Further Research 54
C. Inplications on Fault-Tolerant Conputing 54
ACKNOWLEDGVENTS 56

REFERENCES 57

Table 2.1
Table 2.2
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5

Fig. 1.1

Fig. 2.1
Fig. 2.2

Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 3.1
Fig. 3.2
Fig. 3.3

LI ST OF TABLES

CU Ports and Registers

CU Cycl e Functions

Details of Three Rounds of Exchanges at CI1
Conput ations after Round 2

Conput ations after Round 3

Conponents for Double Fault Tol erant <2F>ICV

Timing of C Functions

LIST OF FI GURES

Structure of a Fault-Tolerant Miltiprocessor System
wi th Communication Interface Units

Illustrative Exanple of the Consistency Al gorithm

Detail ed Bus Connections of Four CU's in
a Four-Processor System

CU Logical Block Diagram
Mpjority Voter Details

CU Chip Block Diagram

Phot om crograph of CU Chip

CU Chip Layout

Cl Logical Block Diagram

Ring Counter for Sequencing

Cl Distributed Control Structure

Page
20
21
36
37
38
41
hy

Page

12

18
23
25
26
27
28
45
47

48

CHAPTER I . | NTRCDUCTI ON

A Mbtivations

As nore conputers are put to use in critical elements in such
applications as aircraft flight controls, spacecrafts, operation of
nmass transit systens, power plants and others involving |arge
investments or safety of human lives, the reliability and availability

of these conputers are of utnost inportance

Redundancy is the nmeans to achieve fault tolerance in
conputers. The use of error detecting and correcting codes in data
“transfer or storage is an exanple of redundancy at a low level in a
conputer system As hardware cost goes down and processing power per
modul e is increased, the use of replication at the conputer nodul e
level in a fault-tolerant system becomes very attractive. Exanples
abound, such as Pluribus [Kas78] for highly availabl e conmuni cations
processing, Tandem[Kaz78; Bar78] for "Non-Stop"™ on-line transactions
processing applications, SIFT [Wen78] and FTMP [Hop78] for comercia

aircraft flight-critical control

Wth the use of increasingly higher level nodules as the basic
units for redundancy as in these multiprocessor systenms, new problens
arise. The nost crucial of these is the problem of maintaining
consi stency anong the processing units in the presence of faults.

Areas in which consistency is vital in a nultiprocessor system include

the concept of tine in each of the processors (affecting

synchroni zation,) their output (affecting reliable performance,) their
concept of the integrity of the stored data (affecting consistency of
distributed databases) and their concept of the integrity of the whole

system (affecting reliable reconfiguration.)

This report presents a general solution to this problem A
conmmuni cation structure is defined in which consistency algorithns are
performed in communication interface units that handle information
transfers among the processors. Wth such a structure, highly

reliable nultiprocessor systems can be constructed

B. Related Probl ens

In this report, the following related problem areas are

addressed in order that the solution can be conplete and practical

1) There are many ways in which conputer systens may fail. The mgjor
concern here is hardware faults causing system failures. Hardware
faults may be broadly classified as either permanent or tenporary
faults. The latter type is nore difficult to handle, due to the
random nature of their occurrences and the short duration when they
can be detected. The algorithns and designs inplenmented here consider

only fault occurrences and not the nature of these faults. Hence they

are equally effective for both kinds of faults, under the sane

constraints as to the location where they may occur

2) Traditionally, systens such as TMR (triple nodul ar redundancy) and
TMR with stand-by spares (Hybrid) are tightly synchronized systens.
The consistent systems described in this report, along with many
highly reliable systems are designed to be |oosely synchronized. One
advantage is the absence of |ock-step operations, so that errors in
different modules are less likely to be correlated to externa
interference. This also enables the nodules of a systemto be
physical ly distributed, increasing the survival probability of the
system when physical damage or interference occurs to a part of it.

In general, greater flexibility such as variable fault-tolerance for
different tasks via different nunber of replications is possible,
because the modul es are nore independent during the longer intervals

bet ween synchroni zation

3)In a nultiprocessor system designed to be fault-tolerant, the nost
critical element is the communication structure anong the conputer
nodules. This is the element which physically supports massive
redundancy, fault isolation and systemrecovery and reconfiguration
The design of a "consistent multiprocessor systenf is centered around

providing fault-tolerance to this critical element.

4) In designing for high fault tolerance, extreme care nust be taken

to ensure that the circuits that inplement the fault-tolerant

functions are not susceptible to faults causing system failures.

In this report, functions are inplenmented in large-scale integrated
(LsI)circuits. In LS, circuit constraints are mninmal, allowng the
use of a larger nunber of sinpler circuits on a single chip for higher
reliability and testability. In this context, parallelismis also
exploited for efficiency and performance. A distributed contro
structure is used, resulting in mniml inter-dependency anong the
various control functions, allowing themto be effectively testable

concurrent with normal operation

C. Overview of the Report

This report describes the theory and design of constructing
consistent fault-tolerant nultiprocessor systems using specialized

units that interface each processor to a set of interprocessor buses.

Al'though the algorithnms enployed can be extended to |arger
systens with nore processors, only systenms with four processors are
described. Figure 1.1 shows the general structure of such a system
Chapter Il denonstrates the use of an LSI circuit to inplenent
the basic consistency algorithm for nultiprocessors. The theory of
the algorithmis explained. The design of the circuit which enploys
very large-scale integrated circuit (VLSI) design techniques is fully

described. Called a Consistency Unit (CU), it was actually designed

INTERPROCESSOR BUSES

Bl
B2
B3 y
B4 \
COMMUNICATION INTERFACE UNITS
Cu1 Cu2 Cu3 Ccu4
z A A
P1 P2 P3 P4
N
PROCESSORS

Fig. 1.1 Structure of a Fault-Tolerant Miltiprocessor System

wi th Communication Interface Units

and tested as an NMOS circuit. (The work reported in this chapter was

presented at the FTCS-10 conference [Fud0].)

Chapter 111 describes an expanded design of the CU called the
fault-tol erant Consistent Interprocessor Communication Interface (CI).
The Cl is regarded as central in the critical conmunication structure
of highly fault-tolerant multiprocessors. The aspects of fault
detection within the C, double fault tolerance and concurrently
testable hardware are addressed. Al gorithms are described in detai

and a bl ock diagram design for LSI inplenmentation is presented

Chapter 1V concludes the report with opportunities for further
research and summarizes sonme inplications of the design of the CU and

the C in the realmof fault-tolerant conputing

CHAPTER II. THE BASI C FRAMEWORK FOR CONSI STENCY
--- THE CONSI STENCY UNI T (cu)

A. Achieving Agreement anmong Processors

1. The Consistency Problem

As conputer systens becone nore nodul arized, the modul es
thensel ves interact at an increasingly higher level. The consistency

of comon data shared anong the nodules is then a critical issue

In massive redundant fault-tolerant systems, processing units
are replicated and are run in as independently a manner as possible so
that any fault in the systemcan be properly detected, contained, and

its effects elimnated fromthe output of the overall system

However, conplete independence is not possible in practice
The operations in all the units need to be synchronized, either
tightly or loosely, and inputs to themneed to be consistent to within
a certain tolerance. Wthout these conditions being net, the
di sagreenent anong processors will eventually be large enough to

constitute an error in the system

Take, for exanple, the problem of clock synchronization across
all the units of a system Sinple mgjority voting is insufficient.

Consi der three processors A, B and C, which would advance their own

i ndependent clocks when a majority of them sets its own boolean flag
to true to indicate that it is time to nmake the advance. The

i ndependent clocks will vary. If Cfails in such a way that its

bool ean flag appears to A as true and to B as false at a time when
clock A is ahead of clock B, then processor A and Bwll drift apart
even though only Cis failing. This is analogous to the digital clock

synchroni zati on probl emin [Dal73].

2. The Consistency Al gorithm

A solution to the problem of achieving consistency was
_developed by Pease, Shostak and Lamport [Pea80] froma general
treatment of reliable synchronization and matching in redundant
systens [Dav78; Dav79]. It involves an algorithm that guarantees data
consi stency provided that the number of processors (n) is strictly
greater than three tines the nunber (m) of faulty processors in the
system That is, for n > 3m, by m+«1rounds of information exchange
anong the n processors, and subsequent conputations, the consistency

condi tions discussed helow will hold.

Let P1,P2, . . . , Pn be the processors, and let i, j, and k be
integers between 1 and n. At sonme given times, each Pi holds an
internal datumthat it wshes to comunicate to all the other
processors through the consistency process. Pi's datumis called its

private value, denoted as Pv[Pi]. After the exchanges and

conputations, details of which are described later, Pj wll have
derived a vector of n values, the interactive consistency vector (of
Pj), denoted as ICVj, Wi th each el enent ICVj[Pk] corresponding to the

private val ue pPv[Pk] of processor Pk

The consistency conditions are as foll ows:

CONDITION 1. Al nonfaulty processors wll conpute exactly
the sane ICV. That is, 1cvi = 1cvjfor all i,] such that Pi and Pj
are nonfaulty.

CONDITION 2. A nonfaulty processor Pi will be able to derive
the true private value PV[Pj] held by a nonfaulty processor Pj. That

is, ICVi[{Pj]l = PV[Pj].

In this chapter, only the single fault case (m=1) for four
processors (4 = n > 3m) will be discussed. The general procedure for

nmultiple faults (m>1) is a recursive one.

The system thus consists of four isolated processors, of which
no nore than one is faulty. The processors can conmunicate by
nessages, wth the sender of the message always identifiable by the

receiver.

Two rounds of information exchange are required. In the first
round, the processors exchange their private values. [In the second
round, they exchange the results obtained in the first round. The

faulty processor, if any, may "lie", or refuse to send nessages. In

10

the latter case, the receiver chooses a value at randomto substitute

for the mssing value

Havi ng conpl eted the exchanges, each nonfaulty processor P
records its private value pv[Pi] for the el enent of the vector
corresponding to Pi itself, Icvi[Pil. The elenent corresponding to
every other processor Pk is obtained by choosing the mgjority of the
three received reports of Pk's private value (one of the three was
received directly fromPk in the first round and the other two were
received fromthe remaining two processors in the second round.) If

no majority exists, a default value such as 'NIL'is used.

Figure 2.1 details an exanple. Each colum represents one
processor. Each row represents the information contained in each
processor at each step. Each processor Pi holds a 4x4 matrix M and a
1x4 |1 CV vector of values. Each matrix element Mi[j,k] represents the
value Pi received fromPj that corresponds to PV[Pkl. El ements

irrelevant for the algorithmis represented by "-".

The only faulty processor is P4. Initially (row1), each P
has its pv(pi]l. After the first round of data exchanges (row 2), each
Pi has obtained values directly fromthe remaining three processors.
After the second round (row 3), each Pi has additionally the pertinent
val ues obtained indirectly fromthe other processors. For exanple, P1
has obtained from P2 the values of P3 and P4 that P2 has obtained in

the first round. Finally (rowk), the ICV's are conputed using

1

Pi:

Pl

PRIVATE VALUES:

PV[Pi]:

AFTER FIRST ROUND:

from:

AFTER SECOND ROUND:

from P1
from P2
from P3

from P4

1

P1 P2 P3 P4

2 3 o

P1

P2

P2 P3 P4

(2)3 4

(1 2 39
. 3 4

a

AFTER MAJORITY COMPUTATION:

ICVi:

Fig. 2.1

[t 2 3 9]

P1 P2 P3 P4

P1

P2 P3 P4

P3

1<.,

P3 P4

(33) 9

(12309

| 12 3 9 I

P1 P2 P3 P4

P4
4
P1 P2 P3 P4
X x x (4
- X X X
X - X X
X X - X
X x x 4)
Ix x X x

P1

P3

[llustrative Example of the Consistency Al gorithm

P4

majority voting. If no npjority exists, and such would be the case if
P4 has sent three different values to P1, P2 and P3 in the first
round, 'NIL' would be used. Conparing ICvi, 1CV2 and 1CV3 with each
other and with PV[P1], PV{P2], PV[P3] and PV[P4], it is clear that

conditions 1 and 2 are satisfied

To see that this procedure does assure consistent vectors to
be conputed in each nonfaulty processor, consider the conputation in
nonfaul ty processor Pi for ICVi[Pk], the elenent in ICV corresponding

to processor Pk:

1) If Pk is nonfaulty, Pi wll receive PviPk] both fromPk and from
the other nonfaulty processor(s). Pi wll therefore determne that

there is a mpjority of values and its ICVi[Pk] shoul d be PV[Pk];
2) otherwise, Pk is the only faulty processor. Two cases follows:
2.1) if all nonfaulty processors find no mgjority in their received
val ues for Pk, then they will report NIL for their ICV[Pk] and
thus they are consistent;
©2.2) otherwise, for nonfaulty Pi to conclude that ICVi[Pk]is the

value V (non-NIL), it nust have received V fromat |east two

other processors. Again, there are two cases:

13

2.2.1) if these two arenonfaulty, then they nust receive V from
every processor other than Pi (and possibly also fromPi.)

Thus all nonfaulty processors compute V to be their ICV[Pk];

2.2.2) otherwise, Pi receives a value W not equal to V from
nonfaulty processor Pj. Then Pj receives V fromall
processors except Pk. Hence Pj determines that its ICV[Pk]
is V. Al other nonfaulty processors received V from all

processors except Pj, hence they will conpute V to be their

Icvipk].

14

B. Hardware |nplenentation

1. Advantages of Using Hardware

Advances in integrated circuit technology have enabled nore
and nore circuitry to be placed in a single |IC package. These
devel opments can be put to use advantageously in the design of
fault-tol erant systems. The concept of fault-tolerant building bl ocks
[Ren78] is an exanple of the use of specialized LSl circuits. However
the current trend is towards software inplenentation of fault
tol erance as in Pluribus [Kas78], Tandem[Kaz78; Bar78], and SIFT

[Wen78].

VWiile there are advantages in performng fault-tolerant
functions in software, such as nore flexibility and |ower cost, many
such functions do lend themselves well to hardware inplementation with

respect to efficiency and testability. Consider the follow ng points:

*# Algorithnms requiring some conputational conplexity on a
single processor may be sinply performed in hardware as concurrent or
parall el operations. In fact, the era of VLSl ushers in a new realm
of cheap conputation where performance is |imted mostly by circuit

conmuni cati ons[Fos80].

15

* While it is possible to verify programs performng a given
fault-tolerant function, it is considerably nore difficult to prove
that they will run correctly on a processor that also perforns ot her

system functions.

*¥ Since hardware is the basic structure supporting fault
tolerance, fault characterization in dedicated circuits at this |eve

is more practical and reliable

* Hardware provides a real physical |evel of system hierarchy
above which the fault-tolerant function is transparent to |evels

above. Higher nodularity aids fault diagnosis and fault |ocation
* Wile software algorithms mght integrate well with
application progranms, hardware algorithnms mght also integrate well

with the systemstructure

The design of the Consistency Unit described in the follow ng

sections is an attenpt to illustrate some of these points.

16

2. Design of the Circuit

This section shows the design of the Consistency Unit (CuU)
which acts as a bus interface unit serving one processor in a four-
processor system using nassive redundancy for fault tolerance. The CU
i mpl enents the consistency algorithm described in section I1.A 2

above.

The processors comunicate by means of four dedicated
i nterprocessor buses, each of which is assigned to be output fromonly
one processor through one CU. Each processor together with its
associated CU and bus constitute a nodule. The systemis then

single-fault-tolerant with respect to any fault in any one nodul e.

The concern here is data consistency, in the sense of the two
conditions described in section Il1.A 2. The detailed timng for
transactions on the bus is assumed to be synchronized with a

faul t-tol erant clocking scheme such as the one proposed in [Dav78].

Figure 2.2 shows the detailed connections for such a system
Note that four CU's are used. These CU's are identical but are

connected to the buses in the symretrical nanner shown.
Thus the CU consists of four ports that connect to the
i nterprocessor buses. They are 01, the output port, 12, I3 and 14 the

input ports. There is also the PIO bidirectional port that connects

17

B1
B2
B3
B4

o1 12 13 14

cu1

PiO

P1

Fig. 2.2

14 01

cu?

PIO

13

cu3

PIO

\

p2

12 13 14 01

cu4

PIO

P3

P4

Det ai |l ed Bus Connections of Four CU's in

a Four-Processor System

18

to the processor. Al these ports and the buses are of the sane
bit-width. There are 12 internal CU registers; each again has the
same bhit-width as the ports. Table 2.1 lists all the ports and
registers and describes the function of each. The nam ng convention

used is tailored to describe the operation of CU1 conveniently.

Table 2.2 shows that the CU goes through eight clock cycles,
PHO through PH7, for each conputation of the interactive consistency
vector with elenments ICv[{P1], ICV[P2], ICV[P3] and ICV[P4]. In the
first cycle, PHO the first round of exchanges takes place. Each
processor Pk outputs its private value PVk and CUk then broadcasts
this value to all the other CU's through the bus Bk. At the same
time, all the other CU's broadcast their values obtained fromtheir
respective processors over their respective interprocessor buses
Thus, fromthe input ports 12, 13 and 14, cuk is able to obtain the
conmmuni cated values of all the other processors directly, that is
wi thout going through other nodules. CUk then stores these values in
R2, R3and R4 respectively. This constitutes round one of the

al gorithm

In round two, there are six values to be comunicated in an
orderly manner. The six values are values of each of the other three
processors received indirectly through the two remaining nodules. In
this inplenentation, these values are transferred in three cycles,
nanely, PH, PH2 and PH3. To describe these transfers, consider, for

exanple, the transfer that takes place during PH1on B2 for CU1.

19

NAME

PIO

01

12,13,I4

R2,R3,R4

Tabl e 1. CU Ports and Registers
FUNCTI ON

Bidirectional port connecting to processor Pk;
CUk receives PVk and sends out the resultant
vector, ICVk, through this port.

Qutput port to bus, Bk; broadcast values.
I nput ports connecting to the other buses.

Registers to hold results of first round from12, 13
and 14 respectively, (for cut, they will
correspond to PV2, PV3 and Pv4.)

R21,R23,R24) Regi sters to hold results of second round:

. R31,R32,R34
R41,RU2,RU3

Rij is the value pvj obtained fromcuj via Cui
where i=2,3,4; j=1,2,3,4; and'i not equal j.

20

Table 2. CU Cycl e Functions

CYCLE FUNCTION

PHO 01<-PI0; Pk outputs its private value PVk and CUk out puts
this frompIo onto Bk for the first round of
exchanges.

R2<-12;
R3<-I3; » receiving fromother cu's for first round

RUL-TY;

PHI 01<-R2; Contents of R2 broadcast onto Bk.

RU1<=TU;

Contents of R3 broadcast onto Bk

R23<-I2;
R3U4<-I3; » first part of second round
PH2 01<-R3;

R2U4<-~I2;

R31<~I3; % second part of second round

RU2<~IU;
PH2 01<-R4; Contents of R4 broadcast onto Bk

R21<-I2;

R32<-I3; plast part of second round

R43<-I4;
PHA PIO <- maj(R2,R32,R42) (*) ; for CUlthis is I1Cvi[P2].
PH> PIO <- maj(R23,R3,R43) (*) : for cUl this is ICVi[P3].
PH6 PI0 <- maj(R24,R34,RH) (*) ; for culthis is ICVI[P4].
PHT PIO <- maj(R21,R31,R41) (*); for cui this is ICVi[P1],

it is redundant, but can
serve as a check for cu1.

(*) where maj(Ri,Rj,Rk) is the majority value of the contents of
Ri, R and Rk if such exists; otherwise it is "NL".

21

B2 is always driven by CU2, and, at this noment, CU2 is outputing the
contents of its R2. This is the conmunicated val ue of pv[P3] from CU3
during PHO, the first round. (This is evident fromthe way the CU's
are connected as shown in Figure 2.2.) Now, for Cu1, this value is
received on 12 to be stored in CU1's R23. Thus R23 will contain the

comuni cated value of P3 indirected through C2. (R23 is thus naned.)

Besides the six necessarily comunicated values, three
addi tional values can be comunicated through the interprocessor buses
within the three cycles of the second round. For CUk, these are its
own PV[Pk] received indirectly through the other three modules. They

serve as further checks for the whole system

During the remaining cycles pHY4, PH5, PH6 and PH7, the word-
by-word majority voter determines if a mgjority of identical values
exists for the appropriate sets of three registers. For exanple, in
PHY4, the values in R2, R32, and R42 are conpared. (See Table 2.2.)

In CU, these three values correspond to the value of P2 obtained in
the first round, the same value obtained indirectly through CU3 in the
second round and the sane through CU4 respectively. Hence, the second
component of the ICV vector, 1cvi[P2] for cu1, can be determ ned.

This is then output on PIO to be received by processor Pl
Figure 2.3 shows the logical block diagramof a CU. ~ The
sequence of the above operations is indicated by the labelled cycles

(PHO through PH7) at which the registers are being | oaded fromthe

22

P10 12 13 14
E’HO PH PHOi DH()i * Note:
. . . R2, R3 and R4
R2 R3 I—‘ R4 dual poz:ltn regis?err?s
PHO, \I/PH1 \}/PH2 PH3 001
120
PH3\ 3H1\]/ PH 0 P10
R21 R23 | R24 |
PH7 J/PH4 J/PHS \I/PH6 o
130
DHZ\I/ PH3 PHN
R31 | R32 R34
\I/PH7 \]/m-m \LPHS \LPH6 Majority
Voter
140
PHN PH ‘ PH
{ R4t R42 R43
\[/;—17 \I/PH4 \l/PHS PH6
Fig. 2.3 QU Logical Block Diagram

23

buses or their contents gated onto the buses. The sequencing of the

cycles is done by a self-starting ring counter with an enable control.

Both the majority voter circuit and the ring counter can be
i npl emented quite conpactly using the n-channel MOS (NMOS) technol ogy

of current LSl circuits. Figure 2.4 shows the forner.

An experimental |1C chip design was done inplementing a CU with
a word width of four bits. The block diagramof this chip is shown in
Figure 2.5. The follow ng nodifications of the basic design are made.
First, the P10 and 01 ports are nerged, since 01 is basically used in

the first four cycles and P10 in the last four cycles. Secondly, R21,

" R31 and R41 are elimnated, as they serve only secondary purposes.

Lastly, and nost inportantly for testing purposes, all the ports are
made bidirectional, thus making all the internal registers and the
majority voter circuit accessible fromthe pins; this is a necessary

consequence of the design of the data flowin the circuit.

A phot om crograph of the chip is shown in Figure 2.6and
details of the layout is shown in Figure 2.7. Using a 5 mcron
technology, it neasures about 10m| square. It has been fabricated
and tested. There were sone |ayout problenms at the registers and
hence these do not function in the test chip. Qherwse, the control

circuit and the mgjority voter functions as designed.

24

__L L a@b
i

o
|
|

l
|
A

LI i

cPha

I |\~

1]

L

t—— b®c

(a) Bit Comparator (RC)

@— CHOOSE B

@__ CHOOSE A

LF:\)&_ NIL

Ag— 1. A=B
B BC
° |~
‘o = I B=C

S pa §

O
Al— | L
B BC]
L C=A

“r = ! B=C

| L
A -
A = A=B
8 RC B
) A l C=A
€y - l

_J'i—[B=C
A e
B— BC =
3 1
03—] 1.

T N e

NOR logic
(b) Word comparator (4C)
Fig. 2.4 Mjority Voter Details

25

01 02 P10 /7 O1
T T
NMOS Clocks
|_w<ﬁe_a
R23 R24 R2 | | ctiogsE &
Cc
C
21 T : I
. Majorit
R32 R34 R3 aory
q Voter
g
e T T i
(e
R42 R43 R4|—
I4j @ <D C
j NIL
Pkfi\op"ﬂf PH/I\Z P*1'\3 PH1\4 /]\PP11\6 F*,F |ERR
ENB .' Power TEST
O—] Ring Counter Sequencer (L l —0
VDD GND

Fig. 25

CU Chip Block Diagram

Fi g.

2.6

Phot omi crograph of

27

U

—
b

‘ Eope s =
miigle
o =
e e— I
{O.ERBIL, |t |0 T T
JEARVIRE I, e s et s e

#bounds 0.000000 0.000000 1050.000000 980.000000

me

contacts

diffusion implant over-g | ass poly

Wed Jon 23 14¢21117 1060
/uiz/nukes/bin/opiot ~e 0 10 0 6 -0 /eor/nuke/Erbii.fulichip

Fig. 227 CU Chip Layout

28

3.Enhancenents of the CU

The basic design can be enhanced in two ways. Two CU's can be
connected in parallel to increase the performance of the CU function
by a factor of two when many private values are to be comuni cated.

An extra register, R1,is needed to store PV[Pk] fromPk at PH7 to be
used in PHO of the next group of 8cycles. Guven this, the CU woul d
perform data exchanges on the interprocessor buses only in PHO through
PH3 and compute the ICV and communicate with the processor only in PH4
through PH7. Thus, two CU's can interleave their uses of the buses

and the bandwi dth of the buses can then be fully utilized.

Anot her enhancenent involves bringing out the majority voter
-internal signals, A=B, C=A and B=C, to external pins in open-drain
condition for NOR-tieing with additional CU chips. (See Figure
2.4(b).) This allows expansion to wider data bit-width than is

possible on a single chip due to pin nunber limtations.

29

4, Applications of the CU

The major function of the CUis inits ability to arrive at
i dentical data values despite a single faulty module. For replicated
i nput sensors on distinct nodules, this provides perfect input
synchroni zati on because each nonfaulty processor can conpute exactly
the sane mean value given an identical ICV vector. For tinmng
synchroni zation, the sane advantage applies: given that the processors
comuni cate their concept of time, synchronization is provided on the
system level. The operation of any reconfigurable multiprocessor
depend on the crucial ability to reliably determne system
configuration status and to effect system changes. The CU can also

provide this needed function

30

CHAPTER I11. FULL CONSI STENCY [N COVMUNI CATI ONS
--- THE CONSI STENT | NTERPROCESSOR COVMUNI CATI ON | NTERFACE (CI)

A. Purposes and Goal s

The CU described in Chapter Il provides a multiprocessor
systemwi th a guarantee of consistency in the data communicated anong
the processors. Wth such a comunication |ink available, nonfaulty
processors can reliably arrive at agreement with all other nonfaulty
processors. However, the constrain in such a systemis, of course,
that there can only be at nost one nodule (the processor, the CU and
the associated bus) that is faulty. During the occurrence of such a
fault, the CU gives no good indications as to which nodule is faulty.
And, if a fault remains to be undetected, the CU would no |onger
guarantee consistency in the event of a second fault. These
shortcomngs are dealt with in the design of a fully consistent
conmmuni cation scheme made possible by the Consistent Interprocessor

Communi cation Interface (CI) described in this chapter.
Al'so, section II1.B.3 in this chapter describes a double
fault-tol erant schene which can be inplenmented using the conmunication

structure of the Cl.

The Communi cation Interface (CI) can be considered as an

extension of the CU the functions of the latter being a subset of

31

those of the CI. The basic assunptions and organization of the
overal | fault-tolerant multiprocessor systemare the sane as that of
the system using the CU (see sections II.A 2 and I1.B.2.) Again, for

fault location purposes, the processor, its associated Cl and the bus

dedicated to it are considered to be one processor nodul e

The C has three nodes of operation. In the first and
elementary node, it acts sinply as a buffer: a nessage fromthe |oca
processor is broadcast and the received messages from the ot her
processors are sequentially sent back to the local processor. This

node is provided for systeminitialization

In the second node, the nessages received fromthe other
processors are re-broadcast. Sinultaneously, other re-broadcast
nmessages fromthe other processors are received. This is called two
rounds of nessage exchange. In this node, the Cl is functionally

simlar to the CU.
In the third node, there is a third round of nessage exchange,

the purpose of which is to reliably derive the integrity of each

i ndi vidual connection in the conmunication structure

32

B. The Al gorithms

1. Definitions and Identification of Messages

In order to describe the algorithnms involved, the follow ng
definitions are convenient. Let P1, P2, P3and P4 be the conputers,
and let i, j, and k be integers between 1and 4. At sone given tines,
each Pi holds an internal data itemthat it wshes to comunicate
reliably to all the other processors through the conmunication
process. Pi's data itemis called its private value, denoted as

PV[Pi].

After the rounds of exchanges and conputations, details of
which are described later, Pj wll have derived four vectors of four
values. The first of which is the interactive consistency vector (of
Pj), denoted as ICVj, with each el enent ICV3j[Pk] corresponding to the
private val ue pv[Pk] of processor Pk. This ICV is identical to that
of the CU. The other three vectors are the consistent connectivity
vectors (of Pj), denoted as CCVj, m (where mranges from1l to 3),with
each elenment CCVj,n{Pk] corresponding to the private value PV[Pk] of
processor Pk as seen by its mth (circular |eft-nost) neighbor
processor. For exanple, ccvi,3is the CCV of P1 corresponding to the

private values of all processors as seen by P2

33

For all four vectors, the consistency conditions given in
Chapter Il will hold for any single nmodule fault condition. However,
the three rounds of nessage exchanges al so support a consistency
schene yielding a fifth vector of four values simlar to that of the
ICV, and satisfying the consistency conditions with only a high
probability, given the possibility of two nodule faults. The

procedure for obtaining this particular vector is given in section

I11.B. 3 below.
The three rounds of exchanges take place as follows. In the
first round, the processors exchange their private values. In the

second round, they exchange the results obtained in the first round
In the third round, they finally exchange the results obtained in the
second round. The faulty processor, if any, may send an erroneous
nessage, or different nessages to different processors, or does not
send a nessage at all. In the last case, the receiver processor

sinply chooses a value at randomto substitute for the mssing val ue

The procedure is symretric anong the four processors assum ng
a simlar symetric connection of the CU's in Figure 2.2. Thus it is
sufficient to describe the operation of the whole system by exam ning
that of cI1, the Cl attached to p1. Each nessage is identified
uniquely by its origin and its path through the processors. Thus a
string of one to three digits represent a message, with the rightnost
digit being its origin, the next digit to the left being its stop

during the first round and the leftnost digit its stop during the

34

second round and an always omtted fourth digit being its fina
destination (since we are referencing P1,this digit is always 1.)

For the sake of uniformty, all message names are made to be three
digits by padding 1's on their left if there are less than three. For
exanple, 423 is the message that originated at P3,was at P2 after the
first round, at p4 after the second round and is now at Pl after the
third and last round. 112 is the message that originated from P2 and
after the first round and thereafter is at Pl. 111 is the nessage

originating fromPl.

35

2. Details of Message Exchanges and Conputations

Table 3.1 details the message exchanges during the three
rounds. In each round, the nmessages broadcast on bus B1is shown on
the first line and those received frombuses B2, B3and B4 are shown
in the sane colum in the following three lines. Al four CI's
operate identically in synchrony and that is the basis for deriving

whi ch messages are received fromthe other nodul es.

Table 3.1. Details of Three Rounds of exchanges at CI1
ROUND 1
Qutput to B1: 111

Received from B2: 112
Recei ved from B3:113
Recei ved from BY4: 114

ROUND 2

Qutput to BIl: 112 113 114
Received from B2: 123 124 121
Received from B3: 134 131 132
Received from Bi4: 141 142 143

ROUND 3
Qutput to B1: 123 234 141 124 131 142 121 132 143

Received from B2: 234 241 212 231 242 213 232 243 214

Received fromB3: 341 312 323 342 313 324 343 314 321
Received from Bi4: 412 423 434 413 424 431 414 421 432

36

The procedure for arriving at the ICV and CCv's fromthe
exchanged val ues can best be understood if the three rounds are
considered as two overlapped |evels of two-round exchanges: The first
two rounds are then identical to the two rounds in the CU. The last
two of the three rounds are sinply three two-round exchanges operating

on the three received nessages received in the very first round.

First examne the results of round 2, which could be
rearranged as shown in Table 3.2. Here, nessages originating fromthe
same conmputer Pi are placed on the same row with the appropriate
| abel. The consistency algorithmcalls for a majority function to be
applied on precisely each of the three rows corresponding to P2, P3
and P4. The majority function is defined as the nmajority of identical
nessages, or if there is no mgjority, a 'NIL'value to stand for a
nul | message. The results are named C2, C3 and C4. Thus ICV1is
sinply:

ICV1 = (CI c2 c3 Ch)

where Cl is the nessage 111.

Table 3.2. Conmput ations After Round 2

PV's MESSAGES COVPUTATI ONS

PV[P1]: 1241 131 121

PV[P2]: 112 142 132 -> c2 = myj (112, 142, 132)
PV(P3]: 123 113 143 -> c3 = nmyj (123, 113, 143)
PV[P4]: 134 124 114 -> c4 = maj(134, 124, 114)

37

Simlarly, the results of round 3 can be processed by
rearrangenent and applying the sane majority function, as shown in

Table 3.3. The difference here is that three vectors of values are

obt ai ned:
CCV1i,1 = (C41 Cl2 C23 C34)
Ccv1,2 = (C31 C42 Cc13 C24)
CCV1,3 = (C21 C32 C43 C14)

In reality, C2, C3 and C4 conputed earlier can be used as c12, CI3 and
Cl4 respectively, under the assunptions stated for this system

Hence, Cl12, cI3 and Cl4 need not be conputed

These connectivity vectors provide a consistent view of the

- messages considered received by each CI from one another in the first

round.

Table 3.3. Conputations After Round 3
PV's MESSAGES COVPUTATI ONS
PV(P1]: 341 241 141 = c4l = maj(341, 241, 141)
PV[P2]: 412 312 212 > C12 = myj (412, 312, 212)*
PV[P3]: 123 423 323 > C23 = maj(123, 423, 323)
PV[P4]: 234 134 434 > C34 = maj (234, 134, 434)
PV[{P1]: 231 131 431 > €31 = maj(231, 131, 431)
PV[P2]: 342 242 142 > C42 = maj(3U42, 242, 142)
PV[P3]: 413 313 213 -> CI3 = maj(l413, 313, 213)%
PV[P4]: 124 424 324 > C24 = maj(124, 424, 324)
PV[P1]: 121 421 321 = c21 = myj (121, 421, 321)
PV(P2]: 232 132 432 > C32 = maj(232, 132, 432)
PV[P3]: 343 243 143 > c43 = maj (343, 243, 143)
PV[P4]: 414 314 214 > Cl4 = maj(u1u, 314, 214)*

% --- see text

38

The results for all three rounds of exchanges and conputations
can be nicely sunmarized in the follow ng Consistent Communication

Matrix (CCM:

Cl C12 CI3 C14
CCM = c21 c2 C23 Cc24
C31 C32 C3 C34
C41 C42 C43 C4

where C12, CI3 and ClI4 are sinply 112, 113 and 114 respectively.

They are the messages received during the first round. Each row of

the COM represent the four messages received at each of the four CI's.

Each colum represent the same nessage as received by each of the

four CI's.

39

3. Procedure for Double Fault Tol erance

The structure for the three rounds of exchanges al so supports
a double nodule fault tolerant scheme that guarantees consistency with
a high probability. In the original paper on the consistency
al gorithms [Pea801], a schene was di scussed where cryptography was used
to attach an authenticator to each message issued from any conputer
nodul e so that any alteration of the nessages enroute can be detected
In addition, the origin and path of the message can be verified with
arbitrarily high probability. Gven the above, consistency can be
arrived theoretically with mtl rounds of messages, where mis the

nunber of faulty modul es.

A simplified version of this scheme is possible for the C
Here, the authenticators are sinply replaced by a good error-detecting
code. This often is not an extra overhead since coding may already be
enpl oyed in the communication hardware. Verification of the origin
and path is partially acconplished by appending a code of the origin
into the message and using the fact that a message received froma

particul ar dedicated bus nust come only fromthe associated conputer

The procedure for arriving at a double fault tolerant
interactive consistency vector, denoted as <2F>ICV, follows. In Table
3.4, the conmponents of <2F>ICV1for CI1 are shown. Each <2F>ICV1[Pk]
is derived froma set of 5 different nessages. Mijority function is

not applied on this set. Instead, those nmessages are found to be in

40

error upon decoding are set to NIL values and the rest are conpared
for equality. If these are all identical, the message value is taken
as the appropriate el ement in the <2F>ICV. If they are not al

identical, or if all messages are in error, the NIL value is used

Tabl e 3.4. Conponents for Double Fault Tol erant <2F>ICV

Pk MESSAGES <2F>ICV1[Pk]
Pl: 111 -> <K2F>Cl
pP2: 112 142 132 342 432 > <2F>C2
P3: 113 123 143 423 243 -=> <2F>C3
P4: 114 134 124 234 324 > <2F>CH

To see that this procedure does assure consistent vectors to
be computed with high probability in each nonfaulty processor
consi der the conputation in nonfaulty processor Pi for <2F>ICVi[Pk],

(the element in <2F>ICV corresponding to process Pk):

1) If Pk is nonfaulty, Pi will receive PV[Pk] fromPk. Wth high
probability, all other values received will either be the same or
NIL, by the fact that corrupted nessages are detected and set to

NI L.

2) otherwise, Pk is faulty, and at nost one other processor is also

faulty. Suppose Pi received a message with a value V (non-N L)

41

from Pk, the follow ng shows that another nonfaulty processor Pj

will also receive V from Pk.

2.1) If Pj is in the path of the nessage, then Pj nust have already

received V from Pk.

2.2) otherwise, Pj is not in the path. Again, there are two cases:

2.2.1) if the nessage is received in the third round, two CI's other
than Pj is involved. One of them nust be nonfaulty, and it

woul d have passed the value Vto Pj directly;

2.2.2) otherwise, the nessage is received in the first or second
round. Hence, Pi will be passing this on to Pj directly in

the next round.

The above shows that any non-NL val ue received by a nonfaulty
processor will be identical to the same value received by anot her
nonfaulty processor. Since the NIL values are elimnated if non-NL
val ues are received, this fulfills consistency condition 1. Al so,

with point 1) above, consistency condition 2 is also satisfied.

Optionally, this scheme can be superinposed onto the C as a

degraded node of operation once a single module fault is determned.

42

C. An Inplenentation of the C

In this section, one inplenentation of a Cl chip design is
described. The VLSl design principles of exploiting parallelism
regularity of circuit structure and distributed control [Mea80] are
utilized. Moreover, an effort was made to render the chip fully

testable and, for the control part, concurrently testable as well.

Tabl e 35shows a translation of the algorithmc three rounds
of information exchange and the subsequent majority conputations into
a practical procedure by allotting specific time slots froma sixteen
time interval cycle for each operation. The time slots are naned TQ
T1, :.., to T15. The mddle colum lists messages to be broadcast
onto bus Bl by cIt1at each time slot. The right colum lists message

values transmtted between conputer P1and CI1.
Mode one operation will conprise of TO, T, T2 and 73. Mbde

two operation will conprise of TO through T7. Mde three operation

w |l conprise of the full sixteen time intervals, TO through T15

43

Table 35. Timng of C Functions

Tine To Fron To

| nt erval Port o1 Port PIO

TO 111 111 (from P1)
T1 112 112 (to P1)
T2 113 113 (to P1)
T3 114 114 (to P1)
T4 123 c2 (to P1)
T5 134 C3 (to P1)
T6 141 c4 (to P1)
T7 124 c23 (to P1)
T8 131 c34 (to P1)
T9 142 c4l (to P1)
T10 121 C24 (to P1)
T11 132 €31 (to P1)
T12 143 C42 (to P1)
T13 -—- c21 (to P1)
T14 - €32 (to P1)
T15 -—- c43 (to P1)

A bl ock diagram showing the internal structure and timng of
the Cl is shown in Figure 3.1. Registers are shown with the names of
the nessages that they will hold. [Internal buses are either direct
connections to external buses or are buses that connect to the
word-by-word majority voter. The voter circuit is identical to that
used in the CU as described earlier in Chapter Il, where bit-by-bit
conparators are used to build word-by-word conparators. The outputs
of the word-by-word conparators are then gated to choose the mgjority

message. |f there is no mgjority, a NIL signal is generated

44

12 13 14
PIO S
- n| Mv2 | | Mva | ra| MVa
> 112 > 113 > 114 ‘
T4 T5 T6
T4 T5 T6
™ T T1
123 3 134 ™ 141 N
T7 T8 T9
T7 . T8 . T9
T2 <, 2 < 2
S 124 T8 X 131 S 142 ™
T10 T T12
T10§ T11 T12
T3 T3 r3
121 132 "! > 143 n
T13 T141 T15
T4 T4
> 234 bk > 341 ™
T5 s
241 T 423 m
re T8
323 k¢ S 434 b
r7 r7
231 AN > 342 e
T8 8
< 242 T12 424 T10
15 T9
> 324 T 431 A
r0 10 .
> 232 | ™ > 343 | O
r1 i
> 243 3 421 ™
T12 . T12
321 T 432 AR
M /
PIO <—"—'| Word-by-Word Majority Voter 1
Fig. 3.1 C Logical Block Dagram

=
u

01

The actual inplementation follows very closely to the |ayout
of the block diagram Sequencing is acconplished by two synchronous
ring counters of the type shown in Figure 3.2. NMOS logic is assumed.
Once ENABLE'd, a single logic '1*wll ripple through the shift
registers until the end of the distributed NOR gate as defined by the
node selection signals MODEL and MODE2. |If MODE? is asserted, the
rippling *1*will go back to TO after T3. If MODE2 is asserted, it
will go back after T7 and for node 3operation, it will traverse the
whole length. Two such ring counters will be used. By conparing
mat ching signals fromthe two, the sequencing control can be checked

concurrent with normal operation

In Figure 3.3, the distributed control structure is shown
i thedded anong the registers. (The data paths are deleted for
clarity.) One ring counter lies parallel to the input buses 12, 13
and 14, It controls the loading of the registers fromthese buses, as
indicated by the arrows on the left of all the registers. The second
ring counter interleaves the top four rows of registers. These
registers have two independent output ports for outputing to the

output bus o1 and to the majority voter

There are three separate buses, W2, W3 and Mv4, that connect
to the mpjority voter. Al registers except the top row are |ike
associative store registers in that they are read by matching their
key to keys on the buses. Each register has hard-wired four-bit keys

that correspond to the right two digits of their nanes. Each register

46

— MODEL1 MODE2
VDD 10 11 T2 T3 T4 5 T6 T7 ™8 ... T15
g /
P L—l |> 4] — - o
Shift | Registers

e W

lGND NOR gate

Fig. 3.2 Ring Counter for Sequencing

47

Counter 1 start

®

Q)

©

©

‘l’ [| T2 | T3
0 ﬂ _ L]
o
mENoS N e
L L \
- 141
I: @__D [} T8] 19
\j
s
[@__D [| T11] T12
. ||
=
l: @_D [] T14 ll—_' 115
- B
12— 241 423

o el el U

[
LJ

1 1]
L]

T13

T14

T1§

I

323

34

324 431
232 343
243 | 421 |
321 432
Word-by-Word Majority Voter
Fig. 3.3 C Distributed Control Structure

primed by the second ring counter to output to a majority voter bus
will provide the four-bit key on all three buses. For exanple, at
T12, register 142 will be primed, and the key is then '42', causing
registers 242 and 342 to output. However, the 11xregisters (those on
the first row), when they are primng other buses, uses the nanme of
the bus as the second digit of the key. For exanple, at T5, 113w ||
be primed to output and thus the key '13'will generate keys '23',
'33' and '43' on buses W2, W3 and M4 respectively, causing

registers 123 and 143 to output.

The necessary hardware to conpute the double fault ICV is not
illustrated. It can be inplenmented by adding an accunul ator-|ike
-registers that have access to the input buses. It is expected that
decoders woul d screen out corrupted nessages. Hence these
accumul ators need sinply make equality checks as uncorrupted and
rel evant nessages arrive one at a time. A fourth node of operation is

needed to transmt the double fault ICV to the conputer P1.

49

D. Applications and Merits of the C

Wi le there are in existence numerous means and techniques to
i nterconnect multiprocessors, especially in [ight of the trend towards
di stributed processing [Lue78; Jen76], nost of themare designed to
address the nultiple goals of achieving resource sharing, higher
performance in throughput, smaller response time and higher
reliability. Reliability requirements center around the two aspects
of high availability and integrity. But nost systems can afford a
trade-of f between these two requirenments or there may be a recourse to

a larger system[Jon80 (pp. 143, 144)].

When conputers are applied to critical tasks, they need to
mai ntain high integrity and availability sinultaneously. As nentioned
in the introduction, the key element in a fault-tolerant system for
such application is the commnication structure among the nultiple
conputers. The use of the Cl generates one such structure to serve as
the backbone for the redundant conputers to achieve the system goal of

ultra-high reliability.
Most applications for control of highly critical tasks do not
have high volumes of data to process. Hence, the multiplicity of the

rounds of data exchanges may be tol erated

The nost significant function of the C is its inplenentation

of consistency for the messages communi cated anong the conputers.

50

Consistency is also inplemented for the diagnostic findings on the
integrity of the comunication structure. Wth consistency, the

i ndi vidual conputers can operate on the same SET of input val ues,
thereby guaranteeing identical results given that the sane
conputational procedure is used on the inputs for any redundant
conputations. This provides relief to the problem of output voting,
which is often difficult when the results range over a range of
values. A nore valuable benefit is the possibility of concurrent
detection of errors, thus reducing fault latency, which present

serious problens to system recovery.

Al though node 3 operation is four times slower than node 2
operation, the former is the preferred node for two reasons. Firstly,.
concurrent error detection in the comunication structure is afforded
by the consistent connectivity values supplied by the C, without
waiting until a low activity period when node 3 is swtched on to
function as the diagnostic node. Secondly, studies have shown that
there is a correspondence between the anount of system activity and
its reliability [But80; Cas80]. Hence, it is prudent to nmaintain an

approxi mate stable |oad on the communication hardware and software.

The Cl also tackles tenporary (or transient) faults, noted
as problematic for fault-tolerant systens in the introduction. The
error detection capability, besides being concurrent, operates on the

actual data being comunicated. The effect is the detection of these

faults, which may not be truly determ ned through diagnostics, which

runs either at other times or on different data

The C may fail itself. In this case, systemintegrity is not
conprom sed since this is effectively the same as a processor nodul e
failure. It is possible to enmploy two CI's in parallel, interleaving
their functions on the sane set of buses or provide an alternate set

of buses.

The CI can also be used as a passive unit as a listener on the
inter-computer buses. One application is to drive output processors,
taki ng advantage al so of consistency. Another application may be a
- wat chdog nonitor for the buses, perhaps used for human interface to

report the status of the conputers for human intervention, if needed

52

CHAPTER | V. CONCLUSI ONS

A. Summary of the Report

Communi cation interfaces for use in a highly fault-tolerant
mul ti processor environnent are described. They inplenent consistency
algorithnms that enable different processor nmodules to conpute on
precise data even though there is the possibility of faults in a
single nodule. A scheme which is tolerant to faults in two processor
nodules is also presented. Al the processors are otherw se
i ndependent of one another, thus fault tolerance is enhanced in this

way al so.

In the CU, the basic algorithmis inplemented in an LS
circuit. The very reliable interprocessor conmunication scheme is
transparent to the processors involved, which only participate in
broadcast and receiving messages as if the CUis sinply a buffer

Full testability of the CUis integral in its design

In the G, the means to provide an ultra-reliable
communication structure i s based on concurrent checking using the
actual data being comunicated. The processors are provided wth
consistent information on the comnmunication structure in order to

perform consi stent diagnosis and reconfiguration of the system

53

For both the CU and the C, the algorithms used can be

extended to nultiprocessor systems with morethan four processors

B. Further Research

This paper has not addressed itself to managing the ICV and
ccv's received fromthe C in an efficient manner. In a wder
context, the message processing in the Cl share sone architectura
simlarities with data flow conputers [Den80] in that nessages are
queued to be operated on by majority or equality operation units or to
be re-sent to a bus. Thus, the C structure may provide a conpatible
reliable communication system for data flow multiprocessors. On the
other hand, a data flow architecture may free the cI's from operating
in synchronous node, which require some synchronization on the bus

| evel anong the CI's in order to operate

C. Inplications on Fault-Tolerant Conputing

Looki ng beyond the problenms of designing reliable VLS
circuits, the design of the CU and the Cl denonstrates that there is
mich to be exploited in VLS| for the enhancing fault tolerance. This
wi Il have inpact on the future of massive redundancy systems, which is

still the nost viable approach for achieving high SYSTEM reliability.

54

Al'though the design of the CI addresses itself mainly to

providing a highly fault-tolerant communication structure for

mul ti processor systens, it actually has wider inplications. The use
of concurrent checking mnimzes error latency in error detection

The ability to consistently reconfigure permts very reliable repair

Overall, the highly reliable comunication structure actually

generates highly reliable multiprocessor systens.

55

ACKNOALEDGVENTS

The author wishes to thank Professor E. J. MCuskey for his
gui dance throughout the course of this work, Professor R Mathews,
Professor J. Newkirk and 0. Erbil for the help in the VLSl circuit
design and layout and the Integrated Crcuits Laboratory for
fabricating the CU chip. Helpful comrents and assistance offered by
R. lyer, D. Lu, S. Bozorgui-Nesbat, A Kuk, S. Chen and L.
Christopher and generally the nenbers of the Center for Reliable
Conputing are gratefully acknow edged. This work was supported in
part by the Air Force Office of Scientific Research under Contract
No. F49620-79-C-0069 and the National Science Foundation grant

“ No. MCS-7904864.

REFERENCES

[(Bar78] Bartlett, J. F., "A 'NonStop' Operating System," Hawai i
International Conference of System Sciences, January 1978,

vol . 3, pp. 103-117.

[But80]Butner, S. E and R K lyer, "A Statistical Study of
Reliability and System Load at sLAC," Dig. of Papers, 10th

Int. Sym on Fault-Tol erant Computing, 1980, pp. 207-209.

[Cas80] Castillo, X. and D. P. Siewiorek, "A Performance-Reliability
Model for Conputing Systems," Dig. of Papers, 10th Int. Sym
on Fault-Tol erant Conputing, 1980, pp. 187-192.

[(Dal73] Daly, W M, A L. Hopkins, Jr. and J. F. McKenna, "A
Fault-Tolerant Digital Cocking System"™ 3rd Int. Sym on
Faul t - Tol erant Conputing, 1973, pp. 17-22.

[pav78]Davies, D. and J. F. \Wkerly, "Synchronization and Matching
in Redundant Systems," |EEE Transactions on Conputers, vol.

C 27, pp. 531-539, June 1978.
[Dav79] Davies, D., "Reliable Synchronization and Matching in
Redundant Systens," Conputer Systems Laboratory Techni cal

Report No. 169, Stanford University, January 1979.

57

[Den80] Dennis, J. B., "Data Flow Superconputers,” Conputer, vol. 13,
No. 11, Novenber 1980, pp. 48-56.

[Fos80]Foster, M J. and H T. Kung, "The Design of Special-Purpose
VLSI Chips," Conputer, vol. 13, No. 1, January 1980, pp.

26-40.

[Fu80] Fry, P. L., "Consistency Unit for Fault-Tolerant
Mul tiprocessors," Dig. of Papers, 10th Int. Sym on

Faul t - Tol erant Conputing, 1980, pp. 363-368.

[Hop78] Hopkins, A L., Jr., T. B. Smth, IIl and J. H Lala,
"FTMP---A Highly Reliable Fault-Tolerant Mltiprocessor for
Aircraft," Proceedings of the IEEE, vol. 66, No. 10, Cctober

1978, pp. 1221-1239.

[Jen76] Jensen, E. D., K J. Thurber and G M Schneider, "A Review of
Systematic Methods in Distributed Processor Interconnection,”
Conf. Rec., Int. Conf. on Communications, June 1976, pp.

T17-722.
fJon80]Jones, A. K and P. Schwarz, "Experience Using Miltiprocessor

Systems--- A Status Report," Conputing Surveys, vol. 12, No. 2,

June 1930, pp. 121-165.

58

[Kas78] Katsuki, D., E S. Elsam W F. Mann, E. S. Roberts, J. G
Robi nson, F. S. Skowonski and EE W Wl f, "Pluribus -- An
Qperational Fault-Tol erant Multiprocessor," Proceedi ngs of

the | EEE, vol. 66, No. 10, Cctober 1978, pp. 1146-1159.

(Kaz78] Katzman, J. A, "A Fault-Tolerant Conputing System" Hawaili
International Conference of System Sciences, January 1978,

vol . 3, pp. 85402.

[Luc78] Luczak, E. C., "Global Bus Conputer Conmmunication
Techni ques," Proc., Conputer Networking Synposium 1978, pp.

58-71.

[Mea80] Mead, C. A and L. A Conway, Introduction to VLSI Systerns,
Addi son- sl ey, Reading, Mass., 1980.

[PeaB80] Pease, M, R Shostak and L. Lamport, "Reaching Agreenment in
the Presence of Faults," Journal of the ACM vol. 27, No. 2,

April 1980, pp.228-234.
[Ren78]1 Rennels, D. A, "Architectures for Fault-Tol erant Spacecraft

Conputers," Proceedings of the IEEE, vol. 66, No. 10, Cctober
1978, pp. 1255-1268.

59

[Wen78] Wensl ey, J. H, L. Lamport, J. Goldberg, M W Geen, K. N
Levitt, P. M Melliar-Snmith, R E Shostak, and C. B.
Wi nstock, "SIFT: Design and Analysis of a Fault-Tol erant
Conputer for Aircraft Control," Proceedings of the |EEE, vol.
66, No. 10, Cctober 1978, pp. 1240-1255.

60

