COMPUTERSYSTEMSLABORATORY
F .

STANFORDUNIVERSITY - STANFORD, CA 94305

Dynamic Detection of Concurrency
in DEL Instruction Streams

Robert. G. Wedig

Technical Report No. 231

February 1982

The work described hercin was supported in part by afcllowship from the IBM

Corporation and the Army Rescarch Office - Durham under contract #
DAAG-29-78-6-0205.

Dynamic Detection of Concurrency
in DEL Inst ruction St reams

Robert G. Wcdig

Technical Report No. 231

February 1982

Computer Systems Laboratory
Dcpartments of Klectrical Kngineering and Computer Science
Stanford University
Stanford, California 94305

Abstract

Dctection of concurrency in Directly Exccuted Languages (DEL) isinvestigated. It isthcorized that if DELs
provide aminimal time, space execution of scrial programs, then concurrency detection of such instruction
streams approach the minimum execution time possible for a single task without resorting to algorithm
restructuring O source manipulation. It isshown how DEL encodings facilitatethe dctcction of concurrency
by alowingearly decoding and explicit dctcction of dependency information. The decoding and dcpendency
dctccrion algorithms asapplicd to DELs aredeveloped indetail. Concurrency structures arc presented which
facilitate the detection process. Since al concurrency is capable of exploitation as soon as it is known that the
the code is to be executed, i.e., the result of the branch is known, it is proven that all explicit parallelism can
be detected and exploited using the techniques developed.

Key Words and Phrases: Pipelining, Concurrency, Dependency

Table of Contents

1 Introduction
2 The DEL Mode
2.1 A General DEL Implementation
2.1.1 The Assignment Instruction
2.1.2 Branch Instructions
3 The Concurrency Model
3.1 The Instruction Queue
3.1.1 Loading the Queue
3.2 b and c elements
3.3 Exccutablc Independence
3.4 Execution of Statements
3.5 An Execution Algorithm
4 An Example
5 Optima Concurrency Detection
6 Conclusions

© o O U1l U1 B —

12
14
16
17
20
21

Figure 1:
Figure 2:
Figure 3:
Figure 4:

List of Figures

IBM 370 encodingof C: =A + B

DEL encodingof C:=A+B

Pipelining of an Example Instruction Stream
Ultimate Pipclining of an Instruction Stream

Figure 5: DEL Instruction Layout

Figure 6:

An Operand Fetch from the Contour

Figure 7: One Line of the Instruction Queue
Figure 8: Illustrating Procedural Dependencies

Figure O:

Figure 10:
Figure 11:
Figure 12:
Figure 13:

An Example of Concurrency Structure Update as a Result of An Assignment Statement.

Concurrency StructuresBefore Forward Branch Exccution
Concurrency StructuresA fter Forward Branch Execution
A Program Segment With a Backward Branch

Program Segment After Backward Branch Execution

Figure 14: Small Fortran Program

Figure15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

Instruction Execution versus Machine Cycle Number
Instruction Queue After Loading the Example Program
Instruction Queue After the Third Execution Cycle
Instruction Queue After the Fourth Execution Cycle
The Instruction Queuc at the End of the Task

1 Int roduction

It isa common goa of al computer architects to design computers which will solve problems and perform
uscful tasks as quickly as possible using a minimum of hardware. Doing this on traditional machine
architectures involves theexccution of a series of stepswhich arc held in an area of the computer’s memory.
A computer programmer Writes ascries of human recadable steps called statements which are then translated
into anumber of predefined machine readable stepscalled instmctions. Instructions are stored in an area of
thecomputer called theinstruction memory. (IM) The ordered collection of highlevel languagestatements is
referred to as a program and asimilarly ordered collection of machine instructionsis called atask.

A task isperformed by having the machine read instructions and performing the function specified. The
process of interpreting instructionsiscalled execution. The order of execution isto fetch an instruction from
the IM, perform the function which it specifics, fetching the next instruction, etc. This process continues until
the last instruction has been executed and the task is complete.

The amount of time that it takes to execute atask (T,) is determined by multiplying the number of
instructions which nced to be executed (N,) by the execution time of each of instruction (T;

mslruclion)'
T =N XT
task ex

Although this assumes that each instruction takes the same amount of time to execute, it can be assumed that

instruction (1)

all instructions are sufficiently simple or sufficiently complex (as may well be the case in DELSs) that this
assumption is valid.

Given thiscquation, the task of computer architects can berestated asbeing to minimize T, . Thiscan be
done by decreasing the value of one or both of the two input parameters of the equation. It iSnecessary then
to analyze how the two values may bc reduced to determine the best way to speed up the execution.

Reducing the number of instructions to be executed can be accomplished in one of two ways:

« The task could be recoded using a more efficient algorithm. Thisis primarily the task of computer
scientists and will not be considered here.

« A different instruction set could bc used which ismore cfficient and more closely suited to the job
to be performed. Thistask isbetter suited to architccturc designers and it isthe one which will be
considered here.
Much work has been done in the ficld of instruction set design with the primary aim centered at the reducing
the instruction count. Traditionally, research in this area has been basicly a hit and miss effort. An
instructionset would be dcsigncd, compilers and simulators would bewritten, and datawould bcgathered on
the cffcctivencss of the design. *I"his experimental approach to architccturc design is both slow and time

consuming. Viewing this approach as unacceptable, Flynn and Haevel [3, 5] developed an alternate method
of instruction set design. The approach taken by them was to closcly map the instruction set to the high level
language in which the original program was written. By such a mapping, only the intentions of the
programmer are actually executed, not the extraneous instructions which may bc required as an artifact of the
machine.

An example is shown to illustrate the difference between the Flynn and Hoevcl DEL theory and traditional
machines. The IBM 370 [6] architecture requires a number of extraneous commands to perform a very simple
task. Suppose the programmer had written the high level language statement C : = A + B. Figure 1 shows
the 370 encoding for this simple high level language statement.

L R1,A
A R1,B
ST R1,C

Figure 1: IBM 370 encodingof C: =A +B

It takesthree IBM instructions to exccute this statcment. First aregister isloaded with the first operand (A),
next this register is added to the second operand (B) and stored back in the register, and then the register is
stored in the result operand (C). The DEL encoding of this statement is now shown is figure 2.

CABCY> <A> <C> <+>
Figure 2: DEL, encodingof C: =A +B

Thissingle DEL instruction specificsto fetch the two operands, add them and store the results in C. Thisis
exactly what the programmer specified. No overhead instructions have been added.

A second dternative to reducing task execution time, is to decrease the execution time of each instruction.
This can be done in a varicty of ways. Device technology is aways being improved and higher speed
components allow the the basic cycle time of the machine to decrease and thus decreasing the total time that it
takes to exccute an instruction and consequently the task. Innovative machine implementations can usually
decrease the number of cycles needed for an instruction to execute which also decreases the total execution
time of the task.

A more commonly used technique is to reduce the effective exccution time by starting an instruction
execution before the previous instruction has complcted. The process of overlapping instruction executionis
caled pipelining and it is used in most all super computers 1, 11] and even in some microprocessors [4].
Figure 3 illustrates an instruction sequence which has been pipelined. Various steps of the execution for each
instruction are illustrated in this figure. First the instruction is fetched in the instmction fetch (IF) cycle. Next
the instruction is decoded in the decode (DC) cycle. The operand address iS then gencrated in the address
generate (AG) cycle and the operands arc fetched in the operand fetch cycle. Finally the instruction is

| 1e | pcl aG | oF | ex |

| 1r | bc| aG | oF | ex |

| | bc | AG | oF | Ex |

|| bc | aG | oF | EX |

Figure 3: Pipelining of an Example Instruction Stream

executed in the execute (EX) cycle. The amount of pipelining is determined by the amount of overlap which
isachieved. As pipelining increases, the effective execution time of each instruction isreduced. In striving
towards the ultimate computer, if DELs approach this optimum by reducing the instruction count to a
minimum, a very tight pipelinc approaches it through reduced instruction execution time.

How can the pipeline be tightened? Reducing the instruction execution time to its minimum would
generate the ultimate pipeline and would consist of al instructions executing at the same time. But since
simultaneous execution of all instructions would mean that al inputs are fetched at the same time and results
are produced at the same time, simultaneous cxecution could only be performed correctly if no instruction in
the task required the execution of any other instruction to perform its function. Thisis only possiblein the
most trivial of cases. In all other cases, the correct execution of a program, that is the execution which will
produce the results which are desired, can only occur when instructions wait for other instructions to execute
before they themselves can execute. But not all parts of the instruction execution need wait for execution.
The instruction can be fetched, decoded, and the operand addresses can be gencrated without necding to wait
for any other instruction execution. Only the operand fetch and the final exccute cycle of the instruction need
walit for the inputs to be generated. Figure 4 illustrates an instruction execution of an ultimate pipeline.

| i | bc| ac| oF | Ex |

L= | pel aG | | oF | EX |
| 1e | bcl AG | | oF | Ex |
| iF | pc| aG | | oF | Ex |

Figure 4: Ultimate Pipclining of an Instruction Stream

The difficulty remains then indetermining when an instruction hasitscorrect inputs available and thus can

exccutc. This paper will present a model of a DEL which is based on the work of Flynn and Hoevel.
Concurrency structures, a detection mechanism and an execution algorithm are presented. An example is then
presented to further illustrate the concepts. Finally an argument is given to prove that the techniques which
arc developed, detect all concurrency given certain restrictions.

2 The DEL Model

The model used to represent the DEL is derived from Flynn and Hoevel [3, 5]. It is based on a set of
Canonic Interpretive (Cl) measures which provide a space, time measure of comparison for DEL
implementations.

The CI measures specify 3 propertics which machine implementations of high level languages should
approach to beconsidered optimal DELs. They arc given below:

1. 1:1 property - One instruction is allowed for each operator specified in the high level language
program. One identifier is specified for eachunigue identifier in the high level language statement.
This property states that there should never be any extraneous instructions which were not
explicitly specificd by the programmer. It may be amatter of judgment for aparticular language
as to what congtitutes an operation. The mathematical operators(+ ,-,X ,+,) arc easy enough to
understand, but it is not always clear if branching or context switching should be considered a
single operator. These decisions must be based on the particular language which is implemented
and so are |eft to the discretion of the architecture designer.

2. Log, Property - Operators are of[logZ(F)] size where F' is the number of HLL operators used in the
task and operands are of{logZ(V)] size where V is the number of distinct HLL variables used in a
given scope of reference. This property states that all distinct references arc to be as small as
possible using abinary rcprescntation. The scope of reference used throughout this report will be
aprocedure. Because changing the operator set at each context switch could become very
expensive, this property will bc relaxed in this report to specifying a minimum size for the
operator specification for al operators in the task.

3. Referencing Property - One reference is alloyed for each operator encountered during execution.
One reference allowed per unigue operand identifier in each statement during execution. This
property specifies the run-time characteristics of the instruction set. It says that the referencing
activity as specified by the origina program should match the referencing activity of the task
which is actually run on the machine.

The Cl properties do not make clear what is meant by a unique identifier Or unique operand reference. In
the optimum, this means that there is a single reference for each identifier specification in a single high level
languagestatement. So that, for example, the high level language statement A: =B*D +C* D would generate
asingle DEL instruction which has two operator and four operand specifications. At run time, exactly this
number of references would bc performed in the execution of the statcment. Doing this for any arbitrary
statcment would require an uncountable number of DEL instruction types. This would not bc feasible for

implementation. SO, it will be assumed, at least for the purposes of this paper, that there will bc a maximum
of two input operands and a single output operand for each DEL instruction. This restriction of the Cl

measures constitutes what is called a level 2 DEL. This would require the DEL representation of the
statement A: = B¥*D+C* D to reference D twice which although it isnot optimal, it is now implementable. A
further discussion of levels of complexity of DEL implementations can be found in [14].

2.1 A General DEL Implementation

The CI mcasures guidethe development of aDEL which has abasic instruction layout as shown in figure
5. The general DEL model includes instructions of two types; assignment and branch. For the purposes of
this paper, this particular DEL is not associated with any particular language but is intended to be
representative of any algorithmic high level language such as Fortran, Pascal, Algol, Ada etc.

Assignment Format Dpnd 1 !Opnd 2 Opnd 3 Operator

Branch Format |Opnd 1 |Opnd 2 Pperator Destination

Figure 5: DEL Instruction Layout

Each of the different fields of the instruction are now explained in detail.

2.1.1 The Assignment Inst ruction

The format dictates the number and mecaning of the operands to follow. It isrepresented asthree character
mnemonic which indicates where to obtain the source and result operands. The first character of the format
specifieswhere to to get the left source, the sccond character specifies where to get the right source and the
third character specifies where to put the result. The characters A,B and C specify to get the operands or store
the result based on the operand specifications found in the DEL instruction. If the character A isused ina
particular ficld of the format this mcans that thesource or result to which it specifics isto bc found in the first
operand specification of the DEL instruction. ‘I’ hc character B means to get the operand from the second
operand spccification and a C means to get it from the third specification. When a single character is
duplicated in the format specification, the operand to which the character corresponds is utilized in two ways.
So that if the character A isused in both the left source and result ficlds of the format specification, it is
intendced that the first operand in the DEL instruction is to bc used both as the left source and as the result.

Thecharacters S, T, and U specify to obtain the input operands or storethe result in an evaluation stack. A
specification of S means that the clement above the top of the stack is to be referenced. A T specification
means that the clement at the top of the evaluation stack is to be used and the letter U specifies that the
element under the cop of the stack isto be used. So that, for example, the format <UTU> specifies to get the
left source from the clement one under the top of the stack, the right source from the top of the stack and the
result is to be stored in the element which is one under the top of the present stack. The result will actually be
stored at the top of the stack after the source operands have been fetched but the format specification always
references in terms of the state of the stack before cxccution. The format is of fixed minimum size which is
[log,(N)] where N is the number of possible formats. For alevel 2 DEL this turns out to bc 5 bits.

The operand fictds specify the explicit source operands which wererequested in the format field. Thesize
of the operand fields arc fixed within the scope of a particular procedure. This size is dso a minimum and is
defined to be[log,(V)] where V is the number of variablesin the procedure. Thissize isfixed at procedure
entry and stays constant throughout its execution. There is one operand for cach explicit operand
specification in the instruction’s format.

The operator is of fixed minimum size which is [log,(F)] where F is the number of operatorsin the
language. 1t specifies how the input operands are to be combined to produce the result.

2.1.2 Branch Instructions

The different fields of the branch instruction will now be presented. The branch format contains all the
information about the branch operands and the branch type. It indicates the number of operands and where
they should be obtained in a manner very similar to the assignment instruction format. It also includes the
action to be taken when the operands arc cvaluatcd. There are two choices of action which can occur; the
branch can be taken when the operands evaluate true, and not be taken when the operands evaluate false or
visa-versa

The operands are the same as described for the assignment operands. They are used in the evaluation of
the boolean expression which determines the direction of the branch.

The operatoris similar to that for the assignment instruction except that the branch operator is rcstric ted to
those operators which produce a boolean result,

The destination field specifies the location to jump to if the branch is taken. Thisficld has the same width
asthe TM address and it specifics afull IM address.

An exampleis now prcsentcd. Consider the DEL instruction: <ABA> <x> <y> <+> This instruction

specifies the first operand (x), the second operand (y), an addition, and the result operand (y). This DEL
instruction is an encoding for the high level language statcment: X : = X +y

Since variables only specify a minimum encoding to distinguish references from other referencesin the
same procedure, another structure is nceded to map the encoded variable references to distinct memory
locations. This structure is called the contour and it is used to hold all the scalar variables of the task. A
pointer called the environment pointer points to the base of the current procedure. An operand fetch isthen
performed by adding the [log,(V)] bits of the operand specifier to the value of the environment pointer
obtaining a contour address. This address is then fetched or stored depending on the use of the operand.
Figure 6 shows an example of an operand fetch from the contour.

ABA ; Environment Pointer

Contour

Current

Procedure

Operands

.

Thevalueof x «§

Figure 6: An Operand Fetch from the Contour

In this example, the displacement value of x is added to the value of the environment pointer to obtain the
full contour address of the location of x. Thislocation is then fetched to get the value of x.

3 The Concurrency Model

In order to execute a maximum speed, all instructions are cxccuted as soon as they are able. Execution is
delayed when an instruction needs to wait for the result of another instruction before it can proceed. When
one instruction affects the execution of another instruction, a dependency is said to exist between the two
ingtructions. There are two types of dependcncics: data and procedural dependencies. In order to discuss the
two types of dependencies the following notation is introduced. This notation used is sSimilar to that used by
[12].

An element is a container which holds asingle numeric value. Elements may be contained in setsor in
vectors or they may not be associated with any other structure and be complete within themselves.

The source set (D,) of instruction [is a set of elements which are required as inputs for the instruction. The
elements of the source set associated with L.{d,.d,} are caled source elements.

The sink set (E)) of instruction L is a set of elements which are altered as a result of the execution of L. For
DEL implementations, this set will contain 1 or zero sink elements. ({3} or {eb Assignment statements have
one clement and branches have zero elements in their sink sets.

Using this notation it hasbecn shown by anumber of investigators[2, 7, 12] that any one of the following

conditions causes a data dependency between [, and [j.

D,NE #0 0))

Ei n Dj =0

E N E # 0
What these equations expressisthat if I uses avalue which isgencrated by IJ. or if I, generatesavalueswhich
is used by Ij orif I and I,- both produce the same value there is a dependency between them. This does not
imply that I, must be executed after Ij or I, must be executed after | i A dependency between instructions
simply means that there must be an ordering of their execution so they cannot execute at the same time.
Which instruction executes first or second is determined by following the order which would have been
followed in aserial execution of the program. This cansometimes be dctcrmined by examining the structure
of the program at compile time but frequently this cannot be discovered until the run time characteristics of
the task is known.

Procedural dependencies occur because branching causes an uncertainty about whether an instruction will
bc executed or not. Typicaly, it is common to assume that there is adependency between a branch and all
other instructions in the task. Thisis the normal way of handling branches when the destination addressis
not known. More claborate schemes have been proposed which rely on a knowledge of the branch

destination thereby reducing the number of dependcncics. [12] The problem with these techniques is that they
arc very difficult to specify and difficult to detect. A simpler scheme is proposed which creates an easier
representation of the procedural dependencies without producing a dependency between each branch
instruction and al other instructions.

3.1 The Instruction Queue

The dctection of concurrency in the DEL presented involves analyzing the task and executing as many
instructions at atime as soon asit is possible to do so. In order to do this, a structure called the instruction
queue isintroduced to hold the program in an exploded form which allows easy analysis of the instruction
stream.

The instruction qucue, asits name implies, is a queue of task instructions with one instruction described
per line of the queue. Each line of the queue is composed of elements in a form which is illustrated in figure
7.

Address | Sink| Srcll Src2 Branch MPB opcode F IAI?

Figure 7. One Line of the Instruction Queue

The address field is the address in main memory of the original DEL instruction. If the DEL instruction
did not start on aword alignment, a zero isloaded in thisfield. The Sink field contains the actual contour
address of the result operand of the DEL instruction. Thisis obtained by performing the addition of the
environment pointer and the sink displacement at load time. Both Srcl and Src2 contain the contour address
of the two source operands obtained in a manner similar to the Sink field. The branch field contains the
destination address of the branch if the opcode corresponds to a branch type instruction, otherwise the field is
not used. The opcode ficld contains the opcode of the DEL instruction. The other ficlds of the instruction
quecuc Will beexplained later.

3.1 .1 Loading the Queue

It is shown in[15] that the instruction queue isin a constant state of being loaded and unloaded. For the
purposes of this paper though, it will be assumed that the instructions corresponding to a single high level
language procedure arc loaded in the queue at one time and when it has completed cxccution, the next
procedure isloaded. Thisloading processproceceds asfollows:

1. The format isread fromthe IM and the number and locations of the operands arc dctcrmined.

10

2. The IM address of the left source operand is dctcrmincd by analyzing the format.

a If itisan evaluation stack reference, a special code is entered in the Srcl field to indicate a
stac k reference.

b. If it is an explicit reference to a contour clement, the value of the environment pointer is
added to the first displacement field held in the instruction and the resulting field contour
address is stored in Srcl.

3. The IM address of the right source operand is determined by analyzing the format.

a If it is an evaluation stack reference, a specia code is entered in the Src2 field to indicate a
stac k reference.

b. If it isan explicit reference to a contour element, the value of the environment pointer is
added to the sccond displacement field held in the instruction and the resulting field
contour address is stored in Src2.

4. The IM address of the result operand is determined by analyzing the format.

a. If itisan evaluation stack reference, aspecia codeisentered in the Sink field to indicate a
stack reference.

b. If it isan explicit reference to a contour element, the value of the environment pointer is
added to the third displacement ficld held in the instruction and the resulting field contour
addressis stored in Sink.

5. The operator is stored in the OP field.

6. If the operator is a branch, the destination address is stored in the Branch field otherwise the
Branch field is left blank.

3.2 b and ¢ elements

Associated with the task is a vector of elementswhich roughly corresponds to the execution profile of the
task. Thereisan element in the vector associated with each instruction in the queue. Thisvector iscalled the
execution vector (C). The element associated with the instruction I, will be referred to as the execution
element of I.. The exccution clement of I, will berepresented asc,. Thevalue of ¢; isequal to the number of
times that instruction I, has been cxcecuted. The execution clements reside in the instruction queuc with cach

element onthe same line asthe associated instruction.

A single element called the To-Be Executed Element (b) is a single value which indicates the number of
timesthat all the instructionsin the task arc to beexecuted. So that, for example, if b= 10 andc, = S then this
would indicate that all instruction arc to exccute 10 times and instruction I, has executed 5 times requiring it

to beexecuted 5 more times to bc complctely cxccuted.

11

The concurrency model assumes that there is an implied branch at the bottom of the task which branches
back to thefirst instruction. So that when b = n, the implied branch hasbeen taken n-I timesindicating that
the task is to bc effectively executed n times and therefore all instructions are to bc executed n times if no
branches in the task arc taken.

This assumption is made to facilitate the handling of concurrency across branches. When a branch is taken,
it will be assumed that al instructions which were skipped have had their execution requirement removed by
incrementing their ¢ elements by 1. Thisway of altering the concurrency structuresisreferred to asvirtual
execution. If abackwards branch istaken, al instructions after the branch arc given avirtual exccution, all
instructions from the beginning of the task up to the branch arc given a virtual execution and the b element is
incremented by one to indicate another loop of the task is to be performed.

When the ¢ element of a particular instruction equals n, it indicates that the instruction has executed the
task loop from its first to its nth itcration. It may sometimes be desirable to execute the mth iteration of an
ingtruction when ¢, =nand m > n + 1. Inthis case, if ¢, isset to m after the cxccution, the structures will have
indicated that all iterations from 1 to m have been executed when it should have been indicated that iterations
1 to n and iteration m have been executed. In order to indicate this information, a structure called the
advanced execution matrix (AE) isused. Thismatrix is made up of rows of binary elementswith each row
corresponding to a particular instruction in the instruction queuc and each element in the row representing
the state of the iteration’s execution beyond the present value of the ¢ element. So that for example, if ¢,=n
and ae, =<0,0,1,0> then this indicates that iteration 1 to n and iteration n+ 3 have been cxecutcd.

Whenever an execution or virtual execution is to be recorded, the appropriate ae clement is changed from 0
to 1. The c element of the instruction which was exccuted isthen updated in the following way. If the first
element of the ae vector for the executed instruction is set because of the execution update, the cxccution
information for the instruction in question will remain consistent if the value of the ¢ element is incremented
by one and the ae vector is shifted left one element or, equivalently, the first clement of the ae vector is
eliminated and ancw zero element isadded to the right side of the vector. The operation of shifting the ae
vectors and incrementing the appropriate ¢ clement is performed multiple times until the first clement of the
ac vector IS zero. Performing this operation keeps the ac vectors to a reasonable size and allows the correct
updating of the ¢ elements in light of the possibility of advanced execution. For example, if ¢;=nand
ae,=<0,1,1,1,0,1> then after altering the structure to indicate the exccution of instruction n+ 1 the structures
would appear as:

¢.=n+ 4 ae = <0,1,0,0,0,0>

12

3.3 Executable Independence

The ground work has now been laid for using the concurrency structures to determine when an instruction
can be executed. When an instruction isfrec to execute, meaning that the correct source values have been
generated and a new result may be produced, the instruction is defined to be executably independent.

From themodel that has been presented thusfar, an instruction is executably independent when all of its
data and procedural dependencies have been resolved.

A data dependency between instructions |, and IJ. isresolved for instruction 1. if one of the two situations
occur.
1. 1f i < j theninstruction I is to bc exccuted before|. in a particular loop of the task. so I, need
only wait for |. to finishthe execution of its previous4oop iteration before it can execute its next

iteration. Therefore if ¢, = n, thenI; needs to wait until cj.——n—l until the dependency between |,
and Ij is resolved for instruction L.

2.1f i >], theninstruction 1. is to be executed after |. in the same iteration therefore it must wait for
¢=n until I. can have its data dependency resolved for its nth iteration.
By utilizing these conditions between I, and al instructions a mathematical description can be formulated to
describe when I, is independent of all data dependencies.

L is free of data dependenciesin its nth iteration if 3)
For all j such that I, has a data dependency with | | andi >jthen ¢ >nand
For all j such that I, has a data dependency with Ij andi <j then ¢ >n

With a structured mechanism for datadependencies devel oped, it is now necessary to develop an organized
method of detecting procedural dcpendencies. Procedural dependencics are different than data dependencies
in that they do not create an uncertainty as to the time of the execution of instructions but they cause an
uncertainty about whether instructions will be exccuted at all. And because of the somewhat unpredictable
nature of branch destinations especially in poorly structured languages such as Fortran, it becomes very
difficult to present a unified technique of representing the dependencies without making severe limitations on
them.

Inorder to assist in the prescntation of the procedural dependency detection mechanism, the concept of the
branch subsct will beintroduced. Assume that the task to bcexccuted isdivided into anumber of sections. A
branch subset is defined to bc a contiguous picce of code which starts with the first assignment statement after
abranch, and includes all statements up to and including the next branch. The symbolic representation of
BSiJ. will be used to indicate the branch subset which starts at instruction I, and includes up to instruction Ij.
It can shown that all branch subsets of atask make up disjoint subscts of the original task in that no branch
subsct contains any instruction which is also contained in another branch subset. The single branch
instruction found as the last instruction of ecach branch subsct will be refercd to as the railing branch.

13

The concept used to simplify procedural dependency dctection is to have each instruction have asingle
procedural dependency with the trailing branch of the branch subset which is immcdiatcly before the branch
subset in which the instruction is contained. Creating a dependency such as this means that the procedural
dependencies of al instructions arc based on the the branch which areimmediately before them. "Before™ in
this context refers to the instructions which are immcdiatcly previous in the origina ordering of the program
asfound in the IM. This ordering bears no relation to the order in which the instructions arc executed.

For example, consider the instruction sequence shown in figure 8.

1 I =1+ 1 0
2 GO TO 5 0
3 J =J+1 2
4 K =K +1 2
5 IFJ (5 GO TO 3 2

Figure 8: Illustrating Procedural Dependencies

Using this method of defining procedural dependencies, it is defined that there is a procedural dependency
between instructions 2 and 3, 2 and 4, and between instructions 2 and 5. Instructions 1 and 2 do not have any
procedural dependencies because there is no branch subset immediately before them.

A mechanism for specifying the procedural dependency will now be developed. Since each instruction
only needsto consider asingle procedural depcndcncy, asingleficld of the instruction queue isrequired to
indicate this. This ficld contains the instruction queue address of the branch instruction to which the
instruction is dependent . This field is called the most previous branch (MPB) ficld to indicate that it contains
the address of the trailing branch of the most previous branch subsct. The values that would be found in the
MPB ficlds for the previous example arc shown to right of the program in figure 8.

It is useful ssimplifying the model and reducing the amount of hardware in an actual implementation to
treat procedural dependenciesin asimilar fashion to datadependencies. This meansthat if instructionl, has
aprocedural dependency with branch IJ., then I. can not execute its nth iteration until Ij has executed its
proper number of iterations. From the derivation of procedura depcndency assignment, al instructions have
procedural dependencies with instructions which are previous in the instruction stream so there is no need to
consider the two cases of dcpendencics before and dependencics after. Thercfore, in order for L to be
resolved of its procedural dependency for its nth iteration, the branch instruction to which it has its
procedural dependency must have exccuted its nth iteration. The procedural depcndency check then consists
of comparing the ¢ element of the instruction pointed to by the MPB ficld with n. If ¢, ;5 > n then the
procedural dependency between the |,,, and [isresolved andl, may beexecuted.

The dctection of cxccutablc indcpendence can now be expressed mathematically as a combination of
satisfying the dataand procedural dependency requirements.

14

4)
Instruction . is executably independent to executeitsnthiteration if
For all 5 such that I. has a data dependency W|thI andi >j then ¢ >nand
For al j such thatI has a data dcpendency W|th1 andi<j thenc >n
and

c PBZn

3.4 Execution of Statements

Once all DEL instructions have been examined for exccutable independence, those which have been
flagged for execution must bc executed. But because execution affects the state of the concurrency structures,
specifications must be given on how the structures should be affccted by the execution of independent
instructions.

The modification of the structures as the result of an assignment statement is treated first. When the
assignment instruction I, is executed, the appropriate ae element of the ae vector associated with £, needs to be
atered to indicate the execution. It can be easily proven that only iteration ¢, + 1 can be executably
independent, so after the execution of |, the first bit of the ae, vector isset to a 1. The ¢ clement and the ae
vector corresponding to L. is then adjusted to clear the ac vector of al leading ones. An example of a
concurrency structure updatc as the result of an assignment statement execution is shown in figure 9.

Before i ¢, = 5ae, = <0,1,0,0>
After : ¢, = 7:16:i =<0,0,00>
Figure9: An Example of Concurrency Structure Update as a Result of An
AssignmentStatement.
Modification of the concurrency structures duc to a branch will now be developed. Once a branch has
executed there arc 3 possible ways which the destination could have gone. It could have either branched back
in the code, (backwards branch), or forward, (forward branch) or not branched at all and taken the next
instruction which is effectively the same as a branch forward to the next statement.

If the branch is not taken, it acts as an assignment statement and updates the structures accordingly.
Branches which arc not taken can bc thought of as branches which arc taken to the next instruction in the
task.

If the branch isaforward branch, al instructions between and including the branch up to the destination
arc flagged as having exccuted. Thisisdone by setting bitsin the ae vectors of the affected instructions based
onthe cvaluc of thebranch. Ifc, . . =nthenitisindicated that the instructions are to bc skipped in their
nth iteration. This information isrecorded by setting the bitsin the ae vectors of al instructions between the

15

branch and the destination in their nthiterations. If instruction I, has ¢, = m where m < n, in order to
indicate that iteration nis not to bc cxccuted, element number n- mis set to oneinae,. It can bc scen that if
n>m + 1 then an ae element other than thefirst will be set. Asan example of this, consider the instruction
sequence of figure 3 once again. Assume that before the execution of instruction 2 the concurrency structures
had the values as shown in figure 10.

Instruction C AE Vector
1 3 <0 0, 0, O
2 2 <0, 0, 0, 0>
3 0 <0, 0, 0, o>
4 1 <0, 0, 0 0>
5 0 < 0, 0, 0, O»

Figure 10: Concurrency Structures Before Forward Branch Execution

As aresult of the execution of instruction 2, instructions 3 and 4 are skipped in their 3rd iteration. This
information is reflected in the updating of their ae vectors as shown in figure 11.

Instruction C AE Vector
1 3 <0, 0, 0, 0>
2 3 <0, 0, 0, 0>
3 0 <o, 0, 1, O
4 1 <0, 1, 0, ®
5 0 < 0, 0, 0, 0>

Figure 11: Concurrency Structures After Forward Branch Execution

When a backward branch is exccuted, it is an indication that the instructions in the loop created by the
branch are to be executed another time. All instructions outside of the loop must wait for at least this new
iteration and all previous iterations to complete before they can use any results which arc gencrated in the
loop. It can be shown that branches always execute their last iteration. That is, when a branch executes, its ¢
clement will dwaysequal b-1 before the execution and b after it. The strategy behind indicating a backward
branch then is to specify that the entire task is to be executed another iteration. This is done by incrementing
the b value by 1. But what is actually desired is to indicate that only the instructions in the loop are to be
exccuted on another iteration. In order to compensate for this, al instructions before the start of the loop arc
flagged as already being executed in thisnewly generated iteration. Thisisdone by setting al theae elements
of iteration b for al instructions before the loop. The instructions after the loop should execute this new
iteration though. In fact thisisthe only iteration which they should cxccutc since they must delay cxecution
until al the loop executions have complctcd. In order to limit them to the proper number of executions after
the b element has been incremented, the ae elements of their b-l iteration is set. Doing this, limits the
number of executions of the instructions after aloop to 1 and indicates that it should not bc performed until
al iterations of the loop have been started.

Asan example, consider the programsegment and theassociated concurrency structures infigure 12. After

16

b=5
1 I ;=1 +1 ‘1:=13 ae, = <0, 1, 0 0>
2 J=Jd+1 =3 ae, = < 0,0, 0, 0>
3 K:= K+ 1 © :5 ae. = < 0, 0, 0, o>
4 IF K<5 GO TO 2 C4 = 4 aej=<o,o,o.o>
5 L:=L+1 €5 = 4 aeg = < 0, 0,0, 0>
Figure 12: A Program Segment With a Backward Branch

the branch at instruction 4 is executed another iteration of the loop isto be executed. Thisisindicated by

incrementing b, setting the 6th iteration of instruction 1 to the executed state and setting the 5th iteration of
instruction 5 to the executed state. The program segment and the concurrency structures after the execution
of the branch are shown in figure 13.

b =6

1 =1 + 1 ‘1 =3 ae; = <0, 1, 1, 0
2 J =3+ 1 € =3 ae, = <0,0,0, 0
3 K := K+ 1 ¢l =5 aey = < 0,0, 0,0
4 IFK <5 G0 TO 2 c. =5 ae> =< 0,0, 0, 0>
5 L:=tL+1 s =5 8 =<0 0 0 0

Figure 13: Program Segment After Backward Branch Execution

3.5 An Execution Algorithm

With the details of execution discussed, a unified algorithm is now presented which illustrates the basic
instruction cycle of a concurrent execution machine and concurrency structure manipulation.

1. Load the task into the instruction queue
2. Test for executable independence of al instructions using equation (4).
3. Exccute al exccutably independent instructions L in their Nth iterations such that:
a if I, is an assignment statement
i.ei:= d, op; d,
ii. ag; 1= 1
b. if I, is a branch instruction
I. if destination > i then
l.aejisi_c] : =1, for al j between i and destination - 1
ii. if destination < i then
lLb:=b+1

2.aej.c_c :=1,for dl j betweeni and the end of the queue
']J

17

3. := 1, for al j between 1 and destination - 1

aej.‘lc;cj +1
4. Update c elements of all instructions which had their ae vectors modified.

5.if ¢, # bforany i thengoto 2

4 An Example

It isuseful at this point to present an exampleto illustrate the concepts which have been developed.
Consider the small Fortran program shown in figure 14.

Program Test

| 0 <-AB> <0> <I> <MOVE>

J <-AB> <0> <J> <MOVE>

| 1 <ABA> <I> 1> <+>

J 1 <ABA> <J> 1> <{+>

IF J 2 go to 7 CAB-TRUE>KI> (2> (L5 D
I =1 1 <ABA> <I> (1> <+>
IFJ=2go to 4 CAB-TRUE><J> <2> <=> K4>
END

Wono

I +
J +
<
+

N WN =

Figure 14: Small Fortran Program

If this program were to execute serialy, the first execution of the branch at instruction 5 would be taken. The
branch at instruction 7 would also be taken on its first execution causing it to branch back. On its second
execution, the branch at instruction 5 would not be taken. The branch at instruction 7 is not taken on its
second execution and the task completes. The sequence of execu tion thenis; 12345734567.

In terms of the concurrency model which has been dcvelopced, the task is activated for itsfirst iteration
when the program is loaded and the structures are initialized. When the first branch at instruction 5 is
exccuted, instruction 6 is skipped by incrementing its ¢ element without executing it. When the branch at
instruction 7 is cxccuted the first time, the branch target is back to instruction 4 and the second iteration is
initialized. Thisiteration isexecuted and since no new iterations are activated, the task completes. A table
illustrating instruction execution versus machine cycle number is shown in figure 15. The steps of the
concurrent execution will now be discussed. First the task is loaded into the instruction queue. After the
initial load, the instruction queue appears as shown in figure 16. In the first cxccution cycle, instructions 1
and 2 arc found to bc exccutably indcpendent and are cxccuted. Inthe second exccution cycle, instructions 3
and 4 arc found exccutably indcpendent and cxecutcd. In the third cycle, instruction 5 is cxccuted and the ¢
element of instruction 6 is incremented. The instruction queue after this cycle is shown in figure 17.

The branch at instruction 7 is then found executably independent and cxecuted generating the instruction
queuc as shown in figure 18. The cxccution of the branch at instruction 7 has activated asccond iteration of
the task (b=2) and performed afalse cxccution of the instructions which arc not to participate in this second

Instruction

N

18

Machine Cycle
2 3 4 5 6 7
X
X X
X
X X

Figure 15: Instruction Execution versus Machine Cycle Number

b=1

Address' Sink ‘ Srcl l Src2 l Branch | MPB { opcodel C | IAEI

1 | 0 . 0 0/000
2 J 0 0 0 loooO
3 | |) 0 0 |l00O
4 J | 0 0 00O
5 J 7 0 0 J]oooO
6 |1) 5 0 {000
7 J 4 5 0 [00 0

Figure 16: Instruction Queue After Loading the Example Program

19

b=1

Addre&sll Sinkl l Srci | Src2 ' Brancr: . MP(IK l opcodlc ‘ C ‘I AE l

o |

|

ool

1

2 J 0 0 = 11000
3 I | 0 + 1 1000
4 J J . 0 + 11000
5 J 7 0 < 11000
6 I | 5 + 110 00
7 J 4 5 = 0 |0OO0O

Figure 17: Instruction Queue After the Third Execution Cycle

b=2
Addres&lSink!SrellSrd Branch‘MPB opcodc | C |AE|
1 I 0 - 0 = 1 0O
2 J 0 0 = 1000
3 1] 1 0 + 11000
4 J J 0 + 11000
5 J 7 0 < 1 000
6 I I 5 + 1 (0 00
7 J 4 5 = 11000

Figure 18: Instruction Qucuc After the Fourth Exccution Cycle

20

iteration. In cycle five, instruction 4 is exccutcd. In cycle SiX, instruction 5 is executed and the branch is not

taken SO NO concurrency structures arealtered. In cycle seven, instruction 6 and 7 arc executed and since the
branch at instruction 7 is not taken, the task completes with the concurrency structures finishing as shown in

figure 19.

1
b=2

AddresslSinlerclISrcz Branch | MPB| opcode | ¢ lAEI
1 I 0 - - 0 = 2 (00O
2 J 0 . 0 = 20 0O
3 I 1 1 . 0 + 2 {000
4 J J 1 . 0 + 2 {0 00
5 J 2 7 0 < 2 000
6 I | 1] 5 + 2 (000
7 J 2 4 5 = 2 00O

Figure 19: The Instruction Queue at the End of the Task

5 Optimal Concurrency Detection

It isargued that the detection and execution techniques presented detects and exploits all theconcurrency
in atask subject to the following conditions:

¢ Thereisno recoding of the algorithm. The program isanalyzed as it waswritten and compiled.
More concurrency could be found if the algorithm wasrestructured but one of the advantages of
thistechnique isthat it will work cqually wc!! on programs whichhave been restructurcd asthose
which have not been. Restructuring programs as in [8] will definitely find more concurrency
which can only help to reduce the task’ s execution time.

e There is no duplication of operand locations. Duplicating locations may aso provide additional
concurrency as illustrated by the use of shadow effects as presented by Tjaden and Flynn [13].

e Thereisnoknowledge of branch destinations until the branch is cxccuted. It hasbeen shown by
Tjaden [13] that lifting thisrestriction canincrease the amount of concurrency dctcction at the cost
of increased complexity in the detection mechanism.

21

« No fase exccution is alowed. That is, no instructions may bc cxccuted until it is known that it is
surely going toexecute. Guess execution isnormally associated with traveling down both paths of
branch until the true outcome of the branch is dctermincd. Although it has been shown that
employing such techniques can provide more concurrency [10, 9], the cost of implementation
becomes very prohibi tive as multiple branches are considered.

Theorem 1: The dependency detection algorithm and execution algorithm presented detects
and executes the maximal amount of concurrency possible in a task subject to the above
restrictions.

Proof: In[2]it is shown that the three data dependencies conditions presented in equation (2)
are sufficient conditions to detect and alow the execution of all the concurrency in a single
straight-line piece of code with no intervening branches.

The techniqueusced to prove that the detection and execution mechanism presented recognizes
all the concurrency in the task subject to the given restrictions, is to show that through the
information given by the concurrency structures, it will appear as if the actua execution sequence,
the order of the instructions as seen by aserial exccution of the task, will be analyzed the same way
asif the task were rearranged to resemble a straight-lint piece of code with the first instruction
being the first instruction of the task, the last instruction, the first unresolved branch and all
instructions in between following the serial exccution order of the task.

The execution of a branch either skips over instructions or starts a new iteration skipping over
the instructions at the start of the task which are not to be executed. In the case of aforward
branch, the execution of this branch effectively causes the code which is activated to appear asif it
immediately followed the code before the branch since the execution of the branch negates the
execution of all instructions between the branch and the destination instruction. Thus the
execution of a forward branch makes the instructions before the branch appear to be ordered
immediately before the instructions starting at the destination address.

When a backwards branch is exccuted, starting up the new itcration and skipping over the
instructions up to the destination instruction also makes the newly activated instructions appear
after the the instructions before the branch since the detection and execution algorithms will not
allow the execution of these newly activated instructions until all dependent instructions before
the branch in the previous iteration have executed.

Thus all possible branch cases cause the affected instructions to appear as if they arc ordered in
a single straight-line picce of code so traditional Bernstein techniques can then be used, detecting
the maximal amount of concurrency possible under these constraints.

6 Conclusions

The basic algorithms and structures of a machine which can detect parallelismin serial DEL instruction
streams have been presented. The model has been specificaly designed so that the size of the vectors may be
increased or decrcased based on implementation constraints with a corresponding increase or decrease in the
concurrency which isdctccted. The advantage of anarchitecture such asthisisthat aprogrammer may write
programsin acompletely scrial fashion and it will be cxccuted concurrently. Altcrnativcly, the programmer

22

could usc a parallel high level language specification ‘which would be coded into a DEL and subsequently
exccuted in aconcurrent fashion. Finally, the programmer could write the program in aserial HLL, it could
then be transformed into a representation which illustrates al the concurrency and this could then be
compiled into a DEL notation which would subsequently be executed and all the concurrency found by the

parallelizer would be identified.

One of the key features of this architecture is that it does not require the machine language to have any
information in it regarding the concurrency which exists in the program. It is felt that languages of this type
would require as much time transmitting the concurrency information from the instruction strcam to the
execution unit and interpreting its meaning than it would take to just detect the concurrency at execution

time.

23

References

[11 Anderson, D. W., Sparacio, F. J., Tomasulo, R. M.
The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling.
IBM Journal of Research and Development 11(1): 8-24, January, 1967.

[2] Berngtein, A. J.
Analysis of Programs for Parallel Processing.
IEEE Transactions on Computers EC-15(5):757-763,October, 1966.

[31 Flynn, M. J. and Hoevel L. W.
A Theory of Interpretive Architectures: Ideal Language Machines.
Technical Report 170, Computer Systems Laboratory, Stanford University, February, 1979.

[4] Henncssy, J.I., Jouppi, N., Baskctt, F. and Gill, J.
MIPS: A VLSI Processor Architecture.
InProceedings of the CM U Conference on VLSI Systems and Computations. CMU, October, 981.

[5] Howe!, L. W. and Flynn, M. J.
A Theory of Interpretive Architectures: Some Notes on DEL Design.
Technical Report 171, Computer Systems Laboratory, Stanford University, February, 1979.

[6] IBM System/370 Principles of operation
fifth edition, IBM, Poughkeepsie, N. Y., 1976.

[7] Keller, R. M.
L ook-Ahead Processors.
Computing Surveys7(4):177-195,December, 1975.

[8] Kuck D., Muraoka Y., Chen S.C.
Onthe Number Operations Simultaneously Executable inFortran-like Programsand their Resulting
Specdup.
IEEE Transactions on Computers C-21(9): 1293-1310, Dccember, 1972,

9] Magid, Nabil Fouad.
High Speed Computer Systems as a Result of Concurrent Execution of Sequential Instructions.
PhD thesis, Illiois Ingtitute of Technology, 1980.

[10] Riseman, E. M. and Foster, C. C.
The Inhibition of Potential Paralelism by Conditional Jumps.
IEEE Transactions on Computers C-21(12):1411-1415, Dccember, 1972,

[11] Russell,R. M.
The Cray-1 Computer System.
Communications Of the ACM 21(1):63-72, January, 1978.

[12] Tjaden, Garold S.
Representation and Detection of Concurrency Using Ordering Matrices.
PhDD thesis, Johns HopkinsUniversity, 1972.

24

[13] Tjaden, G. S, Fynn, M. J.
Representation of Concurrency with Ordering Matrices.
IEEE TransactionsonComputers C-22(8),1973, 1973.

[14] Wakefield, Scott.
A Machine Architecture for Pascal Execeution.
PhD thesis, Stanford University, 1982.
To be presented.

[15] Wedig,R.G.
Dynamic Detection of Concurrency in DEL Instruction Streams Using Ordering Matrices.
PhD thesis, Stanford University, 1982.
To be presented.

