
COMPUTERSYSTEMSLABORATORY
DEPARTMENTS OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
STANFORD UNIVERSITY *STANFORD,CA94305

Studies in Microprocessor Design

Donald Alpert

TechnicalReQortNo.232

June 1982

The work hcrcin was supported in part by Stanford University.

Studies in Microprocessor Design

Donald Alpcrt

Technical Report NO. 232

June 1982

Computer Systems Laboratory
Departments of Elcctriclrl Fkginecring and Computer Science

Stanford University
Stanford, California 94305

Abstract

Microprocessor design practice is briefly surveyed. Examples are given for high-level and low-level tradeoffs
in specific designs with emphasis on integrated memory functions. Some relations bctwecn architectural
complexity and design arc discussed, and a simple model is presented for implementing a RISC-like
architecture. A direction for microprocessor architecture is proposed to allow flexibility for designing with
varying processing technologies, cost goals, and performance goals.

Key Words and Phrases: microprocessor, microprocessor architecture, microprocessor design

i

Table of Contents

1. Introduction

2. Approaches to Design

2.1 Berkeley RISC .
2.2 lntel iAPX432
2.3 Hewlett-Packard 32-bit VLSI CPU
2.4 Observations

2.4.1 Regular Structure
2.4.2 Memory
2.4.3 Architecture and Design

3. Microprocessor Design Practice

3.1 Hierarchy of Disciplines
3.2 Cost Considerations

3.2.1 Fabrication Cost
3.2.2 Packaging Cost

3.3 Performance Considerations
3.3.1 Cycle Time
3.3.2 Number of Cycles

3.4 Design Constraints

4. Case Study: Zilog 28 Microcomputer

5. ROM Design

5.1 NOR Structure
5.2 NAND Structure
5.3 Multiple Bits Per Cell

6. Architecture and Design

6.1 Memory Costs
6.2 Diffcrcntial Architecture
6.3 RISC vs. CISC
6.4 Direction for Architecture

7. Summary 28

I
8
8

10
11
12
13
13

14

18

18
20
21

22

22
23
26
26

ii

List of Figures

Figure 2-1: RISC Chip Plan 3
Figure 2-2: iAPX432 Chip Plans [4] 4
Figure 2-3: Hewlett-Packard 32-bit VLSI CPU Chip Plan [4] 5
Figure 3-l: Yield vs. Area (R = 5.0 cm) 10
Figure 4-1: 28 Chip Plan 15
Figure 5-l: NOR ROM Block Diagram 18
Figure 5-2: NOR ROM Circuit Diagram 19
Figure 5-3: NOR ROM Bit Cell Layout 19
Figure 5-4: NAND ROM Circuit Diagram 20
Figure 5-5: NAND ROM Bit Cell Layout 21
Figure 6-1: RAM Cell Circuit Diagram 23
Figure 6-2: CAM Cell Circuit Diagram 24
Figure 6-3: Implementation Chip Plan 25

. . .
111

List of Tables

Table 3-1: Yield (R = 5.0 cm)
Table 3-2: Package Costs
Table 4-1: 28 Area/Power/S
Table 6-1: Bit Cell Area (urnf

eed Tradeoffs
)

9
11
16
22

1

1. Introduction

This study is concerned with the practice of microprocessor design. It is written from the perspective of a

computer architect who has spent the past two years working with designers of commercial microprocessors.

The reader should have some background in computer architecture, computer design, and VLSI technology.

One purpose of writing this report is to help architects understand better the considerations and problems

of microprocessor designers. Those readers who arc neither architects nor designers of microprocessors may

gain insight into design issues.

Chapter 2 describes 3 examples of recent designs and discusses some observable trends. Chapter 3 presents

an overview of the general problem of design: implementing an architecture using a processing technology.

Chapter 4 examines the high-level tradeoffs of the Zilog Z8* microcomputer design. Chapter 5 discusses

some low-level design tradeoffs, specifically for ROMs. Chapter 6 provides data on the relative costs of

memories in several designs. A simple model is prcscnted relating architecture to design tradeoffs. Based on

this examination of design practice a direction for architecture is proposed.

I wish to thank the designers at Zilog who have patiently answered questions on their trade and whose

responses arc reported here explicitly or implicitly. Pat Lin, Gary Proscnko, and Jack Taylor arc the designers

of the Z8. Peter Ashkin, Dean Carbcrry, Bill Carter, Ross Freeman, Jackson Mu, C. N. Patcl, J. K. Tsai, and

Mike ‘Y’amarnura deserve acknowledgement along with others, \cho with apology, arc not mentioned. The

views presented in this study do not represent Zilog or any other individuals at Zilog.

Professor Michael Flynn at Stanford University has supported this stlidy, and coined the term differential

archifecfure. Mark Horowitz at Stanford provided helpful comments about integrated circuit design. The

work of Professor David Patterson and the dcsigncrs of the RISC microprocessor at U.C. Berkeley provoked

many of the thoughts on issues of architecture and design presented here.

28 is a registered trademark of Zilog, Inc.

2

2. Approaches to Qesign

This study of microprocessor design begins with 3 examples: U. C. Berkeley RISC, Intel iAPX432*, and

Hewlett-Packard 32-bit VLSI CPU.

2.1 Berkeley RISC

The designers of the Berkeley RISC contend that a Reduced Instruction Set Computer is more appropriate

than a Complex Instruction Set Computer (CISC) as an architecture to support compiled code for VLSI

processors [24,25]. The RISC architecture reduces the instruction set to the level of vertical microcode. All

instructions are 32 bits, and all except data memory referencing instructions execute in 1 machine cycle.

Instructions that reference data memory require 1 extra machine cycle. Only register load and store

instructions refcrencc data memory. Many of these ideas in RISC appeared earlier in the 801 minicomputer

developed at IBM Thomas J. Watson Research Center [28].

In order to diminish the number of data memory references RISC uses an innovative register file. At each

procedure call a new set of 16 registers is allocated on a stack. Thcsc 16 registers, 6 of the caller’s registers,

and 10 registers global to all procedures can be acccsscd using 5-bit fields in the instructions. This scheme

allows most parameters and local variables to be held in registers. The overhead of loading and storing

between registers and memory that occurs with conventional general-purpose register architectures is usually

avoided.

The RISC implementation buffers up to 8 of the most recently allocated register sets on-chip. When the

nesting of procedure calls and rctums causes the buffer to overflow or underflow, an exception is raised to

allow software maintenance of the buffer using an overflow stack in memory. The size of the register buffer

on the chip is not specified in the architecture; it is implementation dependent.

A chip plan for RISC, sketched from a photograph, is shown in Figure 2-l. The performance for this

design is reported to be 70% better than for VAX 11/780** on a sample of 5 programs [12]. RISC achieves its

pcrformancc with low-latency (250 ns), high-bandwidth (80 Mbps) instruction memory rcfcrenccs off-chip,

intensive use of data storage on-chip, and littlc use of control storage on-chip.

l

iAPX432 is a registered trademark of Intel Corporation.

l *

VAX is a rcgistercd trademark of Digital Equipment Corporation.

3

Pads

PLA

and

Control

ALU

Shifter

Register
Register File

Decode

Figure 2-1: RISC Chip Plan

2.2 Intel iAPX432

The Intel iAPX432 [14], in contrast to RISC, raises the level of the instruction set close to system software.

Instructions arc encoded on bit-variable boundaries. The operations defined in the architecture include

language run-time support (e.g., heap allocation and garbage collection) and operating system kernel

primitives (e.g., message passing and process scheduling). The architecture also defines an object-oriented

memory management mechanism that promotes allocation and protection of individual structures.

The implementation of the iAPX432 is a 3-chip set. The chip plans are shown in Figure 2-2, reproduced

from a recent article on microprocessors [4]. One chip, the IDU, decodes the machine instructions to transmit

a sequence of vertical microinstructions to another chip, the MEU, for execution. A third chip, the II’, serves

as interface bctwccn the protcctcd iAPX432 memory and the external cnvironmcnt (generally I/O

controllers).

4

Microcode ROM

Bit-instructionnpointer
logfC

Instruction-

n

decoder
COW01

logic

0Extractor

1
Address control-data bus buffers

Extractor

hxeas sequencing control
Base and length

Queue B

-1

ALU

Flags
I

Direct-
--

unit
control

I

registers

Reference L
generation- QQ

05
unit control i$

0

hrteffaco pmceuor chip

Figure 2-2: iAPX432 Chip Plans [4]

The iAPX432 design uses extensive control storage. The IDU has 64Kb of ROM and 1OKb of PLA [29].

The IP has 32Kb of ROM [3]. Little on-chip storage is provided for data: only two 80-bit microcode

temporary registers and one 16-bit top stack buffer in the MEU [8].

2.3 Hewlett-Packard 32-bit VLSI CPU

Hewlett-Packard has developed a 32-bit VLSI CPU as one component in an experimental VLSI system

using advanced processing technology [5,6]. The architecture for this processor emphasizes high-level

languages and operating systems. Numerous data types are supported, including logical values, integers,

floating point formats, and strings. Functions to assist multiprog~~amming and multiple processors are in the

architecture.

5

A chip plan for the CPU is shown in Figure 2-3, rcproduccd from the same article as the iAPX432 chip

plans [4]. The chip contains 450,000 transistors. The microcode ROM stores 350Kb. Four 32-bit top of stack

buffers are located in the ALU section. The register file holds 28 32-bit data values.

Figure 2-3: Hewlett-Packard 32-bit VLSI CPU Chip Plan [4]

2.4 Observations

This brief examination of contemporary microprocessor designs allows several observations to be made.

2.4.1 Regular Structure

The designs are composed of several function blocks that are largely replications of a single cell or a

structure of cells. There is no other way to manage VLSI design. This is distinct from older designs that

contained large portions of random logic and interconnection. (Examining photographs of chips designed in

the old and new styles may remind one of the paintings by modern artists Jackson Pollock and Piet

Mondrian.)

2.4.2 Memory

A trend of increasing use of on-chip resources for memory functions is becoming apparent. This

characteristic was identified by Patterson and Sequin [26].

The memory types of interest here arc ROM, RAM, and CAM. ROM is used for control storage and for
program storage in single-chip microcomputers. PLA, when used for control storage, is similar to ROM.

6

RAM is used in registers and for storage of other alterable data. Rcgistcrs arc often highly spccializcd RAM

that may allow multiple-port access. Content Addressable Memory (CAM) is used for address translation

either integrated with the CPU, as in iAPX432, or external to the CPU, as in Zilog’s 28015 [34] and National

Semiconductor’s NS16082 [23]. CAM is also used for address tags in cache memories; an instruction cache is

included in MC68020, Motorola’s recently announced 32-bit implementation of the M68000 architecture [21].

There are costs and benefits for each type of storage. Memory integrated with the CPU must be designed

carefully to achieve an effective, balanced design. The design of memories in VLSI processors is discussed in

several later sections.

2.4.3 Architecture and Design

The choice of architecture has strong influence on the quantities of ROM, RAM, and CAM needed to meet

performance goals.

The RISC architecture limits the use of ROM control storage because the instruction set is so simple. The

RISC architecture, with its register stack, encourages the use of RAM for data storage. The RISC design

devotes 47% of chip area to the register file and decoder [12]. On the other hand, the iAPX432 architecture

promotes the use of ROM to implement its complex functions. More than 25% of total device placements in

the 3-chip implementation are located in control storage arrays. The iAPX432 architccturc discourages the

use of registers for storing data; it emphasizes protection of data through the memory managcmcnt

mechanism.

In chapter 6 architecture and design considerations for different memory functions are discussed. Now,

however, we address the question “How is it that starting with basicallv the same raw materials such different

designs result?”

7

3. Microprocessor Design Practice

3.1 Hierarchy of Disciplines

Microprocessor design involves a hierarchy of disciplines.

Functional Architecture

Design Architecture
I

Logic Design

Circuit Design

Mask Design

Processing Technology

Functional architecture is responsible for writing a document, often called the Principles of Operation,

specifying the common interface between software and hardware. Roth software and hardware designers

refer to this specification to determine the behavior of the processor when particular bit patterns appear in

instructions, data, or control registers. The issues decided at this level of design include USC of stack vs.

general-purpose registers, variable-length vs. fixed-length instruction encoding, and linear vs. segmented

addressing.

Design architecture is responsible for specifying the major fi.mction units of the implementation, the paths

connecting those units, and the general timing rcquiremcnts. Decisions at this lcvcl include multiplexed vs.

demultiplexed address and data buses, width of the ALU, and degree of pipelining. (When the term

archifecfure is used in this study without the qualification finctional or design, fUnctiona architecture is

implied. I believe this terminology originated at Amdahl Corporation.)

Logic design is responsible for implementing the function units defined by design architecture using the

techniques of switching theory. Decisions at this level include PLA vs. random logic and carry-lookahead VS.

carry-propagate adders.

Circuit design is responsible for the electrical realization of logic functions defined by logic design.

Decisions at this level include dynamic vs. static buses and l-bit per cell vs. 2-bit per cell ROMs.

Mask design is responsible for creating the geometric patterns used during fabrication to realize circuit

elements defined by circuit design.

8

Processing tcchnolgy is responsible for specifying the layout rules for mask design, the ranges of device

pararnetcrs for circuit design, and the manufacturing costs for design architecture to evaluate. The layout

rules include spacing between conductors on the same level, overlap for conductors on different levels, and

contacts between levels. The device parameters include sheet resistivity for conductors, capacitance per unit

area between conductors, threshold voltages for transistors, and maximum current densities.

The job of microprocessor design is to implement a functional architecture using a processing technology

while minimizing a cost/performance measure, subject to constraints. The following sections discuss the

design considerations of cost, performance, and constraints when given a functional architecture.

3.2 Cost Considerations

There are many costs tc, consider in planning a microprocessor product: design, fabrication, packaging,

testing, marketing, support software, etc. This study concentrates on the technical costs of area, power, and

pin count. The next two sections explain the relations between these technical costs and the economic costs of

fabrication and packaging.

The other costs that concern microprocessor designers, such as design and testing, are significant. These

are, however, not treated here because they are less quantitave than the technical costs identified, and they

seem less clearly related to the issues of architecture and design that are discussed later.

3.2.1 Fabrication Cost

During integated circuit fabrication a circular wafer containing many copies of the same chip is processed

through several steps. The number of working chips per wafer is known as yield. Yield depends on the

number of chips processed per wafer and on the distribution of defects that occur during processing. Dcfccts

are caused by many factors including imperfections in a mask, impurities in the wafer, and pinholes in the

oxide layer.

The number of chips processed on a wafer (gross dice per wafer) is approximately v(R-A”~)~/A, where R

is the radius of the wafer and A is the area of the chip. ‘l’hc term R-A1’2 compcnsatcs for the usclcss portions

of chips that lie on the perimeter of the wafer.

A number of statistical models have been proposed for determining the probability that a fabricated chip

will bc defect-free [22, 331. The model presented here is the iso-defect relation based on Bose-Einstein

statistics [27]. This model is reported to overcstimatc yield for large chips [13].

9

The I3oseEinstcin statistics predict that at each step of processing the probability of a chip’s being dcfect-

free is (l+D#, where D is the defect density measured in defects per unit area, and A is the active area of

the chip. (In this presentation assume that A is the total area of the chip, and D is adjusted so that DA is the

expected number of defects per chip.) The iso-defect model assumes indepcndcnt processing steps, each with

the same defect density. The probability of a chip’s being defect-free after n processing steps is (1 +DA)-“. In

practice the value of n is adjusted to compensate for the type of circuit (e.g., ROM, RAM, logic), maturity of

the process, and design rules used.

‘The fmnul~ for yield (Y) predicted by the iso-defect model is given below.

Y = (1 + DA)-“v(R-A~‘~)~/A

The value of R is typically 5.0 cm (2.0 in) in the early 1980’s. Lalgcr values of R do not allow the entire

wafer to be in focus during exposure because the wafer warps during fabrication.

Table 3-1 shows yield for several values of A, n, and D. (For those more comfortable with English units:

1 mm is approximately 40 mil, and 1 cmm2 is approximately 6.5 inV2.) Some of these values are displayed

graphically in Figure 3-l.

n

0
5
5
10
10

l/2
D A (mm)

(cm -2) 4 6 a

415 168 86
0.5 282 73 21
1.0 198 36 7 .2
0 .5 192 32 5 . 3
1.0 94 7 . 8 0 . 6

Table 3-1: Yield (R = 5.0 cm)

As chip area increases, yield decreases because there are fewer gross dice per wafer and because relatively

fewer of the fabricated chips are defect-free. The values of n, D, and wafer fabrication cost for commercial

processing are highly proprietary. For purposes of discussion only, assume n = 10, D = 0.5, and wafer

fabrication cost of several hundred dollars. For these values when chips grow from 4 mm on a side to 8 mm

on a side, a factor of 4 increase in area, then yield dccrcascs by a factor of 36. In considering a design that is

approximately 6 mm on a side, the yield changes by 3.4% for a 1% change in area. The marginal cost per area

can be very high for a large chip.

10

Yield _

n=O

n = 5,D = 0.5

n= lO,D=0.5

4 6

Are;” (mm)

8

Figure 3-1: Yield vs. Area (R = 5.0 cm)

3.2.2 Packaging Cost

A number of techniques have been dcvelopcd for packaging in tegratcd circuits. Until recently, dual-in-line

packages made of plastic or ceramic with 40, 48, or 64 pins were almost exclusively used for commercial

microprocessors. Newer methods, such as quad-in-line packages and leadlcss chip-carriers, have been

devclopcd to reduce package size and to increase the number of external electrical connections to the

microprocessor. (The term pin courzt, as used in this study, means the number of external electrical

connections whether or not pins are used.)

Table 3-2 gives representative 1982 values for the materials cost of dual-in-line packages as a function of

pin count and thermal resistance 8,. This information was provided by Mark Brodsky of Zilog’s component

packaging department [7]. Thermal resistance is the rise in temperature of the semiconductor junctions above

the package exterior when 1 W of power is dissipated. Standard practice is to design for correct circuit

operation within some limits of ambient temperature, typically 0 dcgC to 70 dcgC for commercial

applications. The maximum allowed junction temperature is about 140 degC.

11

Pin Count

40 90 0.8
40 45 3.0
48 90 1.0-1.5
48 40 4.0
64 90 1.5-2.0
64 40 4.5-5.0

8.J
(dcgC/W)

cost
(9

Table 3-2: Package Costs

The number of pins is directly related to the area and power required for bonding pads and interface

buffers. The implications of power and pin count arc not limited to packaging, but extend to the system using

the microprocessor. The power dissipated by the chip must come from a supply and must be removed to the

environment as heat. The number of pins is related to requirements for printed circuit board space, number

of support circuits (e.g., electrical buffers and decoders), and width of the memory data path. It may be

interesting to note that IBM has sclcctcd the Intel 8088, with an 8-bit data path, rather than the binary

compatible 8086, with a 16-bit data path, for use in its personal computer.

3.3 Performance Considerations

To evaluate the performance of a microprocessor design it is first necessary to select a workload

characteristic of the intended application. The workload can be a single program, a weighted combination of

programs, a synthetic program, or a synthetic mix of instructions. For programs written in a high-level

language a compiler must also be selected to determine the workload. It may be necesary to specify more

than one workload when very different applications are expected.

A performance measure (P) for the design and workload is defined to be the reciprocal of the execution

time.

P = (execution time)-l

12

For synchronous designs the performance is dctcrmincd by the cycle time and the number of cycles

required to execute the workload.

P = (cycle time * no. cycles)‘l

3.3.1 Cycle Time

One way to improve performance is to reduce the cycle time. Some of the many factors determining cycle

time are technology, power, width of data paths, and degree of pipelining.

A change in technology can reduce the inherent delay through switching elements. The change may be

dramatic, as from MOS to biploar processing, or modest, as varying 2 given process. For example, the Zilog

280 and Z8OL* are nearly identical in design, but during processing the transistors arc implanted differently.

The Z8OL has approximately twice the cycle time and one-fifth the power dissipation of the 280 [35, 361.

When the technology is fixed, cycle time can be traded for power. In nMOS a critical path can usually be

made faster by scaling up device geometries, which also incrcascs power dissipation. Such a change cannot be

made without considering its effects on electrical loading and chip area.

Narrower data paths can reduce the cycle time, although this may be of secondary importance to the

design. The delay in gating data onto buses is less, especially with current MOS processes where charging

long polysilicon control lines can be a large fraction of the cycle time. The ALU can have smaller delay

because carry determination is simpler. Narrower data paths use less arca; a more compact design can have

shorter communication delays.

Pipclining can help reduce the cycle time by dividing delay into separate, smaller time unib. The designers

of RISC assert that a simple instruction set architecture allows a faster cycle time [K!]. When instruction

decoding and execution are pipelined, however, the effect of instruction set architecture on cycle time seems

negligible.

Z80 and Z8OL are registered trademarks of Zilog, Inc.

13

3.3.2 Number of Cycles

Computer designers have dcvelopcd numerous techniques to reduce the number of cycles required to

execute instructions. Many of these methods are specific to particular architectures and designs. Among the

general factors affecting the number of cycles are number and width of data paths, function of data paths,

number of execution units, degree of pipelining, memory access time, and use of cache or other buffer

memory.

Increasing the number or width of data paths can decrease the cycles required for data movement, address

computation, arithmetic, etc. Increasing the functionality of the data path can reduce the number of cycles to

execute particular instructions, for example multiply or memory block move. Shustek’s measurements of

IBM System/370 implementations show that such instructions, although infrequent among total instructions,

are often performance bottlenecks [30]. Pipclining and multiple execution units both allow reduction in the

number of cycles by simultaneously executing several instructions or portions of a single instruction. (Heavy

pipelining can also increase cycle count due to resource interlocks and branch delays.) Caches and buffer

memories eliminate cycles used for memory access.

3.4 Design Const mints

There are many constraints on a commercial microprocessor design. Two extreme cases serve as examples.

The design of a high-performance microprocessor has an upper bound on chip area dctcrmined by

manufacturing economics, and upper bounds on power and pin count determined by the sclcctcd l>ackaEc.

The goal of the design is to maximize performance.

The design of a low-cost microprocessor has a lower bound on performance determined by the market of

intended applications, and upper bounds on power and pin count detclmined by the selected package. The

goal of the design is to minimize area.

Of course, there are numerous other constraints on the design. The design must work correctly over a

range of operating conditions and processing variations. The cxtcrnal interface usually must be compatible

with standard electrical levels (‘IX,) and bus protocol used by other chips. Future versions of the design,

such as shrirzks with improving technology, must be considcrcd. The process of establishing goals and

constraints during the design is iterative. The effort spent on the design, itself, must be limited.

i

14

4. Case Study: Zilog 28 Microcomputer

The Zilog 28 &bit microcomputer integrates program memory, register file, clock generator, 2

counter/timers, 1 UART, and 32 bits of I/O on a single chip (351. The 28 is intended for low-cost

applications, such as computer terminals, printers, and toys.

The 28 architecture supports 3 address spaces: program memory space, data memory space, and register

file. Program and data memory spaces are each 64K bytes. The register file is 256 bytes. The first 4 bytes of

the register file are used to address I/O ports. The last 16 bytes of the register file arc used to address control

registers. One control register is used as a pointer to a set of 16 working registers in the register file. This

allows working registers to be addressed using only a 4-bit code.

An instruction is 1, 2, or 3 bytes long. There are 43 operations oriented toward simple byte processing (e.g.,

move, arithmetic, logical, and shift) and simple program control (e.g., conditional jump, call, and return). The

addressing modes allow registers to be used as accumulators, as pointers into the register file or data memory,

and as index values. Other addressing modes are immediate, PC relative, and absolute address.

,

The 28 is flexible in defining the function of the counter/timers, UART, and I/O ports. The ports are

programmed in groups as input, output, or bidirectional (open-drain). The I/O lines can be programmed to

use for external memory access. The interrupts from the counter/timers, UART, and I/O ports are

programmably maskable and prioritized.

Pat Lin, one of the designers, provided the information presented here about the 28601 implementation of

the Z8 architecture [19]. A chip plan is shown in Figure 4-l. In this implementation the first 2K bytes of

program memory are addressable in a maskable ROM on the chip: the remaining program memory is

addressable externally. The first 2K bytes of data memory are not addressable; the remaining data memory is

addressable externally. The first 128 bytes and last 16 bytes of the register file are addressable on the chip; the

other registers are not addressable.

The instruction path, data path, and ALU arc each 8 bits wide. The processor is controlled with a

microcode ROM that has a word width of 60 bits. Each microcode word controls 2 machine cycles and the

selection of the next microaddress. A pipeline allows the fetch of 2 instruction bytes to overlap execution.

A typical instruction adds one working register to another and stores the result into the second register.

This instruction is 2 bytes long. Fach byte of the instruction rcquircs 3 cycles to fetch. The instruction

requires 5 cycles to execute: 1 cycle to fetch each working register into ALU temporaries, 1.5 cycles to

15

Pads, Ruffers, and Port Control

“‘..“;.I

Register File Microcode Rom

Counter/Timers Intnlpt.
UART Control

ALU

A

Figure 4-l: 28 Chip Plan

perform the addition, and 1.5 cycles to store the result. The execution is therefore completely overlapped

with the fetch, and the instruction effectively requires 6 cycles. The average instruction execution time is

approximately 9 cycles.

The die size is 5.61 mm by 5.82 mm (221 mil by 229 mil) for an area of 32.7 mm2 (50.6 Kmi12). The

maximum power consumption is 950 mW. This occurs under conditions of 0 degC temperature, 5.25 V

power supply, and worst-case processing variations. The cycle time is 250 ns.

The technology is depletion load nMOS with 2.5 levels of conduction (metal, polysilicon, and diffusion).

The minimum channel length is 5 urn (worst-case) and the metal pitch is 12 urn.

Several packages are used with this design. The one that most constrains the design is a 40-pin, plastic,

dual-in-line package with thermal resistance of 60 degC/W. The 40 pins arc allocated as follows.

P~J Function P i n sNo.
vcc 1
GND 1
Timing XTAL 2
Reset 1
External memory timing 3
I/O ports 32

16

8 of the I/O port pins can be time-multiplexed for address and data to refcrcncc cxtcrnal memory. 4 or 8

additional pins can be used for external address.

The different function units on the chip were carefully balanced for area, power, and speed. The tradeoffs

are shown in Table 4-1. The numbers are accurate within 10%. The values for power are based on a total

consumption of 950 mW. The function units include associated decoders, latches, and control. The hnction

unit for “PC,SP” includes the 16-bit program counter, 16-bit stack pointer, and incrementing logic. “Other”

includes the clock generator, buses, dead area not in the pad boundary, and small pieces of random logic not

included in any other function unit. The cycle time reported for “ALU” and “PC,SP” is actually the delay

through combinational logic. The access time listed for memory is the cycle time less the column precharge

time.

Area Power Speed

Function Total Per Bit Total Per Bit Cycle Access

2 2
mm %I urn mW % u w ns ns

Program 4.6 14 280 30 3 2 750 500
Register 3.5 11 3500 180 19 180 250 125
Microcode 3 . 8 12 620 110 11 170 500 375
ALU 1.6 5 200000 110 11 13000 375
PC, SP 1.5 5 96000 120 13 7700 500
UART 2.3 7 130 14
Interrupt 1.0 3 25 3
Pads 9.5 29 220 23
Other 4.9 15 25 3

Table 4-l: Z8 Area/Power/Speed Tradeoffs

The 3 memory functions have different cycle times. The most significant factor in the design is the

program ROM. The memory cycle time of 750 ns matches the requirements of implcmcnting a large ROM

on-chip and accessing standard memories off-chip. The processor cycle time of 250 ns is determined by the

register file. It is necessary to use sense amplifiers on the register file to achieve a read access time of 125 ns.

The microcode ROM is accessed every other processor cycle rather than every cycle. This undesirably wastes

a portion of some microcode words, and increases the microprogram branch penalty. Thcsc disadvantages are

outweighed by the advantages of fcwcr bits to specify the next microaddrcss and lower power consumption.

Details of the memory designs are spccificd below.

17

The program ROM is logically organized as 2K by 8 bits. It is physically organized as 2 banks with 64 rows

and 128 columns. Each bank stores 4 of the 8 referenced bits. The size of a bit cell is 12 urn by 16 urn

(192 um2). Sense amplifiers are not used. The bandwidth available from the program ROM is 10.7 Mbps.

The layout allows expansion to 4K bytes.

The register file is logically organized as 124 by 8 bits. (The other addresses are mapped to control

registers.) It is physically organized as 31 rows by 32 columns. The size of a bit cell is 48 urn by 52 urn

(2496 um2). The bit cell is single-ported. Sense amplifiers arc used for read access. Approximately 40% of

the reported power is used by the decoder and sense amplifiers; the remainder is used in the storage cells.

The bandwidth available from the register file is 32 Mbps.

The microcode ROM is logically organized as 104 by 60 bits. It is physically organized as 52 rows by 120

columns. The microcode ROM uses the same bit cell as the program ROM. Sense amplifiers arc not used.

The bandwidth available from the microcode ROM is 120 Mbps.

The area and power per bit for the different memory f%nctions are distorted by including the decoders,

latches, sense amplifiers, and associated control logic. This is particularly the case for the microcode ROM

function, which includes not only the ROM array but also address decoders, field decoders, next address

generation, and related control. Despite these distortions it is not misleading to observe that the program

ROM and rcgistcr file differ in area per bit by 1 order of magnitude and in power per bit by 2 orders of

magnitude.

18

5. ROM Design

Each processing technology offers to circuit designers a range of low-level tradeoffs for arca and power. An

example of these tradeoffs is presented by 3 circuits used to implement ROMs.

5.1 NOR Structure

Figure 5-l shows a block diagram for one output bit in a ROM similar to the 28 program ROM. The

address is separated into two portions to access the ROM array. The row address of x bits is decoded into 2’

row select lines, and the column address of y bits is decoded into 2y column select lines. A bit is programmed

at the intersection of each row and column by the presence or absence of a transistor. The array would be

replicated for each output bit of the ROM.

Row ,:
Address

I Prechargc Drivers

2x
/ Bit Array

Column y

Address
/

- 2y
/

1

Column Select

Dccodcrs I
out

Figure 5-l: NOR ROM Block Diagram

Figure 5-2 shows a circuit diagram for column i of the ROM. Figure 5-3 shows the layout for a bit cell. When

the cross-hatched portion of the layout is masked for diffusion, then a 0 is programmed.

The circuit opcratcs by first driving all the row sclccts to a low voltage, and prccharging all of the columns

19

vcc

Prec harge

Row 0 Select

Row 1 Select

-
-,

1

I 1-l I
I I I
I I I

Row 2XSelect -+-CL-7
Column i Select

Figure 5-2: NOR ROM Circuit Diagram

metal

polysilicon

diffusion

L

Figure 5-3: NOR ROM Bit Cell Layout

to a high voltage. The precharge driver is then turned off, and the selected row is driven high. Where a

transistor is located on the sclcctcd row, the corresponding column is discharged. The sclcctcd column is

gated to the ROM output. This structure is called NOR bccausc driving any row to I can force a column to 0.

2 0

In designing this ROM, tradeoffs arc made among speed, power, and decoder area. The number of rows

detcrmincs the height of a column. This height is directly related to the capacitance that must be charged by

the prechargc driver, and discharged by the bit cell for each access. The number of columns determines the

load on a row decode driver. With current MOS processes the row select is usually polysilicon, which has a

relatively high resistivity. To improve access time, sense amplifiers can be used to detect changes in column

voltage much less than between logic values. Cragon mentions that in single output ROMs the number of

rows and columns is made equal, to minimize decoder area [9]. Mead and Rem present a theoretical

treatment of these organizational tradeoffs [ZO].

5.2 NAND Structure

A form of NAND-structured ROM is used in the Hewlett-Packard microprocessor design of secticn 2.3. A

bit is programmed at the intersection of each row and column by placing an enhancement-mode or dcpletion-

mode transistor. Figure S-4 shows a simplified circuit diagram for one column of a typical NAND ROM, first

described by Kawagoe and Tsuji [16]. Figure 5-5 shows the layout for a bit cell.

Row 0 Select

Row 1 Select 1 r]l

I I I
I I I
I I I

Row n Select 1 I-]0

out

Figure 5-4: NAND ROM Circuit Diagram

The circuit opcratcs by driving the sclcctcd row to a low voltage while the other rows arc driven to a high
voltage. The series transistors in the column conduct to ground only when the selected row has a dcplction-

mode transistor. This structure is called NAND because the output is 0 when all of the series transistors are

conducting.

The bit cell for a NAND-structured ROM is usually smaller than the bit cell for a NOR-structured ROM

because there is no ground lint or metal contact. Lin reports the NAND ccl1 area (9 urn by 7 urn) to be 30%

21

diffusion

polysilicon

-- I depletion implant

1

I
I

I
I - -

Figure 5-5: NAND ROM Bit Cell Layout

of the NOR cell area (14 urn by 14.5 urn) for a 4 urn nMOS technology [18]. (SW this reference for details of a

practical design.) The NAND structure has generally slower access and limited number of bits per column,

compared to the NOR structure, becuase of the series transistors. The NAND-structured ROM is also more

sensitive to processing variations.

5.3 Multiple Bits Per Cell

A modification of the NOR-structured ROM allows more than 1 bit to be programmed in each cell.

Instead of programming a single bit by the absence or presence of a transistor, 2 bits can be programmed by

the absence of a transistor or the presence of a transistor with 3 possible sizes. Sensing the state of the

multiple-bit cell requires more complex circuitry.

The i,4PX432 Interface Processor uses this technique [2]. The designers report that the l-bit cell size is

15 urn by 14 urn, and the 2-bit cell size is 15 urn by 15 urn. The area savings per bit is 46%. The area savings

for the 32Kb ROM, including decoders and sense amplifiers, is 41%.

The designers of the NS16032 microprocessor examined the choice of storing 1 bit per cell or 2 bits per cell

in the microcode ROM [15]. They report the 2-bit cell is also 15 urn by 15 um, but the l-bit ccl1 is 12.5 urn by

12.5 urn. The National Semiconductor and Intel technologies arc similar; the difference in area between the

l-bit cells appears to be due to contact rules. The NS16032 designers decided that the area savings per bit of

25% was insufficient to justify the extra delay and complexity of the 2-bit cell.

22

6, Architecture and Design

6.1 Memory Costs

The trend in microprocessor design toward integrating increasing quantities of memory (ROM, RAM, and

CAM) on-chip has been mentioned. In a balanced design the circuits for each type of memory have a cost in

area and power that depends on technology and design goals. One of the major challenges of microprocessor

design is to find the most effective ways of combining memory functions. Table 6-1 qhows the difference in

bit-ccl1 area for different types of memory implemented in actual designs.

I Design

2
Bit Cell Area (urn)

I ROM RAM I CAM

H-P 10 1155
28 192 2496
28015 3360 4760, 5320

Table 6-1: Bit Cell Area (um2)

The Hewlett-Packard design [S] was described in section 2.3. The nMOS technology allows 1.5 urn channel

length and 2.5 urn first-lcvcl metal pitch, providing a very compact ROM cell. The RAM cell is actually a

special purpose register cell using 11 transistors. The register provides dual access ports, and uses dynamic

feedback to reduce power consumption. The difference in area between ROM and register cells is unusually

large compared to other designs.

The 28 design was described in chapter 4. The nMOS technology allows 5 urn channel length and 12 urn

metal pitch. The RAM cell in the register file is single-ported, uses 6 transistors, and has static feedback. A

circuit diagram for the cell, shown in Figure 6-1, is typical of RAM used in nMOS microprocessor design.

The Zilog 28015 is a memory management unit used with the Z8000* microprocessor family. The

information here is provided by J. K. Tsai, one of the designers [32]. The circuit translates a 12-bit logical

page number into a 13-bit physical page frame. The logical page number includes a 7-bit segment number

and 5 bits of segment offset; the segment number is valid earlier than the offset. The design uses the same

technology as the 28 design.

*
ZNOO is a registered trademark of Zilog, Inc.

23

Data Data

-

Row Select ’ L

Figure 6-1: RAM Cell Circuit Diagram

The total number of loglcal-physical page translation pairs stored in the chip is 64. These are located in 2

arrays of 32 entries. The mapping is fully associative; a comparator is built into each entry. If the logical

address matches the CAM content in any valid entry, then the corresponding physical address is read onto a

bus.

Each entry is 70 urn by 2033 urn, containing 12 CAM cells for the logical page number, 13 RAM cells for

the physical page frame, 7 RAM cells for page attributes (e.g., valid bit and protection), and related match

logic. The segment number CAM cell is 70 urn by 68 urn, the segment offset CAM cell is 70 urn by 76 urn,

and the RAM cell is 70 urn by 48 urn. (Notice that using the same technology and circuit topology but with

diffcrcnt design goals, the areas of the RAM cells differ by 35% between the Z8 and ZSOlS.) Each entry uses

approximately 10 mW of power. The delay from logical address valid in the CAM array to physical adress

valid from the sense amplifiers is 90 ns. Figure 6-2 shows a circuit diagram for the 9-transistor CAM cell.

6.2 Differential Architecture

To see how the choice of architecture and technology influences design tradeoffs, consider the following

idealized model. A RISC-like architecture and typical workload have been selected. A chip plan for the

implementation is shown in Figure 6-3. The control storage section has N, words, each word occupies area

acs, and the total area (including support circuitry) is A,. The cache has N, lines, each line occupies area

acA, and the total area is A,.

A proposed change to the architecture would add an instruction. Consider only instructions that exactly

replace a sequcncc of instructions, and have the same coding format as the original architecture.’ For RISC

examples arc bounds check with lower bound of 0 and memory to register add. (General memory-to-register

.

24

Data Data

Row Select

Match

Figure 6-2: CAM Cell Circuit Diagram

architecture is no more troublesome than load/store architecture from the standpoint of page-fault recovery.)

The original workload is transformed into a modified workload under the new archi tecturc.

The original implementation is modified for the proposed architecture. No changes are made to the data

path. By nature of the restriction on added instructions, the implementations require exactly the same

number of cycles to execute their respective workloads. The new implementation, however, has ncs

additional words of control storage. Some modification of the control structure is necessary to support

multiple-cycle execution.

The proposed change to the architecture reduces the program size of the workload. This reduction in

program size improves the effectiveness of the cache because fewer misses are generated in cxccuting

sequential code before branching, larger loops fit in the cache, and more small loops simultaneously fit in the

cache. (That fewer or equal number of misses arc gcncrated may bc taken as obvious, or can be proved for

stack replacement algorithms.) In the new implementation the cache is made smaller until the number of

misses for the new workload is equal to that with the old implementation and workload. The number of lines

eliminated is ncA.

Assuming that speed-power tradeoffs remain the same, the original design and the modificd design have

the same cycle time, require the same number of cycles to execute, and have the same main memory

25

Pads and Buffers

Cache

Register File

ALU Control Store

Figure 6-3: Implementation Chip Plan

bandwidth requirement. The difference is that the new design has ncs additional words of control storage and

ncA fewer lines of cache. The proposed change is cost-effective if

The preference for one design over the other depends on workload, technology, cost goals, and performance

goal;. The workload determines the value of the proposed change in reducing program size and improving

cache effectiveness. The processing technology defines a space of allowed circuit and mask designs for ROM,

RAM, and CAM bit cells. The cost and performance goals constrain the size of cache and control store. This

study has described the large range of choices available for high-level and low-1~x1 design tradeoffs. It is not

possible to say, apriori, which of the two architectures allows a more cost-effective design.

Models similar to the one in this section can be developed to analyze the tradeoffs between register file and

control storage or between register tile and cache.

26

6.3 RISC vs. CISC

There are system-wide advantages to making code more compact than RISC-like instructions, even when

variable-length instructions must be dccodcd, and multiple cycles arc needed to interpret instructions. The

bandwidth requircmcnt for fetching instructions is reduced. This can allow longer memory access time and a

narrower memory data path. The size of main memory needed to store programs (or the working set for

demand virtual memory) is less. Generally, the cost of memory dominates the cost of the CPU in

microprocessor systems. It may be argued that memory costs are declining. Nevertheless, processor

performance is improving, and main memory size is directly related to instruction execution rate in a balanced

system. RISC programs are reported to be approximately 50% larger than equivalent VAX programs 1251.

The previous section considered highly restricted changes to a RISC-like architecture. Other changes may

allow the implementation t,j reduce the number of execution cycles by increasing the functionality of the data

path or increasing parallelism. A scaled-index addressing mode, as in VAX, can eliminate moves and shifts.

A multiply instruction eliminates cycles when using multiple-bit retirement and special, loop-counting

hardware. A memory block move instruction allows overlap of data memory access with modification of

source address, destination address, and loop-counter. To reiterate, instructions that are infrequent among

total instructions are often performance bottlenecks.

Some potential microprocessor applications, such as business processing, do not fit well into the RISC

programming model of simple variables and procedural control. For these applications and a RISC-like

processor the choices are the cost of storing very large programs or the performance degradation of software

interpretation.

At some point adding to the function in the architecture can lead to a less cost-cffcctivc design. The

location of that point is not clear; it depends in detail on workload, technology, cost goals, and performance

goals. There is no general preference for a particular level of architectural complexity. There are, however,

some basic principles to recognize. Compact code improves the effectiveness of cache memory and

diminishes the system requirements for bandwidth and quantity of main memory. High-level tinctionality in

the architecture allows optimizations by hardware and firmware. Increasing the fUnctionality of the

architecture may reduce the rcsourccs available for cache and rcgistcr storage in a single-chip microprocessor.

6.4 Direction for Architecture

Following the principles above, some desirable characteristics for a microprocessor architecture are

proposed. The architecture should provide a high level of functionality, and allow compact code. The

architecture should have efficient trapping mechanisms to pclmit software interpretation of complex

27

operations, thus permitting an implementation-dependent quantity of control storage. In this way the

architecture would be similar to indirect threaded-code systems, described by Kogge [17]. The architecture

should support stack allocation of on-chip data storage with a mechanism similar to RISC or the C-machine

stack cache [ll], thus allowing an implementation-depcndcnt quantity of data storage. An architecture with

these characteristics has the properties of transparency to control storage size, transparency to data storage

size, and uniformity of direct execution and software interpretation. An architecture with these properties

may be called a Virtual Instruction Set Processor (VISP). The implcmcntaion of a VISP is given great

freedom in allocating resources to data storage and control storage when designing for different applications,

processing technologies, cost goals, and performance goals.

One example of an architecture with these properties is Nebula, the stindard architecture of the Military

Computer Family [lo, 311. VISP architccturcs arc being studied: the results will be reported later [I].

28

7. Summary

This study has described the practice of microprocessor design as viewed by one computer architect. I have

attempted to explain the general problems confronting designers of commercial microprocessors, and also to

provide sufflcicnt detail that the reader can appreciate the tradeoffs available in design.

Designing a commercial microprocessor is a complex problem involving decisions that require expertise in

several disciplines. The architecture most suitable for a design depends on the application workload,

processing technology, cost goals, and performance goals. No particular architecture is best for all designs.

Specifically, a RISC-like architecture may result in a less cost-effective design than an architecture with

instructions of variable length and instructions requiring multiple execution cycles. One direction for

architecture has been suggested, and is being studied.

29

References

111 Donald Alpert.
A Virtual Instruction Set Processorfor VLSI.
PhD thesis, Stanford University, 1983.

PI John A. Bayliss et al.
The Interface Processor for the 32b Computer.
In Digest of Technical Papers, 1981 IEEE International Solid-State Circuits Conference, pages 116-117.

February, 1981.

PI John A. Bayliss et al.
The Interface Processor for the Intel VLSI 432 32-Bit Computer.
IEEE Journal of Solid-State Circuits SC-16(5):522-530, October, 1981.

PI Robert Bernhard.
More Hardware Means Less Software.
IEEE Spectrum 18(12):30-37, December, 1981.

PI Joseph W. Beycrs et al.
A 32-Bit VLSI CPU Chip.
IEEE Journal of Solid-State Circuits SC-16(5):537-542, October, 1981.

PI Joseph W. I3eyers et al.
A 32b VLST System.
In Digest of’Technica1 Papers, 1982 IEE3’ International Solid-State Circuits Corflerence, pages 128-129.

February, 1982.

PI Mark Brodsky.
private communication, 1982.

[81 David L. Budde et al.
The Execution Unit for the VLST 432 General Data Processor.
IEEE Journal of Solid-, ,aCf te Circuits SC-16(5):514-521, October, 1981.

PI Harvey G. Cragon.
The Elements of Single-Chip Microcomputer Architecture.
Computer 13(10):27-41, October, 1980.

[lo] Department of Defense.
Instruction Set Architecture for the Military Computer Family
May 28,198O.
MIL-STD-1862.

[ll] David R. Ditzcl and H. R. McLellan.
Register Allocation for Free: The C Machine Stack Cache.
In Proceedings, Symposium on Architectural Support for Programming Languages and Operating

Syslerlls, pages 48-56. March, 1982.

30

WI

[131

WI

D61

WI

P81

WI

WI

PI

WI

WI

[241

Daniel T. Fitzpatrick et al.
A RISCy Approach to VLSI.
Computer Architecture News 10(1):28-32, March, 1982.

Anil Gupta, W. A. Porter, and Jay W. Lathrop.
Defect Analysis and Yield Degradation of Integrated Circuits.
IEEE Journal of Solid-State Circuits SC-9(3):96-103, June, 1974.

Intel Corporation.
Introduction to the iAPX 432 Architecture
1981.

Asher Kaminker et al.
A 32-Bit Microprocessor with Virtual Memory Support.
IEEE Journal of Solid-State Circuits SC-16(5):548-551, October, 1981.

Hiroto Kawagoe and Nobuhiro Tsuji.
Minimurn Size ROM Structure Compatible with Silicon-Gate E/D MOS LSI.
IEEE Journal of Solid-State Circuits SC-11(3):360-364, June, 1976.

Peter M. Kogge.
An Architectural Trail to Threaded-Code Systems.
Computer 15(3):22-32, March, 1982.

Chong Ming I-in.
A 4 urn NMOS NAND Structure PLA.
IEEE Journal of Solid-State Circuits SC-16(2):103-107, April, 1981.

Pat Lin.
private communication, 1982.

Carver Mead and Martin Rem.
Cost and Performance for VLSI Computing Structures.
IEEE Journal of Solid-State Circuits SC-14(2):455-462, April, 1979.

Motorola Semiconductor Products Inc.
The MC68020 Enhanced MS000 Microprocessor Product Preview
1982.

B. T. Murphy.
Cost-Size Optima of Monolithic Integrated Circuits.
Proceedings of the IEEE 52(12):1537-1545, December, 1964.

National Semiconductor Corporation.
NS16082 Memory Management Unit (MMU)
March, 1982.

David A. Patterson and David R. Ditzel.
The Case for the Reduced Instruction Set Computer.
Computer Architecture News 8(6):25-33,Octobcr, 1980.

WI

P61

P71

WI

PA

WI

WI

WI

WI

WI

WI

WI

31

David A. Patterson and Carlo H. Sequin.
RISC I: A Reduced Instruction Set VLSI Computer.
In Conference Proceedings, The 8th Annual Symposium on Computer Architecture, pages 443-458.

May, 1981.

David A. Patterson and Carlo H. Sequin.
Design Considerations for Single-Chip Computers of the Future.
IEEE Transactions on Computers C-29(2):108-116, February, 1980.

John E. Price.
A New Look at Yield of Integrated Circuits.
Proceedings of the IEEE 58(8): 1290-1291, August, 1970.

George Radin.
Th 801 Minicomputer.
In Proceedings, Symposium on Architectural Support for Programming Laanguages and Operating

Systems, pages 39-47. March, 1982.

William R. Richardson et al.
The 32b Computer Instruction Decoding Unit.
In Digest of Technical Papers, 198I IEEE International Solid-State Circuits Conference, pages 114-115.

February, 1981.

Leonard Jay Shustek.
Analysis and Performance of Compu ter Instruction Sets.
SLAC Report 205, Stanford Linear Accelerator Center, Stanford University, May, 1978.

Leland Szewerenko, William B. Dietz, and Frank E. Ward, Jr.
Nebula: A New Architecture and its Relationship to Computer Hardware.
Computer 14(2):35-41, February, 1981.

J. K. Tsai.
private communication, 1982.

R. M. Warner, Jr.
Applying a Composite Model to the IC Yield Problem.
IEEE Journal of Solid-State Circuits SC-9(3): 86-95, June, 1974.

Zilog, Inc.
2801.5 Paged n4emory h4anagement Unit Product SpeciJjcation
April, 1981.

Zilog, Inc.
Microcomputer Components Data Book
1981.

Zilog, Inc.
28300 Low Power ZSOL CPU Central Processing Unit Product SpecifYcation
December, 1981.

