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Abstract
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1 Introduction

MIPS [lo] is a new 32-bit processor designed to execute compiled code for general purpose applications.

MIPS is both a streamlined (or reduced) instruction set architecture and an implementation of that

architccturc as an nMOS chip. The MIPS implemctation has several goals. First, we wanted to determine

whether a competitive 32-bit processor could be built using the concepts in the MIPS architecture and Mcad-

Conway style design. A number of benchmarks have been run on the 68000 (at 8MHz) and our MIPS

simulator (assuming a clock period of 4MHz). These benchmarks have shown an average speed-up of 460%

for C programs and 550% for Pascal programs using the same compiler technology for both processors. If we

can build a 4MHz part, we will have succeeded in demonstrating the architecture and implementation.

Other experimental goals were just as important. We wanted to simplify the VLSI implementation as much

as possible. At the heart of our strategy was replacement of hardware with simple software wherever there

was no significant performance advantage to the hardware implementation. Specific examples of the types of

tradeoffs we made are discussed in [ll]. Also, we wanted to experience the problems of designing a large chip,

in order to filrther focus our architectural and design aid research activities.

- In this paper, we give an overview of the architectural design and VLSI implementation of MIPS. We will _

show how a set of new ideas in architecture was implemented in a VLSI processor, in order to yield a high

performance CPU. We discuss the limitations we encountered in our efforts to increase performance, the

design principles that simplified our tasks and made a fairly ambitious design possible, and the problems we

have yet to overcome before we embark upon another project of similar scope.

2 Architectural Design

One overall goal of the MIPS architecture design was to explore the extent to which instruction set design

can be made into a scientific process. This can be done by evaluating the design choices on the basis of two
data points: quantitative data about the usetilness  of an instruction and careful estimates of the hardware

cost. A C compiler derived from the Portable C compiler, and a simulator formed a measurement system for

MIPS that gave firm, realistic data. This provided a fundamental workbench for testing out new instructions.

The proposer of a new instruction had to get the compiler to generate the instruction, collect data for a

number of benchmarks, and examine what instructions, if any, were displaced by the new instruction. These

measures were then combined to give a reasonably accurate estimate of the potential of the new instruction.

Unfortunately, determining the hardware cost of an instruction that does not fit into the model of other

instructions in the architecture is at best an ad hoc process.

MlPS is a reduced or stre‘amlincd  instruction set machine, like the Bcrkcley RISC processor [13] and the
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IBM 801 [15].  The fimdamcntal  philosophy of such architectures is to concentrate on the most frcqucntly used

simple instructions and to build more complex instructions from a customized scrics of simpler instructions.

Because the simpler instructions, e.g., simple loads and stores, arithmetic operations, etc., are used with much

higher frequency than more complex instructions, eliminating the complex instructions will allow the

architecture to optimize its performance for the simple instructions. Such a philosophy becomes even more

applicable in a VLSI implementation, because power and area constraints force the designer to choose among

fundamental alternatives.

We also chose to design a load-store architccturc, i.c., a machine in which only the load and store

operations access memory and all ALU instructions arc register-register format. This structure is very

compatible with a streamlined instruction set. It also simplifies the implementation of page faults, traps, and

interrupts, which can be particularly difficult to implement in a pipelined machine. Lastly, given reasonable

register allocation algorithms [l], using a register-based machine is a good match for VLSI technology. Since

the cost of off-chip communication is high, getting data onto the chip and operating on it in the register set is

a cost effective strategy. As an alternative to the software register allocator, the RISC project provides the

hardware for a register stack [13].

We observed that, as in the 801 project, a simplified instruction set can expose all internal machine cycles

and states  at the instruction set level. In contrast, a more complex machine hides many internal cycles within

a single instruction. With modem compiler technology, exposing ail machine operations and making them

subject to optimization provides obvious benefits. The simpler instructions also have consistent running times

so that the code generator can more easily choose between potential implementations of a function.

In MIPS WC aimed to expose all the internal implementation details which affect performance. Primary

among these implementation issues is the pipeline structure. In choosing to expose this structure, we aIso

decided that the synchronization function performed by pipeline interlocks could be moved into the software,

thus substantially simplifying the hardware and losing little or no performance [9]. Therefore, the MIPS

hardware architecture was defined without pipeline interlocks and with delayed branches (see 4.2).

Performance in executing  a single sequential instruction stream comes from the ability to execute portions

of that stream in parallel. This parallelism can be obtained both from pipelining and from using multiple

function units. The internal micromachine of a pipelined CPU is inherently parallel. One goal that we

imposed was to exploit internal microengine parallelism, to the degree that it makes sense, by projecting it

into the instruction set. VLSI technology reinforces this goal: on-chip parallelism is cheap compared to off-

chip, sequential communication. Thus, the MIPS instruction set rcprcscnts an attempt to carefully blend the

instruction set rcquircmcnts with the capabilities of a high performance, pipelined, VLSI microenginc.
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Many of our goals rcquircd that implementation-dcpcndcnt fcaturcs, such as the pipclinc length and the

parallel  activity within instructions, be visible in the instruction set. This can lead to significant complexities in

the user’s view of the machine and in the construction of code generators. It also makes it difficult to alter the

instruction set design specification during the actual hardware design, which we wanted freedom to do. Our

implementation dependent optimization includes three primary code improvements:

1. Reordering instructions to avoid pipeline dependencies

2. Reordering instructions so that the instruction following a branch can always be executed

3. Packing together separate, simple instructions (called instruction pieces) into a single parallel
instruction word

These optimizations, like those performed by a microcode compactor [3,6], can be performed with a high

degree of success in the final phase of assembling instructions. Thus, we decided to define the instruction set

at two different levels. The first level, called the user-level or assembly language instruction set, defines

instructions that are unpacked and have no pipeline dependencies or branch delays. This assembly language

instruction set is comprchcnsiblc and easy to generate code for. The machine-level instruction set is the low

level instruction set actually run by the processor. This instruction set is generated only by a single program,

the reorganizer. The reorganizer does all implementation-dependent  optimization, and isolates the user level. _
instruction set from these implementation details.

A related goal of the actual implementation process was to simplify and regularize the hardware wherever

possible, subject to reasonable performance constraints. The unavoidable irregularities  in the processor design

often became software responsibilities. This shifting of responsibility included not only management of the

pipeline but also:

l saving and restoring the pipe contents during a fault or interrupt,

l restoring  operands after arithmetic overflows,

l specifying all program counter related operations (e.g. saving the PC on procedure call and
relative jumps) so as to simplify the actual hardware implementation rather than conform to a
prcdcfined software model.

This division of the architectural definition into two parts and the freedom of giving the software

responsibility for irregularities in the organization increased performance significantly. This strategy also

simplified the processor design and thereby made the implementation  of the MIPS chip possible with limited

manpower and tools.
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3 VLSI Implementation

The 1MIPS chip is a monolithic VLSI implementation of the MIPS processor architccturc. The chip is

implemented in standard, one-level metal nMOS using Mead-Conway design rules with buried contacts. The

total dimensions arc 3750h by 4220h. With h = 2pm, we expect to run with a clock period of 250ns (4 MHz

clock); this will give an execution rate of two million instructions per second.

The MIPS chip consists of four logical blocks. The 32-bit  data path contains two bidirectional buses

linking a fast ALU, a barrel shifter, a file of 16 registers, a complex program counter, and an address masking

unit. The data path is controlled by an encoded control bus that distributes register transfer commands to the

data path. The Instruction Decode Unit latches and interprets all the components of the instruction in

parallel and drives the appropriate control information onto the control bus at the appropriate time. The

Master Pipeline Control communicates with the outside world, responds to all internal and external

exceptional conditions, and controls the basic sequencing of the pipeline. Figure 1 shows the major parts of

the chip.

Maximum performance of the MIPS machine requires a high-bandwidth memory interface. MIPS

m$mory is word-addressable and all memory references are 32 bits wide. Separate address and data pins

permit partial overlapping of memory references, and also eliminate delays often incurred in multiplexing the

address and data pins. To execute at full speed, the instruction access time is bounded by 2SOns. A simple

read-only instruction cache is possible, since the architecture forbids writes into the instruction stream. Data

memory may be slower, with a maximum access time of 450ns.

The bulk of the implementation was done by three designers over the course of about 18 months. These

designers were also involved in other significant efforts on design aids and architectural refinements. They

were assisted occassionally by other logic and circuit designers. The total time for logic and circuit design and

layout for the MIPS processor and the test chips has been approximately 2.3 man-years; the chronology and

effort expenditures are given in Section 5.1.

3.1 Timing Methodology

The timing methodology for MIPS uses a two-phase, non-overlapping clock without precharging. Both the

data bus and the control bus are potentially active during each clock phase of every cycle. The control bus is

actively driven on both cycles by the Instruction Decode Unit. Each data bus writer incorporates bus

pulldowns, but the bus itself includes the depletion pullups.  Although precharging is normally a powerful

tool, it does not mesh well with high bus utilization and overlapped execution of the MIPS pipeline. A simple

non-overlapping prccharge scheme would require a doubling of the clock rate and possibly an increase in
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Figure 1: MIPS layout and floorplan

clock skew overhead. A more intelligent precharge scheme with overlap between the prccharge and the

following bus transfer  would be more difficult to design. Either prccharge technique is susccptiblc  to

erroneous bus discharge. The MIPS method offers good performance and greater tolerance to timing errors,

for the cycles can be extended to overcome bus discharges at the beginning of any transfer.

Similarly, the functional units, e.g., the ALU, are not prccharged. Instead, the ALU amortizes its longer

operation time as compared to the bus transfer time, by working across clock phases. During phase one, the

ALU sources are driven from the register file to the ALU and the ALU begins operation; at the end of phase
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one, the ALU inputs arc detached from the bus. During phase two, the ALU completes its cycle and drives

the result out on the bus. Its effcctivc execution period runs from the middle of phase one to the beginning of

phase two, including the non-overlap period between the clock phases.

Each instruction passes through five pipeline stages: Instruction Fetch (IF), Instruction Deco& (ID),

Operand Decode (OD), Operand Store/Execution (SX), and Operand Fetch (OF). The pipeline is fully

synchronous and contains three active instructions; thus, only two SC:- of stages can be active simultaneously:

IF with OD and OF, or ID with SX. In the absence of unexpected external events, e.g., cache misses and page

faults, the processor will simply toggle between two states. Each stage requires one full clock cycle, so each

instruction completes in five cycles (really three pairs of stages). In Figure 2, the activities occurring for a

sequence of three instructions are shown; WC assume that all instructions are base-offset loads combined with

ALU instructions.
IF ID OD SX

IF ID

I

PF:
Waiting for Latch LOAD
LOAD from Data into
memory memory

OD: 1
Base Register Address from
and offset to ALU to MAR
ALU

IF:
Program Wait for
Counter to instruction data
memory from memory

I

(IF-OD-OF)

OF

O D  S X  O F

IF ID OD SX OF

Figure 2: Act vity in pipeline stages

sx:
ALU sources
to ALU

ALU result to
destination

ID:
Latch instruction Decoded
into Instruction instruction t0

&code Control Bus

(ID&)
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3.2 Data path

The relatively complex and long data path requires metal data busts to achieve any reasonable level of

performance. Polysilicon is relegated to the control lines crossing the width of the data path. Register

transfers thus become dominated by two effects. First, high polysilicon sheet resistance makes the control

signal delay almost complctcly diffusion-limited; a narrow cell pitch is critical. We have achieved a pitch of

33h with few performance compromises. Second, without prccharging, the transfer of a selected value can be

limited by the rise time of the bus. This potential delay is combatted by placing the driving pullups on the

bus, rather than in the source data path cell. With the data and source select pulldowns in the cell, the bus

then forms a distributed AND-OR-INVERT gate. When the bus becomes deselected between cycles, it rises

to an intermediate or high level.

We recognized early in the design that the ALU lay in the critical path for many operations. We decided to

devote considerable design time, area and power to maximizing the performance of this unit. The arithmetic

and logical finction blocks are separated to minimize loading on the adder. We implemented a carry-

lookahead tree, with propagate and generate signals computed in pairs. This allows a total ALU add time of

under 1COns.  The ALU is also responsible for the detection of fourteen different conditions needed for

conditional branch and set operations.

Much of the data path design was dictated by the need to optimize the add time. Since the ALU needed a

fast carry-lookahead and we decided to use a narrow pitch, the layout forced the ALU to be at the end of the

data path so that the buses did not need to pass through the PG-tree in metal. This forced the barrel shifter

into the middle of the data path.

Adequate support for multiplication and division is an important MIPS objective. However, full multiply

and divide instructions are not consistent with our objective of single-cycle execution on all instructions, and

the limited silicon area available. We implemented a modified Booth’s algorithm for multiplication and

division by way of a pair of special registers integrated into the ALU (H and L). These permit multiplication

at a rate of two bits per ALU operation (four bits per full instruction), and division at a rate of one bit per

ALU operation. A two-bit Booth multiply step requires both a shift operation and an add operation. To

complete these within the same time slot as a standard rcgistcr-register add requires that the H/L registers be

closely integrated with the ALU and that a special nonbus communication path be used. The ALU has been

extended to 34 bits in order to support this two-bit shift and add operation.

The barrel shifter is used for the full complement of rotates and logical and arithmetic shifts, plus character

insertion and extraction. This variety of functions is controlled by an input multiplexer, which selects the data

to go to each word of a two-word combined rotator. The shift amount dctcrmines which 32-bit  section from
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the 64-bit concatenation of the two buses goes to the output. The combined rotator is implemented  as a pair

of cascaded shifters: the first by the shifr  amount div 4, the second by the shiff attrounf  mod 4. WC chose this

implementation in the face of severe cell-pitch constraints and the need to drive one bidirectional bus

through the shifter. The barrel shifter  lies bctwccn the registers and the ALU. During ALU operations,  two

operands must get past the shifter on phase one, with the result returning on phase two. This was achieved in

a pitch of 33 h by including one normal bidirectional path (A Bus), and using an internal one-directional bus

through the shifter for the other path to the ALU.

Our principal goals for the register array were small size and fast register transfer speed for all operations.

Any two cells may be read onto either bus on either phase, or two cells may be written from either bus on

phase two. The bus methodology described earlier allows the register pullups to be of very modest strength,

so that the power consumption is kept to a minimum. The register array contains both the sixteen general

purpose registers and that portion of the Surprise Register that holds the trap code.

The variety of program counter operations and the requirement for instruction restart made the program

counter a major challenge. The program counter must hold the current value, three previous values for

pipeline restart, and one possible future value for branching. On every cycle, one of six possible sources must

. be selected for the new value: increment, self-refresh, zero (for intemlpt service), the branch value, or values

from either of the data buses. Simultaneously, the old value must be shifted into the buffer of old values.

When an exception occurs, these values are saved by the service routine and restored on return. The

complexity of the program counter structure and its central role in the processor put it directly in the critical

path. Because of these speed requirements and full utilization of the ALU by user instructions, a separate PC-

incrementer  with a simple carry-lookahead scheme was used. The pitch constraint of 33X was extremely

severe in this unit, especially where the program counter and address masking hnctions overlap.

.

The address masking primitives are integrated into the program counter structure along with the Memory

Address Register. This masking allows a machine address to be converted to a process virtual address. Thus,

the first level of memory mapping (segmentation) is provided by the chip; the external memory map need

only supply a one-level page map to implement a full scgmentcd and paged system. The use of VLSI made

the on-chip scgmcntation relatively straightforward and dccreascd the off-chip hardware requircmcnt  with no

significant performance impact.

The size of the process virtual address space is defined by a bit mask in a special register. When masking is

enabled for normal operations, a process identifier from another special register is substituted for the high

order bits of the machine address. These two special registers are accessible only to processes running in

supervisor  state. The masking unit also detects attempts to access outside the legal segment and raises an
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exception to the master pipeline control. Although the virtual address is a full 32 bits, the package constraint

only permits 24 address pins. With word addressing, howcvcr, this gives an address space of 64 megabytes.

3.3 Control Bus

The control bus encodes both register sources and destination for each type of operation. It includes a set of

true/complement pairs for the ALU sources or memory reference sources, and for the ALU destination or

memory load destination. The control bus also includes a collection of special signals including the pipestage,

the branch condition results, and various exceptional conditions.

Each data path control driver taps this bus with one or more NOR decoders and latches the decoded value

into a driver in the phase immediately preceding its active use in the data path. These signals are driven via

dynamic bootstrap drivers by the appropriate clock. The bootstrap drivers put a considerable load on the

clocks, but great care has been taken to minimize skew by conservative routing of clocks in metal. In a few

cases, bootstrap drivers cannot be used because the control signal may need to be active on both clock phases,

c.g., in register reads. These drivers are implemented as large static superbuffers. We have recently

discovered that both the dynamic and static drivers may be heftier than necessary because the propagation

delay time through the polysilicon control lines appears to be limited solely by difision delay.

3.4 Instruction Decode Unit

The Instruction Decode Unit (IDU) latches each instruction and translates the instruction pieces into

appropriate control signals for the data path. The instruction word is latched during phase one of the

Instruction Decode cycle, and the outputs from the IDU are latched on phase two and distributed to the

control bus. The design and encoding of the instruction set is carefilly  tailored to allow a natural

decomposition of the instruction word. Each type of instruction field may appear in one and only one

position within the word. Thus, decoding may be done in parallel by two independent PLAs,  providing a

faster total decode time.

The Load-Store-Branch PLA decodes those fields of the instruction that may contain opcode fields for

memory operations or program counter operations. It generates  encoded register transfer sources and

destinations for the appropriate execution cycles of this instruction. Those signals may be placed immediately

on the control bus for the Operand Decode cycle or delayed up to one and a half clock periods until they are

needed in following cycles.

The second PLA decodes ALU instruction pieces for the Operand Decode (OD) cycle and for the Operand

Store/Execute (SX) cycle. Rather than decoding both pieces simultaneously and delaying the SX output for a
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cycle, the ALU PLA decodes these two pieces in scqucncc. The instruction fields for the second ALU piece

are hefd for a cycle and then applied to the same PLA. These latter results appear just bcforc the SX cycle,

instead of before the OD cycle. This technique doubles the effective throughput of the PLA.

Both PLAs  also contain a compact mechanism for the definition of register fields. Some instruction pieces

have implied operands, e.g., multiply step uses the special H-L register, but most instructions require explicit

general-purpose registers. Substitution of explicit fields for implied ones is controlled by an extra set of OR

lines for each register field in the ALU and Load-Store-Branch PLAs.  If the explicit register specifier is

indicated, a simple multiplexer on the output of the PLA selects these extra OR lines, rather than the implied

operand lines. This field substitution mechanism significantly reduces the size of the IDU.

A small instruction class PLA, operating in parallel with the decode PLAs, selects between the outputs of

the two decode PLAs.  This selection is based only on the few bits which determine one of four possible

instruction piece combinations:

1. Load (long offset)
2. Load (short offset). + ALU2
3. ALU3 + ALU2

. _ 4. All conditional instructions

This approach allows the complete instruction decode to occur in one cycle, except for the SX field, which is

not needed until one cycle later.

The outputs of the PLAs are linked by a Level Sensitive Scan Design shifter. This LSSD chain allows the

function of the PLAs and the data path to be confirmed independently.  The heavy utilization of all processor

resources mandates this kind of fine control of individual clock cycles for testing purposes. The inputs to the

control bus processor can be read or written by the LSSD chain. To test the entire data path, only the bus

connections need be working, since complete control of the data path can be obtained via the LSSD chain.

This limited use of LSSD represents a good compromise: little area is lost in the LSSD shift register,

compared to a scheme that shifts through all the storage in the processor. At the same time, this limited use of

LSSD seems to have most of the advantages of a more complete scheme.

3.5 Master Pipeline Control

The difficult design of the- Master Pipeline Control (MPC) reflects the complex control problem of

interfacing a pipelined processor to an unpredictable environment. Under normal circumstances, the MPC

must control the pipeline execution with cache misses and memory wait states that cause the pipclinc to be

suspended. It must also deal with a host of potential “surprises” that may occur, including arithmetic
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overflow, privilcgc violation, internal masking error, illegal instruction, page fault, interrupt, bus error and

rcsct. The processor must not only respond, but also save the processor  state actLiiXtCly for instruction restart.

Finally, the MPC is responsible for generating and sensing all control signals to the pins.

The core of the MPC is the tindamcncal  control engine of the processor: a 16-state finite state machine

implemented  in a PLA with 46 min-terms. Its inputs include indicators of cache hit, memory ready, and

encoded exception information. Its outputs indicate the current machine state in two forms: a standard

encoding of the 16 states, and special decoded versions of the same information. These decoded versions

control the disabling of register writes and the modification of the program counter on exceptions; these latter

signals are necdcd to control the execution of the next pipestage.

This PLA is surrounded by the surprise state register, and a special PLA for sensing and encoding all the

diffcrcnt exception cases, four blocks of random logic. The first block forms the link to the IDU. It creates

qualified clocks for instruction decoding and masks illegal instruction indicators coming from the IDU. The

second block senses masking errors and sends special signals to the program counter for interrupt service.

The third block detects ALU overflow conditions and comparison results. The last logic block forms the

interface to the chip’s control pins; this interface block qualifies the signals and governs the timing. Our

LSSD chain extends through the MPC to pick up all the critical PLA outputs.

The Master Pipeline Control turned out to be unexpectedly difficult to implement. It is both slower and

larger than originally planned. The complexity of its logical design has also left little time to &lly optimize its

physical implementation.

3.6 The Test Chips

During Autumn 1981, we decided to submit the pieces of the MIPS processor as test chips. The six major

pieces of the design for which we submitted test chips are the ALU, the barrel shifter, the PC unit, the register

file, the IDU, and the MPC. We created a test Frame consisting of the control bus and a data path bus

interface to allow the frame to fit in a 64-pin package. The test frame was general enough to accommodate all

the test pieces. The major aims of the test chips were:

1. To get an early check on the individual pieces of the chip before assembling a complete processor.
We were (and still are) wary of getting back a large chip that is fabricated correctly but does not
work and cannot be diagnosed.

2. To obtain some early performance measurements. Our goal was calibration of performance
estimates and identification of unforseen critical paths.

In addition, we believed that the test chips could be laid out and debugged in parallel with other design

activities.



Design of a High Pcrformancc VLSI Processor 12

In reality, what we learned from the test chips was very diffcrcnt. We did uncover several bugs in our

individual designs, but we were never able to do performance testing. In addition, we discovered  the

following startling facts:

1. Yield could be a potentially serious problem, at least for the MOSIS runs. For our first
fabrication of the rcgistcr file, we received no working chips out of a batch of ten.

2. Complete integration and simulation of parts takes longer than expected.

3. We had to address testing fairly early on. The ICTEST system [16]  provided a unified simulation
and testing environment that simplified our task and encouraged us to do more complete
simulation.

4. Our static checks were not sufficiently comprehensive, hence some designs had ratio errors. We
have worked on fixing the static checker so that it does not overlook any potential problems.

5. Many of our tools broke on the test chips, which was a blessing in disguise.

6. The power consumption of the test chips exceeded our estimate by 50%. We have revised the
power budget for the full chip accordingly.

Thus, while work with the test chips took longer than we expected and did not produce the results we desired,

- it -did help us fact up to some of the most demanding parts of the project early on. The success of this

approach is discussed in more detail in Section 5.2.

3.7 The Package Constraint

We chose an eighty-four pin chip carrier for the MIPS chip. This package imposes two constraints on the

VLSI implementation: a careful allocation of pins in the external interface and a power budget of roughly two

watts. Separate address and data pins are crucial to achieving a high memory bandwidth. A full assortment of

control and status pins is necessary to support the full range of faults, interrupts, and status information. The

pins may be summarized as follows:

Function # Pins Function # Pins

Address 24 Data I/O 32
Vdd 3 Gnd 3
Substrate 1 Clocks 2
LSSD 4 System Status In 7
MIPS Status Out 8 Total a4

Since the eighty-four pin chip carrier also imposes a power limit of about two watts, we had to allocate our

power budget carefully. Using a (supposedly) conservative 0.1 mA per inverse square of pullup,  we arrived at

a total of 311 mA for the power budget in Figure 3.
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PADS (115mA)

Figure 3: MIPS power budget

Unfortunately, this supposedly conservative estimate is not consistent with our test chip experience. Two

different designs, the Program Counter and the Register File test chips from different fab runs

(M2SKEl,M25HHl,~M25KDl), consistently dissipated 1.5 times the expected power. This suggests the

pullup current is typically closer to 0.15 mA per inverse square. In this case, we would expect operating

-current of 470 mA and power of 2.3 W. All these figures represent typical values under nominal temperature

and voltage conditions. MIPS appears to use all the power budget available.

4 Limits to Performance

In theory, performance constraints come from the implementation technology and the software

environment. Practically, manpower and design tool availability are also important in limiting the

performance obtainable in a VLSI design. The first part of this section describes two limitations imposed by

the available design tools. The rest of this section describes the interplay of architectural and implementation

technology constraints in MIPS. This interaction is examined in three performance-enhancing changes that

we considered in the the design of the chip. All three of these changes could have been adopted into the

architecture with alterations only in the reorganizer and machine-level architectural specification.

4.1 Limitations of Available Design Tools

One limitation of our design environment was the difficulty of identifying critical paths in the processor.

We knew that the propagation delay through the ALU should be on the critical path, but we didn’t know

during layout whether it would be, or what the other delays along this path would be. Delays within the data

path were easy to estimate via circuit simulations of bit slices. The control structure, however, is irregular in

comparison to the data path and cannot be simulated in slices. Circuit simulation of the whole control
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structure was impractical due to its size, and partitioning was impactical due to its complexity. During layout

of the control sections, we relied mainly on our limited intuition for transistor sizing. This guessing led to

queasiness  in the designers and the development  of TV. TV is a timing analyzer begun in the summer of

1982; it is described in [12].

Another example of limitations imposed by our design tools can be seen in the final layout of the MIPS

processor. The global routing in the control area takes up significantly more space then we initially estimated.

A major fraction of this extra area comes from an initially poor placement of blocks and the use of a

(sometimes) space-inefficient but simple-to-implement routing scheme. Given the existence of a reasonable

automatic router, we could have more carc!%lly optimized the placcmcnt and allowed the router to do the

bulk of the work; reiterating the placement would also be possible because redoing the placement involves

little designer effort compared to redoing the routing. Alternatively, we could spend several weeks of

designer time hand-optimizing the placement and routing. For the present, we have decided to live with a

slightly larger and slightly slower chip.

4.2 Reduced Branch Delay

- -In a pipelined processor, the instruction fetch unit fetches the next sequential instruction before the

previous instruction has completed execution. If the instruction in execution is a branch and if the branch is

taken, then the fetched instruction is not the next instruction to be executed. Furthermore, if the pipe is

deeper than two instructions, the instruction following the branch can have already begun execution. In most

pipelined architectures, this effect is handled by the hardware: if the branch succeeds, any instructions

sequentially following the branch are backed-out (if needed) and thrown away; the instruction fetch unit then

gets the instructions from the branch destination and execution continues. Because of the high frequency of

branches and their aggravating effects on pipelines, various schemes such as branch prediction are used to

mitigate the effect.

A simple alternative to complicating the instruction pipeline or implementing a prediction scheme is to.

have the instructions that are already fetched executed regardless of the effect of the branch. This scheme is

called delayed bratrching;  a delayed branch of length n means that the n sequential instructions after the

branch are always executed. The compiler is given the task of making those instructions safe to execute, and,

whenever possible, using the instructions to shorten the execution time of the program [7]. The data shown

later in the section shows that this problem can be succcss~lly  solved when the branch delay is short.

In the original design of the architecture, MIPS had a uniform branch delay of two for all branches. The

ALU computation currently performed in SX was instead pcrformcd in a pipcstage following OF called EX.
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This made it easy to synthesize instructions of the form “add memory to register” by combining a load/store

piece and an ALU piece. However, it increases the branch delay for all conditional and unconditional relative

and absolute branches by one (i.e., from one to two). These types of branches typically account for 18;9%  of

all instructions executed (a = 7.1%). Table 1 shows that for a uniform branch delay of two, the average

number of branch slots filled would go down to 66.7% (of two instructions) from 90% (of one instruction). A

branch delay of length two would increase execution time of programs by an average of 14.3% (0.86 slots

empty/branch, 18.9% branches).

Program % Filled Branch Slots for branch delay

Fibonacci
Hanoi
Puzzle I

Puzzle II
Puzzle III
Queens

Average

90.0 65.0
85.7 50.0
95.0 79.9
75.9 56.5
97.0 76.2
96.5 72.4

90.0 66.7

Table 1: Utilization of branch delay lengths 1,2,  and 3

56.6
38.0
72.2
48.9
67.8
59.7

57.2

The costs of moving to a branch delay of one were nontrivial. First, it placed much tighter requirements on

- page-fault detection. In both cases, the memory address leaves the chip at the end of the SX pipestage. In

the original design, detection of a page fault is not required until one and a half pipestages later, when the

destination of a load instruction is written. In the reduced branch delay design, a page fault must be detected

before the ALU result is written only half a pipestage later. Faster virtual memory mapping hardware was

investigated and found to bc capable of implementation with current technology. Also, two instruction pieces

synthesizing a memory-to-register instruction could no longer be packed into the same instruction, but now

needed to be reordered into separate instructions. This sometimes increases code size if other instructions

cannot be packed with the first piece and the second pieces, but it is not significant in practice. The

suggestion for moving up the Ex cycle to allow branch delay of one was originally suggested by Jud Leonard

in the early fall of 1981 and adopted shortly thereafter.

4.3 Bypassing

The original architectural specification left undefrncd whether the result of the ALU computation in the

SX pipestage could be stored to main memory in the same pipestage by using the same register for the ALU

destination and the store source. Spice simulations showed that the time required to write the ALU

computation through a register to the memory interface would add an extra delay of about 4Ons: this delay

occurs because the write-through might need to recharge a bus discharged by the original register value. This

extra time would bc required in every pipcstagc, whether there was a write-through or not. Thus, allowing
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write-through would increase the Icngth of each processor cycle by approximately  16%. Bypassing was

proposed as an alternative; to bypass, the result of the ALU would bc written to both the A and B bus of the

data path, and the write-through of the register to the B bus on its way to the storage interface would be

disabled. Calculations showed this could be done for an increase in the complexity of the control and a

lengthening of each pipcstage by about 20ns, or a penalty of about 8% of every cycle.

This left us with three design alternatives: write-through without bypassing, bypassing with disabling of

write-through, and rcdcfinition of write-through as illegal in the architecture with enforcement provided by

the pipeline reorganizer. If no other pieces were available for packing, this last alternative could decrease

code density, and thus increase execution time, by forcing two pieces previously packable into one instruction,

into two separate instructions. WC defined the packing rate to be the number of instruction pieces per

instruction word. To choose among these alternatives, the pipeline reorganizer and MIPS simulator were

used to take data on the usefulness of bypassing. The results of these measurements appear in Table 2. Based

on this data, we concluded that the improvement in execution speed obtained by adding bypassing to the

MIPS architecture is small. We compared the costs of including either write-through or bypassing, and chose

to prohibit storing of a register into memory and modifying it by an ALU operation in the same cycle.

Program
Name

Fibonacci
Puzzle I
Puzzle II
Puzzle III
Queens

Avg.

Improvement with Bypassing
Packina rate Densitv Size Time

3 . 5  % 4 . 0 x 4 . 5 % 4 . 5 x
2 3 . 2  X 16.4 % 12.9 % 5 . 6 X
4 . 2  % 0 . 7 % 0 . 6 X 0 . 3 %
3 . 0  x 0 . 8 % 0 . 8 % 0 . 5 x
6.8 % 5 . 4 % 5.0 % 5 . 2 X

8.1 X 5 . 6 X 4 . 8 % 3 . 2 X

Table 2: Evaluation of bypassing

4.4 Increased Pipelining

Figure 4 shows the basic timing within one pipestage. Although the bus is heavily used, additional bus

bandwidth is available. First, little use of the bus is made during an ALU computation, as well as during the

set-up time for the next clock phase. During most of this time, the bus pullups are “precharging” the bus in

preparation for the next bus transfer. This prccharging could bc more effectively done by use of a

precharging circuit triggered by the rising edge of each clock phase. This would free up the buses for

approximately 50% of each pipestage. This bus time could be utilized by overlapping bus transfers with ALU

usage. If the 70ns for next state determination of the Master Pipeline Control were unchanged, this could

reduce the cycle time per pipestage from 250ns to 170ns. This overlapping would increase the execution

speed of the processor by about 50%. Unfortunately, this overlapping would place severe demands on the rest

of the processor. If the same instruction cache and instruction decoding hardware were used, another
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pipestage would need to be added between IF and ID, to provide the same time for instruction fetch and

decode. This would increase branch delays by one, or two for most branches and by three for indirect

branches (used on proccdurc return). This would take away 15 to 20 pcrccnt of the added performance

(according to calculations similar to those made in Section 4.2). A similar reduction in time available for data

references would best be handled by the addition of a data cache.

Current MIPS Microcycle
140ns 180ns 250ns

Bus Recharge Next state computation

Proposed MIPS Microcycle
Ons 5Ons 9Ons 130ns 170ns

\A \/ \/
/\ I\ /\ >I

Bus Recharge Bus Transfer Bus Recharge Bus Transfer
‘(writeback for ’
previous pipestage)

‘(reads for next pipestage)

Ons 1OOns 170ns

\I
/\ >I

ALU or Barrel Shifter Computation Next state computation

Figure 4: Increased microengine pipelining

Other problems with this approach arise in its VLSI implementation. The Master Pipeline Control

‘lardware would be significantly increased in complexity. This hardware is currently a critical path in the

machine, so increasing its complexity and requiring it to operate 50% faster could prove extremely difficult.

Many of the delays in the control section are caused by large capacitive loads of global control signals, so it

might be possible to attain a speed-up by increasing the size of control line drivers, although this could cause

problems with the overall power budget. Also, this organization would require a three bus design, because

the previous ALU or Barrel Shifter  result might have to be substituted for either operand. Not allowing

computations to be available in the next pipestagc would be unacceptable due to severe degradation of

pcrformancc and code density, especially for heavily arithmetic computations, e.g. filll-word multiplies and

divides. Using a three bus data path would increase pitch by approximately 21% the area of the chip by about

7% and would also increase bus transfer times by about 1Ons due to increased diffusion  delay in lengthened

polysilicon control lines crossing the data path. This is a penalty of 13% if we assume a transfer time of 40ns

and 25ns for precharging.

Without better cache technology and lower polysilicon resistance, this improved design immediately loses
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over half of its potential performance incrcasc. The impact on the Master Pipeline Control is hard to

estimate; increased demands on it could remove any remaining performance advantage,  as well as further

increase the size of the chip, causing additional delays due to critical propagation times in the master control

lines. The incrcascd complexity of this design would also rcquirc a larger design team and more design time

due to its substantially more complex logical structure. Lastly, this idea was only proposed after much of the

grueling layout for the two bus design had been completed and we had long passed the point of making such

a major design change.

5 Lessons, Successes, and Failures

In this section we discuss some of our experiences in designing a large and architecturally novel integrated

circuit within a university environment. While some of our experiences may be peculiar to the strange manner

in which large projects are attempted at universities, we believe that many of our experiences  will be common

to any large, complex, and evolving IC design project.

5.1 Chronology

- The MIPS project began in earnest two years ago. The following timetable shows some of the milestones of

the development process:

Winter 1981

Spring 1981

Summer 1981

Autumn 1981

Winter 1982

Spring 1982

First ideas for a streamlined processor, discussions of a VLSI implementation. Initial
thoughts about a pipelined, compiler-supported architecture.

Development of the basic foundation of the architecture by the VLSI Processor Design
class. Proposal of an initial instruction set.

Stabilization of the instruction set and the data path resources. Development of the
framework of the implementation: a two bus structure with each bus potentially carrying
data twice per pipe stage. Development of a code generator for the portable C compiler.
Start of initial versions of the Code Reorganizer and a Software Simulator.

Four members of the group started to work on implementations of the pieces of the data
path. The number of pipestages changed from six to five in order to reduce the branch
delay from two instructions to one. The final few instructions were examined and
benchmarked. The pitch of the data path was fixed at 33X per bit, and WC dccidcd to only
use buried contacts. We investigated  code reorganization  algorithms. An ISP description of
the processor was completed in December 1981.

The first of the test chips was sent for fabrication. It included the register file and its control
bus decoders. Serious work began on specifying the control portion of the processor.
Bypassing of ALU results was rejected. The instruction set stopped changing.

Completion of the program counter test chip. Design of the instruction decode unit. First
circulation of the Master Pipclinc Control document. A U-Code to MIPS assembly
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language code generator was started to provide an optimizing Pascal compiler for MIPS.
The Reorganizer was rewritten to include all dcsircd optimizations.

Summer 1982 Submission of the instruction decode test chip and the barrel shifter test chip;
implementation of the blaster Pipeline Control (MPC) unit.

Autumn 1982 Submission of the MPC test chip, completion of the ALU test chip. Assembly of the 6 test
chips into a processor began. The Timing Verifier was developed and the Pascal compiler
was producing high quality MIPS assembly language. By Christmas 1982, chip assembly
was completed and simulation of the entire processor began.

Figure 5 shows how the available manpower was divided over the various tasks during the entire design

process by showing the tenths of person-years for the first and second years of the project as well as the total.

The total amount of effort that has been expended is about 6.1 person-years. The figures show that the

project manpower grew from the first to second years as the implementation became the dominant concern.

What does no/ show in these figures is that a total of 15 people have at one time or another been working on

the main design. Tenths of person-years
Area 5 10 15 xl I?5 30 15 40 15 50 55 60 65

Architecture
Circuit Design m-1

Layout 1
D e s i g n  T o o l s  H
Compilers i
Reorganizer b 1

Total F 1

lst year: April 1981-  March 1982

lsliihl
/

2nd year: April 1982 - March 1983

Figure 5: Effort distribution in the MIPS design

5.2 Successes

We strongly believe that instruction set selection on the basis of hard data from compiled code was an

important and successful component of our methodology. The fact that we had a C compiler targetted to a

MIPS simulator very early in the design allowed us to make design decisions based on data that were directly

relevant to the architecture Many of the last instructions and features considered were bordcrlinc  in terms of
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benefits versus hardware cost. Being able to quantify the benefits  made the decisions much more

straightforward and provided the impetus  to resist constant additions to the architecture.

The specification of an assembly language interface that is distinct from the machine language was also a

great advantage. Not only were our early compiler efforts isolated, to a certain extent, from the turmoil of a

changing architecture, but the hardware designers were more free to change things, knowing that most

software changes would be limited to the reorganizer. Another advantage is that different versions or

implcmcntations of the architecture need not behave exactly alike. Only the reorganizer need be changed

from one implementation to the next. This approach saved us considerable work when we realized that the

PC-saving instructions, used for procedure call, could not save the value of the PC that we had initially

intended because the PC was incremented at that point in the pipe. Because this instruction was encapsulated

by a macro-level call instruction, the required change to the architecture and software was trivial.

One goal throughout the MIPS design was to simplify the hardware implementation whenever possible.

This meant keeping the VLSI implementation regular at the cost of sometimes complicating the software.

Also, the streamlined instruction set philosophy and our goal of simplicity in the implementation drove us to

eliminate all state not visible from the instruction set. Eliminating internal state meant that complex state. -
savings sequences and information flows to save internal state were not needed. Despite our best efforts, one

nonorthogonal feature crept into the design. To perform Booth multiplication two bits at a time, one extra bit,

which extends  HL to 65 bits, is required. We call this bit the D-bit, for obvious reasons. This single bit of

state caused the addition of several very irregular one-bit data paths as well as additional critical timing paths

and many headaches in the layout and documentation. The D-bit serves to remind us how valuable simplicity

and regularity are in VLSI implementations.

The experience of the RISC chip [14]  and the Geometry Engine [2] shows that if performance is not

carefully and comprehensively considered during the design, the results are bound to be disappointing. Our

attack on this problem was two-fold. First, we did extensive Spice simulations of a few obvious potential

bottlenecks early on in the design cycle. This was to verify the attainable performance range. Second, and

more significantly, we undertook to build a timing analyzer, TV (Timing Verifier), that would locate the

critical paths in the complctcd circuit [12].  Scvcral large capacitive loads driven by weak pullups,  which might

easily have gone unnoticed, have been uncovered by TV.

The test chips were a definite success. Despite disappointing yields and an inability to do thorough

‘performance testing, the effort to place a pad frame around each section was quite worthwhile. Completing

the test chip forced the designer of each section to fUlly simulate his section of the processor before it was

incorporated into the final design. Furthermore,  this simulation and debugging of each section could bc done
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in parallel. If the pieces had been asscmblcd  without thorough separate simulation, this debugging  would

have been much more sequential. As in any large system. bugs in one part of the circuit might have caused

misleading behavior in another, making the debugging still harder. If the test chips had not been assembled,

the processor might have been ready for simulation perhaps four to six weeks earlier. In our estimation, this

was less time than the added debugging effort would have required if the picccs had been assembled directly.

Additionally, we uncovered several bugs in our design aids early. Had the design aids broken on the entire

chip, we would have had a more difficult time tracking down these bugs, and it would have delayed our final

design still further.

Another good decision was to use a layout language called SILT [4] as our chip assembly tool. Each of the

six basic blocks of the processor was laid out with the graphical layout editor ICARUS [5]. After layout, blocks

were ‘placed and interconnected with SILT. This approach saved considerable effort in the assembly of the

test chips because they were all quite similar and shared a lot of SILT code: without this approach, the test

chips would have been prohibitively expensive to construct.. Graphical editors are very convenient when a

designer is laying out the leaf cells of a design; these cells are typically very random and tightly packed.

However, modifying a large design can be very painful with a graphical editor, as are more global tasks such

as block placement and routing. If a wire has been forgotten, a great many rectangles might have to be

manually changed in order to separate two major fUnctiona blocks by 7X.

In contrast, a procedural layout tool like SILT is very awkward for designing leaf cells because of an

extended edit-compile-plot cycle, and because it is often very difficult to visualize what a long sequence of

place box commands produces. SILT is very good at laying out geometry that can be algorithmically

expressed. An example of this phase of layout is the requirement to “place the barrel shifter  above the ALU”.

If the ALU should happen to change height and the SILT description was written with some care, the barrel

shifter and all its connections should move appropriately: SILT also has a simple, built-in river router that

provides a useful tool for connecting arrays of locations, such as buses, groups of control lines and even single

wires in some cases.

SLIM [S] also proved to be a great labor saving tool in the design of the ten PLAs on the chip. It allowed

each PLA to be abstracted  from the level of Boolean equations to a higher functional description that could

be written, read, and maintained with significantly less effort.
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5.3 Faiiu res

In any large project  with many decisions, some of them will be wrong. In our case, many of the wrong

decisions really represented a lack of decision. Specifically, a number  of things continued to change after the

layout had begun. Among the worst of these was the pitch of the data path. Due to changes in the support of

buried and butting contacts, we decided late in Fall 1981 to banish butting contacts and use a data path pitch

of 33h. This forced a significant amount of layout effort to be rcpeatcd. While talented designers may be very

effective in doing the layout of a tight data path cell, having such designers redo a layout is a waste of talent.

The squeeze from 35h to 33X done during the redesign with buried contacts made the layout very difficult;

the small performance improvements gained were probably not worth the effort expended in the design with

such a narrow pitch.

The instruction set also was in a state of flux until quite late in the design. Minor changes were being made

well into 1982, as the pieces of the data path were being designed. The best example is the count leading zeros
instruction which was added late in Fall 1981, dropped around May 1982, then temporarily added again for

about a week in June. It is useful to point out that this instruction was added and dropped, based solely on its

ability to be implemented by the hardware. Despite the fact that most of the late changes resulted in definite

. improvements (the change from 6 to 5 pipe stages is a good example), they inevitably caused repetition of

effort.

Another area in which a lack of forethought, or rather lack of parallel thought, caused problems was in the

external interface. Because all the designers were fairly busy, the details of the Master Pipeline Control had to

be worked out after the architecture was firmly entrenched. That meant solving all the hard problems relating

to privileges, page faults, and exceptions within a fixed framework. The result is a few minor quirks in the

exception  handling system that may have been avoidable if there had been more flexibility in the structure of

the mechanism. A prime example is the difficulty in returning from an interrupt with the lock-step, fixed

length, pipeline. The problem arises because one needs to restart the three instructions that were in the pipe at

the time of the exception using three successive indirect jumps to those three instructions. However,

complications arise because the last indirect jump has to do its data fetch from system space after the first

target instruction is being fetched from user space. If redesigning the existing program counter block had

been an option at the time this problem was rcalizcd, a conceptually simpler mechanism might have heen

found.

As in many projects without rigorous enforcement of documentation standards, the current state of the

design rested only in the heads of those most intimately involved with the project. This meant that our

communication problems wcrc larger than they should have been. In several instances, the same problem  had
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to be thought out a second and third time because the answers were not written down the first time. The

timing of the control busts was derived on at Icast three scparatc occasions before the iMastcr  PipeIine Control

document was written.

The documentation problem was amplified by our manpower situation. A lot of the people that were

working on the project were only peripherally involved, or only involved for a quarter or two. They spent a

great deal of time learning the basics of the processor. Furthermore, the core project team spent valuable time

teaching new contributors the basic ins and outs of the design.

Worse still was a misunderstanding that arose on several occasions. Someone on the edge of the project

would undertake to do a small piece of the processor without fully understanding the interfaces to the

surrounding blocks or the timing requirements. Unable to find any hard documentation or some person who

knew all the answers, the designer would, knowingly or otherwise, make assumptions, some of which

inevitably turned out to be false. When the erroneous assumption was finally caught at the supposed

completion of the task, significant redesign was often needed.

5.4 Lessons
. _

Many of the lessons that we think we have learned arc the same ones learned by VLSI designers, and

engineers in general, time and time again. One problem that can be particularly serious in VLSI is

synchronizing the design of various subsystems: one aspect of the design should not get way ahead of the.

others. If manpower and time permit, it appears best to have all the portions enter circuit design and

subsequent layout together. A better coordinated design might have saved much aggravation in the design of

the control portions of the chip.

Many engineering projects are sparsely documented: this is especially troublesome when the work force is

likely to change and the design is evolutionary. Documentation is a difficult and unexciting task, but it is

seldom a waste of time.

The effort required to design a VLSI part makes it important to decide on as many things as possible before

the drawing of transistors begins in carncst. Particularly when a number of people will be working on

interacting parts, all aspects of these interactions, be they physical, electrical or temporal, should at least be

considered, if not set in concrete, before anyone proceeds. This is not to say that small sections should not be

laid out on a trial basis during earlier stages of the design in order to obtain size, power and speed estimates,

but rather that everybody should be aware that these initial efforts are likely to be made obsolete by future

devclopmcnts. If the high-level design can also be partially flexible in rcsponsc to implcmcntation-driven

changes, the design will be dramatically eased.
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The design tools being used on an ambitious design will break. Of course, the tools always break just before

a deadline and just after the maintainer has gone on a long backpacking trip into the wildcrncss. We found

some design aids that broke because the design was too big, but more often our design tools could not handle

the less constrained design methodology that we used. This often produced unexpected results in tools

believed to be very stable. In other cases, we found that our design could not be recognized as “standard” by

the tools and was rejected outright (our bus-pullups caused this difficulty).

There comes a time in the design process when one can no longer afford to go back and change things.

Changing things early is far less expensive than changing them later. A great deal of engineering time and

aggravation can be saved by fixing the freeze date on the project; continually moving that date can cause

constant redesign.

MIPS also taught us some things about designing processors in VLSI. First, high performance and Mead-

Conway design techniques are not mutually exclusive for large designs. Given the right tools one can make

large chips go as fast as similar small chips. However, to break into the 1OOns  clock period range requires

circuit and analysis techniques that are beyond most Mead-Conway designs and designers. Self-timed

precharging, dynamic logic, sense amps, and similar approaches are needed to make the most of the

technology.

Adopting a streamlined instruction set has allowed us to experiment with pipelining as a medium through

which to attain high performance. Without the simplifications of a streamlined instruction set and the two-

part definition of the architecture, an implementation would have been out the question. Both the practical

size and the manageable complexity of our integrated circuit stem directly from these two ideas.

VLSI is a technology that is much more bottom-up driven than other implementation media. The

advantages and disadvantages of alternative implementations are difficult to assess without actually carrying

out the designs. Low-level layout problems encountered late in the design cycle sometimes force changes in

the specification. To whatever extent possible, the noncritical design specifications should be alterable as the

design progresses and unforseen problems demand change to the specification.

If at all possible, every aspect of the processor should be analyzed in terms of hardware costs and software

benefits. Hardware resources are far from free, particularly within the context of a single-chip

implementation. The costs in manpower, area, power and complexity must be compared with the

performance improvement resulting from the feature.
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Conclusions

Our biggest success was completing the design of a microprocessor that combines high performance with

the correct handling of systems issues and external interrupts. We were able to realize this project within the

bounds of our environment  because we started with few preconceived notions about processor design and

then considered design decisions without bias. Instruction set design can be turned into a scientific process in

which experimental evidence backs design decisions. This approach allowed us to increase performance by

implementing some unique hardware-software tradeoffs: functions with low utility but a high cost of

realization in hardware arc relegated to software, where the problems arc more efficiently handled.

As this paper goes to press, we are completing the final stages of simulation of the entire MIPS chip and

expect$o  submit the processor for fabrication shortly, provided our tools and energy hold up for the next few

weeks.
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