
COMPUTER SYSTEMS LABORATORY.
L 1: STANFORD UNIVERSITY - STANFORD, CA 943054055

Hardware/Software Tradeoffs
for Increased Performance

John Hennessy, Norman Jouppi,
Forest Baskett, Thomas Gross,
John Gill, and Steven Przybylski

Technical Report No. 22.8

February 1983

The MIPS projat h;ls been supported by the Dcfcrw Advanced Rescarrch
Projects Agency wdcr contract # MIlA903-79-C-0680. Thomas Gross is
supported by an HIM Gwduiltc Fellowship.

.

Hardware/Software Tradeoffs
for Increased Performance

John Hennessy, Norman Jouppi,
Forest Baskctt, Thomas Gross,

John Gill,‘and Stcvcn Pnybyiski

Technical Report No. 228

February 1983

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

Abstract

Most new computer architectures are concerned with maximizing performance by providing suitable
instruction sets for compiled code, and support for systems functions. We argue that the most effective design
methodology must make simultaneous tradeoffs across all three areas: hardware, software support, and
systems support. Recent trends lean towards extensive hardware support for both the compiler and operating
systems software. However, consideration of all possible design tradeof% may often lead to less hardware
support. Several examples of this approach are presented, including: omission of condition codes, word-
addressed machines, and imposing pipeline interlocks in software. The specifics and performance of these
approaches are examined with respect to the MIPS processor.

Key Words and Phrases: Computer architecture, instruction set design, VLSI, compiler design.

A version of this report appears in the Proceedings of the ACM Symposium on Architectural Support for
-Programming Languages and Operating Systems, March 1982.

1 Introduction

Until recently, the design of new computer architectures and the demands of high level language

compilation were not well integrated. Instead, architecture design was dominated by conccms of assembly

language programs, and maintaining capability with features contained in old architectures. Recently,

designers have been more conscious of architectures’ major role as host machines for high level language

programs. This development is evident in the modern microprocessors (e.g. the ZSOOO and the 68000) and

larger machines such as the VAX.

These architectures certainly address the concerns of running compiled programs more than past efforts
have done. However, they assume a fixed and exist_ent compiler technology. In most cases, compilers for other

machines are used as a basis for examining the instruction set design (10,161. While this methodology is

certainly better than a nonquantitative approach, it is inherently flawed. We propose a methodology whereby

the compiler, and in fact even new compiler technology, arc major inputs to the instruction set design process.
The notion of the compiler and its code generator playing a vital role in the instruction set design process has

been used in the design of a processor to run C [8]. In this paper, we will advocate more radical applications of

compiler technology.

Adequate support for constructing systems software (e.g., the operating system), and. for programs

compiled from a high level language, is a necessity. Although instruction set design issues are largely ones of \

performance, cost and reliability, inadequate architectural support for the operating system often leads to real

limitations in using the processor. Such limitations can determine which memory management techniques

(swapping versus paging) are possible or feasible, and might restrict any system containing such a processor.

On the other hand, including elaborate support in the processor architecture can often cause an overall

decrease in performance because of the increased overhead In many architectures, systems issues (e.g.,

orthogonal handling of interrupts and traps) are given low consideration. This trend prevails in many current

microprocessor architectures; for example, in several architectures page faults are not accommodated In

other architectures, systems issues are the focus of the design to the detriment of performance, as in the Intel.
iAPX-432.

We will argue that architecture/compiler/system tradeoffs are inevitable, and that by correctly making

choices in all three areas the designer can create a simpler design which will have increased performance and

reliability for lower cost.. We demonstrate several applications of this approach and give specific examples and

empirical performance data from the MIPS project [7]. We are primarily concerned with procedural

languages (e.g., ALGOL, Pascal, C. and Ada) and with von Neuman architectures.

2

2 Architectural support for compiled languages

Architectures can support compiled languages in many ways. For high performance both in executed code

and within the compilers themselves, architectures can best support high level languages by providing simple,

fast instnrction sets that are easy for a compiler to use.

2.1 Simple and fast instructions

This emphasis on a simpler instruction set, and the attractiveness of this approach, have been argued and

demonstrated by the RISC project [14]. From the compiler viewpoint, there arc three advantages of a simple

instruction set:

1. Because the instruction set is simpler, individual instructions are executed faster.

2. The compiler is not forced to attempt the utilization of a very sophisticated instruction which
doesn’t quite fit any particular high level construct Besides slowing down the execution of other
instructions. using overly sophisticated instructions is sometimes slower than using a customized
sequence of simpler instructions [13].

3. Although these architectures may require more sophisticated compiler technology, the potential
performance improvements to be obtained from faster machines and better compilers are
substantial.

2.2 Load/store architectures

Compilers find load/store architectures to be a natural problem decomposition: first get the operands, then

use them. Requiring compilers to do both at the time time when the architecture is not completely
orthogonal is more complex. Load/store architectures can also increase the performance of compiled

languages.

Load/store architectures can yield performance increases if frequently-used operands are kept in registers.

Not only is redundant memory traffic decreased, but addressing calculations are saved as well. Software
support for load/store architectures does not appear to be a problem either: there are efficient register

allocation algorithms which produce good assignments [3. 1). Although these algorithms require powerful and

sophisticated compiler technology, they pay off by yielding very dense and near-optimal register assignments.

Simpler register allocation algorithms are possible. However, these algorithms arc not as effective because

they do not consider all variables as equal candidates to bc assigned to a register, and because they must

conservatively avoid difficulties that can arise from potential aliasing.

Heavy use of registers will also improve code density. Code space can increase greatly when each operation

has multiple memory addresses, even of the form displaccmcnt(base). Load and store instructions in MIPS

3

are at most 32 bits in length, and are of five types: long immediate, absolute, displacemcnt(base), (baseindex),

and base shifted by n, O<n<5. These addressing modes require at most one ALU operation on data in

general registers and immediate data from the instruction. The last three forms arc less than 32 bits and may

be packed with a possibly unrelated ALU or shifter operation. All MIPS instructions, although they may

consist of up to two instruction pieces, are 32 bits in length and execute in one data memory cycle time.

Because the two instruction pieces are disjoint they may be used for parts of two independent computations.

Orthogonal immediate fields can additionally increase the code density as they reduce the number of those

loads which are executed to load a register with a constant. In the MIPS instruction format every operation

can optionally contain a four-bit constant in the range 0-1s in place of a register field. Additionally, a move

- immediate instruction will load an S-bit constant into any register. Table 1 contains the distribution of

constants (in magnitudes) found in a collection of Pascal programs including compilers and VLSI design aid

software.

Absol ute Value Percentaah

0
1
2
3 - 15
16 - 2 5 5
> 255

24.8%
19.0%

4.1%
20.8%
26.8%
4.5%

Table 1: Constant distribution in programs

The large majority of the constants in the range 16 - 255 represent character constants. Most of the large
constants (>255) represent values that are directly related to the function of the program and do not relate to

constants in other programs. Thus, a 4-bit constant should cover approximately 70% of the cases; the special

8-bit constant will catch all but 5%. To obtain small negative constants two approaches are possible: provide

for a sign bit in the constants, or provide reverse operators that allow the constants to be treated as negative.

MIPS uses the latter approach because it allows more constants to be expressed and eliminates the riced for

sign extension in the constant insertion hardware.

2.3 Condition codes and control flow

Many architectures have included condition codes as the primary method of implementing conditional

control flow. Condition codes provide an implicit communication between two otherwise disjoint instructions.
Condition codes can make life difficult for compiler writers, especially in nonorthogonal architectures. Even

in reasonably orthogonal architectures (e.g., the M68000), working with condition codes is not simple.

Difficulties occur largely because condition codes are side effects of instruction execution.

4

Condition codes are typically used for conditional control flow breaks, evaluation of boolean expressions,

overflow detection and multiprccision arithmetic. Table 2 shows a typical set of fcaturcs associated with

condition codes and various architectures which possess these features. After discussing the disadvantages of

condition codes from a hardware viewpoint, we will examine their use in each one of these instances and

propose alternatives.

Has condition code No Condition code
Set on Set on
moves operations

Conditional set M68000 MIPS
Branch Access VAX 360 POP- 10

Table 2: Condition code operations

Condition codes are difficult to implement primarily because they are an irregular structure. As opposed to

registers, in which the references of updates of objects are explicit, condition codes are updated as a side-

effect. In architectures in which some but not all instructions set the condition code, additional complexity is

introduced in decoding and condition code control. Because of these irregularities, implementing condition

codes is particularly painful on a heavily pipelined machine. With architectures which set the condition code

heavily (such as the VAX), the hardware can assume that all instructions set the condition code; thus the
hardware would force branch instructions to wait until the pipe has cleared This may result in some

performance loss when the instructions immediately before the branch do not affect the condition code. The

implementation becomes substantially more difficult when the set of instructions that affect the condition
code is large but not close to the set of all instructions (as in the 3601370). In this case, a significant amount of

hardware is needed to determine whether condition codes arc affected by a particular instruction. Because

fewer instructions set the condition code, a designer dealing with a branch instruction is tempted to find the

last instruction that affected the condition code. However, because the set of instructions that affect the

condition code may be nontrivial to determine, finding the last instruction can be extremely difficult.

2.3.1 Conditional control flow breaks

Typically, condition codes are used to implement conditional control flow breaks. A compare instruction

(or other arithmetic instruction) is used to set the condition code: a conditional branch instruction uses the
condition code to dctcrmine whether to take a branch. The most obvious disadvantage of this approach is that

two instructiqns are required to effect the usual compare and branch. This is not a major disadvantage since a

single compare and branch instruction would take longer to execute and more instruction bytes to encode.

From a hardware implementation viewpoint, it is also useful to know the branch condition explicitly.

There are two primary hypofhefical advantages for condition codes:

5

1. They save instructions by allowing branches to use the results of computations that are already
done.

2. Condition codes model three way (<,>, =) branches.

Table 3 contains empirical data which show that the number of instructions saved by condition codes is so

small as to be essentially useless. Three way branches are a Fortran anomaly introduced into the language

because of the architecture of the 704. In any event, we believe that the vast majority of the three way

branches in Fortran contain only two branch destinations.

To implement conditional branches on a condition code machine, first the condition is set, and then a

conditional branch is used. Most architectures set condition codes by ALU operations only; the VAX sets the

condition code on all move operations.

MIPS and a few other architectures, such as the Cray-I and the PDP-10, implement conditional control

flow using compare and branch instructions. In MIPS aI1 instructions, including the compare and branch

instructions, take the same amount of execution time. Thus, the comparison is to some extent free. In cases
where explicit comparisons (the dominant case : see Table 3) are-needed on condition code machines, MIPS’

approach actually SQWS instructions.

MIPS supports conditional control flow breaks using a compare and branch instruction with one of 16

possible comparisons. The 16 comparisons include both signed and unsigned arithmetic (e.g., X<Y) as well as

logical (e.g., X and Y = 0) comparisons. Most conditional control flow breaks can be implemented with one

comparison and the displacement(base) branch address available in this instruction. This, combined with the
fact that a compare and branch instruction executes in one data memory cycle (as do all other instructions),

makes this instruction a very fast means of implementing conditional control flow breaks.

Compares without condition codes

Compares saved using condition codes
set by operators only

Compares saved us ing cond i tion codes
set by opera tors and moves

Moves used only to set condition code

2 5 = 1 . 1 %

733

7 0 6

Total compares saved by condition codes 27

Savi ngs for condition codes set by
operators and moves

2.1%

Table 3: Use of condition codes

6

2.3.2 Evaluating boolean expressions

Handling boolean expressions with numeric comparisons can be difficult in many architectures. For

example, consider:
Found := (Ret = Key) OR (I = 13);

where each variable except Found is an integer. On a condition code machine where the condition is

accessible only by conditional branches (e.g., the VAX), typical code sequcnccs are given in Figure 1. Clearly,

early-out evaluation is much better. Early-out evaluation is frequently usable either because the language

explicitly permits it or because the absence of side effects makes it possible. The high percentage of branches

in this code is perhaps the most disturbing point, since the cost of branches on modem pipelined architectures

is far more than the cost of a typical compute-type instruction.

Full Evaluation Earlv-out Evaluation

str O.rl
camp Rec.Key
bne L
str l.rl

vL:comp I.13
bne D
str l.rl

D:str rl,Found

str l,Found
camp Rec.Key
beq 0
camp I.13
beq 0
str 0,Found

0:

8 static instructions 6 static instructions
2 branches 2 branches
Average of 7 instructions Average of 4.25 instructions

executed executed
Always executes 2 branches Executes one branch on average

Figure 1: Evaluating boolean expressions with condition codes

An improvement over this can be gained by including instructions that conditionally set values based on

the condition codes (as on the M68000). With such instructions, the improved code sequences in Figure 2 can
be used. Although the average dynamic instruction count is slightly higher for this instruction sequence, it

would execute faster on almost all machines since it has no branches.

camp Rec,Key
seq Found ; Rl is set to bit that represents equal
camp I,13 I

seq rl
or rl.Found

5 s taticidynami
No branches

c instructions

Figure 2: Boolean expression evaluation using conditional set

In an architecture without condition codes, some other method is needed to set the values. One approach is

to duplicate the code used for a condition code machine without a conditional set instruction. Instead, MIPS

provides a powerful Sef Condirionally instruction with the same 16 comparisons found in conditional

branches. This instruction performs a comparison, and sets a rtgistcr to zero or one based on the result. Using

this instruction, the code sequence for our cxamplc is shown in Figure 3.

seq Rec,Key. r-1
seq 1,13,r2
Of rl,rZ.Found

3 static and dynamic instructions
No branches

Figure 3: Boolean expression evaluation using set conditionally

In addition to boolean expressions that are assigned to variables, boolean expressions appear in conditional

tests. In this case, early-out evaluation will result in similar numbers of instruction counts. The conditional set

. approach will be superior only in the case of complex expressions (more than one boolean operators).

Average operators/boolean expression 1.66

Boolean expressions ending in jumps 80.9%

Boolean expressions ending in stores 19.1%

Table 4: Boolean expressions

Table 4 shows the distribution of boolean expression types for our Pascal data set Table 5 shows the

number of operations needed per boolean operator to evaluate boolean expressions using different

architectural support.

Compare/Register/Branch instructions per boolean operator
Static Dvnamic

Set Conditionally
instruction

2/1/o 2/1/o

CC and set conditionally 2/3/O 2/3/O
based on CC

Only CC and branch,
full evaluation

Only CC and branch,
early-out

2/2/2 2/2/2

2/o/2 2/o/1.5
t

Table 5: Operations needed to evaluate a boolean expression

.

Without a conditional set operation, evaluation of a boolean expression to be stored will require an extra

assignment. When evaluating a boolean expression for a conditional branch, the branch instruction will be

part of the normal evaluation in the case of a condition branch-branch evaluation, but will be required in

addition to the evaluation when conditional set evaluation is used. Using the data from previous tables, Table

6 shows the effectiveness for conditional set assuming that register operations take time 1, compares take time

2, and branches take time 4.

8

We Operations Full Early-out

Store Set conditionally/no CC 9.3 9.3

Store CC/conditional set 14.9 14.9

Store CC with only branch 27.9 20.5

Jump Set conditionally/no CC 13.3 13.3

Jump CC/conditional set 18.9 18.9

Jump CC with only branch 26.9 19.5

Total Set conditionally/no CC 12.5 12.5

Total CC/conditional set 18.0 18.0

Total

Improvement

Improvement

CC with only branch

Conditional set/CC

Set conditionally

26.9 19.7

33.0% 8.6%

53.5% 36.5%

Table 6: Cost of evaluating boolean expressions

2.3.3 Overflow and multiple precision arithmetic

In a machine with condition codes, overflow bits may need to be explicitly tested, as is required on the

M68000. This results in significant performance degradation if each result is tested via conditional traps, or a

loss in reliability if no or few tests are made. Other machines trap automatically via hardware mechanisms.

MIPS traps if overflow detection is enabled and stores the trap type in a surprise regiskv. This is discussed in

greater detail in Section 3, Systems Support.

Carry bits are mainly used for multiprecision arithmetic. This is most important for 8- and 16-bit
machines, and to a lesser degree for larger machines without floating point hardware. MIPS is in the second

category. For intensive floating point applications, the use of a numeric coprocessor such as the Intel 8087 is

envisioned. For more common occasional use, multiprecision arithmetic can be synthesized with 31-bit

words. This does not cause problems unless precisions of 2w-1, 2w, 3w-2,... bits (where the wordsize is w) are

required. Multiprecision numbers are usually smaller than an integral multiple of the wordsize, such as

Fractions in doubleword floating point numbers.

3 Architectural Support for Systems

It is essential that the interfaces between the processor and its supporting external hardware be carefully

considered at the architectural level if the system is to attain its full performance potential. In this section,

these systems aspects of the MIPS processor are examined.

9

A goal of the MIPS processor was that it perform well in a wide range of environments, from a fully

configured personal work station, to a much smaller system more typical of microprocessor applications. This

goal implied the following requirements:

1. The support of virtual memory with demand paging

2. Efficient context switches

3. Effective exception handling

4. Privilege enforcement

These requirements must be balanced against the limited silicon resources, and the need for flexibility in the

* design of the rest of the system.

3.1 Memory mapping

There has been some controversy over ihether a microprocessor should implement an on-chip memory

management scheme at the expense of die size. Some processor designers have chosen to implement
powerful on-chip memory management [lS], while other have opted for off-chip structures (111. in the MIPS

architecture we attempt to achieve a good compromise by combining an optional page-level mapping unit off-

chip with a simple yet elegant address space segmentation mechanism on-chip. The on-chip unit divides the
virtual address space into a variable number of variably sized segments. The sum of the sizes of all segments

cannot exceed the virtual address space of 16 million words. This restricts the address spaces of individual

processes, and allows an off-chip page map to simultaneously contain entries for many processes without a

corresponding increase in the tag field size. The on-chip segmentation is done by masking out the top n bits
of every address and inserting an n-bit process identification number.

.

A process virtual address space thus can range from 65K words to the full 16M words. It is split into two

halves: one residing at the top of the program’s virtual 32-bit address space, and the other at the bottom. Any

attempt to reference a word between the two valid regions is treated as a page fault. The operating system

then has the option of either re-allocating the process identifiers in order to increase the size of the process

address space of the offending process; or terminating the offending process.

A rather novel aspect of the MIPS memory architecture is the existence of the free memory cycles
provision. Since memory cycles are allocated to instructions, just as ALU or register access resources, an

instruction that did not include a load or store piece would waste some of the memory bandwidth. Dynamic

simulations indicated that the wasted bandwidth came close to 40% of the available bandwidth. To make use

of the othenvise unused memory slots, a status pin on the, processor indicates the presence of an upcoming

10

free memory cycic. Thus, these cycles can bc used for DMA, l/O or cache write-backs. In addition, the

architecture includes the proper mechanisms for normal block DMA and extended memory references.

3.2 Context switches

Context switches happen very frequently in typical multiprocessing environments. On every exception,

interrupt or monitor call, control is taken from the executing process, and transferred (possibly only

temporarily) to the kernel of the operating system. Many of these asynchronous events ultimately cause

control to be passed to a third process. For conventional machines, the most time consuming aspect of

context switching is the saving of registers and other miscellaneous state. Schemes to mitigate this overhead

. include multiple register sets and “move multiple register” instructions. Neither approach was a practical

solution for MIPS because of the limited silicon resources and the constraint that all instructions execute in.
exactly five pipe stages. However, the dual instruction/data memory interface implies that a sequence of save

register instructions could completely utilize the memory bandwidth for storing register contents, and thus

would run as fast or faster than a microcoded move-multiple instruction.

The context switch time can be greatly increased if there is a large amount of additional state involved with

the processor and memory map status. In MIPS, all the miscellaneous state of the processor is encapsulated

into a single surprise regisler -- the MIPS equivalent of a processor status word. The surprise register includes
the current and previous privilege levels, and enable bits for interrupts, overflow traps and memory mapping.

Finally, there are two fields that specify the exact nature of the last exception. The addition of the on-chip
segmentation means that most context switches do not require changes to the memory map.

To limit the size of the control portion of the processor, the privilege scheme in MIPS is restricted to a

simple two level scheme. The only instructions that require supervisor privilege are those that read and write

the surprise register and the on-chip segmentation registers. The current privilege level and mapping state are

available to the rest of the system as part of the virtual address. To complete the protection scheme, the

exterior mapping unit and any peripherals on the virtual address bus must be protected from user level

processes.

3.3 Exceptional conditions: page faults, interrupts, and traps

The requirement that the processor support demand paging implies that it has the ability to restart

instructions that have faulted. This is generally simpler in load/store architectures because instructions with

memory references do not have secondary effects. However, in MIPS, the strict load/store framework is

complicated by the concept of instruction pieces and the processor pipclining. An instruction can consist of a

load or store piece and an ALU piece; the combined instruction can behave much like an auto increment or

11

decrement addressing mode. This potential difficulty is overcome by requiring an instruction that calls for a

memory reference to not allow register writes to take place until after the reference has been committed. This

restriction presents only a minor inconvenience in the instruction set design. If a data memory reference

faults, the register write of an ALU operation during S/Y of the same instruction can be prevented. Page faults

in the instruction stream do not encounter this difficulty. The absence of condition codes in the machine

means that the actual operation has no permanent consequence, provided the store of the result to its

destination register has been inhibited.

The proper handling of exceptions in a heavily pipelined machine is a major source of complexity and

irregularity (91. By an excepfion we mean all synchronous and asynchronous events that disrupt the normal

flow of control. These include interrupts, software traps, both internal and external faults, and unrecoverable

errors such as reset. The primary difficulty stems from the requirement that all instructions logically before a
faulting instruction must be completed before the exception is handled. Otherwise, the instruction stream

would not be easily restartable. Once an instruction begins a write to a register, it is impossible to stop it in a

restartable state; thus an instruction once begun must be completed.

An additional level of complexity is introduced when another exception occurs during the completion of

instructions that were partly executed when the original exception occurred Assume an arithmetic overflow

exists in an instruction that is sequentially before an instruction which incurs a mapping error. Due to the

pipelining, the instruction fetch and decode of the second instruction occur before the ALU operation of the

first. However, the overflow event must be handled before the mapping error because it originates in a first

instruction.

Regardless of the cause or timing of an exception, the sequence of events it triggers remains the same.
First, an attempt is made to complete any unfinished instructions. Second, the current status of the machine

is saved, and subsequently changed to reflect execution by the operating system in physical address space.

Last, the program counter is zeroed so that execution begins at the start of the first physical page. The

standard dispatch routine that resides at address zero saves the return addresses, the surprise register, and a’

small number of the general purpose registers. Three return addresses are saved in order to allow returns to

sequences that include indirect jumps, which have a branch delay of two. When an instruction following an

indirect jump incurs an exception, the first three instructions to be executed in order to resume the code

sequence are: the offending instruction, its successor, and then the target of the branch.

After saving this minimum state, the dispatch routine looks at the saved surprise register to determine what

actually happened, and what routine should be invoked to handle the exception. This involves extracting

from the top byte of the surprise register the two exception cause fields, and using the fields as an index into a

I2

jump table Each exception handler can save more registers, enable interrupts, and resume memory mapping

as it chooses. The initial dispatch routine performs a task that is typically done in microcode on larger

machines. Since it must always be resident (even on the power-up reset exception) it must be put in a ROM

on the virtual address bus.

In the case of an interrupt or software trap, a secondary dispatch is used to reach the actual handler. The

trap code for software traps is 12 bits long, allowing 4096 different monitor calls. The external interrupt

interface to the processor has been left extremely simple. There is a single interrupt line onto the chip; when

the line is activated with interrupts enabled, a surprise sequence is initiated. After the first dispatch, the

global interrupt handler queries any external prioritization logic to determine which device was requesting

service. We decided on this mechanism due to pinout limitations and a desire to keep the control logic

simple. Also, it was unclear what interrupt encoding scheme would be best suited to the variety of systems

that we had in mind.

Among the main disadvantages of this general surprise scheme are the following:

1. It is slightly slower than a directly mapped, microcode *dispatch implementation. There are
additional constraints on the surrounding system: the system must supply a small amount of
ROM and RAM to which accesses will never page Fault.

2. The return from interrupt sequence is complex and requires that the mapping and cache units be
able to accept alternating references from two different address and privilege spaces.

The slower response speed is not usually significant, because the difference is small with respect to the total
context switch time, and the MIPS approach allows a somewhat finer granularity of dispatching for many

intcn-upts. The last two disadvantages entail complications which are unavoidable within the rigid framework

of the fixed length instruction and a pipelined implementation.-

The overwhelming advantages of the scheme are that it can be implemented with a reasonable amount of

hardware, both on- and off-chip, and is reasonably simple to use and implement. A secondary advantage is

the orthogonality and flexibility of this design. Very few requirements are placed on a minimally configured

system, yet a complete multiprocessing workstation would not find the architecture lacking in any significant

way.

4 Compiler support for fast architectures

Compilers can help create speedier architectures by relaxing their requirements on the instruction set For

example, consider an instruction to perform function F that is fairly complicated with respect to its demands

on the hardware. The operation I; may be a perfectly natural instruction in terms of a variety of source

13

languages and compilers. However, incorporating F as an instruction in the architecture may be a bad

decision for several reasons:

1. When F is implemented, it may be slower than a custom tailored version of F, which is built from
simpler instructions.

2. When F is added to the architecture, all the other instructions may suffer some performance
degradation (albeit small in most cases). This phenomenon has been called the “n+ 1 instruction’*
phenomenon and has been observed in several VLSI processor designs (12,7].

Of course, whether or not Fslows down the overall performance is dependent both on an implementation of

the architecture and on the frequency of use of F. Instances of this type of behavior can be seen in the VAX

11/780. For example, the Index and Calls instructions in most instances are slower than obvious simpler code

sequences [4, 131.

A clear case can be made for eliminating more complex instructions when the speed benefits and

usefulness of F are dubious. Advancingthe case one step f&thcr, one can argue that even “natural”

instructions should be examined for their usefulness and performance, when measured against possibly faster,

customized sequences of simpler instructions.

4.1 Word-addressed machines

Most newer computer architectures, from micros up to large machines, have supported some sort of byte

addressing. The primary reason for this is that character and logical data is often handled as bytes (at least

when it is in an array) and byte addressing simplifies code generation and makes the machine faster.

While it is true that byte addressing makes code generation simpler, it is not at all clear that it has a positive

influence on overall performance. Memory interfaces that must support byte addressability as well as word

(and probably halfword) addressability are significantly more complicated. Our estimates are that a byte

addressable memory interface would add from 15% to 20% additional overhead to the critical path of the

MIPS VLSI processor. Because many processors assume that operand fetch times are constant (ignoring

issues such as caches), all operand fetches will pay the cost of this overhead. Most of this overhead results

from the necessity of doing byte insert or extract operations. (WC assume only a single memory access is

needed and do consider the complexity of each extra read needed to implement byte stores). Other overhead

comes from the added control complexity needed to implement byte addressing. If all instructions have byte
and halfword formats to preserve orthogonality, the size of the control structure may be greatly increased. The

overhead estimate given below ignores the cost associated with this extra hardware (i.e., the control hardware)

and the resultant larger chip area, which will cause additional performance degradation.

14

An alternative is not to include byte addrcssability. The performance impact of such a choice depends on

three factors:

1. The estimated cost of supporting byte addressing in terms of added operand fetching time for all
operands.

2. The percentage of occurrences of byte-sized objects.

3. The cost of performing the byte operations on a word-addressed machine.

We will address the last two issues. Tables 7 and 8 contain data on storage references in terms of loads and

stores. Table 7 allocates all objects as words unless they occur in a packed structure. Table 8 allocates all

characters and booleans as bytes. Block movements of data are not included: neither as byte nor as word

references. The source for the data is a collection of Pascal programs including compilers, optimizers, and

VLSI design aid software; the programs are reasonably involved with text handling, and little or no compute

intensive (e.g., floating point) tasks are included. The global activation records of the word-based allocation

version average 20% larger.

All data references - 71.2 X'loads. 28.7 X stores
8 bit loads 2.6 X
32 bit loads or larger 68.6 x
8 bit stores 2.6 X
32 bit stores or larger 26.2 X

Character references - 66.7 X loads. 33.3 X stores
8 bit character loads 14.7 x
32 bit character loads 52.0 X
8 bit character stores 21.5 x
32 bit character stores 1 1 . 8 x

Table 7: Data reference patterns in word-allocated programs

All data references - 71.2 X loads, 28.7 X stores
8 bit loads. 6.6 x
32 bit loads or larger 64.6 X
8 bit stores 5.9 x
32 bit stores or larger 22.9 x

Table 8: Data reference patterns in byte-allocated programs

The major observations WC can make from this data are the following:

l Objects allocated as full words dominate byte-allocated objects.

l Character reference patterns have a much higher percentage of stores than do non-character
reference patterns.

l When unpacked character data is allocated in words, most of the data references are to the
unpacked characters. ..

15

To evaluate the effectiveness of byte processing using a word-addressed machine, we need to examine t-W0

questions:

1. How can the compiler help us?

2. What instructions arc available for extracting and isolating words from bytes?

The compiler can help by attempting to transform character at a time processing to word at a time processing.

Since many of the operations that deal with characters concern copying and comparing strings, the potential

benefits are substantial. This is an interesting code optimization problem, the benefits and difficulties of

which arc not obvious.

To explore the cost of character processing with only word addressing, we will look at the instructions in

the MIPS instruction set and the typical code sequences. Given these and estimates of the overhead associated

with byte addressing support, we can get a rough performance comparison.

Although MIPS does not have byte addressing, it does have special instructions for byte objects in packed

arrays. Packed byte arrays are typically accessed via a byte index from the beginning of a word-aligned array;

byte pointers can be regarded as the special case in which the array is located at memory location 0.

MIPS has four instructions to support byte objects: load and store base shifted; and insert and extract byte

operations. Load and store base shifted can be used for accessing packed arrays of 2**n bit objects, where

O<n<lS (i.e., bits through words). These instructions take a packed array pointer consisting of a 32-(5-n) bit

word address in the high order bits and a packed array index in the low order n bits. This word is

loaded/stored by shifting the packed array pointer n bits and reading/writing from that location as in every
other load/store.

Bytes are accessed with insert/extract instructions. These insert or extract the byte specified by the low

order two bits of a byte pointer. In the case of extract the byte pointer may be anywhere; for insert the byte

pointer must be moved to a special register.

Loading a byte can be pcrformcd in two steps: first load the word containing the byte, then extract the byte

from one of four locations within the word

If a byte pointer is in RO (the high order 30 bits contain a word address), then the following MIPS code

sequence is equivalent to a load byte instruction:
;word at (r0/4) into rl

Id (rO>>Z) ,rl
;extract byte from rl into rl

xc ro,rl,rl

Thus, one memory access instruction and one ALU instiuction are required to fetch a byte.

16

Storing into a byte array requires either two or three steps:

1. Fetch into a register the word that contains the destination byte (this step is often not needed
because the word is in a register).

2. Replace the desired byte within the word register with the source byte.

3. Store the updated word into memory.

With the aid of an insert character instruction, a MIPS code sequence for store byte becomes:
;word at (r0/4) into r2

Id (r0>>2).r2
;rl into byte selector lo

mov rl.10
;low order byte of r3 into 1-2

ic lo.r3,r2
;return word in memory

st r2.(r0>>2)

This code sequence utilizes one 0; two memory reference instructions and two ALU instructions.

The cost of addressing operations using byte-addressed MIPS with/without overhead (15%) and using

MIPS byte insert/extract instructions is shown in Table 9. We assume that the cost of an instruction is equal

to the number of clock cycles needed to execute that instruction (or instruction piece). We also assume that

non-array data can be accessed with the displacement field present in load and store instructions. Because

word displacements are larger, word addressing has an advantage when displacements are too large for the

byte addressed case.

Operation Cost with Cost with Cost with
byte overhead MIPS

operations operations

load from array 4

store into array

load byte

4

6

4.6

4.6

6.9

6

8-12

8

store byte
.

6 6.9 lo-18

load word 4 ' 4.6 4

store word 4 4.6 4

Table 9: Cost of various byte operations

Table 10 analyzes the cost of word based addressing versus byte based addressing. The cost of addressing is

computed from the cost of each type of addressing times its frequency. Because we ignore the extra

addressing range of word offsets, use a minimum overhead factor, and ignore the extra read required to

implement byte stores, these figures should be regarded as minimum improvements attributable to word

based addressing. When all the factors arc considered, improvements in the range of 20% for word-allocated

programs and 23% for byte-allocated programs should be expected.

17

Operations Word- Byte-
allocated allocated

byte loads on MIPS
byte stores on MIPS
word loads on MIPS
word stores on MIPS

Total loads and stores
on MIPS

byte loads on byte-
addressed MIPS

byte stores on byte-
addressed MIPS

word loads on byte-
addressed MIPS

word stores on byte-
addressed MIPS

Total loads and stores
on byte-addressed MIPS

Byte addressing
performance penalty

.156 .476
.208-.312 .486--75

2 . 7 4 4 2 . 5 8 4
1 . 0 4 8 .916

4 . 1 5 6 - 4 . 2 6 4 . 1 6 2 - 4 . 4 2 6

.12 .396

. 12 .347

3 . 2 0 2 2 . 9 7 2

1 . 2 0 5 - 1 .053

4 . 6 4 7 4 . 7 6 8

9% - 1 1 . 8 % 7 . 7 - 1 4 . 6 %

Table 10: Cost of byte and word addressed based architectures

4.2 Applying better compiler technology

Another approach to faster, cheaper architectures is to require more software support in the’compiler. This

is an attempt to shift the burden of the cost from hardware to software. The shifting of the complexity from .

hardware to software has several major advantages:

l The comIjlexity is paid for only once during compilation. When a user runs his program on a
complex architecture, he pays the cost of the architectural overhead each time he runs his
program.

l It allows the concentration of energies on the software, rather than on constructing a complex
hardware engine, which is hard to design, debug, and eficiently utilize. Software is not necessarily
easier to construct, but VLSI-based implementations make hardware simplicity important.

Naturally, the purpose of placing more emphasis on the software aspects is to improve the overall

performance. WC also hope to improve the cost effectiveness by using compiler technology that is more
powerful but not much more complex.

4.2.1 Software-imposed pipeline interlocks

The interlock hardware in a pipeline processor normally provides these finctions:

l If an operand is fetched from memory, the interlock mechanism delays subsequent instructions
that attempt to reference the data until the operand is available.

18

l The pipeline is cleared after the execution of a flow-control instluction. If a branch is taken, the
interlock mechanism guarantees that the next instruction executed is the instruction at the
destination of the branch.

l Arithmetic operations may require different amounts of time to execute, e.g., multiply and divide.
The interlock hardware will prevent the next instruction from executing if there arc source-
destination or destination-source dependencies.

We will discuss a software-based implementation of the first two functions, and present an algorithm for the

first function and some empirical data on its performance.

In a processor with interlock hardware that provides the functions listed above, pipelining can be seen as an

optimization implemented by hardware. Basically, the hardware will execute the program faster, subject to

the interlocks which prevent illegal optimizations. This approach allows the compiler (or other user of the

machine-level instruction set) to make simple assumptions about the execution of individual machine

instructions.

An alternative approach is to move these optimizations from hardware to software. In that case there is no

hardware interlock mechanism. Instead, the functions described above have to be provided by software, either

by rearranging the code sequence or by inserting no-ops. This approach has the potential of producing code
which executes faster, at the expense of the additional effort required to reorganize the instruction stream

No-ops will only explicitly delay the execution as compared to the invisible delays imposed by the hardware

in an architecture with interlocks.

Such a reorganization scheme makes use of knowledge about the interdependencics of the individual

instructions. The techniques developed for code optimization can be adapted to handle the requirements of
the reorganization algorithms. The MIPS architecture employs the approach outlined here: there are no

hardware interlocks. The current scheme provides the reorganization as a post-processing of the code

generator’s output. This reorganizer performs several major functions:

1. It takes the pipeline constraints into account and reorganizes the code to avoid interlocks when
possible, and otherwise inserts no-ops.

2. It packs instruction pieces into one 32-bit word.

3. It assembles instructions.

Thus, the reorganizer also works on programmer-written assembly language code and reorganizes, packs, and

assembles it.

Since the code reorganization process is part of every compilation, we must concentrate on solutions which

19

.

have acceptable run-time performance and still produce good results in most cases. Finding an optimal code

sequence is very expensive, as the problem is NP-hard [6]. All code reorganization is done on a basic block

basis. The algorithm is discussed in detail in [6].

The basic steps in the algorithm arc the following:

1. Read in a basic block and create a machine-level dag that represents the dependencies between
individual instruction pieces.

2. Given
next.

the set of in structions generated so far, .ine sets of instructions that can be generated

3. Eliminate any sets that cannot be started immediately.

4. If there are no sets left, emit a no-op and return to step 2. Otherwise, choose from among the sets
remaining.

The choice of the next instruction to be scheduled (step 4 above) is made heuristically from the set of legal
instructions. Typically, an instruction that fits in a hole in a nonfull instruction is preferred; this provides the

instruction packing.

When determining which sets of instructions may be processed, the reorganizer must examine both the

interlocks from earlier instructions and register usage in parallel dags. The use of registers in parallel dags

partially determines what set of code rcordcrings are possible. The algorithm must also avoid reordering loads

and stores that might be aliased.

All branches in MIPS are delayed branches with a single instruction delay. If instruction i is a branch to L

and the branch is taken, then the sequence of instructions executed is i i+ I, L. There are three major

schemes for dealing with delayed branches of delay n:

1. Move n instructions from before the branch till after the branch.

2. If the branch is a backwa&loop branch, then duplicate the first n instructions in the loop and
branch to the n + 1 instruction.

3. If the branch
the branch.

is conditional, move the next n sequential instructions so they immediately follow

Of course, if the branch is conditional the outcome of the test must not depend on any of the moved

instructions. Often the front end of the compiler is able to handle delayed branches better than the

reorganizer; in this case it emits a pseudo-op which tells the reorganizer that this sequence is not to be

touched. The branch delay optimization algorithm and its performance are discussed in [S].

20

Figure 4 shows how a code fragment is affected by reorganization. In this case, it is assumed that r2 is

“dead” outside of the section shown, therefore it can be modified even if the branch in line 2 is taken. Note

also that the store instruction is not moved, as it affects memory.

Legal Code Reorganized
with No-ODS Code

Id Z(ap), r0
ble r0. #l, Lll
No-op
No-op
s u b #l, r0, t-2
st t-2. 2(sp)

id 3(sp). r5
add r5, r0
add #l, r4
bra L3

L3: . . .

Id Z(ap), r0
ble r0, #l, Lll
No-op
sub #l. 1-0. r2
st l-2. Z(sp)

bra L3
Id 3(sp), t-5 add t-5, r0
add Ml. r4

L3: . . .

Figure 4: Reorganization, packing, and branch delay

To show the effectiveness of these optirnizations, we ran versions of a program that does reorganization,
packing, and branch delay elimination of three input programs. The input programs consist of an

implementation of computing Fibbonacci numbers and two implementations of the Puzzle benchmark [2]. All
the programs were written in C and compiled to instruction pieces by a version-of the Portable C Compiler.

The data in Table 11 show the improvements in static instruction counts.

Optimization Fibbonacci Puzzle 0 Puzzle 1
None (no-ops 63 843 1219
inserted)

Reorganization 63 . 834 1113

Packing 55 776 992

Branch delay 50 634 791

Total
Improvement 20.6% 24.8% 35.1%

Table 11: Cumulative improvements with postpass optimization

21

.

.

5 Conclusions

,
We contend that the most effective performance can be obtained by a design methodology that makes

tradeoffs across the boundaries between hardware and software. This approach is just the opposite of some

architectures that advocate extensive hardware support. Several experimental projects, including MlPS and

RISC, are pursuing the goal of a simplified hardware implementation.

We examine the issue of instruction set design to support the execution of compiled code. As opposed to

“language-oriented” developments such as stack machines, we advocate two major alterations: the use of

load/store architectures, and the absence of condition codes. Both of these design alternatives have two major

advantages: simpler hardware implementation, and potentially higher individual instruction efficiency.

Second, we discuss the issue of supporting the construction of systems by providing the necessary primitive

functions in hardware. We note that in many cases the minimum functionality is not available. This limits the

type of design approach that can be used. We consider the complete support of page faults and interrupts in
detail, and discuss the disadvantages of approaches that provide extensive system support services.

. The issue of word-based versus byte-based addressing is explored. Based on a set of empirical data, we

conclude that for many applications architectures will have higher performance with word addressing. .Word
a

based addressing gains its advantages from two primary points: it has a lower overhead associated with each

fetch or store, and word rcfcrcnces occur much more frequently than byte references. To make a word based

approach feasible, special support for accessing bytes (as in the MIPS instruction set) are needed.

Lastly, we discuss approaches that rely extensively on improved compiler technology. The compiler is

taken into account both in terms of the instruction set and in terms of radically simplified hardware designs.

The software imposition of interlocks is presented as an example of this approach.

We explore the concept of simultaneously dealing with the hardware implementation, systems require-

ments, and the compiler technology. Following such an approach may lead to a reduction in hardware, as
opposed to additional hardware support. Whether such an approach is effective and efficient depends on a

wide variety of factors, including resultant improvements in hardware performance, the usefulness of the

. feature, and the alternative cost without “hardware suppo&’ Using several specific examples, we have shown

that such tradeoffs can produce significant improvements in overall performance.

22

References

1. Aho, A.V. and Ullman J.D. Principles of Cotnpiler Design. Addison-Wesley, Menlo Park, 1977.

2. Baskett, F. Puzzle: an informal compute bound benchmark. Widely circulated and run.

3. Chaitin, G.J., Auslander, M-A..., Chandra, A-K., Cocke, J., Hopkins, M-E., Markstein, P.W. Register
Allocation by Coloring. Research Report 8395, IBM Watson Rcscarch Center, 1981.

4. DEC VAXII Architecture Handbook Digital Equiment Corp., Maynard, MA., 1979.

5. Gross, T.R. and Hennessy, J.L. Optimizing Delayed Branches. Proceedings of Micro-15, IEEE,
October, 1982, pp. 114-120.

6. Hennessy, J.L. and Gross, T.R. Code Generation and Reorganization in the Presence of Pipeline
Constraints. Proc. Ninth POPL Conference, ACM, January, 1982, pp. 120-127.

7. Hennessy, J.L., Jouppi, N., Baskett, F., and Gill, J. MIPS: A VLSI Processor Architecture. Proc. CMU
Conference on VLSI Systems and Computations, October, 1981, pp. 337-346.

8. Johnson, S.C. A 32-Bit Processor Design. Tech. Rept Computing Science #80, Bell Labortories, Murray
Hill, April, 1979.

9. Lampson, B.W., McDaniel, G.A. and SM. Omstein. An Instruction Fetch Unit for a High Performance
Personal Computer. Tech. Rept CSL-81-1, Xerox PARC, January, 1981.

10. Lunde, A. “Empirical Evaluation of Some Features of Instruction Set Processor Architectures.” CkCiU
20,3 (March 1977). 143-152.

.

11. MC68000 Users Manual. 2nd edition, Motorola Inc., 1980.

12. Murphy, B.T. and Molinelli, J.J. A 32-Bit Single Chip CMOS Microprocessor. Seminar given at the
Integrated Circuits Laboratory, Stanford University, May 22, 1981.

13. Patterson, D.A. and Ditzel, D.R. ‘The Case for the Reduced Instruction Set Computer.” Computer
Archileclure News 8,6 (October 1980), 25 - 33.

14. Patterson, D.A. and Sequin C.H. RISC-I: A Reduced Instruction Set VLSI Computer. Proc. of the
Eighth Annual Symposium on Computer Architecture, Minneapolis, Minn., May, 1981, pp. 443 - 457.

15. Pollack. F., Cox, G., Hammerstrom, D., Kahn, K., Lai, K., Rattner, J. Supporting Ada Memory
Management in the iAPX-432. Proc. Sym. on Architectural Support for Programming Languages and
Operating Systems, ACM, Palo Alto, Ca.,.March, 1982, pp. 117-131..

.16. Shustek, L.J. Analysis and Perjbnttance of Computer Instruction 3el.s. Ph.D. Th., Stanford University,
May 1977. Also published as SLAC Report 205.

