
COMPUTERSYSTEMSLABORATORY
DfPARTMENTSOFELECTRlCALENGlNEERlNGAND COMPUTERSCIENCE
STANFORD UNIVERSITY-STANFORD,CA94305

Dynamic Detection of Concurrency
in DEL Instruction Streams

Robert. G. Wedig

Technical Report No. 231

February 1982

‘r’hc work dcscribcd hcrcin wx supported in part hy a fellowship from the IUM
Col-poration and the Amy Rcscarch Office - Durham under contract #
l-NAG-29-78-6-0205.

Dynamic Detection of Concurrency
in DEL lnst ruction St reams

Robert G. Wcdig

Technical Report No. 231

February 1982

Computer Systems Laboratory
Dcpartmcnts of l+ktrical I;nginccring and Computer Science

Stanford University
Stanford, California 94305

Abstract

Dctcction of concurrency in Directly Exccutcd Languages (DEL) is investigated. It is thcorizcd that if DELs
provide a minimal time, space execution of serial programs, then concurrency detection of such instruction
streams approach the minimum execution time possible for a single task without resorting to algorithm
restructuring or source manipulation. It is shown how DEL encodings facilitate the dctcction of concurrency
by allowing early decoding 2nd explicit dctcction of dcpendcncy information. The decoding and dcpcndcncy
dctccrion algorithms as applied to DE1.s are developed in detail. Concurrency structures arc presented which
facilitate the detection process. Since all concurrency is capable of exploitation as soon as it is known that the
the code is to be executed, i.e., the result of the branch is known, it is proven that all explicit parallelism can
be detected and cxploitcd using the techniques developed.

Key Words and Phrases: Pipelining, Concurrency, Dependency

i

Table of Contents

1 Introduction 1
2 The DEL Model 4

2.1 A General DEL Implementation 5
2.1.1 The Assignment Instruction 5
2.1.2 Branch Instructions 6

3 The Concurrency Model 8
3.1 The Instruction Queue 9

3.1.1 Loading the Queue 9
3.2 b and c elements 10
3.3 Exccutablc Independence 12
3.4 Execution of Statements 14
3.5 An Execution Algorithm 16

4 An Example 17
5 Optimal Concurrency Detection 20
6 Conclusions 21

ii

List of Figures

Figure 1: IBM 370 encoding of C : = A + B 2
Figure 2: DEL encoding of C : = A + B 2 \
Figure 3: Pipelining of an Example Instruction Stream 3
Figure 4: Ultimate Pipclining of an Instruction Stream 3
Figure 5: DEL Instruction Layout 5
Figure 6: An Operand Fetch from the Contour 7
Figure 7: One Line of the Instruction Queue 9
Figure 8: Illustrating Procedural Dependencies 13
Figure 9: An Example of Concurrency Structure Update as a Result of An Assignment Statement. 14
Figure 10: Concurrency Structures Before Forward Branch Execution 15
Figure 11: Concurrency Structures After Forward Branch Execution 15
Figure 12: A Program Segment With a Backward Branch 16
Figure 13: Program Segment After Backward Branch Execution 16
Figure 14: Small Fortran Program 17
Figure 15: Instruction Execution versus Machine Cycle Number 18
Figure 16: Instruction Queue After Loading the Example Program 18
Figure 17: Instruction Queue After the Third Execution Cycle 19
Figure 18: Instruction Queue After the Fourth Execution Cycle 19
Figure 19: The Instruction Queue at the End of the Task 20

1

1 Int reduction

It is a common goal of all computer architects to design computers which will solve problems and perform

useful tasks as quickly as possible using a minimum of hardware. Doing this on traditional machine

architccturcs involves the cxccution of a series of steps which arc held in an area of the computer’s memory.

A computer programmer writes a scrics of human rcadablc steps called statenzents which are then translated

into a number of predefined machine readable steps called instmctions. Instructions are stored in an area of

the computer called the instruction memory. (IM) The ordered collection of high level language statements is

referred to as a progrum and a similarly ordered collection of machine instructions is called a task.

A task is perfonncd by having the machine read instructions and performing the function specified. The

process of interpreting instructions is called execution. The order of execution is to fetch an instruction from

the IM, perform the &nction which it specifics, fetching the next instruction, etc. This process continues until

the last instruction has been executed and the task is complete.

The amount of time that it takes to execute a task (T& is determined by multiplying the number of

instructions which need to be executed (NJ by the execution time of each of instruction (Tinstruction).
T task = Nex x Tinstruction (1)

Although this assumes that each instruction takes the same amount of time to execute, it can be assumed that

all instructions are sufficiently simple or sufficiently complex (as may well be the case in DELs) that this

assumption is valid.

Given this equation, the task of computer architects can be restated as being to minimize T,,. This can be

done by decreasing the value of one or both of the two input parameters of the equation. It is necessary then

to analyze how the two values may bc reduced to determine the best way to speed up the execution.

Reducing the number of instructions to be executed can be accomplished in one of two ways:

l The task could be recoded using a more efficient algorithm. This is primarily the task of computer
scientists and will not be considered here.

l A diffcrcnt instruction set could bc used which is more cffcicnt and more closely suited to the job
to bc pcrformcd. This task is bcttcr suited to architccturc dcsigncrs and it is the one which will be
considered here.

Much work has been done in the field of instruction set design with the primary aim centered at the reducing

the instruction count. Traditionally, research in this area has been basicly a hit and miss effort. An

instruction set would be dcsigncd, compilers and simulators would be written, and data would bc gathered on

the cffcctivcncss of the design. ‘l’his expcrimentnl approach to architccturc design is both slow and time

2

consuming. Viewing this approach as unacceptable, Flynn and HQevel[3,5] dcvclopcd an altematc method

of instruction set design. The approach taken by them was to closely map the instruction set to the high level

language in which the original progmrn was written. By such a mapping, only the intentions of the

programmer are actually executed, not the extraneous instructions which may bc rcquircd as an artifact of the

machine.

An example is shown to illustrate the difference between the Flynn and Hoevcl DEL theory and traditional

machines. The IBM 370 [6] architecture requires a number of extraneous commands to perform a very simple

task. Suppose the programmer had written the high level language statement C : = A + B. Figure 1 shows

the 370 encoding for this simple high level language statement.

L R1,A
A Rl,B
ST R1.C

Figure 1: IBM 370 encoding of C : = A -i- B

It takes three IBM instructions to execute this statcmcnt. First a register is loaded with the first operand (A),

next this register is added to the second operand (B) and stored back in the register, and then the register is

stored in the result operand (C). The DEL encoding of this statement is now shown is figure 2.

<ABC> <A> <C> <+>

Figure 2: DEL, encoding of C : = A -i- B

This single DEL instruction specifics to fetch the two operands, add them and store the results in C. This is

exactly what the programmer specified. No overhead instructions have been added.

A second alternative to reducing task execution time, is to decrease the execution time of each instruction.

This can be done in a variety of ways. Device technology is always being improved and higher speed

components allow the the basic cycle time of the machine to decrease and thus decreasing the total time that it

takes to execute an instruction and consequently the task. Innovative machine implementations can usually

decrease the number of cycles needed for an instruction to execute which also decreases the total execution

time of the task.

A more commonly used tcchniquc is to reduce the effcctivc execution time by starting an instruction

execution before the previous instruction has complctcd. The process of overlapping instruction execution is

called pipelining and it is used in most all super computers [l, 111 and even in some microprocessors [4]-

Figure 3 illustrates an instruction sequence which has been pipelined. Various steps of the execution for each

instruction are illustrated in this figure. First the instruction is fetched in the instmction fetch (IF) cycle. Next

the instruction is dccodcd in the decode (DC) cycle. The operand address is then gcncratcd in the address

gerwrate (AG) cycle and the operands arc fctchcd in the operand fetch cycle. Finally the instruction is

3

1 IF 1 DC 1 AG 1 OF 1 EX [

1 IF 1 DC 1 AG 1 OF 1 EX

1 IF 1 DC 1 AG 1 OF 1 EX 1

1 IF 1 DC] AG 1 OF 1 EX 1

Figure 3: Pipelining of an Example Instruction Stream

executed in the execute (EX) cycle. The amount of pipelining is detcrmincd by the amount of overlap which

is achieved. As pipelining increases, the effective execution time of each instruction is reduced. In striving

towards the ultimate computer, if DELs approach this optimum by reducing the instruction count to a

minimum, a very tight pipclinc approaches it through reduced instruction execution time.

How can the pipeline be tightened ? Reducing the instruction execution time to its minimum would

generate the ultimate pipeline and would consist of all instructions executing at the same time. But since

simultaneous execution of all instructions would mean that all inputs are fetched at the same time and results

are produced at the same time, simultaneous execution could only be performed correctly if no instruction in

the task required the execution of any other instruction to perform its tinction. This is only possible in the

most trivial of cases. In all other cases, the correct execution of a program, that is the execution which will

produce the results which are desired, can only occur when instructions wait for other instructions to execute

before they themselves can execute. But not all parts of the instruction execution need wait for execution.
The instruction can be fetched, decoded, and the operand addresses can be gcncratcd without needing to wait

for any other instruction execution. Only the operand fetch and the final cxccute cycle of the instruction need

wait for the inputs to be generated. Figure 4 illustrates an instruction execution of an ultimate pipeline.

1 IF 1 DC 1 AG 1 OF 1 EX 1

1 II+- 1 Ix 1 AG) 1 OF 1 EX]

1 IF 1 DC 1 AG 1 I OF 1 EX 1

1 IF 1 DC 1 AG 1 1 OF I EX 1

Figure 4: Ultimate Pipclining of an instruction Stream

The difficulty remains then in determining when an instruction has its correct inputs available and thus can

4

exccutc. This paper will present a model of a DEL which is based on the work of Flynn and Hoevel.

Concurrency structures, a detection mechanism and an execution algorithm are presented. An example is then

presented to firther illustrate the concepts. Finally an argument is given to prove that the techniques which

arc developed, detect all concurrency given certain restrictions.

2 The DEL Model

The model used to represent the DEL is derived from Flynn and Hoevel [3,5]. It is based on a set of

Canonic Interpretive (CI) measures which provide a space, time measure of comparison for DEL

implementations.

The CI measures specify 3 propertics which machine implementations of high level languages should

approach to be considered optimal DELs. They arc given below:

1. 1:l property - One instruction is allowed for each operator specified in the high level language
program. One ident$er is speclj?edfor each Moue ident&fTer in the high level language statement.
This property states that there should never be any extraneous instructions which were not
explicitly spccificd by the programmer. It may be a matter of judgment for a particular language
as to what constitutes an operation. The mathematical operators (+ ,-,X ,+,) arc easy enough to
understand, but it is not always clear if branching or context switching should be considered a
single operator. These decisions must be based on the particular language which is implemented
and so are left to the discretion of the architecture designer.

2. Log* Property - Operators are of [log.#)] size where F is the number of HLL operators used in the
task and operands are of [logz(V)1 size where V is the number of distinct HLL variables used in a
given scope of reference. This property states that all distinct rcfcrences arc to be as small as
possible using a binary rcprescntation. The scope of refercncc used throughout this report will be
a procedure. Because changing the operator set at each context switch could become very
expensive, this property will bc relaxed in this report to specifying a minimum size for the
operator specification for all operators in the task.

3. Referencing Property - One reference is alloyed for each operator encountered during execution.
One reference allowed per urrique operand identl$er in each statement during execution. This
property specifics the run-time characteristics of the instruction set. It says that the referencing
activity as specified by the original program should match the referencing activity of the task
which is actually run on the machine.

The CI properties do not make clear what is meant by a unique idmt$er or unique operarzd refereme. In

the optimum, this means that there is a single reference for each identifier specification in a single high level

language statement. So that, for example, the high level language statement A: = B*D +C*D would generate

a single DEL instruction which has two operator and four operand specifications. At run time, exactly this

number of references would bc pcrformcd in the cxccution of the statcmcnt. Doing this for any arbitrary

statcmcnt would rcquirc an uncountable number of DEL instruction types. This would not bc feasible for

5

implementation. So, it will be assumed, at least for the purposes of this paper, that there will bc a maximum

of two input operands and a single output operand for each DEL instruction. This restriction of the CI

measures constitutes what is called a level 2 DEL. This would require the DEL representation of the

statement A: = B*D+C*D to reference D twice which although it is not optimal, it is now implementable. A

further discussion of levels of complexity of DEL implementations can be found in [14].

2.1 A General DEL Implementation

The CI measures guide the dcvclopment of a DEL which has a basic instruction layout as shown in figure

5. The general DEL model includes instructions of two types; assignment and branch. For the purposes of

this paper, this particular DEL is not associated with any particular language but is intended to be

representative of any algorithmic high level language such as Fortran, Pascal, Algol, Ada etc.

Assignment Format Opnd 1 Opnd 2 Opnd 3 Operator

Branch Format Opnd 1 Opnd 2 Operator Destination

Figure 5: DEL Instruction Layout

Each of the different fields of the instruction are now explained in detail.

2.1.1 The Assignment lnst ruction

The format dictates the number and meaning of the operands to follow. It is represented as three character

mnemonic which indicates where to obtain the source and result operands. The first character of the format

specifies where to to get the left source, the second character specifies where to get the right source and the

third character specifies where to put the result. The characters A,B and C specify to get the operands or store 1

the result based on the operand specifications found in the DEL instruction. If the character A is used in a

particular field of the format this mcans that the source or result to which it specifics is to bc found in the first

operand specification of the DEL instruction. ‘I’hc character B means to get the operand from the second *

operand specification and a C means to get it from the third specification. When a single character is

duplicated in the format specification, the operand to which the character corresponds is utilized in two ways.

So that if the character A is used in both the left source and result fields of the format specification, it is

intcndcd that the first operand in the DEL instruction is to bc used both as the left source and as the result.

6

The characters S, T, and U specify to obtain the input operands or store the result in an evaluation stack. A

specification of S means that the clement above the top of the stack is to be referenced. A T specification

means that the clement at the top of the evaluation stack is to be used and the letter U specifies that the

element under the cop of the stack is to be used. So that, for example, the format <UTU> specifies to get the

left source from the clcmcnt one under the top of the stack, the right source from the top of the stack and the

result is to be stored in the element which is one under the top of the present stack. The result will actually be

stored at the top of the stack after the source operands have been fetched but the format specification always

references in terms of the state of the stack before cxccution. The format is of fixed minimum size which is

[log&N)] where N is the number of possible formats. For a level 2 DEL this turns out to bc 5 bits.

The operand fields specify the explicit source operands which were requested in the format field. The size

of the operand fields arc fixed within the scope of a particular procedure. This size is also a minimum and is

defined to be [log&V)] where V is the number of variables in the procedure. This size is fixed at procedure

entry and stays constant throughout its execution. There is one operand for each explicit operand

specification in the instruction’s format.

The operator is of fixed minimum size which is [logz(F)l where F is the number of operators in the

language. It specifies how the input operands are to be combined to produce the result.

2.1.2 Branch Instructions

The different fields of the branch instruction will now be presented. The branch format contains all the

information about the branch operands and the branch type. It indicates the number of operands and where

they should be obtained in a manner very similar to the assignment instruction format. It also includes the

action to be taken when the operands arc cvaluatcd. There are two choices of action which can occur; the

branch can be taken when the operands evaluate true, and not be taken when the operands evaluate false or

visa-versa.

The operands are the same as described for the assignment operands. They are used in the evaluation of

the boolean expression which determines the direction of the branch.

The operator

those operators

is similar to that

which produce a boolean result,

for the assignment instruction except that the operator is rcstric ted to

The destination field specifics the location to jump to if the branch is taken. This field has the same width

as the TM address and it specifics a full IM address.

An example is now prcsentcd. Consider the DEL instruction: <NW> <x> <y> <+> This instruction

specifies the first operand (x), the second operand (y), an addition, and the result operand (y). This DEL

instruction is an encoding for the high level language statement: x : = x + y

Since variables only specify a minimum encoding to distinguish references from other references in the

same procedure, another structure is needed to map the encoded variable references to distinct memory

locations. This structure is called the cofltour and it is used to hold all the scalar variables of the task. A

pointer called the environnzelzt pointer points to the base of the current procedure. An operand fetch is then

performed by adding the [log&V)] bits of the operand specifier to the value of the environment pointer

obtaining a contour address. This address is then fetched or stored dcpcnding on the use of the operand.

Figure 6 shows an example of an operand fetch from the contour.

The value of x +j

Figure 6: An Operand Fetch from the Contour

In this example, the displacement value of x is added to the value of the environment pointer to obtain the

fill contour address of the location of x. This location is then fctchcd to get the value of x.

3 The Concurrency Model

In order to execute at maximum speed, all instructions are executed as soon as they are able. Execution is

delayed when an instruction needs to wait for the result of another instruction before it can proceed. When

one instruction affects the execution of another instruction, a dependency is said to exist between the two

instructions. There are two types of dependcncics: data and procedural dependencies. In order to discuss the

two types of dependencies the following notation is introduced. This notation used is similar to that used by

WI*

An element is a container which holds a single numeric value. Elements may be contained in sets or in

vectors or they may not be associated with any other structure and be complete within themselves.

The source set (Di) of instruction Ii is a set of elements which are rcquircd as inputs for the instruction. The

elements of the source set associated with Ii, (dil,di2), are called source elements.

The sink set (Ei) of instruction Ii is a set of elements which are altered as a result of the execution of Ii. For

DEL implementations, this set will contain 1 or zero silzk elements. ({) or {ei)) Assignment statements have

one clement and branches have zero elements in their sink sets.

Using this notation it has been shown by a number of investigators [2, 7, 121 that any one of the following

conditions causes a data dependency between Ii and Ij.

Di fl Ej f 0 (2)
Ei n Dj f 0
E, fl Ej f 0

What these equations express is that if Ti uses a value which is gcncrated by Ij or if Ii generates a values which

is used by Ij or if Ii and Ij both produce the same value there is a dependency bctwcen them. This does not

imply that Ii must be executed after Ij or Ii must be executed after Ij. A dcpendcncy between instructions

simply means that there must be an ordering of their execution so they cannot execute at the same time.

Which instruction executes first or second is determined by following the order which would have been

followed in a serial execution of the program. This can somctimcs be dctcrmincd by examining the structure

of the program at compile time but frcqucntly this cannot bc discovcrcd until the run time characteristics of

the task is known.

Procedural dependencies occur because branching causes an uncertainty about whether an instruction will

bc executed or not. Typically, it is common to assume that there is a depcndcncy between a branch and all

other instructions in the task. This is the normal way of handling branches when the destination address is

not known. More elaborate schcmcs have been proposed which rely on a knowledge of the branch

9

destination thereby reducing the number of dependcncics. [12] The problem with these techniques is that they

arc very difficult to specify and difficult to detect. A simpler scheme is proposed which creates an easier

representation of the procedural dependencies without producing a dependency between each branch

instruction and all other instructions.

3.1 The Instruction Queue

The detection of concurrency in the DEL presented invglves analyzing the task and executing as many

instructions at a time as soon as it is possible to do so. In order to do this, a structure called the insfmction
queue is introduced to hold the program in an exploded form which allows easy analysis of the instruction

stream.

The instruction queue. as its name implies, is a queue of task instructions with one instruction described

per line of the queue. Each line of the queue is composed of elements in a form which is illustrated in figure

7.

Address Sink Srcl Src2 Branch MPB opcode c AE
I I

Figure 7: One Line of the Instruction Queue

The address field is the address in main memory of the original DEL instruction. If the DEL instruction
did not start on a word alignment, a zero is loaded in this field. The Sink field contains the actual contour

address of the result operand of the DEL instruction. This is obtained by performing the addition of the

environment pointer and the sink displacement at load time. Both Srcl and Src2 contain the contour address

of the two source operands obtained in a manner similar to the Sink field. The branch field contains the

destination address of the branch if the opcode corresponds to a branch type instruction, otherwise the field is

not used. The opcode field contains the opcode of the DEL instruction. The other ficids of the instruction

qucuc will be explained later.

3.1 .I Loading the Queue

It is shown in [15] that the instruction queue is in a constant state of being loaded and unloaded. For the

purposes of this paper though, it will be assumed that the instructions corresponding to a single high level

language procedure arc loaded in the queue at one time and when it has completed cxccution, the next

proccdurc is loaded. This loading process proceeds as follows:

1. The format is read from the IM and the number and locations of the operands arc dctcrmined.

10

2. The IM address of the left source operand is dctcrmincd by analyzing the format.

a. If it is an evaluation stack reference, a special code is entered in the Srcl field to indicate a
stat k reference.

b. If it is an explicit reference to a contour clement, the value of the cnvironmcnt pointer is
added to the first displacement field held in the instruction and the resulting field contour
address is stored in Srcl.

3. The IM address of the right source operand is determined by analyzing the format.

a. If it is an evaluation stack
stat k reference.

reference, a special code is entered in the Src2 field to indicate a

b. If it is an explicit reference to a contour element, the value of the environment pointer is
added to the second displacement field held in the instruction and the resulting field
contour address is stored in Src2.

4. The IM address of the result operand is determined by analyzing the format.

a. If it is an evaluation stack reference, a special code is entered in the Sink field to indicate a
stat k reference.

b. If it is an explicit reference to a contour element, the value of the environment pointer is
added to the third displacement field held in the instruction and the resulting field contour
address is stored in Sink.

5. The operator is stored in the OP field.

6. If the operator is a branch, the destination address is stored in the Branch field otherwise the
Branch field is left blank.

3.2 b and c elements

Associated with the task is a vector of elements which roughly corresponds to the execution profile of the

task. There is an element in the vector associated with each instruction in the queue. This vector is called the

execution vector (C). The element associated with the instruction Ii will be referred to as the execution

element of Ii. The execution clcmcnt of Ii will be rcpresentcd as ci. The value of ci is equal to the number of

times that instruction Ii has been cxccutcd. The cxccution clcmcnts reside in the instruction qucuc with each

elcmcnt on the same lint as the associated instruction.

A single element called the To-Be Executed EZernent (b) is a single value which indicates the number of

times that all the instructions in the task arc to be executed. So that, for example, if b = 10 and ci = 5 then this

would indicate that all instruction arc to exccutc 10 times and instruction Ii has cxecutcd 5 times requiring it

to be executed 5 more times to bc complctcly cxccutcd.

11

The concurrency model assumes that thcrc is an implied branch at the bottom of the task which branches

back to the first instruction. So that when b = n, the implied branch has been taken n-l times indicating that

the task is to bc cffcctively executed n times and thcrcfore all instructions are to bc executed n times if no

branches in the task arc taken.

This assumption is made to facilitate the handling of concurrency across branches. When a branch is taken,

it will be assumed that all instructions which were skipped have had their execution requirement removed by

incrementing their c elements by 1. This way of altering the concurrency structures is referred to as virtual

execution. If a backwards branch is taken, all instructions after the branch arc given a virtual execution, all

instructions from the beginning of the task up to the branch arc given a virtual execution and the b element is

incremented by one to indicate another loop of the task is to be performed.

When the c
task loop from

elcmcnt of a

its first to its nth iteration. It may sometimes be desirable to execute the mth iteration of an

particular instruction equals n, it indicates that the instruction has executed the

instruction when ci --n and m > n + 1. In this case, if ci is set to m after the cxccution, the structures will have

indicated that all iterations from 1 to m have been executed when it should have been indicated that iterations

1 to n and iteration m have been executed. In order to indicate this information, a structure called the

advanced execution malt-ix (AE) is used. This matrix is made up of rows of binary elements with each row

corresponding to a particular instruction in the instruction queue and each element in the row representing

the state of the iteration’s execution beyond the present value of the c element. So that for example, if ci= n

and aei =<O,O,l,O> then this indicates that iteration 1 to n and iteration n+ 3 have been cxecutcd.

Whenever an execution or virtual execution is to be recorded, the appropriate ae clement is changed from 0

to 1. The c clcmcnt of the instruction which was executed is then updated in the following way. If the first

element of the ae vector for the executed instruction is set because of the execution update, the cxccution

information for the instruction in question will remain consistent if the value of the c element is incremented

by one and the ae vector is shifted left one element or, equivalently, the first element of the ae vector is

eliminated and a new zero element is added to the right side of the vector. The operation of shifting the ae

vectors and incrcmcnting the appropriate c clement is performed multiple times until the first clement of the

ac vector is zero. Pcrfonming this operation keeps the ac vectors to a rcasonablc size and allows the correct

updating of tic c elements in light of the possibility of advanced execution. For example, if ci= n and

aci=<O,l,l,l,O,l> then after altering the structure to indicate the execution of instruction n+ 1 the structures

would appear as:

ci = n + 4 aci = <O,l,O,O,O,O>

12

3.3 Executable Independence

The ground work has now been laid for using the concurrency structures to determine when an instruction

can be executed. When an instruction is fret to execute, meaning that the correct source values have been

generated and a new result may be produced, the instruction is dcfincd to be executably independent.

From the model that has been presented thus far, an instruction is executably independent when all of its

data and procedural dependencies have been resolved.

A data dependency between instructions Ii and Ij is resolved for instruction Ii if one of the two situations

occur.

1. If i 5 j, then instruction Ii is to bc cxecutcd before I. in a particular loop of the task. so Ii need
only wait for I. to finish the execution of its previous 4oop iteration before it can execute its next
iteration. Theiefore if ci= n, then Ii needs to wait until c -. -n-l until the dependency between I.

J 1
and Ij is resolved for instruction Ii.

2. If i > j, then instruction Ii is to be executed after I. in the same iteration therefore it must wait for
C.J

= n until Ii can have its data dependency resolved for its nth iteration.

By utilizing these conditions between Ti and all instructions a mathematical description can be formulated to

describe when Ii is independent of all data dependencies.

Ii is free of data dependencies in its nth iteration if (3)
For all j such that Ii has a data dcpcndcncy with I. and i > j then cj > n and
For all j such that Ii has a data dependency with $ and i 5 j then cj 2 n-l

With a structured mechanism for data depcndcncies developed, it is now necessary to develop an organized

method of detecting procedural dcpcndencies. Procedural dcpcndcncics are different than data dcpcndencies

in that they do not create an uncertainty as to the time of the execution of instructions but they cause an

uncertainty about whether instructions will be executed at all. And because of the somewhat unpredictable

nature of branch destinations especially in poorly structured languages such as Fortran, it becomes very

difficult to present a unified technique of representing the dependencies without making severe limitations on

them.

In order to assist in the presentation of the procedural dcpcndcncy dctcction mechanism, the concept of the

branch subset will be introduced. Assume that the task to bc executed is divided into a number of sections. A

branch subset is defined to bc a contiguous piccc of code which starts with the first assignment statement after

a branch, and includes all statements up to and including the next branch. The symbolic reprcscntation of

BS, j9 will be used to indicate the branch subset which starts at instruction Ii and includes up to instruction Ij.

It can shown that all branch subsets of a task make up disjoint subs&s of the original task in that no branch

subset contains any instruction which is also contained in another branch subset. The single branch

instruction found as the last instruction of each branch subset will be refercd to as the traikng branch.

13

The concept used to simplify procedural dcpcndcncy dctcction is to have each instruction have a single

procedural dependency with the trailing branch of the branch subset which is immcdiatcly before the branch

subset in which the instruction is contained. Creating a dependency such as this means that the procedural

dcpcndencies of all instructions arc based on the the branch which are immediately before them. “Before” in

this context refers to the instructions which are immcdiatcly previous in the original ordering of the program

as found in the IM. This ordering bears no relation to the order in which the instructions arc executed.

For example, consider the instruction sequence shown in figure 8.

1 I := I + 1 0
2 GO TO 5 0
3 J := J + 1 2
4 K := K+l 2
5 IF J < 5 GO T O 3 2

Figure 8: Illustrating Procedural Dependencies

Using this method of defining procedural dependencies, it is defined that there is a procedural dependency

bctwcen instructions 2 and 3,2 and 4, and between instructions 2 and 5. Instructions 1 and 2 do not have any

procedural dependencies because there is no branch subset immediately before them.

A mechanism for specifying the procedural dependency will now be developed. Since each instruction

only needs to consider a single procedural depcndcncy, a single field of the instruction queue is required to

indicate this. This field contains the instruction queue address of the branch instruction to which the

instruction is dependent . This field is called the most previous branch (MPB) field to indicate that it contains

the address of the trailing branch of the most previous branch subset. The values that would be found in the

MPB fields for the previous example arc shown to right of the program in figure 8.

It is useful simplifying the model and reducing the amount of hardware in an actual implcmcntation to

treat procedural dependencies in a similar fashion to data dependencies. This means that if instruction Ii has

a procedural dcpendcncy with branch Ij, then Ii can not execute its nth iteration until Ij has executed its

proper number of iterations. From the derivation of procedural depcndcncy assignment, all instructions have

procedural dependencies with instructions which are previous in the instruction stream so there is no need to

consider the two cases of dcpcndcncics bcforc and dcpcndcncics after. Thcrcforc, in order for Ii to be

rcsolvcd of its procedural depcndcncy for its nth iteration, the branch instruction to which it has its

procedural dependency must have executed its nth iteration. The procedural depcndcncy check then consists

of comparing the c elcmcnt of the instruction pointed to by the MPB field with n. If cMpB > n then the

procedural dependency between the I,,, and Ii is resolved and Ii may be executed.

The dctcction of cxccutablc indcpcndcncc can now be exprcsscd mathematically as a combination of

satisfying the data and procedural dcpcndency requirements.

14

(4)
Instruction Fi is executably indcpendcnt to execute its nth iteration if

For all J such that Ii has a data dcpendcncy with Ij and i > j then cj 2 n and

and
For all j such that Ii has a data dcpcndcncy with ij and i < j then cj > n-l

3.4 Execution of Statements

Once all DEL instructions have been examined for executable independence, those which have been

flagged for execution must bc executed. But because execution affects the state of the concurrency structures,

specifications must be given on how the strut tures should be affcc ted by the execution of independent

instructions.

The modification of the structures as the result of an assignment statement is treated first. When the

assignment instruction Ii is executed, the appropriate ae element of the ae vector associated with Ii needs to be

altered to indicate the execution. It can be easily proven that only iteration ci+ 1 can be executably

independent, so after the execution of I, the first bit of the aci vector is set to a 1. The c clement and the ae

vector corresponding to Ii is then adjusted to clear the ac vector of all leading ones. An example of a

concurrency structure update as the result of an assignment statement execution is shown in figure 9.

Before : ci = 5 aei = < 0, 1, 0, O>

After : ci = 7 aei = < 0, 0, 0, 0>

Figure 9: An Example of Concurrency Structure Update as a Result of An
Assignment Statement.

Modification of the concurrency structures due to a branch will now be developed. Once a branch has

executed thcrc arc 3 possible ways which the destination could have gone. It could have either branched back

in the code, (backwards branch), or forward, (forward branch) or not branched at all and taken the next

instruction which is effectively the same as a branch forward to the next statement.

If the branch is not taken, it acts as an assignment statement and updates the structures accordingly.

Branches which arc not taken can bc thought of as branches which arc taken to the next instruction in the
task.

If the branch is a forward branch, all instructions between and including the branch up to the destination

arc flagged as having executed. This is done by setting bits in the ae vectors of the affected instructions based

on the c value of the branch. If cbranch--n then it is indicated that the instructions are to bc skipped in their

nth iteration. This information is recorded by setting the bits in the ac vectors of all instructions between the

15

branch and the destination in their I& iterations. If instruction Ii has ci = m where m < n, in order to

indicate that iteration n is not to bc cxccuted, element number n - m is set to one in aei. It can bc seen that if

n > m + 1 then an ae element other than the first will be set. As an example of this, consider the instruction

sequence of figure 8 once again. Assume that before the execution of instruction 2 the concurrency structures

had the values as shown in figure 10.

Ins t ruct ion C AE Vector
1 3 < 0, 0 , 0, o>
2 2 < 0, 0 , 0. o>
3 0 < 0. 0 , 0, o>
4 1 < 0, 0 , 0, o>
5 0 < 0, 0 , 0, o>

Figure 10: Concurrency Structures Before Forward Branch Execution

As a result of the execution of instruction 2, instructions 3 and 4 are skipped in their 3rd iteration. This

information is reflected in the updating of their ae vectors as shown in figure 11.

Ins t ruct ion C AE Vector
1 3 < 0, 0 , 0, o>
2 3 < 0, 0 , 0, o>
3 0 < 0, 0 , 1, o>
4 1 < 0, 1, 0, o>
5 0 < 0, 0 , 0, o>

Figure 11: Concurrency Structures After Forward Branch Execution

When a backward branch is executed, it is an indication that the instructions in the loop created by the

branch are to be executed another time. All instructions outside of the loop must wait for at least this new
iteration and all previous iterations to complete before they can use any results which arc generated in the

loop. It can be shown that branches always execute their last iteration. That is, when a branch executes, its c

clcmcnt will always equal b-l before the execution and b after it. The strategy behind indicating a backward

branch then is to specify that the entire task is to be executed another iteration. Illis is done by incrementing

the b value by 1. But what is actually desired is to indicate that only the instructions in the loop are to be

executed on another iteration. In order to compensate for this, all instructions before the start of the loop arc

flagged as already being executed in this newly generated iteration. This is done by setting all the ae clcments

of iteration b for all instructions before the loop. The instructions after the loop should execute this new

iteration though. In fact this is the only iteration which they should cxccutc since they must delay cxccution

until all the loop executions have complctcd. In order to limit them to the proper number of executions after

the b element has been incrcmcnted, the ae elements of their b-l iteration is set. Doing this, limits the

number of executions of the instructions after a loop to 1 and indicates that it should not bc performed until

all iterations of the loop have been started.

As an example, consider the program segment and the associated concurrency structures in figure 12. After

16

b = 5
1 I :=I+1 . . c1 =3 ae 1 = < 0, 1, 0, o>
2 J := 3 + 1
3 K := K+l

c2 =3 ae 2 = < 0, 0, 0, o>

4 IF K < 5 GO TO 2
c1 = 5 ae =

=4 3 < 0, 0 , 0, o>
ae = < 0, 0, 0, o>

5 L := L+1
c4 43 =4 ae =5 < 0, 0 , 0 , o>

Figure 12: A Program Segment With a Backward Branch

the branch at instruction 4 is executed another iteration of the loop is to be executed. This is indicated by

incrementing b, setting the 6th iteration of instruction 1 to the executed state and setting the 5th iteration of

instruction 5 to the executed state. The program segment and the concur-ency structures after the execution

of the branch are shown in figure 13.

b =6
1 I := I + 1
2 3 := J + 1

5 =3 ae =1 < 0 , 1, 1, o>

3 K :=K+ 1
c2 -3 ae

= 5 2 = < 0, 0, 0, o>
c1 ae = < 0, 0, 0, o>

4 IF K < 5 GO TO 2 =5 3
c4 ae =4 < 0, 0, 0, 0)

5 L := L+l 3 =5 ae 5 = < 0, 0 , 0, o>

Figure 13: Program Segment After Backward Branch Execution

3.5 An Execution Algorithm

With the details of execution discussed, a unified algorithm is now presented which illustrates the basic

instruction cycle of a concurrent execution machine and concurrency structure manipulation.

1. Load the task into the instruction queue

2. Test for executable independence of all instructions using equation (4).

3. Execute all exccutably independent instructions Ii in their Nth iterations such that:

a. if Ii is an assignment statement

i. ei : = dil ‘Pi di2

ii. aei 1 : = 1,

b. if Ii is a branch instruction

i. if destination > i then ’

la acj c -c : = 1, for all j bctwcen i and destination - 1
‘i j

ii. if destination < i then

l.b:=b+l

2a aej c -c : = 1, for all j between i and the end of the queue
‘i j

17

3'aejc-c +I ** = 1 , for all j between 1 and dcstiaation - 1
‘i j

4. Update c elements of all instructions which had their ae vectors modified.

5. if ci f b for any i then go to 2

4 An Example

It is usefL1 at this point to present an

Consider the small Fortran program shown in figure 14.

example to illustrate the concepts which have been developed.

Program Test
I = 0 <-AB> <0> <I> <MOVE>
J q 0 <-AB> <0> <J> <MOVE>
I =I+1 <ABA> <I> <l> <+>
J =J+l <ABA> <J> <l> <+>
IF J < 2 go to 7 <AB-TRUE><J> <2> <<> <7>
I = I + 1 <ABA> <I> <l> <+>
IF J = 2 go to 4 <AB-TRUE><J> <2> <=> <4>
END

Figure 14: Small Fortran Program

If this program were to execute serially, the first execution of the branch at instruction 5 would be taken. The

branch at instruction 7 would also be taken on its first execution causing it to branch back. On its second

execution, the branch at instruction 5 would not be taken. The branch at instruction 7 is not taken on its

second execution and the task completes. The sequence of execu tion then is: 12 3 4 5 7 3 4 5 6 7.

In terms of the concurrency model which has been dcvelopcd, the task is activated for its first iteration

when the program is loaded and the structures are initialized. When the first branch at instruction 5 is

exccutcd, instruction 6 is skipped by incrcmcnting its c element without executing it. When the branch at

instruction 7 is cxccutcd the first time, the branch target is back to instruction 4 and the second iteration is

initialized. This iteration is executed and since no new iterations are activated, the task complctcs. A table

illustrating instruction execution versus machine cycle number is shown in figure 15. The steps of the

cor,current execution will now be discussed. First the task is loaded into the instruction queue. After the

initial load, the instruction queue appears as shown in figure 16. In the first cxccution cycle, instructions 1

and 2 arc found to bc exccutably indcpcndent and XC cxccuted. In the second execution cycle, instructions 3

and 4 arc found exccutably indcpcndent and cxecutcd. In the third cycle, instruction 5 is cxccutcd and the c

element of instruction 6 is incremented. The instruction queue after this cycle is shown in figure 17.

The branch at instruction 7 is then found executably independent and cxecutcd generating the instruction

queue as shown in figure 18. The cxccution of the branch at instruction 7 has activated a second iteration of

the task (b=2) and pcrformcd a false cxccution of the instructions which arc not to participate in this second

18

Machine Cycle
1 2 3 4 5 6 7

Instruction

Figure 15: Instruction Execution versus Machine Cycle Number

1 Address 1 Sink 1 Srcl 1 Src2 1 Branch I MPB I opcode I C I ,A:

1 I 0 - - 0 = 0 0 0 0

2 J 0 _ _ 0 = 0 0 0 0

3 I I 1 - 0 + 0 0 0 0

4 J J 1 - 0 + 0 0 0 0

5 J 2 7 0 < 0 0 0 0

6 1 1 1 - 5 + 0 0 0 0

7 J 2 4 5 = 0 000

Figure 16: Instruction Queue After Loading the Example Program

19

1 Address 1 Sink I Srcl I Src2 1 Branch I MPC) I opcodc I C I ,A: I

isi / I IO / - / - j 0 / = j 1 /o 0 01

2 J 0 _ _ 0 = 1 0 0 0

3 I I 1 - 0 + 1 0 0 0

4 J J 1 - 0 + 1 0 0 0

5 J 2 7 0 < 1 000

6 1 I 1 - 5 + 1 000

7 J 2 4 5 = 0 0 0 0

Figure 17: Instruction Queue After the Third Execution Cycle

1 Address 1 Sink I Srcl I Src2 1 Branch I MPB I opcodc (AE

1 I 0 - - 0 = 1 0 0 0

2 J 0 _ _ 0 = 1 0 0 0

I 3 IIlIlll - 101 + I1po’o~

4 J J 1 - 0 + 1 0 0 0

5 J 2 7 0 < 1 000

6 1 I 1 - 5 + 1 000

7 J 2 4 5 = 1 0 0 0

Figure 18: Instruction Qucuc After the Fourth Execution Cycle

20

iteration. In cycle five, instruction 4 is exccutcd. In cycle six, instmction 5 is executed and the branch is not

taken so no concurrency structures are altered. In cycle seven, instruction 6 and 7 arc executed and since the

branch at instruction 7 is not taken, the task completes with the concurrency structures finishing as shown in

figure 19.

b=2 I
I Address 1 Sink 1 SrcI 1 Src2 1 Branch I MPB~ opcode I AE

1 I 0 - - 0 = 2 0 0 0

2 J 0 _ _ 0 = 2 0 0 0

I 3 IIIIIll - 101 + ~2poo~

4 JJ1 - 0 -I= 2 000

5 J 2 7 0 < 2 0 0 0

6 1 I P - 5 -I- 2 0 0 0

7 J 2 4 5 = 2 0 0 0

Figure 19: The Instruction Queue at the End of the Task

5 Optimal Concurrency Detection

It is argued that the detection and execution techniques presented detects and exploits all the concurrency

in a task subject to the following conditions:

l There is no recoding of the algorithm. The program is analyzed as it was written and compiled.
Marc concurrency could be found if the algorithm was rcstructurcd but one of the advantages of
this tcchniquc is that it will work equally WC!! on programs which have been rcstructurcd as those
which have not been. Restructuring programs as in [S] will dcfinitcly find more concurrency
which can only help to reduce the task’s execution time.

l There is no duplication of operand locations. Duplicating locations may also provide additional
concurrency as illustrated by the use of shadow effects as presented by Tjaden and Flynn [l3].

l There is no knowledge of branch destinations until the branch is cxccuted. It has been shown by
Tjadcn [13] that lifting this restriction can incrcasc the amount of concurrency dctcction at the cost
of incrcascd complexity in the dctcction mechanism.

21

L

l No false execution is allowed. That is, no instructions may bc cxccutcd until it is known that it is
surely going to execute. Guess execution is normally associated with traveling down both paths of
branch until the true outcome of the branch is dctermincd. Although it has been shown that
employing such tcchniqucs can provide more concurrency [lo, 91, the cost of implementation
becomes very prohibi tivc as multiple branches are considered.

Theorem l:\ The dcpcndency detection algorithm and execution algorithm presented detects
and executes the maximal amount of concurrency possible in a task subject to the above
restrictions.

Proof: In [2] it is shown that the three data dependencies conditions presented in equation (2)
are sufficient conditions to detect and allow the execution of all the concurrency in a single
straight-line piece of code with no intervening branches.

The technique used to prove that the detection and execution mechanism presented recognizes
all the concurrency in the task subject to the given restrictions, is to show that through the
information given by the concurrency structures, it will appear as if the actual execution sequence,
the order of the instructions as seen by a serial execution of the task, will be analyzed the same way
as if the task were rearranged to resemble a straight-lint piece of code with the first instruction
being the first instruction of the task, the last instruction, the first unresolved branch and all
instructions in between following the serial cxccution order of the task.

The execution of a branch either skips over instructions or starts a new iteration skipping over
the instructions at the start of the task which are not to be executed. In the case of a forward
branch, the execution of this branch effectively causes the code which is activated to appear as if it
immediately followed the code before the branch since the execution of the branch negates the
execution of all instructions between the branch and the destination instruction. Thus the
execution of a forward branch makes the instructions before the branch appear to be ordered
immediately before the instructions starting at the destination address.

When a backwards branch is executed, starting up the new iteration and skipping over the
instructions up to the destination instruction also makes the newly activated instructions appear
after the the instructions before the branch since the dctcction and execution algorithms will not
allow the execution of these newly activated instructions until all dcpcndent instructions before
the branch in the previous iteration have executed.

Thus all possible branch cases cause the affected instructions to appear as if they arc ordered in
a single straight-line piccc of code so traditional Bernstein techniques can then be used, detecting
the maximal amount of concurrency possible under thcsc constraints.

6 Conclusions

The basic algorithms and structures of a machine which can detect parallelism in serial DEL instruction

streams have been presented. The model has been specifically designed so that the size of the vectors may be

increased or decrcascd based on implementation constraints with a corresponding increase or dccrcase in the

concurrency which is dctcctcd. l’hc advantage of an architecture such as this is that a programmer may write

programs in a completely serial fashion and it will be cxccutcd concurrently. Altcrnativcly, the programmer

22

could USC a parallel high level language specification ‘which would be coded into a DEL and subsequently

exccutcd in a concurrent fashion. Finally, the programmer could write the program in a serial HLL, it could

then bc transformed into a representation which illustrates all the concurrency and this could then be

compiled into a DEL notation which would subscqucntly be executed and all the concurrency found by the

parallelizer would be identified.

One of the key features of this architecture is that it does not require the machine language to have any

information in it regarding the concurrency which exists in the program. It is felt that languages of this type

would require as much time transmitting the concurrency information from the instruction strcCam to the

execution unit and interpreting its meaning than it would take to just detect the concurrency at execution

time.

23

R e f e r e n c e s .

VI

PI

PI

141

PI

161

PI

[81

PI

m

[111

WI

Anderson, D. W., Sparacio, F. J., Tomasulo, R. M.
The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling.
IBM Journal of Research and Development 11(l): 8-24, January, 1967.

Bernstein, A. J.
Analysis of Programs for Parallel Processing.
IEEE Transactions on Computers EC-15(5):757-763, October, 1966.

Flynn, M. J. and Hoevel L. W.
A Theory of Interpretive Architectures: Ideal Language Machines.
Technical Report 170, Computer Systems Laboratory, Stanford University, February, 1979.

Henncssy, J.L., Jouppi, N., Baskctt, F. and Gill, J.
MIPS: A VLSI Processor Architecture.
In Proceedings of the CMU Conference on VLSI Systems and Computations. CMU, October, 981.

Howe!, L. W. and Flynn, M. J.
A Theory of Interpretive Architectures: Some Notes on DEL Design.
Technical Report 171, Computer Systems Laboratory, Stanford University, February, 1979.

IBM System/370 Principles of operation
fifth edition, IBM, Poughkeepsie, N. Y., 1976.

Keller, R. M.
Look-Ahead Processors.
Computing Surveys 7(4):177-195, December, 1975.

Kuck D., Muraoka Y., Chen S.C.
On the Number Operations Simultaneously Executable in Fortran-like Programs and their Resulting

Specdup.
IEEE Transactions on Computers C-21(9): 1293-1310, Dcccmber, 1972.

Magid, Nabil Fouad.
High Speed Computer Systems as a Result of Concurrent Execution oj*Sequential Instructions.
PhD thesis, Illiois Institute of Technology, 1980.

Riseman, E. M. and Foster, C. C.
The Inhibition of Potential Parallelism by Conditional Jumps.
IEEE Transactions on Computers C-21(12):1411-1415, Dcccmber, 1972.

I~~~sscll, 11. M.
The Cray-1 Computer System.
Communications of the AClll21(1):63-72, January, 1978.

Tjaden, Garold S.
Representation and Detection of Concurrency Using Ordering Matrices.
PhD thesis, Johns Hopkins Uniwsity, 1972.

24

[13] Tjaden, G. S., Flynn, M. J.
Representation of Concurrency with Ordering Matrices.
IEEE Transactions on Computers C-22(8), 1973,1973.

[14] Wakefield, Scott.
A Machine Archileciure for Pascal Execeution.
PhD thesis, Stanford University, 1982.
To be presented.

(151 Wedig, R. G.
Dynamic Deteclion of Concurrency in DEL Instruction Streams Using Ordering Matrices.
PhD thesis, Stanford University, 1982.
To be presented.

