
. COMPUTER SYSTEMS LABORATORY
I I;
STANFORD UNIVERWY . STANFORD, CA 943054055

Automatic Compiler
Code Gene ration

Mahadevan Ganapathi,
Charles N. Fischer,
John L. Hennessy

Technical Report No. 225

November 1981

This resemh was supported by National Science Foundation Grant
MCS78-02570, and the Office of Naval Research under a contract to the
University d California Lawrence Livermore Laboratory, LLL Contract
9628303.

Automatic Compiler
Code Generation

Mabcdevan Ganapathi,
Charles N. Fischer,
John L. Hennessy

Technica: Report No. 225

November 1981

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

Abstract

A classification of. automatic code generation techniques and a survey of the work on these
techniques is presented. Automatic code-generation research is classified into three categories:
formal treatments, interpretive approaches and descriptive approaches. An analysis of these
approaches and a critique of automatic code-generation algorithms are presented.

Key Words and Phrases: Code Generation, Intermediate Representation, Machine Description,
Machine-dependent Optimization, Code Generator Generator, Compiler Compiler. .

Charles Fischer and Mahadevan Ganapathi are associated with the Computer Science Department,
University of Wisconsin - Madison. Mahadevan Ganapathi’s current affliation is Intel Corporation,
Santa Clara, California.

1

1. INTRODUCTION

Code generation is the process of mapping some intermediate representation of

the source program into assembly or binary machine-code. This complex task

involves selecting machine instructions to correctly implement programming

language constructs in line with the following considerations:

(1) Evaluation order of programming language statements,

(2) Frequency analysis of variables and register allocation,

(3) binding source-language variables to storage locations (i.e. operand bind-

iv). and packing variables into machine locations,

(4) accessing variables (i.e. setting up run-time display linkage during pro-

cedure calls and operand addressing),

(5) instruction selection (i.e. evaluating arithmetic and Boolean expressions,

executing control constructs and evaluating predicates without storing an

explicit Boolean result), and

(6) machine-dependent optimization

Previous research in code generation can be broadly classified into three

categories: formal treatments, interpretive approaches and descriptive ap-

proaches. Formal treatments thus far have considered arithmetic expressions

only. Interpretive approaches are improvements over ad-hoc code generation

(because only P+M translators are needed to implement P languages on M archi-

tectures). But in such schemes machine descriptions are intermixed with the

code generation algorithm. Retargeting thus requires changing the code gen-

erator for every new machine. Descriptive approaches separate the machine

description from the code generation algorithm, providing a higher degree of

2

portability. In such schemes, pattern matching is used to replace interpreta-

tion.

2. INTERPRETIVE APPROACHES

Two-level translation schemes were suggested to help design portable compilers

[Ers58, Str58, SteGl]. Code is produced for a virtual machine and is then ex-

panded into real machine instructions. Such schemes use code generation

languages specifically designed to describe the code generation process along

with the target machine instructions (GCL [Els70], B C P L Ocode [Ric-Il), I C L

[Wil71, You743, CGPL, CGGL [Don73, Don79], Pascal P-code [Amm77)). There are

two classes of interpretive approaches. The first category comprises of

straight-forward hand-written interpreters that implement a l - t o - l o r l - t o -

many mapping between the virtual machine and the real machine. instructions.

Hand-written P-code translators [Amm75) and the UCSD Pascal code interpreter

[Shi78] fall under this category. They require a lot of code g.eneration deci-

sions to be made by the compiler front-end. The other class of interpretive

approach is more pragmatic: interpretation is done by a controlled set of

schemas. In this schema-driven interpreter, Ucode [Per793 dictates transfor-

mations on an abstract machine. I n t e r p r e t a t i o n i s c a r r i e d o u t b y observing

the state of this machine and then obtaining the correct code from the schema.

I n e f f e c t , a n m - t o - l mapping is obtained when interpreting the abstract

machine onto the real machine. This scheme is explained in detail towards the

end of this section. While hand-written interpreters are a distinct improve-

ment over ad-hoc methods, they suffer from serious limitations:

(1) Due to the diversity in addressing modes, target machine data tY Pes and

3

instructions, it is very hard, if not impossible, to anticipate a variety

of machine organizations (e.g. whether a hardware stack exists) in one

virtual machine. Interpreters tend to be very large and complex (In Elson

and Rake's implementation [Els703, macros had to be paged in from disk).

(2) Code generation languages are closely tied to g specific language or

machine. Thus they cannot be considered truly portable.

(3) The description of the target machine is mixed with the code generation

algorithm; the description cannot be changed without changing the algo-

rithm.

(4) The implementor must perform a tedious case analysis of code sequences and

make all low-level decisions as to what kind of code is to be generated.

The quality of the code produced depends on the implementor's ability to

design and debug code generation routines.

(5) The implementor has a very local view of the code to be generated. It is

hard to incorporate context-dependent optimizations such as:

(a) use of indexing instead of explicit addition in an addressing context,

(b) differentiation between goolean values to be stored (i.e., expres-

sions) and Boolean values that need only be tested (i.e., predicates),

(c) branch chaining and other flow-dependent optimizations [Wu175].

We now consider further the schema-driven interpretation scheme. The code

generation scheme is based on two concepts:

(1) The translation from UCode to the target machine code is controlled by a

set of schemas.

4

(2) The translation process is tracked by using a map between the virtual

Ucode machine and the actual target machine.

The notion of schema or macro based translation between an intermediate form

program and a target machine language has been used numerous times to design

conventional and retargetable code generators. In most cases, a simple macro

expansion based on each intermediate-form operator generates the code. Howev-

er, this method has many inefficiencies; most of these come from the fact that

little or no context is used in expanding a particular macro. Alternatively,

extra context can be incorporated with a great deal of special casing usually

done by the programmer in a conventional code generator.

The approach used by UGEN differs because the state of the virtual machine

records the necessary context at any time. A particular UCode operation may

cause the code generator to alter the state of the virtual machine. Thus, th'e

machine dependent portion of the code generator is isolated in the schemas and

the code generation algorithms deal with a parameterized version of the target

machine (parameters allow handling of issues such as register allocation and

differing word lengths) and the virtual machine state.

The schemas essentially specify a mapping between the virtual machine and the

target machine; the complexity of the mapping is directly related to the com-

plexity of the target machine. The use of transformations on the virtual

machine results in the collapsing of several UCode operators into a smaller

sequence of target machine instructions, without requiring the programmer to

be aware of, or to construct, all possible instruction sequences leading to

the same virtual state.

The virtual machine consists of several components:

(1) The instruction stream of UCode instructions.

(2) The static global data area.

(3) The stack allocated activation record frames (which are symbolically ad-

dressed).

(4) One or more portions of memory that can be addressed using pointers.

(5) A computation stack.

The UCode machine instructions include . . .

. (1) Loading and storing from the memory areas and stacks to the computation

stack.

(2) Performing computations on the computation stack.

(3) Creating or destroying activation frames.

(4) Changing the choice of instructions (calls, jumps, returns, etc.)

The machine instructions appear in postfix format. Ins t ruc t ion operands have

data type, memory type, length, and address fields associated with them.

The code generation algorithm proceeds as follows:

(1) Using the next instruction in the instruction stream and the state of the

virtual machine (the computation stack), choose a translation schema.

(2) Use the schema to:

(a) Emit code which may use information tracked in the virtual machine to

record the location of operands on the target machine and the operand

types. Some operators may not cause any code to be emitted.

(b) Transform the virtual machine state, and perform related transforma-

tions on the target machine.

(c) Finally update the target machine state, e.g. register contents.

6

The code generation algorithm is also responsible for:

(a) Register allocation.

(b) Loading and storing between target machine memory types (registers and

memory): this is always directly tied to register allocation.

(c) Tracking the state of the target machine to el im.inate subsumed instruc-

tions.

The schemas are chosen on the basis of the UCode instruction to be executed

and the virtual computation stack of the machine. The schemas may be

parameterized by the fields of the instruction or components of the virtual

stack.

An Example-

The Source:
Ucode:

A[iJ := A[i] + 1;
LDA A ;load address
LOD I ;load i
INDEX 4 ;index an array of component length 4
ADD
LDA A
LOD I
INDEX 4 ;index an array of component.length 4
ADD
ILOD ;indirect load
LDC 1
ADD ;A[i] + 1
ISTR ;indirect store

I n s t r u c t i o n

LDA A
LOD I
INDEX 4

ADD

ADD
ILOD

LDC 1
ADD
ISTR

Virtual Machine State , Code

Addr(A)
Addr(A) 1 I
Addr(A) 1 Rl L R1.1

SLA RI.4 ;load i & shift
OffsetA(R1,FP)

;Offset@-(A)=offset from FP
OffsetA(R1,FP) 1 OffsetA(R1,FP)
OffsetA(R1.FP) 1 R 2 L R2,Offset (Rl,FP)

;i Rdexed load
OffsetA(R1,FP) I R 2 I 1
OffsetA(R1,FP) I R 2 INCR R2 ;increment R2

S t r R2.0ffsetA(R1,FP)

7

A version of UGEN has been done for two machines (Motorola 68000 and the DEC-

20) with a third underway (VAX). The results have been quite encouraging.

The code on the 68000 is comparable to that for the C compiler including the

post optimizer for the C compiler. On the DEC-20, the code is about 20% fas-

ter than the one pass Stanford/Hamburg Pascal compiler. The time to port the

6 8 0 0 0 w a s less than 1 man month (ignoring about 1 week in learning the in-

struction set and 1 week in making low level C interfaces and learning the C

linkage convention).

3. FORMAL TREATMENTS

Newcomer [New751 uses means-end-analysis [New691 to generate code templates

(not machine instructions) from a parse tree and a set of operators, His

scheme is very restrictive and of very little practical importance because: .

(1) It only deals with arithmetic expression trees.

(2) Real machine architectures are not always readily representable in his

specification scheme.

(3) His code generation algorithm can fail to produce a code template due to

(a) a possibly inadequate set of operators, or

(b) a limitation of the depth of search performed by means-end-analysis (a

limit is needed to prevent the code generator from possibly looping).

(4) The algorithm is exhaustive and therefore far too expensive to be used in

a production compiler. Sometimes, weeks of computer time are required to

analyze even simple trees!

Aho and Johnson [Ah0761 consider a similar exhaustive "brute force" optimal

8

code generation scheme. They use a three-phase dynamic programming algorithm

to derive optimal code sequences for expression trees. In the first phase,

trees are traversed bottom-up. For each vertex 'v', all possible machine in-

struction translations of the subtree rooted by 'v' are used to compute an ar-

ray Cr[v] (1 < r L total number of registers) of costs. Cr is the minimum

number of instructions required to compute the subtree us i n g 'r' registers.

All permutations of evaluation order are considered. At the end of the first
. .

phase the following are determined:

. (1) the optimal instruction sequence required to compute the subtree rooted by

vertex 'v', and

l

(2) the optimal evaluation order for the subtree of 'v'.

The second phase uses the cost arrays and traverses top to mark tree

nodes that must be computed in memory locations (i.e. wherever 'stores' are

necessary because of too few registers). The last phase walks each marked

subtree and generates code to evaluate the subtree followed by appropriate

'stores' into temporary memory locations. Aho & Johnson show that this algo-

rithm requires time linear in the number of tree nodes and exponential in the

number of instruction and addressing mode choices at each point.. *The

shortcomings of this model are:

(1) It only deals with arithmetic expression trees excluding common sub-

expressions.

(2) Only mathematically clean instructions are dealt with, avoiding asymmetric

registers and special instructions found in real computers.

9

4. HAND-WRITTEN CODE GENERATION ALGORITHMS

For reasons of portability, code generation research has concentrated on

separating machine descriptions from the code generation algorithm itself.

The advantage of this approach is the potential ability to use one code gen-

eration algorithm for all machines.

Miller made the first attempt to isolate machine-dependent issues from the

code generation algorithm [Mi171]. Source language is mapped to two-address

code sequences, which are macros written in MIML (Machine I n d e p e n d e n t Macro

Language). These macros specify the actual code generation algorithm, e.g.

macro Add x, y
If type of x = integer and type of y = integer

then Iadd x , y
else if type of x = float and type of y = float

then Fadd x, y
else error

The specifications of, e.g., macros Iadd and Fadd i n O M M L (O b j e c t M a c h i n e

Macro Language) form the description of addition on the target machine. Thus,

for the IBM-360:

macro Iadd a , b
from a in Rl, b in R2 emit (AR a, b) result in Rl
from a in R, b in M emit (A a, r) result in R
from a in M, b in R emit (A b, a) result in R

States are defined as configurations of operand locations. A state i s 'per-

mitted' if from that state code can be emitted with operands unmoved. Every

macro is associated with a set of permitted states o n l y . The designer is

therefore required to specify transitions between memory and registers SO that

the code generator automatically moves to a permitted state if needed (e.g.

10

movement of an operand in storage to a register to implement storage-to-

storage addition). To retarget a compiler to a new machine, Iadd a n d F a d d

must be changed. The algorithm represented in Add remains unchanged.

Miller's model, however, is too restrictive because it deals with expression

evaluation and very simple addressing schemes only: it does not allow index-

i n g , auto-increment, or indirect addressing.

Weingart introduced pattern matching to avoid interpretation [Wei73]. Target

machine characteristics are encoded into a single pattern tree that is expect-

ed to be a compact and efficient means of representing most machine-dependent

information. The code generator is a tree traverser that accepts information

from a parse tree of the source language and stores tokens until a suitable

match can be found in the pattern tree. To transport this code generation

scheme to a different target machine, the user creates a new pattern tree for

the new machine. In practice, Weingart's ideas are not easy to use because:

(1) Creating a single tree structure to encode all potential instruction pat-

terns and code sequences is often hard. For example, Weingart had diffi-

culties creating the pattern tree for the PDP-11. He tried to generate

the tree from a machine description automatically, but did not succeed

very well.

(2) There exists a possibility that on some machines no instructions at all

will match parse trees. Pattern mismatches are handled by a set of

conversion patterns. However, there is no way to determine if a suffi-

cient set of conversion patterns has been supplied. The code generator

might therefore fail to produce any code for some legal subtree o f the

source language.

.

11

(3) Some machines provide a choice of instructions to implement a source

language construct. Code quality depends critically on the selection of

the most appropriate instructions (e.g. using 'increment' instead of 'add

one'). Special care must therefore be taken by the tree traverser to make

the best possible instruction choice (Weingart's technique cannot make

such a choice).

Snyder [Sny75] attempted to write a portable compiler for the language C .'.

[Rit78] (b u t h e did not succeed very well). His compiler uses a two-phase

translation scheme very similar to Miller's. In a first phase; the code gen-

erator walks an expression tree and generates three-address instructions.' The

classification of registers and the register requirements of these instruc-

tions are defined by the programmer. A second phase then translates three-

address instructions into assembler code for the target machine. Macros and C

routines are used to perform tedious case analysis of code sequences. Snyder

to a large extent ignored object code optimization. .

A number of Snyder's ideas are used by Johnson in his successful implementa-

tion of the portable C compiler [Joh77, Joh78J. Templates and a template-

matching algorithm form the central idea around which c o d e generation is

designed. Templates specify:

(1) the operator of the subtree (e.g. an assign-op),

(2) the desired result location on the target machine (e.g. a register loca-

tion or a condition-code setting),

(3) the machine addressing mode and the language data type of the operands of

the expression, if any (e.g. r e g i s t e r m o d e , p o i n t e r typ.e).,

.

12

(4) the resource requirements: the number of temporaries and scratch registers

needed for implementing the subtree,

(5) a rewrite rule specifying how to replace a subtree by another, and

(6) the machine instruction(s) to be emitted on a successful match; the OP-

codes and operands are, in general, macros that,are expanded into assem-

bler mnemonics of the target machine (e.g. emit Integer-Opcode, Address-

form-of-Left-Operand, Address-form-of-Right-Operand).

The template-matching algorithm tries to match a subtree against suitable tem-

plates in an attempt to transform the subtree. Such transformations must con-

sider the result location specified in the template. For an efficient imple-

mentation of the algorithm, it is essential to restrict the search for an ac-

ceptable template. A template matches a subtree when all the template specif-

. ications (1) through (5) match. Condition (4) includes a call to a resource

allocator; the match fails if it is unable to allocate the required resources. .

On a failure, an attempt is made to transform the subtree using default or

machine-dependent rewrite rules, for example,

a += b becomes a = a + b
x++ becomes ((x += 1) -1)

Feldman uses C's code generator in his implementation of the portable Fortran

77 compiler [Fe179]. Most register and temporary allocation is taken care of

by the code generator. However, mapping the different flavors of Fortran in-

teger variables to C's types and generating the necessary type conversions are

not easy tasks. Furthermore, Fortran's power operator (**) must be treated as

a special case, and MIN and MAX functions are implemented as nested condition-

al expressions.

13

.

The shortcomings of Johnson's approach are:

(1) Templates are not the only places where code selection is specified (tem-

plates deal with expression evaluation only). Other phases of the com-

piler must emit code for control constructs.

(2) The intermediate representation (IR) is specifically designed for the C

language. Language dependent data types are embedded in the templates.

The basic data types of C limit other languages to compile into its IR.

It is not very easy to map references that are neither local nor.global

(i.e. at an intermediate nesting level) to the C compiler's back-end.

(3) Macro interpretation is used for selecting the assembler instruction from *

a set of possible instructions matching the subtree. The macros are real-

ly assembly language instructions for a machine: they map between the

abstract instruction and the syntax for a particular assembler. Multiple

matches between templates and subtrees are thus avoided, but these macros

must be changed when the compiler is transported to a new machine.

(4) On a mismatch, machine-dependent rewrite rules call the code generator for

possible tree alterations. Such rules potentially can produce infinite

loops.

(5) Not much thought is given to machine specific optimizations (but there is

a specific plan for a post pass by a peephole optimizer). Condition codes

are not saved between expressions.

(6) About one-third (-1000 lines) of the code generator needs to be rewritten

to do a transport.

14

5. TABLE-DRIVEN CODE GENERATION 6

To suit a variety of target architectures, a lot of flexibility and tuning of

the code generation algorithm is usually necessary. Lately, research has con-

centrated on providing this flexibility by an automatic analysis of a formal

description of the target machine. Table driven approaches, attempt to break

the code generation problem into parts: register allocation, storage alloca-

tion, instruction selection. These problems interact strongly. In particu- ~.
.

lar, the choice of an optimal set of instructions to implement a Direct Acy-

clic Graph (DAG [Aho77]) depends on register availability etc;; likewise, re- *

gister allocation depends on instruction choice. This problem could be 'some-

what glossed over on the PDP-11 (because of restrictive address modes), but it

explodes on the VAX and is a major issue on the 68000.

Fraser [Fra77] uses ad-hoc rules (coded as MLISP [Smi70] subroutines) to

minimize machine dependency in code generation. He uses XL, a machine-

independent IR that may need to be adapted to accommodate new source languages

or target machines. Rules are used to perform storage allocation (more on

this topic in the next section) and in this process XL is rewritten into. ISP'

[Wic75] (a modified version of ISP [Bel’/l]). Code generation then consists of

matching this ISP’ form with machine instruction patterns that are aTso in

ISP’ . Pattern mismatches invoke rules (subroutines written in MLISP) that try

to rewrite the ISP’ form of the IR. Examples of such rules include: invert

relational tests and alter control flow, replace indirect references with in-

dexed ones, load non-accumulator operands into accumulators. The rules, of

course, do not guarantee that a code sequence will eventually .be found.

.

15

Fraser performs syntactic analysis of ISP [Be1711 descriptions at code genera-

tion time to recognize stack operations, macros that set condition codes, in-

dex registers and accumulators. Rules (subroutines in MLISP) are used to al-

locate storage for variables and classify registers as index registers and ac-

cumulators. Examples of such rules are "store integers in the widest possible

memory that can participate in an add instruction" and "if a single instruc-

tion can add a register to some offset and use the result to index some memory

then the register is an index register". On machines such as the IBM-360 or

the PDP-11 where small integers can be stored in a half-word or a byte, the

allocation rule for integers is inefficient. On architectures with no index

registers (e.g. Intel 8080) the index register rule is useless. In general,

Fraser's rules are ad-hoc and machine specific. Machine descriptions could be

used as a substitute for some of these rules (it is not hard for the user to

specify index registers and accumulators as part of the machine description).

Fraser's knowledge-based approach has several shortcomings:

(1) Rules compromise generality for efficiency. They are based on the obser-

vation that many computer architectures are similar in design (as Wick

postulated in assemblers). The same rules are not usable for diverse ar-

chitectures: often completely new rules are necessary. Some rules such as

"load non-accumulator operands into accumulators** could potentially con-

tradict other parts of a compiler (such as the-register allocator). In

Fraser's scheme, redundant loads and stores are unavoidable.

(2) It is hard, if not impossible, to utilize special instructions and ad-

dressing modes of a target machine. An XL primitive such as 'a = a+l’ may

16

match multiple machine instructions ('add #l,a’ and 'inc a' on the PDP-

11). It is not clear when (if ever) his code generator would resolve such

multiple matches and choose the best alternative.

(3) The code generator is very slow: the implementation in Lisp on a PDP-10

KAlO generates one line of assembler code each second.

Cattell [Cat78, Cat79, Cat80, Wu179, Wu180) uses TCOL (a tree-based intermedi-

ate representation) as the IR and a recursive tree traversing algorithm to

.generate code. Templates of the form 'tree pattern -> result sequence" are

used to specify the translation from a TCOL program tree to machine code. The

result sequence specifies code to be generated, calls to a register allocator

or label generator, further matches to be recursively performed (e.g. a

statement within a control construct). Templates are grouped into schemata

representing the context (e.g. flow result, value result) in which code is to

be generated. The code generator starts from the root of the IR tree and at-

tempts to match templates with the largest possible subtree at the current

tree node. On a match, the corresponding result sequence is processed. Tem-

plates must therefore be composed recursively to match an entire program tree.

Operand mismatches are forcefully resolved by a subtargeting operation that

consists of allocating a location of the desired data type and emitting a

'move' into that location. If an IR operator does not match any template

operator, an attempt is made to transform the operator using tree equivalence

axioms and heuristic search (details in the next section). Multiple matches

are handled by sorting the alternatives with decreasing preference and choos-

ing the first (e.g. x f- x+1 occurs before x f- x+constant).

.

17

Cattell proposes a formal model of instruction set processors Mop (genealogi-

cally related to ISP) containing descriptions of storage locations, addressing

modes and instructions. A set of assertions (in a parenthesized Lisp-like no-

tation) are written for addressing modes and instructions. Such descriptions

are significantly more useful for automating software than ISPS procedural

descriptions. An attempt is made to derive code sequences for IR operators

that do not have equivalent machine opcodes (e.g. subtraction on the PDP-8)

by using tree equivalence axioms (e.g. DeMorgan's laws, relations between ad- .'.
.

. dition and subtraction) and heuristic search. The Mop assertion templates are

then augmented with such derived sequences and pseudo-operations (utilizing

side-effects of instructions to implement IR operators).

For example, consider 'c f- a & b' on the PDP-11 (which does not have a Boole-

an 'and'). Heuristic search obtains the closest machine instruction 'bit'.

Means-end-analysis is then used to try matching 'c + a & b' with 'c f- c &

md' (assertion for 'bit d,c').

code emitted

IR:
goal:
mismatch:

c f- a & b . -
c f- c & -d 'bit d,c'
a with c, decomposition 'c <- a' mov a,c
b with wd, transformation 'b f- e-b'

IR: c f- c & --b
goal: c f- c & -d 'bit d,c'
mismatch: -b with d, decomposition ‘ d <- Hb'

heuristic search obtains 'corn'

IR:
goal:
mismatch:
match:
match:

d f- -b
d f- -d 'corn d'
b with d, decomposition 'd f- b' mov b,d

corn d
bit d,c

18

Attempts are also made to match the IR with other potentially useful instruc-

tions ('c f- a & b' with 'c f- -c' ('corn')) but the search is too deep and

subsequently cut-off before a code sequence can be found.

Such a heuristic search is too time consuming to be applied during gen-

eration (on machines with condition codes, a conditional jump requires several

transformations), so Cattell suggests doing such searches before code genera-

tion and tabulating the results for the code generator. In practice, it is

very hard and time consuming (if not impossible) for such an axiomatic ap-

preach to automatically derive code sequences for floating point operations or

doing a '2n'-bit arithmetic on an 'n'-bit machine (e.g. 16-bit arithmetic on

the Intel 8080 or 32-bit arithmetic on the PDP-11). The Intel 8080 has no ex-

plicit 'branch on greater' or 'branch on equal' instructions. It has 'jz'

(branch if zero flag is set) and 'jp' (branch if sign flag is clear). Code

sequences for such IR control-statements are very long,

e.g. 'Beq x y La' if x = y jump to La

assumptions: x and y are 16 bit integers
x is in register pair BC
y is in memory addressed by the HL pair

mov A, M
cmp C
jnz Lb
inx H
mov A' M
cmp B
jz La
Lb:

accumulator <- y's low order byte
compare x's low order byte with accumulator
jump to Lb if th e zero flag is not set
increment address register
accumulator f- y's higher order byte
compare x's higher order byte with accumulator
jump to La if zero flag is set .

The code for 'Bge x y La' (if x 2 y jump to La) is twice as long!

.

19

While Cattell's model is more general than Newcomer's (which only deals with

arithmetic expressions), it has the following drawbacks:

(1) The code generator avoids machine-dependent issues such as binding vari-

ables to storage formats, space allocation and addressing of variables.

The model fits only the 'Code' part of Bliss' pWu175] Delay-Tnbind-Code-

Final model. TNBIND allocates registers before the code generation pass.

The code generation pass also emits allocation commands. The allocation

commands emitted by the code generator may conflict with the requirements

of Tnbind [Joh75]. Interfacing the code generator within Bliss' framework

might therefore be hard.

(2) Templates are part of the code generation algorithm because some result

sequences specify further matches to be performed. It is therefore hard

to alter the templates without changing the algorithm. .

(3) For subtargeting to be successful, there must be 'move' instructions in

the target machine between all possible location types. Otherwise, there

is a chance that the code generator may block generation of code for a

valid program tree. Even if it does not' there would be unnecessary

moves.

(4) Multiple matches are 'statically' resolved by ordering alternatives. This

strategy does not result in optimal code sequences in certain cases. For

example' on machines such as the VAX-111780 that have both two-address and

three-address operations for a single IR operator, the optimal choice

.

20

depends on whether the operator is commutative and the operands are des-

troyable (e.g. a f- b + a).

(5) Operator mismatches invoke a heuristic search that is recursive and com-

binatorially explosive. The search must be cut off at some point so that

the code generator will not loop or use excessive amounts of time. Conse-

quently, no machine code may be generated in cases where the search is cut

off.
.‘.

.

. (6) Code sequences that are produced do not make effective use of all machine

resources. Special case subsumption operations such as .auto-increment are

hard to describe as templates. Also, equivalent locations are not recog-

nized. Thus, if a register contains an operand that is also in a memory

location, the code generator fails to identify this equivalence and use

the register. Even if a value is already in a register, it is invariably

reloaded. This reload happens because the code preceding the reload could

possibly be generated from an arbitrarily distant section of the program

tree and this optimization is therefore hard to recognize in any local

tree context analysis. A separate peephole optimizer package [Mck'lO,

Fra79, Fra80] may solve some of these problems but there may be conflicts

with other parts of the compiler (such as the register allocator [Rud79]).

Ripken [Rip773 uses an extended version of Aho & Johnson's algorithm to gen-

erate optimal code from expression trees. His IR consists of attributed ex-

pression trees linked together as a graph according to the flow of control of.

the source program. The instruction set of the machine is described as attri-

.

21

buted tree patterns with a set of attribute transformation (AT) rules (more

details in the next section). A pre-pass to code generation maps simple (i.e.

non-aggregate) source language types to characteristic value-ranges of machine

storage locations.

Code generation then consists of a two-phase transformation of the IR. In the

first phase, AT rules (derived from an analysis of the machine's AT rules) are

used to generate code for expression trees. A machine operation is assumed to

exist for every IR operator and its attribute values. A three-pass tree

traversal scheme (very similar to Aho & Johnson's) determines the order of

Al-rule applications and which AT rule is to be applied at each node. The

difference between Aho & Johnson's algorithm and Ripken's isthat Ripken con-

siders real instruction sets with several register classes and addressing

modes. Transfer operations (not only 'stores') between machine storage loca-

tions are also considered (sufficient transfer operations are assumed to allow

operand transfer between all storage classes) together with register, tem-

porary allocation and assignment. Like Aho & Johnson's, Ripken's first phase

emphasizes locally optimal code. The second phase linearly arranges such lo-

cally optimal code blocks and generates the necessary branch instructions

among them.

In Ripken's scheme, storage locations are described as pairs containing an

operand class and address (e.g. (bytes, 15). (words.' 16). (register, 2)) . An

operand is described by its address descriptor and value-range (e.g. 9' b i t ,

-2**(n-1) . . 2**(n-1). 2's complement). Operations are described by tree pat-

terns (at least one pattern per IR operator) with predicates on attribute

22

values and evaluation rules to describe the semantics.

E.g. addition on the Intel 8080: template: + 01 02 -> 03

AT-rules:
choice (1)

predicates:
cell-class(01)
cell-class(02)
value(02)

evaluations:
cell-class(03)
address(03)
code
Z, S, P, AC affected

choice (2)
predicates:

cell-class(01)
cell-class(02)
value-range(01)
value-range(02)

evaluations:
cell-class(03)
value-range(03)
code
CY affected

= accumulator
= immediate mode
= 1

l = accumulator.
l = address(02).
:= inr A

= H and L register pair
= H and L register pair
= F+15
= F+15

:= H and L register pair
l = F+16.
l =. . dad HL

choices (3), (4) similar to above.

From these AT-rules, IR operand specific application rules are selected for

code generation. Ripken also requires templates for operand transfer between

two storage classes even if the machine architecture does not have a 'move'

instruction between them. This specification is needed so that transfer paths

exist from any storage class to any other.

e.g. := Registergair HL-pair
mov 2*i, H (i=address of register pair)
mov 2*i+l, L

.

23

Addressing modes are also represented as tree templates. They are inserted in

applicable places for operands in the IR tree before code generation. An at-

tempt is made to subsume address computations by machine addressing modes.

Ripken did not implement his proposal. A straightforward implementation would

require a great deal of computation of different permutations with combina-

torially explosive choices. A code generator based on this model would be

very slow. Also, in spite of emphasis on optimal code generation, certain .'.

inefficiences are likely to occur at the border between code blocks (which

represent individual statements rather than the basic blocks of [Aho77]) of *

different expression trees. These inefficiencies include redundant loads and

stores, and failure to take advantage of auto-increment/decrement possibili-

ties.

Glanville [Gla77, Gla78, Gra80] made a significant breakthrough, not entirely

perfect but a big step. The generated code is reasonable and the code genera-

tor is fairly retargetable. He chose a very low level IR in the form of Pol-

ish prefix expressions. Storage allocation and binding are assumed to be al-

ready done by other phases of a compiler. The code generation algorithm* is

derived from context-free parsing theory [Aho73]. Instructions in the target

machine are also expressed in prefix form and they form grammar productions

with the left hand side (LHS) specifying the result of an operation and the

right hand side (RHS) the operation. An assembler instruction computing the

RHS is supplied with each production. Thus, r.1 -> + r.1 k = l "inc rl” speci-

fies that an addition of 1 to register1 (with the sum going to the same regis-

ter) can be obtained by an 'inc rl” instruction. A one-to-one mapping is as-

.

24

sumed between productions (serving as machine templates to the code generator)

and target machine instructions. Since the addressing modes of operands are

explicitly described as grammar terminals, this one-to-one restriction is

essential. The IR string is parsed according to the context-free grammar and

the appropriate assembler instructions are emitted. Since the grammar is usu-

ally ambiguous, a modified LR(l) parsing algorithm is used. The table driven

code generator is automatically derived from instruction patterns (more on

this technique in the next section). In practice, reasonably compact tables

are obtained and also, because standard context-free parsing techniques (which

forbid backup) are used, a linear time algorithm is obtained. Multiple

matches produce shift-reduce or reduce-reduce conflicts and are resolved

heuristicly. Shift-reduce conflicts are resolved in favor of a shift (so that

more powerful single machine-instructions are preferred to equivalent se-

quences of instructions). Similarly, reduce-reduce conflicts are resolved in

favor of the production with the longer RHS. In case of conflicts between

identical length productions a "best instruction first" ordering is used to

select the first production.

Glanville's machine description (Polish prefix expressions) is not very for-

mal. Different data types of the target machine (e.g. bytes, words, floating

point) and special addressing modes (e.g. auto-increment' auto-decrement) are

not used. The code generating IR parser is automatically constructed from the

instruction-set description using an LR(1)-like table constructor [Aho76].

Correctness of the code generator is emphasized. Possible looping configura-

tions (where V =>* V) are detected by analysis of grammar tables using a tran-

sitive closure algorithm on a relation characterizing parser moves. Instruc-

25

tion grammars are analyzed for uniformity (all operands being uniformly valid

to operators independent of the context in which they appear). States are in-

spected to check that for all first symbols of left or right operands, either

a shift or a reduce is signaled (i.e. no error actions are encountered).

Although some of the semantics (e.g. register number, source-destination rela-

tionship) that are necessary to emitting instructions are used in productions,

they are not used to control parsing. These semantics can be viewed as an

earlier and more primitive form of attributes that are used in [Gan80]. Some-

times semantic restrictions (e.g. constant required to have value 1 or re-

quired register usage) may not be satisfied for any production in the set of .

possible reductions in a particular state. All uses of a pattern are res-

tricted and the input to the code generator does not satisfy these restric-

tions. In such cases, default instructions are needed to prevent the. code

generator from blocking for a valid input. If all patterns in a reduce state

have semantic actions, the pattern matcher constructs an instruction sequence

to compute the unrestricted pattern by removing its instructions from the

description and providing the pattern as input to the code generator. Action

tables are changed to consider default reductions instead of signaling an er-

ror. This consideration ensures that a necessary set of conversion patterns

has been supplied and thus that the code generator cannot block for a valid IR

input.

While Glanville's scheme is very efficient (easily the fastest among compar-

able code generation schemes) and provably correct, it is not completely port-

able because:

.

26

(1) The IR is very low level: it contains assumptions about the addressing

structure of the target machine. The IR requires operand binding and

operand addressing to be dealt by the front-end of a compiler. T h e map-

ping between operators in the IR and target machine opcodes is required to

be one-to-one. Thus, in transporting a compiler from one machine to

another, changes have to be made to the IR. Such changes are reflected in

Glanville's IRS for the PDP-11 and the IBM-360 (16 bit address computa-

tions as opposed to 24 bits). Since storage allocation and binding issues 'Y

are avoided, any change in the implementation of (e.g.) the run-time

display will result in changes to the IR code to access variables. G l a n -

ville requires careful design of the IR and tailoring to the machine.

Many potential IR constructs cannot be used. Some interfacing problems,

such as the allocation of registers that are used for display purposes'

might arise between the register allocator and the display mechanism.

(2) Very good code cannot be generated by purely context-free expansion (e.g.

'a & b' in 'if (a & b)' and 'c := a & b' may need to yield different code

because of the context in which it is used). Because this method uses

limited context, the quality of generated code is strongly dependent on

the exact IR form generated by the front end (e.g. in an addressing con-

text, explicit addition is performed in the intermediate representation

and in the generated code instead of using indexing).

(3) Heuristic resolution of multiple matches fails in certain cases (e.g., in

the choice of two-address or three-address instructions on the VAX-

11/780).

(4) Glanville ignored machine-dependent optimization issues. ,The code genera-

.

27

tor does not worry about information retention (e.g. values left in re-

gisters from previous computations). Thus, redundant load and store elim-

ination, recognition of equivalent locations, subsumption of addition or

subtraction via auto-increment and decrement are not done.

In [Gan80] attribute grammars are used to specify translations from an inter-

mediate representation (a linear representation of parse-trees) to a target

code representation of programs. A code generator may be obtained automati-

cally for any compiler using attributed parsing techniques. The code genera-

tor is also easily retargetable to different machine architectures. Implemen-

tations of a code generator based on this model exist for the VAX-111780 and

the PDP-11/70.

Code Generation Goals

The goals are:

(1) structure the code generation process so that target machine dependency

does not taint other phases of a compiler. Interfacing the code-generator

package with other phases of a compiler should therefore become consider-

ably easier.

(2) devise a simple and clean model of code generation and machine-dependent

optimization using attribute grammars [Rai80]; ideally, one that is

simpler and cleaner than Newcomer's and Cattell's'means-end-analysis model

[New69].

(3) retain the speed and efficiency of Glanville's [Gla77] approach by using a

fundamentally single-pass code generation scheme.

28

(4) include machine-dependent optimizations that have not been included in

other portable code-generators. These optimizations include choosing

between three-address and two-address instructions, subsuming (via auto-

increment) additions widely separated from the current instruction (in ef-

fect, 'floating' an addition across many instructions), subsuming subtrac-

tions via auto-decrement in a similar fashion, removing redundant loads

and stores' replacing memory references by register references, delaying

operand movement into costlier storage locations and span-dependent optim-

izations CSzy78, Szy80). Such optimizations are hard to incorporate as a

separate pass of peephole optimization [Fra79, Fra80) since the instruc- *

tion could have effects outside the window (e.g. condition-code setting

and register contents).

Attributed-Prefix Intermediate Representation

The design of an intermediate representation (IR) plays an important role in

compiler portability and code generator efficiency. An attributed Polish Pre-

fix representation is used as the IR. The rationale behind this choice, its

relative standing with respect to other IR proposals in the literature and the

detailed design of attributed prefix IR is explained in [Gan8lb]. The main

goal in this design is to minimize the effort required to retarget compiler

back- ends.

from math ine-dependent issues.

The level of the IR serves to demarcate language-dependent issues

The use of a Polish Prefix representation fa-

cilitates efficient pattern matching between the IR and the attribute grammar

of the target machine (explained below). Attributes provide the flexibility

needed to accommodate the diversity found in programming languages. Further-

.

29

more, they provide ease of interface between machine-independent aspects of

compilers (such as live/dead variable analysis) and machine-dependent issues.

Thus, they are influential in guiding the code generator to produce efficient

target code.

Attribute-Grammar Machine Description

For purposes of pattern matching and instruction selection' the instruction

set of the target architecture is represented as a set of attribute-grammar
.'.

'

. productions. These productions form the input to a program that generates a

code generator for the target machine. All productions are of the form 'LHS

-> RHS', where LHS stands for lefthand side, RHS for righthand side. The LHS

is a single non-terminal usually appearing with synthetic attributes. The RHS

contains:

(1) terminals with synthetic attributes (prefixed by a '*'),
(2) non-terminals with synthetic attributes,
(3) disambiguating predicates [Mi177] (underlined) with inherited attributes

(prefixed with a '$') and
(4) action symbols (capitalized) with synthetic and inherited attributes.

Attribute occurrences may be constants or variables. Constant attributes

(with the exception of self-defining constants) are enclosed within quotes.

The kinds of productions needed for an entire code generator can be broadly

classified into addressing-mode productions and instruction-selection produc-

tions. Although examples in this section pertain to t h e PDP-11170 a n d the

VAX-11/780, the technique is generally applicable and feasible, as demonstrat-

ed by our specific implementations.

Addressing-mode productions:

Each production has an RHS specifying the pattern of an IR a,ddressing mode.

.

30

The production creates the proper machine address (in an action symbol). For

example, the following production is used to specify an index addressing mode

on t h e PDP-11/70 o r a displacement addressing mode on the VAX-111780 ("'

denotes indexing in the IR):

Addressta -> , Disptb Basetc ADDR (Sbfcta) .

"Disp" represents a local variable with attributes specifying the machine data

type and offset from a frame pointer. These attributes are determined when IR

variables are bound to locations in the target machine. The attribute vari-

able "c" specifies the base (or display) register of the IR variable. The ac-

tion symbol ADDR synthesizes an address for a datum on the target machine.

The attribute "a" represents this address: In this implementation' it has the

following components:

(1) a base register,

(2) an offset from the base register,

(3) an optional level of indirection,

(4) an index register (if any) and

(5) the name of a variable (in case it is global).

These components may vary when the code generator is retargeted to new.

machines. However, for a variety of machines, including the VAX-111780, IBM-

370 and the PDP-11170, this structure seems to suffice. The addressing mode

productions determine the components used.

I n s t r u c t i o n - s e l e c t i o n p r o d u c t i o n s :

Each production has an RHS specifying a pattern in the IR and the correspond-

ing code sequence to be emitted on a match. The LHS may be an explicit result

location (a register or a memory location), in which case it specifies the

31

data type of the result, or a condition code location, or simply a non-

terminal place-holder. Consider addition on the VAX-11/780. There are two-

address and three-address add op-codes. Furthermore, the increment instruc-

tion can be used for adding one. For a byte datum' these three forms of addi-

tion are expressed as follows:

Bytefr -> + Byteta Bytetr IsOne (*a) IsTemp (tr) EMIT (t'incb' tr)

-> + Bytetr Bytefa IsOne (*a) IsTemp (tr) EMIT (t'incb' tr)

-> + Byteta Bytefr TwoOp (t+fatr) EMIT (t'addb2' +a tr) .

-> + Bytetr Byteta TwoOp (t+tatr) EMIT (t'addb2' ta tr)

-> + Byteta Bytefb GETTEMP (t'byte' tr) EMIT(t'addb3'tatbtr) .

The first and second productions specify the addition of 1 to '9". Both pro-

ductions are needed to represent the commutativity of addition. I n c a s e e i -

ther production is selected, the op-code inch (increment byte) is emitted.

The non-terminal on the LHS (Byte) and its attribute (r) specify the.data type

and address of the result respectively. The third and fourth productions

specify two-address addition of "a" and '9" using op-code addb2. Similarly,

the last production specifies three-address addition of "a" and "b" using op-

code addb3. In this case, the sum is stored in "r" that is obtained from ac-

tion symbol GETTEMP. The location 'r" may be a free register or the LHS of an

assignment statement whose previous contents need not be preserved.

An addition of two IR data in byte format will match the RHS of one of these

productions. The choice of the RHS is determined by attribute values and the

disambiguating predicates. If an operand is 1 then an inch instruction is

selected. Productions three through five handle addition of a constant other

than 1 as well as variables. In an assignment context, a global attribute

.

32

keeps track of the target address of the assignment statement. The disambi-

guating predicate TwoOp evaluates to true if either operand is the target of

assignment or its value need not be preserved after addition. Consequently, a

two-address addb2 is selected. If TwoOp evaluates to false, then a three-

address addb3 is selected.

Code-Generator Generator and Code Generation Algorithm- -

The attribute grammar for the target machine is input to a code-generator gen-
-'. '

. erator ww whose output is a specific code generator for the machine. The ,

code generator consists of a set of transition tables and a.driver for these

tables. This driver serves as a push-down automaton that parses the IR form.

Instructions (machine operations) are selected during parsing. To transport

compilers to a new machine, the attribute-grammar description of that machine

is given to the CGG. Transition tables for the machine are then automatically

obtained and the same driver is used. The CGG constructs a context-sensitive

parser [Wat74, Wat77]. Bottom-up parsing is preferred to top-down parsing

(for a rationale, the interested reader is referred to CGan80)). The attri-

buted bottom-up parser with disambiguating predicates employs the standard

LR(k) parsing loop with added code to manipulate attributes. Since the set of

attributes is relatively small (the prototype code generator uses ten attri-

butes in all, covering many architectures), the parser does not need to be

able to handle fully general attribute sets.

An Example

In this section we illustrate examples of using attributed parsing to generate

.

33

VAX-111780 code. These examples emphasize the PDP-II/70 and the VAX-11/780.

However' attributed parsing is a generally applicable technique for compiler

code generation and optimization usable on almost any architecture.

Consider the translation of the statement "A := B - 1"

on typical architectures with several lengths of integers (e.g. byte. word,

long). The IR after storage-binding is:

.-*- Addressta - Addresstb Addresstc

where the attribute variable a includes 'long' and address information for A'

b has 'word' and other information for B, and c has 'byte' and 1 as the actual

value. We now trace the parsing process.

(1) The following production is recognized:

Longtx -> Addresstx IsLong (tx)

This production matches any Address with attributes that declare that its type

is long. Because x appears twice in this production, it is implicitly copied .

from Address to Long. Thus, the attributes of A are carried forward. We now

have

l = Longta - Addresstb Addresstc.

(2) Next, production

Wordfx -> Addresstx IsWord (tx) .

matches Addresstb, because it is a word. The local attribute variable "x" is

instantiated as "b". We reduce the IR further to:

:= Longta - Wordtb Addresstc

(3) Now, the following production is matched:

Longtx -> Wordty ConvToLong (ty) GETTEMP (t'long'tx) EMIT (t'cvtwl'tytx)

We convert from word to long format by first allocating a temporary (s a y re-

34

gister rl) through the action symbol GETTEMP, then issuing a 'convert word to

long' instruction through the action symbol EMIT. We now have reduced the IR

to :

.l = Longta - Longtrl Addresstc

(4) Next, the constant 1 is reduced to a Long by the production

Longfx -> Addresstx IsLong (tx)

We have reduced the IR to:

l = Longta -. Longtrl Longtc

(5) The following production is now matched:

Longtx -> - Longtx Longty IsOne (ty) IsTemp (tx) EMIT (t'decl' tx)

This production describes a special-purpose decrement instruction, applicable

only if the second operand is the constant 1. We have reduced the IR to:

.l = Longta Longtrl
(6) Finally, the following production is matched:

Instruction -> := Longtx Longty NotEquate (txty) DELAY (t'movl' ty tx)

-> := Longtx Longty (no code emitted)

NotEquate evaluates to false if "x" and "y" are equivalent locations and con-

sequently, reducing by this production does not produce any code. DELAY is a

variant of EMIT that can delay generation of an instruction pending future in-

structions. I n this case, the move of r1 to A is delayed so that future

references to A can be replaced by rl. Also' the move may be completely

suppressed if, for example, another assignment to A is encountered before it

is referenced.

The use of attribute values to control parsing the IR allows us to signifi-

cantly improve the quality of generated code with little effort. For example,

in step (5). above, if the left operand had not been in a temporary, we would

have generated two instructions (a 'move', then the decrement). A better code

35

sequence would be to use the VAX's three address format to generate, for exam-

ple, "sub13 I' B, rlw.

If the x's attributes show it is not a temporary, IsTemp evaluates to false'

and recognition of this production is blocked. Instead, an equivalent (but

longer) instruction is generated by this alternate production:

Longtx -> - Longty Longtz GETTEMP (t'long'tx) EMIT (t'subl3' $.z ty tx)

Optimization

This implementation attempts to express optimization in a non-procedural form,

replacing the hand-coding of machine-dependent optimizations by the use of at-

tribute grammars. Our intention is not to expand on the vast store of optimi-

zation techniques, but to cleanly organize 'tricky' machine-dependent optimi-

zations (especially those optimizations that are both popular and effective).

Some of these optimizations, such as removing redundant loads/stores and using

arithmetic shifts instead of multiplications, are commonly used in compilers

with the help of specially hand-coded routines. Others, such as the use of

'sob' (subtract-one-and-branch) on the PDP-II/70 and auto-increment, are not

commonly used. Our implementation formalizes machine-dependent optimization

within the attributed parsing framework under the following categories:

(1) addition of attribute grammar productions to incorporate special instruc-
tions,

(2) delaying generation of code till the end of a basic block,
(3) code subsumption within addressing modes,
(4) deletion of redundant code and
(5) code alteration (back-patching) using information gathered after instruc-

tion selection.

Experience with CJ

Implementations of Cg exist for the PDP-11/70' VAX-111780 and the Intel 8086.

36

The generator occupies 86K bytes on the PDP-11170 and 115K bytes on the VAX-

111780. The 11/70 implementation generates about 30 lines of assembler code

Per second (real time), while the VAX version generates about 50 lines per

second. In contrast, the C compiler produces about 4.0 lines per second on the

PDP-11170 and about 60 lines per second on the VAX-111780.

We have retained the speed of Glanville's code generator by using a one-pass

linear parsing technique. It is faster than those implemented by Fraser and

Cattell and is expected to be much faster than that proposed by Ripken

[Gan8la].

The code-optimization results are very encouraging. Cg produces code compar-

able to hand-written assembler code for user programs. It produces code far

superior to the unoptimizing C compiler on both the PDP-11/70 a n d t h e V A X -

111780. In most cases, Cg produces code that uses 3550% less space than the

code produced by the C compilers prior to "-0" optimization. Even with the

peephole optimization performed by the C compiler, the code produced by Cg is

usually 5-10% smaller. .

An amazingly wide variety of code-generation optimizations can be realized in

a highly modular manner. Almost all optimizations can be realized by addition

of new attribute grammar productions. Furthermore, when the code generator is

retargeted to a new machine, most of the basic (non-specialized) productions

can be retained. In particular, a simple (but un-optimized) code generator

can be implemented for a machine easily and rapidly. As time permits, and the

need arises, improvements can be included by adding new rules to the machine

description and automatically re-generating the code generator. The chief

37

difference between an optimized and an unoptimized code generator is how care-

fully and thoroughly the production rules reflect the details and complexities

of the target machine.

The shortcomings of the implementation are:

(1) Register allocation is not driven by machine description. (This. shortcom-

ing is questionable in view of recent research in architectures such as

the Intel iAPX-432 that do not contain general purpose registers. If -

these architectures become more prevalent in the future, register alloca-

tion is an irrelevant issue.)

(2) Most optimizations are not extended beyond basic blocks.

(3) The code generator is not intelligent enough to automatically derive code

sequences in cases of non-orthogonal instruction sets (Cattell's scheme

could possibly derive code sequences).

(4) Certain compiler generated temporaries need not be allocated memory space

since they can reside in registers for the entire duration of a procedure

activation. In the implementation, although memory space is allocated for

such temporaries, this storage space is never used because redundant

stores are never emitted (i.e. if there is no need to do a 'store' then no

moves are emitted). Thus, code quality is not affected.

.

38

6. SUMMARY AND CONCLUSIONS

There has been much theoretical research in code generation. Very formal

research has usually not considered the wide range of machine architectures

that are available in the market. Interpretive approaches *are improvements

over ad-hoc code generation because only 'p+m' translators are needed to im-

plement 'p' languages on 'm' architectures. But for such schemes machine
*a

descriptions are intermixed with the code generation algorithm. Retargeting

thus requires changing the code generator for every new machine. UGEN is a '

schema driven code generator that uses techniques based on Johnson’s appkoach.

It simplifies pattern matching by modifying the state of its abstract machine

enabling it to compile a more complex pattern match that would normally.be

hard to handle under Johnson's scheme. It works, ports are easy and fast and

it produces fairly good code. Its philosophy of reversibility at all stages

is good but with its use of postfix, some preliminary information is needed to

obtain optimal code.

Descriptive approaches separate the machine description from the code genera-

tion algorithm, thus providing a higher degree of portability and a better

theoretical foundation. In such schemes, pattern matching is used to replace

interpretation. Johnson uses a template-driven, heuristic, linear programming

algorithm in his implementation of the portable C compiler. While the code

generator is slow (when compared to ad-hoc code generators), the expected ex-

plosion due to dynamic programming does not occur since in real life the ex-

ponents are small (2-3). Fraser, Glanville, Ripken and Cattell have tried to

automatically derive code generators from a machine description though their

39

methods are very much different. Fraser's rule based system is inefficient

and its portability is questionable, Ripken has considered in detail the in-

teraction between different phases in a compiler. However, an implementation

of his dynamic programming algorithm can be expected to be prohibitively slow.

Cattell uses a heuristic search algorithm to derive code sequences in cases of

operator mismatch between the IR and target machine templates. Such automatic

derivation using axioms is not practical for a variety of machine instruc-

tions. Glanville's scheme is best from the point of view of practicality.

However, using his scheme in a production compiler requires a lot of machine-

dependent work to be done by other phases of the compiler.

As an extension and natural successor to Glanville's work, attribute grammars

are used to specify translations from a linear representation of parse trees

[Gana81] to a target code representation of programs. The intermediate

representation is at a higher level than that proposed by Glanville. A more

complete machine description is used by adding attributes to instruction-set

productions (including machine data types and addressing mode productions).

Storage allocation is viewed as part of the issue of portable code generation.

The following contributions of this technique are noteworthy:

(1) Conventionally, it has been an extremely difficult task to organize the

different phases of a compiler. The design of a flexible (attributed)

Polish-prefix intermediate representation and attributed parsing framework

seems to have solved this problem. Almost all machine-dependent aspects

of compiler code generation (with the notable exception of packing) have

been isolated to a single software package.

(2) Attributes in the intermediate representation have provided a convenient

40

interface between the machine-independent and the machine-dependent parts

of a compiler. They have helped in solving the difficult problem of

operand binding (an issue not addressed by other researchers in the area

of automatic code generation).

(3) Machine-dependent and peephole optimizations have been incorporated in a

routine, cheap and reliable manner within the attributed parsing framework

of code generation. This attempt seems to be the first to organ.ize.optim-

ization within any framework.

(4) This technique has demonstrated code generation retargetability. Three 9

code generators have already been completed (for the PDP-11/70, VAX-111780

and Intel 8086).

A number of techniques that are prototypes of vehicles for future research in

automatic code generation have been illustrated in this paper. These tech-

niques demonstrate the feasibility of automatic code generation becoming a

routine issue in compiler technology in a realistic way. Table-driven code

generation should be viewed as one more step in the advancement towards au-

tomated compiler generation where such compilers can be as competent as

today's hand-written compilers!

Acknowledgements

The help provided by Johannes Heigert, Raphael Finkel and William Leland in

improving the readability of this paper is appreciated.

41

Biblioqraphy

[Ah0731

[Ah0761

[Ah0771

[Amm75]

[Amm77]

[Be1711

[Cat781

[Cat791

[Cat801

[Don731

[Don791

[Els70]

[Ers58]

A.V. Aho and J.D. Ullman, "The Theory of Parsing, Translation
and Compiling", Vols. 1 and 2, Prentice-Hall, Inc., 1973.

A.V. Aho and S.C. Johnson, "Optimal Code Generation f o r Ex- .
pression Trees", JACM Vol. 23 No. 3 pp. 488-501, 1976.

A.V. Aho and J.D. Ullman, "Principles of Compiler Design",
Addison-Wesley publishing Co., 1977. . .

U. Ammann, K. Nori, K. Jensen and H. Nageli, "The Pascal
Compiler

(P) -
Implementation Notes", Institut for Informat ik ,

Eidgenossische Technische Hochschule, Zurich 1975.

U. Ammann, "On Code Generation in a Pascal Compiler",
Software-Practice and Experience, Vol. 7 No. 3 pp.' 391-423,
June/July 1977.

C.G. Bell and A. Newell, "Computer Structures: Readings and
Examples", McGraw Hill, 1971.

R.G.G. Cattell, "Formalization and Automatic Derivation of
Code Generators", PhD thesis, Carnegie Mellon University,
1978.

R.G.G. Cattell, J.M. Newcomer and B.W. Leverett, "Code Genera-
tion in a Machine-Independent Compiler”, ACM SIGPLAN Symposium
Compiler Construction, Denver, Colorado, August 1979.

R.G.G. Cattell, "Automatic Derivation of Code Generators. from
Machine Descriptions**, ACM Trans. Programming Languages and
Systems, Vol. 2, No. 2 pp. 173-190, April 1980.

M.K. Donegan, "An Approach to the Automatic Generation of Code
Generators", PhD thesis, Rice University, Houston, Texas,
1973.

M.K. Donegan et.al., "A Code Generator Language", ACM SIGPLAN
Symposium Compiler Construction, Denver, Colorado, August
1979.

M. Elson and S.T. Rake, "Code Generation Technique for Large
Language Compilers", I . B . M . S y s t e m s J o u r n a l V o l . 9 N o . 3 p p .
1 6 6 - 1 8 8 , 1 9 7 0 .

A.P. Ershov, "On Programming of Arithmetic Operations", CACM
Vol.1 No. 8 pp. 3-6, 1958.

42

[Fe1791

[Fra77]

[Fra79]

[Fra80]

[Gan80]

[Gan8la]

[Gan8lb]

[Gla77]

[Gla78]

[Gra80]

[Joh75]

[Joh77]

[Joh78]

[Mck70]

S.I . Feldman' "Implementation of a Portable Fortran 7 7 C o m -
piler using Modern Tools", ACM SIGPLAN Symposium Compiler Con-
struction' Denver, Colorado, August 1979.

C.W. Fraser, "Automatic Generation of Code Generators', PhD
thesis, Computer Science Department' Yale University'. New
Haven, Conn., 1977. .

C.W. Fraser' "A Compact Machine Independent Peephole Optimiz-
er"' Principles Of Programming Languages, 1979.

C.W. Fraser and J.W. Davidson, "The Design and Application of
a Retargetable Peephole Optimizer", ACM Transactions on Pro-
gramming Languages and Systems, Vol. 2 No. 2, 1980.

M. Ganapathi, "Retargetable Code Generation and Optimization
using Attribute Grammars"' PhD dissertation, University of
Wisconsin - Madison, 1980.

M. Ganapathi and C.N. Fischer, "A Review of Automatic Code
Generation Techniques', Tech. Report #406, University' of
Wisconsin - Madison, 1981.

M. Ganapathi et al., "Linear Intermediate Representation for
Portable Code Generation", Technical Report #435, University .
of Wisconsin - Madison, 1981.

R . S . G l a n v i l l e , "A Machine Independent Algorithm for Code Gen-
eration and its Use in Retargetable Compilers', PhD thesis,
University of California' Berkeley,'Dec. 1977.

R.S. Glanville and S.L. Graham, "A New Method for Compiler
Code Generation', Conference Record Fifth ACM Symposium Prin-
ciples of Programming Languages, Jan. 1978.

S.L. Graham, "Table-Driven Code Generation", IEEE Computer,
Vol. 13 No. 8 pp. 25-34, August 1980.

R.K. Johnsson, "An Approach to Global Register Allocation",
PhD dissertation, Carnegie-Mellon University, 1975.

S .C . Johnson, "A Tour through the Portable C Compiler", Bell
Telephone Laboratories, 1977.

S .C . Johnson, "A Portable Compiler: Theory and Practice",
Proc. 5th ACM Symposium Principles of Programming Languages,
pp. 9 7 - 1 0 4 , J a n 1 9 7 8 .

W.M. Mckeeman, "Peephole Optimization", CACM Vol. 8 No. 7 pp.
4 4 3 - 4 4 4 , 1 9 7 0 .

43

CM11711

CMi177)

[New691

[New751

[Per791

[Rai80]

[Ric71]

[Rip771

[Rit78]

[Rud79]

[Shi78]

[Smi70]

CSny751

[SteGl]

P.L. Miller, "Automatic Creation of a Code Generator from a
Machine Description", M.I.T. Tech report MAC TR-85, 1971.

D.R. Milton' "Syntactic Specification and Analysis with Attri-
bute Grammars", PhD thesis' University of Wisconsin-Madison,
1977.

A. Newell and G.W. Ernst, "GPS: A Case Study in Generality and
Problem Solving", Academic Press' 1969.

J .M. Newcomer' "Machine Independent Generation of Optimized
Local Code", PhD thesis' Computer Science Department, Carnegie
Mellon University, 1975.

D.R. Perkins and R.L. Sites, "Machine Independent Pascal Code
Optimization", Proceedings of the ACM SIGPLAN Symposium on
Compiler Construction, Denver, Colorado, August 6-10, 1979. -

K . J . Raiha, **Bibliography on Attribute Grammars", ACM SIGPLAN
Notices, Vol. 15 No. 3 pp. 35-44, Mar 1980.

M. Richards, "The Portability of the BCPL Compiler", Software
Practice and Experience, 1, pp. 135-146, 1971. . .

K. Ripken, "Formale Beschreibun von Maschinen, _ Implemeri-
tierungen und Optimierender Maschinen-codeerzeugung aus Attri-
butierten Programmgraphe", Technische Univer. Munchen, Munich,
Germany, July 1977.

D.M. Ritchie and B.W. Kernighan, "The C Programming Language",
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

A. Rudmik and E.S. Lee, "Compiler Design for Efficient Code
Generation and Program Optimization", ACM SIGPLAN Symposium
Compiler Construction, Denver, Colorado, August 1979.

K.A. Shillington and G.M. Ackland (editors), "UCSD Pascal Ver-
s i o n 1.5", I n s t i t u t e for Information Systems, University of
California, San Diego 1978.

D.C. Smith, MLISP, Stanford Artificial Intel1 igence Project
Memo AIM-135, Stanford University, 1970.

A. Snyder, "A Portable Compiler for the Language C", master's
thesis, MIT, Cambridge, Mass., May 1975.

T.B. Steel, Jr., "A First Version of UNCOL", Proceedings WJCC,
19, pp. 371-378, 1961.

44

l [Str58]

WY781

CSZY801

[Wat74]

.
[Wat77]

[Wei73]

[Wic75]

[Wil71]

[Wul75]

[Wu179]

[Wu180]

[You741

3. Strong et. al., "The Problem of Programming Communication
with Changing Machines: A Proposed Solution", CACM Vol.1 No. 8
PP. 12-18, 1958.

T.G. Szymanski, "Assembling
Dependent

Code for Machines with Span-
I n s t r u c t i o n s ” , CACM, Vol. 21 No. 4 pp. 300-308,

April 1978.

T.G. Szymanski and B. Leverett, "Chaining Span-Dependent Jump
I n s t r u c t i o n s ” , ACM Transactions on Programming Languages and
Systems, Vol. 2 No. 3, 1980. .

D.A. Watt, "L.R. Parsing of Affix Grammars", PhD thesis, "*'
University of Glasgow, Report #7, 1974. ..

D.A. Watt , "The Parsing Problem for Affix Grammars", Acta In- ’
formatica, Springer Verlag, 1977.

S.W. Weingart, "An Efficient and
Code Generation", PhD thesis,
Yale University, 1973.

3.0. Wick, "Automatic Generation
t i o n , Yale University, 1975.

T.R. Wilcox, "Generating Machine

Systematic Method of Compiler
Computer Sciences Department,

of Assemblers", PhD Disserta-

Code for High Level Program-
ming Languages",. Tech. report 71-103, PhD thesis, Department
of Computer Sciences, Cornell University, 1971.

W. Wulf et. al. "The Design of an Optimizing Compiler", Ameri-
can Elsevier Publishing Co., 1975.

W. Wulf et. al., "An Overview of the Production Qua'lity
Compiler-Compiler Project", Tech. Report CMU-CS-79-105, Carne-
gie Mellon University, Feb. 1979.

W. Wulf et. al., "An Overview of the Production-Quality
Compiler-Compiler Project", IEEE Computer Vol. 13 No. 8 pp.
38-49, August 1980.

R. Young, "The Coder: A Program Module for Code Generation in
High Level Language Compilers", M.S. thesis, Computer Sciences
Department, University of Ill inois , 1974.

