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Abstract:

Adam is a high level language for parallel processing. It is intended for programming resource
SC heduling applications, in particular supervisory packages f o r  runtime s c h e d u l i n g  o f
multiprocessing systems. An important design goal was to provide support for implementation of Ada
and its runtime environment. Adam has been used to implement Ada task supervision and also as a
high level target language for compilation of Ada tasking.
Adam provides facilities that match the Ada sequential constructs (including subprograms, packages,
exceptions, generics). In addition there are specialized module constructs for implementation of
packages that may be shared between parallel processes. Adam omits the Ada real types but
includes some new predefined types for scheduling. The parallel processing constructs of Adam are
mo-re primitive than Ada tasking. Strong restrictions are enforced on the ways in which parallel
processes can interact.
A compiler for Adam has been implemented in MacLisp on DEC  PDP-10 computers. Runtime support
packages in Adam for scheduling (on a single CPU) and I/O are also provided. The compiler contains
a library manipulation facility for separate compilation.
The Adam compiler has been used to build an Ada compiler for most of the July 1980 Ada language
design including task types and rendezvous constructs. This was achieved by implementing
algorithms translating Ada tasking into Adam parallel processing as a preprocessor to the Adam
compiler. This present Ada compiler, which has been operational since December 1980, uses a
procedure call implementation of tasking (‘due to Habermann and Nassi and to Stevenson). It can be
easily modified to other implementations. Compilation of Ada tasking into a high level target
language such as Adam facilitates studying questions of correctness and efficiency of various
compilation algorithms, and code optimizatjons specific to tasking, e.g. elimination of unnecessary
threads of control.
This paper gives an overview of Adam and examples of its use. Emphasis is placed on the differences
from Ada. Experience using Adam to build the experimental Ada system is evaluated. Design of
runtime supervisors in Adam and algorithms for translating Ada tasking to Adam processing are
discussed in detail.
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1 e INTRODUCTION. 1

I. INTRODUCTION.

Adam is a high level language for parallel processing. It is intended specifically for programming
resource scheduling applications. It has also provided a simple and flexible methodology for two
stage implementation of experimental compilers for the Ada language throughout the design changes
from the preliminary 1979 and 1980 designs [9] to the 1982 ANSI standard.

Adam was designed and implemented during 1979 - 1980. An important design goal was to provide
support for the implementation of Ada and its runtime environment. Adam was developed
independently of the official Ada project with the objective of producing experimental Ada
implementations quickly with a small investment in manpower.

Two main goals motivating the design were:

1 0 to provide a high level language suitable for construction of efficient runtime supervisors
for parallel programs intended to run on either single or multiple processor hardware,

2. to provide a high level target language for translation algorithms for Ada tasking.

Based on these goals, the Adam design remains close to the preliminary Ada sequentia! (non tasking)
design [9] but provides a more flexible lower level parallelism. The parallel constructs are closer to
constructs in previous languages such as Concurrent Pascal [I] and Modula [14] so that techniques
for their compilation are already well understood.

The-sequential constructs of Adam are essentially the sequential constructs of Ada augmented by
constructs for scheduling parallel computations and ccmmunication  between them: (1) new
predefined types Process Names, Locks, and Condition Variables, and (2) special kinds of structured
packages called Scheduled Modules. Parallel computations are represented by Processes.
Processes are program units, similar to procedures, which may be initiated and executed in parallel.
Processes may communicate only by operating on scheduled modules. The runtime scheduling of
processes is explicitly controlled by the user program and is not built into the semantics of processes.
The visibility rules of Adam are stricter than Ada, the intention being to make it very easy to determine
from the source text how parallel computations can interact. The main ommissions from the
sequential part of Ada are the real types.

l

In additon to the language itself, certain requirements are placed on its environment. The Adam
environment is required to include a runtime  supervisor module which must provide six standard
interface procedures. These procedures are implementation dependent; their semantics is left open,
but a “standard” interpretation is indicated. An Adam compiler pragma enabies a user to change the
runtime supervisor module. (c.f., discussion of programming process scheduling in [8].) This
approach to runtime  supervision provides flexibility in changing supervisors and in interfacing user
programs with the underlying supervisor. It also improves portability of the compiler.

Design goal (1) is motivated by the prediction that users of Ada tasking (or indeed any high level
multiprocessing language) will need to modify “standard” runtime scheduling and supervisory
packages to suit their own needs. (The reader who doubts this should consider, e.g. the design
philosophy changes that took place between references [I] and [2]. Certainly, if one man can go
through such changes, how widely might two men, an implementor and a user, disagree on the
necessary language constructs for scheduling and their implementation? There are many other
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publications discussing this problem, e.g.‘[8] and [lo].) It is therefore necessary to study the
structure of runtime supervisors and to develop languages that facilitate their construction.

Simple supervisory packages can be written in Ada directly, but with difficulty. The programmer must
follow a very strict discipline in coding critical regions both to ensure correctness and to distinguish
between scheduling code and computation for purposes of documentation and readability. He must
also be willing to simulate low level protection with high level constructs (e.g. semaphores encoded
as tasks).

Adam contains facilities specifically aimed at helping the programmer cope with these problems. A
simple discipline in structuring critical region s is enforced by the scheduled module construct.
Scheduling operations are separated from the operations that need to be scheduled and the two
kinds of operations are associated by a new kind of declaration called scheduling declarations. Adam
also provides predefined low level types for protection and scheduling: Locks, Process Names and
Condition Variables. The Process Name type is particularly important in constructing resource
scheduling in user programs and in interfacing such schedulers with the underlying standard runtime
supervisor (see discussion in Section 7.4).

If a runtime  supervisory package is itself a parallel program (as might well be the case in a
multiprocessor system) it cannot be written in Ada using the task rendezvous constructs (for then
there would need to be a “sub-supervisor” to schedule rendezvous in the main supervisor, and
changes in the compiler so that compilation of the main supervisor would interface with the sub-
supervisor). In Adam it is anticiparted  that supervisory packages will involve distributed and parallel
processing. Therefore parallel processes in Adam have a semantics which do not imply any s
particular underlying scheduling. .The scheduling of processes is always contro%led  by the user .
program. If a supervisor package has parallel processes, a subsupervisory kernel may be written
specifically to schedule these particular processes by using their process names.

Goal (2) became a concern during the study of the preliminary Ada tasking design It very soon
became clear that the informal semantics of task rendezvous given in the preliminary Ada Rationaie
was by no means the only viable model for implementation. Alternative operationa% models were
suggested in [6] and [13]. There are several advantages to giving a precise definition of these
algorithms at a very high level, i.e., as translations from Ada to an existing high level parallel language
in which the parallelism is lower level than Ada tasking: (a) the translation from Ada to the target
language could be a preprocessor to a compiler for the target language; this should result in an easy
implementation of a compiler for Ada based on a compiler for the target language. (b) It provides a
capability to change the compilation algorithm quickly or to have alternative algorithms available in
the compiler. (c) Precise definition of translation algorithms (e.g. as input/output relations between
Ada source and programs in the target language) gives us the possibility of formulating and proving
their correctness.

To achieve goal 2, the semantics of parallelism in the target language must already be well
understood. Existing languages with clearly defined parallelism included Concurrent Pascal and
Modula. So the parallelism in Adam is closely related to processes in these two languages.

In Adam we chose a form of parallel processes in which all interactions between processes can be
deduced from their declarations and instances. To do this requires changing the visibility rules of
Ada. In Ada these rules permit undeclared use of global objects, e.g. between tasks, in packages, or
in exception handlers, which makes any attempt at precise documentation difficult Their generality
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(or permissiveness) is a pitfall to the uninitiated and an area where good programming practice
should be developed and taught. Here, Adam simply enforces restrictions that prevent processes
from communicating (i.e., influencing each others computations) in arbitrary ways. These restrictions
include: (a) limiting the kinds of global objects that may be accessed by processes, and requiring that
such access to be explicitly declared in process specifications, and (b) requiring import declarations
on modules to specify the use (inside the module body) of outside (global) variables and modules.

The reason for restricting visibility in the Adam design is to make possible compiletime checking for
many common errors due specifically to failure in communication between parallel processes. An
immediate benefit is to ensure that the translations of Ada tasking conform to a structure which
makes them easy to specify and analyse. Since the translation algorithms are themselves defined in
terms of input/output relations between Ada and Adam, this clearly affects the formulation and study
of their correctness.

The Adam restrictions can in fact be followed in Ada by disciplined programming; but the programmer
will have to invent his own commentary to specify what he is doing, and his own methods of checking
that he does it. On the issue of useability, the value of these restrictions in terms of whether they help
or hinder current programming techniques remains to be studied.

A compiler and runtime  supervisor for Adam were implemented and running by June 1980. The
compiler was implemented in Maclisp, and the supervisor in Adam. Following the ideas of goal (2), an
Ada to Adam translation algorithm for Ada tasking was then implemented. The resulting two stage
compiler for most of July 1980 Ada design was demonstrated at the Ada Symposium in Boston,
December 1980. This compiler has been used for over two years as an instructional tooi and as a
basis for other research projects in Ada.

.
The structure of this paper is as follows. Chapter 2 gives an overview of the Adam language and a
rationale. Chapters 3 - 5 explain in detail those constructs of Adam that differ from Ada, and give
simple detailed examples of their use. Chapter 3 discusses the new primitive types for scheduling; the
different kinds of modules provided by Adam are presented in Chapter 4; Chapter 5 deals with
processes. Chapter 6 explains the rules for visibility and importation of objects. Chapter 7 gives a
summary of our experience in implementing Adam, and using Adam to build a compiler for
preliminary Ada. Experience in transporting the compiler and runtime supervisor is described.
Appendix A gives a detailed Adam source text for a simple runtime supervisor. This illustrates the
structured design of a portable supervisor using Adam. Appendix B gives details of the
preprocessing algorithm translating Ada tasking into Adam processing that was implemented. Other’
translation algorithms that could be implemented similarly are discussed in [13].

1 .I NOTATION AND TERMINOLOGY.

The paper assumes that readers already have some familiarity with Ada. The syntax of Adam follows
the notation and formatting conventions of Ada with a few exceptions In syntax descriptions square
brackets, [ 1, indicate an optional construct; curly brackets, { }, indicate zero or more repetitions of a
construct.

Modules and processes are called units. Nongeneric entities are often called actual. Variables and
actual modules are called objects. Entities declared in the specification - or visible - part of a
module are said to be exporied  by the module. Entities declared in the body of a module are said to be
encapsulated by the module.
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2. OVERVIEW OF ADAM.

Adam consists of almost all of the non-tasking constructs of the Ada language, July 1980 [9],
augmented by some simple primitive constructs for scheduling and parallelism. This section briefly
discusses the areas where Adam differs from Ada and presents a short overview of the scheduling
and parallel features of Adam together with the rationale for them. Details and examples are given in
later sections.

.
2.1 TYPES AND DECLARATIONS.

The types and declarations of Adam are essentially those of Ada. The type facilities in Adam are not.
as rich as Ada, the general philosophy being to provide only a simple set of types sufficient to support
construction of multiprocess programs. Accordingly, non-integer numeric types and type
conversions have not been included in Adam, and range constraints must be static.

However, Adam includes some new primitive types that are important in writing schedulers and#
process supervisors.

Process Names. Process names provide a means of referring to a process (or thread of control).
Conditions. Condition variables provide a FIFO queue of process names.
Locks. Variables of type Lock provide a low-level facility for programming critical regions.

Adam provides a set of operations for each of these types; for details see Section 3.

The facility of having names for processes is important in programming scheduling of shared
variables (or any interaction between processes), supervision of resources, and message-passing
operations. One might think that locks and conditions could as we!l  be defined as (exported or
standard) modules. However, Adam follows Ada in not treating modules as types; thus modules
cannot be passed as parameters. Not having locks and conditions available as parameters would not
permit to write scheduling code as clearly and succinctly as with lock and condition variables.
Furthermore, it would make it impossible to express certain scheduling strategies that depend on
critical sections being locked up across procedure calls (in particular calls to supervisor procedures;
for such a situation see the notes following Example 4-5).

2.2 STATEMENTS AND SUBPROGRAMS.

The statements of Adam include all of the sequential statements of Ada. Since the multitasking in
Adam differs from that of Ada there are no delay, abort, select, accept, or terminate statements in
Adam. However, Adam provides two kinds of statements not in Ada: reserve for reserving a
scheduled module (see Section 4.2.2), and initiate for the initiation of processes (see Section 5.4).

Adam subprograms are the same as in Ada (including generic subprograms), with two exceptions:

1. A subprogram that is part of a scheduled module may be linked to procedures of a
scheduler by a scheduling dec/araCion  (see Section 4.2.1). A scheduling declaration is
included in the declarative part of the procedure body.
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2. Adam provides interrupt procedures, which are special procedures that are called
directly from the hardware (see Section 4.3.2).

2.3 MODULES.

Modules in Adam correspond to packages in Ada. They provide facilities for encapsulation or
abstraction Modules may be generic; generic modules are declared and instantiated as in Ada. In
addition Adam provides special modules:

l Schedulers,
l Scheduled modules, and
l Device modules.

Schedulers are used to group and encapsulate scheduling and synchronization operations. They are
intended to simplify the overall structure of scheduled modules by supporting a clear distinction
between scheduling and regular computation. They also serve to enforce a discipline of stating the
intended biding of scheduling operations to individual subprograms in a scheduled module by use of
scheduling declarations (Section 4.2.1).

Scheduled modules are the units for communication between parallel threads of control (processes)
and therefore provide a facility for scheduling operations concurrently. A scheduled module is simply
a module containing a scheduler; its visible operations are associated with scheduler operations by
scheduling declarations (see Section 4 for Details). the actual scheduler is part of the user program
(as opposed, for example, to Monitors in Concurrent Pascal which have a one-at-a-time scheduling
imposed by the language semantics). In Adam, a scheduled module may be constructed so as to
permit simulaneous operations. The monitor construct of Concurrent Pascal [1] and the mailbox
concept of Gypsy [5] are particular instances of scheduled modules.

.

Device modules - or devices, for short - are intended for encapsulating those parts of a system that
are machine-dependant; they provide the interface to operating system and hardware. Devices may
contain machine-coded operations and interrupts. A device module may be a scheduled module. A
device module often represents the interface to an actual hardware device, and the scheduler
provides appropriate access control. Device modules are similar to devices in Modula [I 41.

2.4 PROCESSES.

Processes are program units which may be run in parallel. Processes communicate by operating on
scheduled modules These modules are called communication channels and are declared by means
of a channels declaration in the specification part of process declarations There are no means of
communication among processes other than channels; in particular, processes do not import objects,
may not reference external values, and do not have exports (see Sections 2.5 and 6 for details).

Execution of a process is begun by means of the initiate statement (see Section 5.2). Multiple
initiations of a process are permitted; each initiation results in a new copy of the process. Initiation is
the only operation on processes. A process terminates when it reaches the end of its body. A scope
may be left only when all dependent processes have terminated (see Section 5.3).
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Processes may be generic, but may have only generic type and in parameters. A generic process
may be instantiated to an actual process. -

In compa:ison  with Ada, the constructs in Adam for communication between processes are lower
level than the Ada Rendezvous and more restricted. Their choice has been motivated by several
considerations. First, the Adam constructs can easily be implemented. Second, they enforce a
disciplined and controlled style of interaction among processes. All possible communication among
processes in a system can be determined from the specification parts of the process declarations; this
should also aid in understanding multi-process systems, in developing specifications for them and in
checking their correctness. (In Ada, for example, the bodies of consumer tasks must be examined to
determine which service tasks they communicate with.) Third, Adam provides to the programmer
great flexibility in organizing the scheduling of processes. Adam is not restricted to the FIFO entry
queues of Ada. The language provides the means for constructing schedulers that interact smoothly
with the runtime supervisor in a multiprocess system. These capabilities should be close to the kind
of programming required in constructing embedded computer systems. For high level
multiprocessing it can be expected that standard library schedulers and runtime  supervisors are
available in separately compiled units, so that the programmer is not burdened by having to construct
them. Fourth, the Adam multiprocessing constructs have been designed so that Ada multitasking
systems can be translated into Adam multiprocessing systems [13]. Adam thus serves as the vehicle
for developing an implementation of the Ada language. (For experience with this approach see
Section 7.)

2.5 PROGRAM UNITS, VISlB1LITY AND IMPORTS.

The visibility rules of Adam are adopted from Ada with several modifications which restrict visibility of
objects, which include variables and non-generic modules, and subprograms. First, the outside
objects visible within a process are exactly the scheduled modules declared as communication
channels of the process. No other outside object may be mentioned within a process. Second, all
outside objects mentioned inside a non-generic module must be declared as imports of the module;
generic modules may not contain imports declarations and therefore cannot access objects declared
outside. Third, subprograms declared outside a module or process are not visible inside those units.
Unlike objects, subprograms cannot be imported, either, unless as part of an encapsulating module.

The purpose of these rules is to ensure that all possible interactions between processes are deducible
from the declarations of processes and communication channels. The entities that processes may
use to influence each others’ computations are the objects; they can be enumerated by taking the
transitive closure of the channels, their imports, imports of imports, and so on.

The objects, i.e. the elements that may be used for communication, are defined to be those entities
that have accessible values or states that may vary during a computation; these include variables and
actual modules.

Most other entities in programs, including types, subtypes and generic units, are purely definitional in
nature and do not have states, thus cannot be used as shared comminucation media. (The visibility
rules of Adam are intended to ensure that generic units are purely definitional.) For these entities,
visibility is exactly as in Ada.

Processes have states, but their states a:e not accessible by other units. The only action that can be
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performed on a process is initiation. The onl’y manner in which an external unit may effect the state of
an initiated process is to operate on a channel shared with the process. So the visibility of processes
is also unrestricted.

Finally, the treatment of subprograms results from a compromise with usability considerations. A
subprogram declaration is definitional unless there are global objects. We could require imports
declarations on subprograms, in which case their visibility would not need to be restricted. However,
the introduction of modules into a programming language appears to change the role of subprograms
from basic unit (as in Pascal) to small subunit of a module. The unencapsulated subprogram
becomes a rarity. But in its new role as building block of modules, it is normal for a subprogram to
import the local data of a module body. So imports declarations would then be part of most
subprograms. But the imports declarations on subprograms internal to a module body are invisible
outside the body and no longer contribute to the specification of outer systems of processes. So
instead of requiring imports declarations on subprograms, we have restricted the visibility of
subprograms.

Details of the rules for visibility and importation in Adam are given in Section 6.

Notes:
,

1. In defining those objects whose importation must be declared, there are two possible
approaches. Make every identifier an object, as in Euclid. This is very simple but leads to
lengthy and irrelevant impo& lists containing many “objects” that cannot possibly be
used to communicate between parallel computations. Alternatively, define as objects

. ‘exactly those elements that a process may be able to use to influence another’s
computation. This requires more complex visibility rules and forces the programmer to
think, but leads to more relevant lists of imports. We take the second approach.

2. Construction of the transitive closure of channels lists and imports lists is easily
automated and may prove useful in checking for some common errors.

3. Ada with clauses function as imports declarations between separately compiled units.

4. Essentially, the stricter visibility rules enforce a discipline in Adam that can be practiced
in Ada.

2.6 EXCEPTIONS.

Exception handling and propagation is the same as Ada except that there is no direct propagation of
exceptions between processes. Exceptions that are raised during scheduling are treated slightly
differently; for details see Section 4.2.3.

2.7 PROCESS SUPERVISION.

One of the design goals of Adam is to provide a language for writing process scheduling, often called
supervision here. Consequently, the semantics of the multiprocessing constructs of Adam do not
imply any particular scheduling.
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However, it is important to define a minimal expected interface of operations to be provided by most
supervisors. This facilitates programming higher level scheduling of processes in user programs
(since scheduling often involves supervisor calls) and substitution of new supervisors into
multiprocess programs.

The Adam language environment is required to contain a precompiled scheduled module, supervisor,
that implements a set of visible standard procedures for activating and suspending processes:

procedure START (D : INIT-DATA);
procedure SUSPEND;
procedure ACTIVATE (P : PROCESSNAME);
procedure SWITCH (P : PROCESSNAME);
procedure DELAY-FOR;
procedure FINISH:

These procedures and the type IN IT-DATA (process initialization data) are implementation-
dependent. Their semantics is therefore left open, and it should be emphasized that the procedures
are not part of the language itself. However an intended interpretation for single CPU
implementations is indicated as follows. The supervisor procedure START is called when an initiate
statement is executed; it sets up the proper entries in the supervisor tables and activates the process.
When a process has reached the end of its body, the supervisor procedure FINISH is called. A call to
SUSPEND results in the suspension of the calling process and (normally) the running of another
process in its place. The procedure ACTIVATE reactivates a process after suspension. The
procedure S\rlTTCH  causes a context switch from the calling process to process P, i.e., suspends the
calling process and activates P. An Adam implementation of these supervisor procedures is given in
Appendix A.

It is recommended that an Adam compiler should use only the standard supervisor procedure calls in
the compilation of processes. Calls to START and FINISH are generated by the compilation of
initiiation and termination of processes respectively. The other standard supervisor procedures are
most often called directly by scheduling proceduies  in user programs. However, when processes are
nested the compiler may also have to generate calls to SUSPEND and ACTIVATE, e.g. for
synchronizing termination of outer and inner processes.

If the interface of standard supervisor procedures is all that an Adam compiler assumes about
supervision, it is easy to substitute a user-written supervisor that conforms with the interface for the
standard one and have it used in the compilation of multiprocess programs. A pragma, SUPERVISOR,
notifies the compiler to substitute calls to procedures of the same name from a new module for calls
to the standard supervisor procedures. For instance, the pragma,

pragma SUPERVISOR (M) :

where M is a module name, will result in the replacement of all calls to ACTIVATE by calls to
Ma ACTIVATE in the compilation, and similarly for the other expected procedures in the supervisor
interface. (Obviously, the supervisor pragma has to appear in the program text before any calls to
supervisor procedures are to be compiled.)

A user-supplied supervisor may be more sophisticated and implement additional procedures. For
instance, the supervisor presented in Appendix A supports multiprocessing on a one-processor
installation; a supervisor for programs intended to run on multiprocessor hardware must deal with
additional problems like possible time races. On the other hand, in some applications, e.g. where
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processors are dedicated to single processes, the START and FINISH
non-trivial ones in a user-supplied supervisor for that application.

procedures may be the only
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3. TYPES FOR SCHEDULING.

In addition to the standard Ada types, the following new types are provided in Adam. Variables of
these types are intended to facilitate the writing of scheduling and synchronization.

3.1 LOCKS.

Variables of type LOCK are used to implement primitive mutual exclusion. Locks may be in one of two
states, which may be thought of as ON and OFF. There are three procedures that may be applied to
locks :

TEST-SET (L: in out LOCK; B: out BOOLEAN)
gains exclusive access to L; if L is OFF changes L to ON and sets B to TRUE, else
sets B to FALSE.

SET (L : in out LOCK)
busy waits uhtil L is OFF, then gains exclusive access to L and changes the state
to ON.

e

RESET (L : in out LOCK)
gains exclusive access to L, then changes state of L from ON to OFF.

These are the only operations that may be applied to locks.

Example 3-7: The <body> is protected by L from simultaneous execution.

L : LOCK;

begin
S E T  ( L ) ;
<body>
RESET (L);

end ;

- - variable L is declared to be a loch with
- - initial state 0 F F.

- - busy wait to gain access to L and <body>.

OS reset L so next user may gain access.

3.2 PROCESS NAMES.

Whenever a process in initiated it is assigned a unique value of type PROCESSNAME. This is the only
way that process names can be created. The only permissable operations are assignment, equality,
and interrogation using the function MYNAME which returns the name of the thread OF control
executing the call to MYNAME.

The type PROCESSNAME also includes a constant, null, which is not associated with any process.
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3.3 CONDITIONS.

A value of type CONDITION is a FIFO queue of process names. Variables of type CONDITION are
called condition variables.

The operations on condition variables are as follows. All of these operations are indivisible (e.g. a
possible implementation of indivisibility is to protect operations on a condition variable by disabling
interrupts and locking the operations).

function EMPTY (CV : CONDITION) return BOOLEAN
returns TRUE if the queue of CV is empty; initial value is TRUE.

procedureINSERT (CV : inoutCONDITION; P : PROCESSNAME)
inserts P on the queue of CV; raises CONDITION]-QUEUE-FULL exception if the
queue of CV is full.

procedure REMOVE (CV : in out CONDITION; P : out PROCESSNAME)
removes the first process name from the queue of CV and returns it as the value of
P; raises CONDITION_QUEUE-EMPTY exception if the queue of CV is empty,

Example 3-2: Two synchronization operations coded using condition variables.

The following two procedures are typical operations used to implement schedulers for modules in a
multiprocessor environment They include both decisions to queue (or dequeue) processes and calls
to the process supervisor. They are, in turn, protected by locks

.

procedure WAITFOR  (CV : in out CONDITION; CVL : in out LOCK) is
- - tests some condition followed by a queuing
- - operation and a supervisor call if the test
a- is FALSE. CVL should be a unique lock
- - protecting all operations on CV.

begin
SET (CVL);
i f  <some-cond i t ion>  then

INSERT (CV, MYNAME(
RESET (CVL);
SUSPEND;

else
RESET (CVL);

end if;
end ;

- - Supervisor call to suspend caller0

procedure SIGNAL (CV : in out CONDITION; CVL : in out LOCK) is
se removes the first process name from the
- - queue CV (if nonempty) and activates it.
- - CVL is a unique lock protecting a//
- - operations on CV.

P : PROCESSNAME ;
begin

SET (CVL) ;
if <some-condition> and not EMPTY (CV) then
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REMOVE (CV, P);
RESET (CVL) ;
ACTIVATE (P);

else
RESET (CVL);

end if;
end ;

- - Supervisor call to activate P.

Another example of use of condition variables is given in Section 5.5, Example 5-4.



14
. 4. MODULES.



15

Module declarations in Adam are the same as for Ada packages except:

1. Global objects in generic module declarations are not permitted.

2. Declaration of global objects imported into nongeneric modules is required.

3. Scheduling declarations are used in a scheduled module body to associate visible
operations with scheduling operations.

. .
4. Different kinds of modules can be defined:

module - basic module,

device - bodies of devices may contain machine code and interrupts,
.

scheduler - provides procedures for scheduling,

scheduled module - a module containing a scheduler; this is the program unit for
communication between processes.

Separate compilation of,module  specification and body is supported.

.
M’odules,  schedulers and scheduled modules may be generic. Generic modules are declared and .
instantiated as in Ada.

The general format for module declarations is:

[ g e n e r i c  g e n e r i c  p a r a m e t e r  l i s t ]  .
module M is

[imports ( imp o r t s  l i s t ) : ]
o t h e r  d e c l a r a t i o n s  a n d  s p e c i f i c a t i o n s

[private . . . ] - - private part
end [M];

.
module bd;ly M is

[ i m p o r t s  ( i m p o r t s  l i s t ) ; ]  - - encapsulated imports, see Section 6
o t h e r  d e c l a r a t i o n s - - must include the bodies of all operations

- - and modules specifiecj  in the visible part
endeM] ;

Note:

For an explanation of imports list see Section 6.2.

Example 4-7: Adam version of the visible part of the ON-STACKS example from the Ada Reference
Manual [9], p. 12-5.

generic
SIZE : INTEGER;



16 4. MODULES.

type ELEM is private:
module ON-STACKS is .

type STACK is private;
OVERFLOW, UNDERFLOW : exception ;

- - Visibility of exceptions is the same
-- as that of the module declaration.

procedure PUSH (S: in out STACK; E: in ELEM);

procedure POP (S: inout STACK; E: out ELEM);

private
type STACK is

e n d  &STACKS;

4.1 SCHEDULERS.

Schedulers are intended to encapsulate both the synchronization and protection for scheduled
modules shared between processes. Schedulers implement (a)  the scheduling procedures for entry
to, and exit from module operations, (b)  procedures REQUEST and RELEASE (for the reserve
statement), and (c) procedures for synchronization between module operations. Scheduler
procedure declarations follow the normal format for procedures, except they may not contain
scheduling declarations; REQUEST and RELEASE do not have parameters.

. -
A nongeneric declaration of a scheduler must be in the bcdy of a scheduled module. Conversely, a
scheduled module must contain exactly one scheduler. Generic schedulers may appear in any
declarative part. An instance of a scheduler may be declared only in the body of a scheduled module.

Example 4-2: A common format for scheduler declarations within scheduled modules is:

scheduled module M is

e n d  Mi.
- - specification part of M

scheduled module body M is
- -.

scheduler SCHED is
local variables of M,

mm scheduler for M.
i m p o r t s  ( l i s t  o f  l o c a l  v a r i a b l e s  o f  M ) ;
procedure REQUEST; - - REQUEST and RELEASE are procedures
procedure RELEASE; - - used for scheduling reserve (Sec. $.2.2),
procedure ENTER (...); - - procedures used to schedule entry to

-0 and exit from operations of M.
procedure LEAVE (...);
procedure DELAY (. . . );

end SCHED;

- - Other declarations in the body of M; this
mm will contain bodies for each visible
- - subprogram of M together with scheduling
- - declarations using procedures of SCHED,
- - and the body of SCHED
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4.2 SCHEDULED MODULES.

A scheduled module is a module whose visible operations are scheduled by a scheduler local to its
body. Scheduling of operations is declared by scheduling declarations. If a scheduled module is
named in a reserve statement, then the scheduler for the module must provide REQUEST and
RELEASE procedures.

When a generic scheduled module is instantiated, each new instance of the module has a new
instance of the local scheduler.

4.2.1 SCHEDULING DECLARATIONS.

A scheduling declaration may be included in the declarative part of a subprogram in a scheduled
module. A scheduling declaratiqn  has the following format:

s c h e d u l i n g  ( s c h e d u l i n g - i t e m ,  s c h e d u l i n g - i t e m ) ;

where each schedul i ng-item is either null or a call to a visible procedure of the local scheduler.
The first scheduling item indicates the scheduling before entry to the scheduled procedure, and the
second scheduling on exit from the procedure. A schedul i ng-i tern null means that no scheduling
action is to be executed.

A scheduling declaration ior a procedure P in a scheduled module with scheduler S,

s c h e d u l i n g  (P (Ll), p2 (L2) ):

has the effect that the body of P is compiled as

S.P, (L$ - - omitted if p,(L-,) is null.
w <body of .P> .

SOP, V-2): SW omitted if p2(L2)  is null.

Notes:

1. Within the body of a scheduled module with scheduler, S, calls to a scheduler procedure,
p, are stated in the usual format, Sp, unless they are in the scope of a “use S” clause.

2. Scheduling declarations permit specification of “before” and “after” scheduling. The set
of scheduling declarations specifies explicitly the scheduling of entrance to and exit from
the boundary of the scheduled module.

3. Internal synchronization between module operations cannot be declared by this
mechanism. For this, explicit calls to scheduler procedures are used.
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4.2.2 RESERVE STATEMENT.

The reserve statement is used to reserve a scheduled module. It allows a process to perform a
sequence of module operations without any intervening operations by another process on the same
module. It is intended for use when the number of operations is determinable only at runtime.

The form of a reserve statement is:

reserve scheduled-module-name do
s t a t e m e n t - l i s t

end reserve ;

Example 4-3: Printing a file of arbitrary length.

reserve LPT-DRIVER  do
loop

- -
;P;-DRIVER.PRINT (...I;

get next line of file

- - print it on the line prl’nter
end loop;

end reserve;

A reserve statement is compiled using the REQUEST and RELEASE operations of the module’s
scheduler. If the scheduler of the scheduled module is S, the reserve statement is compiled as

S. REQUEST;
‘s t a t e m e n t - l i s t
SRELEASE;

If REQUEST and RELEASE are not supplied by the scheduler, attempts to compile reserve statements
for the module will result in an error message. ,

4.2.3 EXCEPTIONS IN SCHEDULED  MODULES.

If an exception which is unhandled reaches the outer level of a scheduled operation the operation’s
exit procedure is executed before the exception is propagated.

I f  a schedul ing operat ion propagates an except ion, then  a  spec ia l  Adam except ion ,
SCHEDULING-ERROR, is propagated to the subunit that called the scheduled operation, i.e.,
scheduling errors are not handled in the scheduled operation itself.

4.3 DEVICES.

Device modules are the only program units that may contain machine code and interrupt
procedures. They are intended to encapsulate the machine-dependent parts of a system. Device
modules may be generic if they do not contain interrupts procedures. When a generic scheduled
device is instantiated, each new instance of the device has a new instance of the local scheduler.
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4.3.1 MACHINE CODE.
.

Machine code is inserted into a program through the use of an aggregate as in Ada. (An example is
given in Appendix A-see the CPU module body.) Unlike Ada, both machine code and Adam
statements may appear in the same subprogram; this simplifies writing machine-dependent code.

4.3.2 INTERRUPTS.

Interrupts are special procedures that are called directly from the hardware. Interrupt procedures
may occur only in device modules. Interrupt procedures may not be generic and may not have
parameters; they may access global variables (see Example 4-6).

Interrupt procedures are declared by:

interrupt P called from number is
. . . - - procedure body as in regular procedures

Note: A separately compiled device which has an interrupt procedure in its body must contain a
subprogram header for that procedure in its private part.

4.4 EXAMPLES.

Example 4-4: Buffer module. A buffer is a typical example of a scheduled module. We give first a very
simple version; the example is presented in two stages, first the top level structure showing the
scheduling, then the implementation of the scheduler. .

generic
BOUND : INTEGER;

scheduler BUFFER-SCHED is
procedure R-ENTER;
procedure W-ENTER;
procedure RW-EXIT;

end BUFFER-SCHED;

.

- - first scheduler operation,
- - second scheduler operation,
9- third scheduler operation.

generic
type ITEM is private:
SIZE : INTEGER;

scheduled module BUFFER is
procedure READ (X :  out ITEM);
procedure WRITE (Y : in ITEM) ;

end BUFFER;

scheduled module body BUFFER is
- - declaration of local variables of BUFFER,

sche&;;er SCHED is new BUFFER-SCHED (SIZE) ;
- - declaration of scheduler,

procedure READ (X : out ITEM) is
scheduling (R-ENTER, WR-EXIT)  ;

- - scheduling for READ-see below,
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. a ..

procedure WRITE (Y : in ITEM) is
scheduling (W-ENTER, WR-EXIT);

9- scheduling for WRITE-see below,
.

end BUFFER;

scheduled module CHAR-BUFFER is new BUFFER (CHARACTER, 12Q) ;
- - declaration of an instance of BU F FE R.

The declaration of CHAR-BUFFER will result in the declaration of a new scheduler that is an instance
of BUFFER-SCHED. The scheduler for CHAR-BUFFER is not named, but conceptually its declaration is:

scheduler CHAR-BUFFER-SCHED is new BUFFER-SCHED (120) ;

The effect of the scheduling declarations in BUFFER is that calls to CHAR-BUFFER will be compiled as,

CHAR-BUFFER-SCHED,R;ENTER; CHAR-BUFFER-SCHED.W-ENTER;
CHAR-BUFFER-READ (X); CHAR-BUFFER.WRITE  ( Y ) ;
CHAR-BUFFER-SCHED.WR_EXIP; CHAR-BUFFER-SCHED.WR-EXIT;

Exampie  4-5: Implementation of 5U.F F ER-SCHED.

scheduler body BUFFER-SCHED is
. - PROTECT : LOCK; - - local variables of scheduler

COUNT : INTEGER range Q . . BOUND := 0;
INUSE : BOOLEAN := FALSE;
READQ : CONDITION;
WRITEQ : CONDITION;

procedure R-ENTER is
begin

SET (PROTECT);
if COUNT = 0  o r  INUSE t h e n

INSERT (READQ, MYNAME);
RESET (PROTECT);
SUSPEND;

else
INUSE := TRUE;

end if;
COUNT := COUNT - 1;
RESET (PROTECT);

end R-ENTER;

procedure W-ENTER is
begin

SET (PROTECT);
if COUNT = BOUND or INUSE then

INSERT (WRITEQ, MYNAME);
RESET (PROTECT);
SUSPEND ;

o-

--

we

--

mm

me

--

--

a-

--

we

--

--

-0

mm

--

--

queue for readers
queue for writers

schedules entry to REAL>,

wait to gain exclusive access,

BUFFER is empty or in use,
place reader on queue,
release BUFFER-SCHED (note 2 below),
supervisor call to suspend caller,

prepare to enter free BU F F E R,

reduce number of items in BUFFER?
release BUFFER-SCHED.

schedules entry to WRITE,

wait to gain exclusive access,
BUFFER is full or in use,
place writer on queue,
release BUFFER-SCHED (see note 2 below)
supervisor call to suspend caller,
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else
INUSE := TRUE;

end if;
COUNT := COUNT f 1;
RESET (PROTECT);

end W-ENTER;

- - prepare, to enter free BUFFER,

- - increase number of items in BUFF E R,
-- release BUFFER-SCHED.
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procedure RW-EXIT is
- - schedules exit from READ and WRITE,

P : PROCESSNAME;
begin

SET (PROTECT); we wait to gain exclusive access,
if COUNT > 0 and not EMPTY (READQ) then

REMOVE (READQ, P);
ACTIVATE (P); - - supervisor call to activate a reader

elseif COUNT < BOUND andnot EMPTY (WRITEQ) then
REMOVE (WRITEQ, P);
ACTIVATE. (P) ; - - supervisor call to activate a writer

else
INUSE :=  FALSE; - - e/se BUFFER is free
RESET (PROTECT);

end if;
end RW-EXIT;

begin
RESET (PROTECT); ~.

. _ end BUFFER-SCHED;

Notes:

1. All procedures of BUFFER-SCHED are protected by the same lock, PROTECT. Only one
thread of control, P say, can have access to BUFFER-SCHED at any time. Processes busy
wait to enter BUFFER-SCHED. The implementation of waiting in SET is not required to be .
fair, and this could cause a process to be starved.

2. Each BUFFER-SCHED procedure calls the supervisor. PROTECT is reset before calls to
SUSPEND. In a multiprocessor system this means an ACTIVATE (P) might be executed
(by another thread of control) in RW-EXIT before SUSPEND is executed by P itself in
R-ENTER or W-ENTER. This will not cause blocking only if the supervisor can remember an
ACTIVATE that arrives ahead of the matching SUSPEND.

An alternative design of supervisor calls is to permit locks as parameters of ACTIVATE
and SUSPEND, and require these procedures to reset the lock.

3. Operations, of the scheduler, BU FFER-SCHED,  and BUFFER may execute simultaneously.
However the very simple scheduling in BUFFER-SCHED makes BUFFER a critical region
also. It is a simple exercise to change BUFF ER-SCHED  so that Read and Write operations
may execute simultaneously in BUFF ER.

Example 4-6: Simple device module using interrupts.

The following example demonstrates the use of interrupts and scheduling in device modules. The
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device module LINE-OUT is to be used for sending a line of output to a device, such as a line printer,
which is initiated by receipt of the first character of the line and which wil9 generate an interrupt when
it is ready to accept each succeeding character. A user of the device executes a call to the procedure
SEND. If the device is already in use, the caller will be put on a wait queue and suspended. The body
of the SEND procedure performs the initial output to the device and then suspends the calling process
via a call to the scheduler procedure AWAIT. The interrupt procedure within the device module
performs the output of the remaining characters in the line and activates the calling process upon
completion of the 90. Upon leaving the module, the awakened caller checks if other processes have
been suspended awaiting access to the device and activates the first process on the wait queue.

scheduled device LINE-OUT is

LINE-LENGTH : constant INTEGER := 80;
subtype CHAR-POSITION is INTEGER range 1 . . LINE-LENGTH;
type LINE is array (1 . . LINE-LENGTH) of CHARACTER;
type IO-RESULT is (ERR, OK);

procedure SEND (L : in LINE; R : out IO-RESULT);
end LINE-OUT;

scheduled device body LINE-OUT is

LINE-STORE : LINE;
CURRENT-CHAR : CHAR-POSITION := 1;
DEVICE-STATUS : IO-RESULT;

. _ scheduler LINE-SCHED is
procedure ENTER:
procedure AWAIT;
procedure LEAVE ;
procedure LEAVE-INTERRUPT;

end LINE-SCHED; .

procedure INITIALIZE-DEVICE (C: in CHARACTER;
IR: out IO-RESULT) is

&&hine c o d e >  .., - - procedure containing machine code to send
as a character to the device; see Appendix A.

e n d  ;N;TIALIZE-DEVICE;

procedure TERMINATE-DEVICE is
<machine code> . . . -- machine code to tell device to

we stop interrupting
end TERMINATE-DEVICE;

procedure SEND (L :  in LINE; R : out IO-RESULT) is
scheduling (ENTER, LEAVE) ;

begin
LINE-STORE := L;
CURRENT-CHAR : = 1;
INITIALIZE-DEVICE (LINE-STORE(CURRENT-CHAR),  DEVICE-STATUS);
if DEVICE-STATUS = OK then

LINE-SCHED.AWAIT;
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end if;
R := DEVICE-STATUS;-

end SEND:

interrupt OUT-CHAR called from 0016 is
scheduling (null, LEAVE-INTERRUPT);

begin
CURRENT-CHAR : = CURRENT-CHAR + 1;
INITIALIZE-DEVICE

(LINE-STORE(CURRENT-CHAR),  DEVICE-STATUS);
if DEVICE-STATUS = 1 or

CURRENT-CHAR = LINE-LENGTH then
TERMINATE-DEVICE;

end if;
end OUT-CHAR;

-- The scheduler procedures insure mutual
- - exclusion on the send procedure and
- - provides synchronization between SEND
- - and the interrupt

scheduler body LINE-SCHED is
imports (CURRENT-CHAR, DEVICE-STATUS : in );

SCHED-LOCK : LOCK;
BUSY : BOOLEAN := FALSE;
WAIT-QUEUE : CO.NDITION;
USER : PROCESSNAME;

procedure ENTER is
begin

SET (SCHED-LOCK);
if BUSY then

INSERT (WAIT-QUEUE, MYNAME);
RESET (SCHED-LOCK);
SUSPEND ;

else
BUSY := TRUE;
RESET (SCHED-LOCK);

end if;
end ENTER;

procedure AWAIT is
begin

SET (SCHED-LOCK);
USER := MYNAME( >;
SUSPEND;
RESET (SCHED-LOCK);

end AWAIT ;

procedure LEAVE is
NEXT : PROCESSNAME;

begin
SET (SCHED-LOCK);
if not EMPTY (WAIT-QUEUE) then

23
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REMOVE (WAIT-QUEUE, NEXT);
ACTIVATE (NEXT);

else
BUSY := FALSE;

end if;
RESET (SCHED-LOCK);

end LEAVE ;

procedure LEAVE-INTERRUPT is
begin

SET (SCHED-LOCK);
if DEVICE-STATUS = 1 or

CURRENT-CHAR = LINE-LENGTH
ACTIVATE (USER);

end if;
RESET (SCHED-LOCK);

end LEAVE-INTERRUPT;

begin
RESET (SCHEDTLOCK);

end LINE-SCHED;

end LINE-OUT;
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5. PROCESSES.

Processes are program units which may be run in parallel. In order to run, a process must first be
initiated. Processes communicate by operating on scheduled modules. These modules are called
communication channels and are declared in the specification part of process declarations.
Channels are the only means of communication among processes. Processes may not import
objects. Processes may be generic (but may have only type and in parameters). Channel
parameters (scheduled modules) may also be generic.

5.1 DECLARATION OF PROCESSES.

The genera9 format for a process declaration is:

[generic
g e n e r i c  p r o c e s s  p a r a m e t e r  1  i s t ]

process p [is
channels channel s 1 i st;

end CPll:

A process body has the form:

process body p. is
d e c l a r a t i v e  p a r t

begin
s t a t e m e n t - l  i s t

e n d  [II];

where:

l- generic process parameter list has the form,

l i s t  o f  g e n e r i c  t y p e  a n d  i n  p a r a m e t e r s ;
c h a n n e l s  g e n e r i c - c h a n n e l s - l i s t :

2. genericchannels-list  is a list of declarations of the form,

m  is  n (L) [ rest r ic ted  (opera t ions  1  i s t )  J

where n is a generic scheduled module, L is a 9ist each member of which is in the
preceding list of generic type and in parameters. n(L) must be an instance of n obtained
by replacing the generic forma9 parameters of n by generic forma9 type and in
parameters of process p. Any actual module substituted for m in an instance of p must be
an instance of n with the same parameters as those substituted for corresponding
members of L. (See Examples 52,5-3,  and Section 5.4.)

3. channels list has members of the form

m[restricted ( o p e r a t i o n s  l i s t ) ]

where m is an actual scheduled module.
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4. operations list - a list of visible operations of a module.

Notes:

1. Optional clauses of the form, restricted (operations-list), in a channels declaration
restrict the operations on the channel which can be performed by the process.

2. Processes are an encapsulation unit; they have some important differences from
modules:

a. channels declarations provide the only form of importation.
b. Processes cannot propagate exceptions.
c. generic parameters can only be type or in parameters.

3. A generic process declaration may have actual channel parameters (perhaps in addition
to generic channel parameters).

5.2 CHANNELS DECLARATIONS AND USE CLAUSES.

The channels declaration may also include a use c9ause  containing some of the names of the
scheduled modules in the channels list. This avoids duplication of channels and use dec9aralions.

Example 5 7: Nongeneric Process.

.

. _ type BLOCK is . *.
type LINE i s  -.
scheduled device LPT is

procedure WRITE-LINE (L : LINE);

e n d  ;P+;
0

scheduled module DISKFILE is
procedure READ-BLOCK (B : out BLOCK);

e n d  D~~KFILE;

process FILE-PRINT is
channels use LPT, DISKFILE ;

end FILE-PRINT;

process body FILE-PRINT is
type LINE-STORE is array (1 e o 40) of LINE;
procedure BLOCK-TO-LINES (B : BLOCK: A : out LINE-STORE) is

-9
e n d  B;OCK-T~JINES;

transfers a block to a line store.

BUF : LINE-STORE;
BLOC : BLOCK;

begin
READ-BLOCK (BLOC); - - read into BLOC from DISKFILE.
BLOCK-TO-LINES (BLOC) BUF) ; -- transfer BLOC to BUF.
reserve LPT do - - reserve LPT
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for i in 1 . . 40 loop .
W R I T E - L I N E  ( B U F (  i ) ) ;  - -  w r i t e o n t o  LPP

end loop:
end reserve ;

end FILE-PRINT;

Example 5-2: Generic process with generic channels.

generic
type T is private;
SIZE : INTEGER;

scheduled module BUFFER is
procedure READ (X :  out T)  ;
p rocedure  WRITE (Y  :  in  T ) ;

e n d  iikFER;

generic
type ITEM is private:
LENGTH : INTEGER;
channels A is BUFFER (ITEM, LENGTH) restricted (READ),

B is BUFFER (ITEM, LENGTH) restricted (WRITE);
process TRANSFER; Be instances of TRANS FER must have channels

- - that are instances of BUFFER with
- - the same pair of actual generic parameters.

process body TRANSFER is. _
c : ITEM;

begin
loop

A . R E A D  ( C ) ;
BeWRITE  ( C ) ;

end l oop :
end TRANSFER;

5.3 INSTANTIATION OF GENERIC PROCESSES.

Instances of generic processes are created as follows:

process P is new Q(L; channels M);

where L is a list of actual generic parameters, and M is a list of actual channels. Rules for matching
actual and forma9 generic parameters in instantiation of a generic process extend the Ada rules for
generic instantiation [9]. Scheduled modules match generic forma9 channel parameters. The actual
channel must be an instance of the forma9 channel obtained by replacing its generic forma9
parameters by actual generic parameters of the process instance. Thus, above, each member of M
must be an instance of the corresponding generic channel with the members of L indicated in the
declaration of Q.

Example 5-3: We continue with the previous example: correct and incorrect instantiations  of the
process, TRANSFER.

scheduledmodule BUFl isnew BUFFER (APPLES, 120);
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scheduled module BUFZ is new BUFFER (APPLES, 120);
scheduled module BUF3 is new BUFFER (ORANGES B 120)  ;

process Tl is new TRANSFER (APPLES, 120;
c h a n n e l s  BUFl, BUFZ);

- - This is a proper instance of TRANSFER,

process T2 isnew TRANSFER
(APPLES, 120; channels BUFl, BUF3);

- - This is an improper instance of TRANSFER,
em since the declaration of TRANSFER requires
- - that the generic parameters in the
- - declaration of BUF3 &e the same as those
- - in the declaration of T2,
-- namely, APPLES, 120.

5.4 INITIATION OF PROCESSES. .

Processes are initiated by the initiate statement:

initiate process-l i st ;

where p r oc e s s-1 i s t is a list of previously declared actual processes. Initiation of a process means
that the process is activated and may then execute in parallel with any other currently active process

A process may be initiated any number of times; each initiation causes a new copy of the process to
be activated and begin execution Copies of a process execute as separate threads of control and
can only affect each other by operations on shared channels.

Note. Initiate statements could not be replaced by calls to a subprogram (e.g. in the supervisor)
since processes are not available as parameters. (After initiation, but only then, a process can be
identified by its process name.)

5.5 TERMINATION OF PROCESSES.

The visibility and declaration rules of Adam establish a similar dependency relation for processes as
exists for tasks in Ada [9]. Processes depend on subprograms, blocks, or processes within which
they are initiated. Termination of a process occurs when the process execution reaches the end of its
body and all dependent processes, if any, have terminated. Termination of a process compiles as a
call to the supervisor procedure FINISH.

Note: The dependency relationship of a process to a subprogram, block, or process imposes
significant requirements on the techniques used to implement scope exit in Adam. Each unit which
may have dependent processes must have an associated count or list of its nonterminated dependent
processes in order to detect satisfaction of the exit condition. 0-11~ when the count reaches zero, or
the list is empty, may the subprogram return, the block be left, or the process terminate. However, the
scope exit problem in Adam is much less complicated and requires less runtime mechanism than is
needed for scope exit in Ada. Because Adam has no analogue of the terminate alternative of Ada
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and processes do not have visible operations, the only manner in which a process can terminate is by
reaching the end of its body, either normally or by means of an exception. Once the end of its body
has been reached, no further activity occurs in the process. The semantics of terminate in Ada
requires that a dependent task inform the unit on which it depends when it selects a terminate
alternative. This information could be exchanged either by decrementing a count or removing an
object from a list as in Adam. However, in Ada the dependent task may have to change its terminate
vote because of a call to an entry in the select statement containing the terminate. This
communication of state information among scopes and their dependent tasks must be carefully
implemented to insure absence of race and deadlock conditions and requires a considerably more
sophisticated task supervisor.
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The visibility rules of Adam are essentially those of Ada with additional restrictions placed on the
visibility of subprograms and objects within units. These restrictions ensure that all objects shared
among processes can be enumerated from channels and imports declarations. The correctness of
these declarations can be checked. Objects that are not immediately visible within a module may be
imported explicitly.

6.1 VISIBILITY.

Entities that are always visible within the body of a unit if they are visible at the point of declaration of
that unit (according to Ada visibility rules) are: types (including the constants of an enumeration type
and the names of record fields), constants, generic units, exceptions, processes, and predefined
system modules (e.g. supervisor, see Section 2.6). Visibility of the remaining entities (subprograms
and objects) is controlled by the following rules.

Externally declared subprograms are not visible within a module or process, unless they are declared
in the visible part of a module and that module is imported into the unit. All subprograms visible at the
point of declaration of a subprogram are also visible in the body of that subprogram.

Objects are variables and nongeneric modules, including instances of generic modules. Within
modules, externally declared objects are not visible; they can be made visible by explicitly importing
them into the module by an imports declaration (see Section 6.2). Within processes, externally
declared objects are not visible, except those scheduled modules included in a channels
declaration. There are no restrictions on the visibility of objects within subprograms.

6.2 1MPORTS.

An external object (i.e a variable or actual module) that is mentioned syntactically in a module must be
explicitly imported by an imports declaration. An imports declaration is part of the specification or
body of a nongeneric module (see Section 4).

An imports declaration has the form:

imports ( imports 1 ist):

where

i m p o r t s  l i s t  : : =  i m p o r t - i t e m  {; i m p o r t - i t e m }
i m p o r t - i t e m  :  :  = [ u s e ]  i d e n t i f i e r - l i s t  :  i m p o r t - k i n d
i m p o r t - k i n d : := in 1 out 1 in out 1 module

An imports list is a list of variables and actual modules. Each imported variable has a mode in, out, or
in out, and each imported module has the nature  module. To avoid duplication of imports and use
lists, a use declaration may appear within an imports list. Each imported object must be visible at the
point of the importing (module) declaration. It is then made visible inside the module. Imports
declared in the specification of a module are also imported into the body; repetition of the imports
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declaration in the body is not required. However, a module body may have additional imports that are
not declared in the module specification.

Generic module declarations may not have imports

The channels declaration of a process permits an actual scheduled module to be visible inside a
process body, i.e. with respect to visibility a channels declaration acts as an imports declaration This
is the only kind of external object that can be made visible inside a process

6.2.1 REDUNDANT IMPORTS  DECLARATIONS

Some parts of Ada and Adam declarations already perform the function of declaring imports In these
cases a separate imports declaration is unnecessary:

1 s Objects listed in a with clause are imports.

2. When a generic module is instantiated, those generic parameters that are objects are
imports of the actual instantiation.

6.2.2 EXAMPLES.

Example 6-7: Imports and using imports
. -

module A is
procedure P ( 0 . . ) ;

e n d  &
e

module body B is
imports( A : module) ;

-0 declaration of actual module A

- - A is now visible in body of 8.

procedure Q (...) is
begin

;\I;, (...);

e n d  &’
e n d  B;

module body C is
imports( use  A : module) ; - - A is both visible and used in body of @.

procedure R (0 a.) is
begin

P’i...);

e n d  ii’
end C;

- - call to AP
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.
Example 6-2:  Visibility of generics and instances

generic . . .
module STACK is

procedure PUSH (.e.);
.

e n d  S+ACK;

module body CATALOGUE is

kkdule GLOBAL-STACK is new STACK (. .  .) ;
- - generic STACK is visible in the body
- -  o f  C A T A L O G U E .

r;;ddule S Y M B O L - T A B L E  is
imports( use GLOBAL-STACK: module) ;

- - nongeneric GLOBAL-STACK must
- -  be  impor ted

module LOCAL-STACK is new STACK ( . . . ) ;
- - generic STACK is visible.

P;SH (...); - -  m e a n s  GLOBAL-STACK.PUSH (...)
L O C A L - S T A C K . P U S H  (...);

e n d  &lBOL T A B L E ;. - *_.
e n d  CATALOGUE;

. _

6.2.3 ENCAPSULATED IMPORTS.

Modules may be encapsulated by an enclosing module and exported by the outer module. In this
case, the declaration within the body of the encapsulating module may have imports of local objects
that are not visible in the exported specifications. These are called encapsulated imports. Modules
may be used to encapsulate and hide imports from outside users. Thus careful modularization should
result in only essential objects appearing in imports lists.

Example 6-3: Encapsulation of imports.

The FILE-TEMPLATE module body has two imports local to DISKFILES. These imports are
implementation details encapsulated in the body of DISKFILES and not declared in the specification
of FILE-TEMPLATE.

module DISKFILE is - - DlSKFlLE  exports FILE-TEMPLATE.

scheduled module FILE-TEMPLATE is
me. . . no imports are declared in specification of
--  FILE-TEMPLATE

end FILE-TEMPLATE;

e n d  ZKFILE;

module body DISKFILE is - - body of FILE-TEMPLATE is local to DISKFILE
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module  F I L E - M A N A G E R  is  . - - FI L E-MA NAG ER is encapsulated
- -  b y  DISKFILE

.
e n d  ;;LE-MANAGER;

device  DISK  is
.

e n d  b&K;

- - DISK is encapsulated by DISKFILE.

modulebody F I L E - T E M P L A T E  is
imports( use  F I L E - M A N A G E R ,  D I S K  :  module)  ;

- -
e n d  iii-~-TEMPLATE;

both imports are local to DISKFILE.

e n d  D I S K F I L E ;
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7. EXPERIENCE AND CONCLUSI‘ONS

Experience gained during the development of Adam and in using the language is summarized here. A
full report on Adam is available [1 13.

7.1 COMPILER DEVELOPMENT

The Adam language was designed and implemented during 1979 and 1980, motivated by the goals
discussed in Chapter 1. An Adam compiler has been running on DEC PDP-10 computers under the
TOPS-20 and WAITS operating systems since June 1980. (Waits is the local operating system of the
Stanford Artificial Intelligence Laboratory (SAIL).) This compiler is implemented in Maclisp and.
generates PDP-10 assembly language. The compiler provides a small set of commands permitting
users to manipulate library files containing seperately compiled program units. The implementation
itself, separate from language design, required less than one man year.

At the same time runtime supervisor and I/O packages were written in Adam, compiled, and formed
part of our Adam environment. So far, our runtime supervisors schedule processes on a single CPU;
multiprocessor supervisors have not yet been constructed (see 7.2 and Appendix A for further
discussion). It should be noted that I/O packages for parallel processing need to be protected
against supervisor interrupts and can be programmed naturally in Adam as scheduled devices.

Three algorithms for translating Ada task types and tasking constructs into the lower level Adam
processing were defined at this time; an example is given in Appendix !3,  and a description of the
algorithms is given in [13].  One of these translation algorithms, essentially equivalent to the method
of Ada task compilation due to Habermann and Nassi [6], was then implemented in the compiler. In
order not to duplicate syntax and static semantic checking already provided in the compiler, the
translation was not added as a separate preprocessor, but was incorporated as a subfunction of the
static semantic checking. This additional implementation required about two man months.

_ ,

The resulting Ada compiler was running by September 1980. It implemented the sequentiai
constructs, including packages, generics and exceptions, and most of the July 1980 Ada tasking
constructs. In retrospect we feel that the use of Adam was crucial both in constructing runtime
supervisors (see Chapter 1, goal 1 discussion and Sections 7.2 - 7.4) and in structuring Ada compiler
development into clearly defined stages. The whole project was structured into a sequence of five
clearly defined steps, and progress on each step was monitored weekly: (il define a runtime
supervisor interface, (ii) implement the Adam compiler using conventional techniques, (iii) construct
standard environment packages in Adam, compile and test, (iv)  define algorithms translating Ada
tasking into Adam and analyse for correctness (see Section 7.5), and (v) implement task translation in
Adam compiler. With this project structure, and starting with part-time personnel who had previous
experience with Pascal-like languages, we were able to construct a useful experimental Ada compiler
and environment within one year.

The compiler has proved to be an excellent instructional tool, mainly for teaching and experimenting
with Ada. Many examples of Ada programs, especially tasking, have been compiled and run using
separately compiled supervisor packages and I/O; the compiler has been used in teaching courses
on Ada programming. More recently, the compiler has been used to support experimental projects in
hardware simulation and runtime  monitoring and debugging of Ada tasking [4, 71. A compiler user
manual is available [12].
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The Adam runtime supervisor has been extended to provide more sophisticated interface facilities [3]
so that the compiler can be extended easily to support all of the 1982 ANSI Ada tasking design

7.2 WRITING SUPERVISORS

A supervisor for scheduling processes on a single PDP-10 processor has been written in Adam and
compiled. It is the standard package in the Adam environment for providing runtime scheduling for
Adam programs with processes and Ada programs with tasks. Two versions are currently in use, one
interfacing with TOPS-20, the oi-her with WAITS. Appendix A gives a simplified version of the WAITS
supervisor.

A more complex supervisor providing runtime support for the full Ada-82 tasking semantics was
developed in Adam 633. The compiler is currently being modified to interface with this supervisor and
to compile all of Ada-82 tasking. The following remarks summarize our experience so far.

(i) All supervisors so far constructed fit very naturally into the structure of a scheduled device module
encapsulating both interrupts and machine code. It turns out that the standard supervisor
procedures, ACTIVATE, . . . , require only the simple “before and after” protection provided by
Adam scheduling declarations. (ii) The encapsulation of protection in a separate scheduler subunit
and the use of scheduling declarations simplifies the structure of a supervisor; the scheduling is much
easier to understand than if each subprogram body contains protection, schtiduling  and computation
all mixed together. This is true even in cases where the scheduler operations are trivial (e.g. simply
djsabling and enabling interrupts). For example, in Appendix A two of the standard supervisor
procedures have null scheduling on exit. If these declarations were absent the reader might well
consider the omission of enabling interrupts on exit from these procedures to be an error. (iii) It has
been possible so far to encapsulate all machine language procedures (for switching contexts on the
CPU and enabling and disabling interrupts) in a single subdevice such as CPU in Appendix A. (In fact,
the two versions of the supervisor for WAITS and TOPS-20 differ only in the CPU subdevice.) The
Adarn  device construct, which allows use of machine instructions as simple statements (for instance
as part of an if statement) greatly simplified the writing of the machine dependent parts of the
supervisors. (iv) Finally, process names have proved adequate as a means of referring to threads of
control in user-defined process scheduling and in interaction between such scheduling and the
supervisor.

Further experience is required to determine the extent to which the scheduled device structure
suffices as a paradigm for more sophisticated supervisors and other varieties of resource scheduling
systems. Currently we are investigating the use of Ada for simulating hardware architectures. These
applications require special runtime supervisory packages. The same observations mentioned above
as to the naturalness of the scheduled module construct also hold true in these examples By
considering a broad class of supervisor implementations, we hope to demonstrate the utility of Adam
constructs or, perhaps, to discover generalizations of the Adam notions which will better meet the
requirements of process scheduling.

7.3 TRANSPORTING THE ADAM COMPILER AND RUNTIME SUPERVISOR

Transporting the Adam compiler to different operating systems demonstrated the utility of providing a
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simple module interface between the compiler and the runtime  system. The only changes to the
compiler required in moving from the WAITS to the TOPS-20 system involved changes in file naming
conventions in the library manipulation facility, and interrupt initialization code in the code generator.
All other operating system differences were absorbed by the supervisor written in Adam and, as
mentioned above, the required changes were confined to a single local device. In the Ada-82
supervisor, interrupt initialization and timer control were also moved into this local device, further
reducing modifications necessary for porting the compiler.

7.4 PROCESS NAMES

The predefined type PROCESS-NAME has proved extremely useful in all manner of scheduling and
resource allocation applications of Adam. Interfacing a scheduler in the user source code with the
runtime  supervisor (e.g. as in examples in Chapter 6) would be impossible without this type.

Ada itself does not provide a primitive TASK-NAME type. Instead Ada relies on the access type,
whereby pointers to tasks may be declared, to provide the same functionality. However, the strong
typing precludes implementation of “generic” task scheduling units in Ada that are independent of
the actual set of task types in a program. Examples of such units that should interface with any
tasking program regardless of the task types involved are runtime monitors for detection of deadness
errors [4] and supervisory packages for hardware simulation applications. In these applications a
TASK-NAME type with facilities for storing and accessing the value of any task’s name has to be
programmed explicitly in Ada: the techniques for doing this are cumbersome (see discussion in [4]).

A facility similar to the Adam PROCESS-NAME can easily be added to Ada: a new predefined type
TASK-NAME is introduced with equality and assignment permitted on values of this type; a new
attribute of tasks, TASK-NAME, is introduced; for each task object, t, the attribute, t’TASK_NAME,
associates a unique name with t; the function, TASK-NAME, would return the name of the executing
task. .

7.5 TRANSLATING ADA MULTITASKING

In extending the Adam compiler to support Ada multitasking, we used Adam as an intermediate target
language. This resulted in a translation of Ada tasking into the lower level multiprocessing facilities of
Adam. The development of this translation proceeded in two stages. First, we defined a mapping
from each Ada tasking construct into Adam text which implements its semantics, utilizing the
scheduling features of Adam. An example of this type of mapping is given in Appendix B; further
details may be found in [13].  In the second step, the semantic processing phase of the compiler was
augmented with Maclisp routines which replace abstract syntax tree nodes for Ada multitasking
constructs with the corresponding Adam trees. Thus, although the algorithms for translating Ada
multitasking were defined by correspondences between Ada and Adam program text, the actual
implementation is by a transformation on the internal tree representation of Ada programs during
semantic analysis.
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7.5.1 ADVANTAGES OF USING A HIGH LEVEL TARGET  LANGUAGE

The main advantages of the translation of Ada into Adam were reliability and ease of implementation;
others included clarity and understandability of the translator.

Using Adam to specify the translation of Ada multitasking quickly produced a reliable implementation.
Errors in the definition of the Ada-to-Adam mapping were easily identified and corrected by analyzing
the proposed Adam text. We are certain that these errors would not have been so easily detected if
we had hand generated and analyzed sample assembly code. In fact, we were able to give quite short
and convincing informal proofs that the Adam translation s were semantically equivalent to the
corresponding Ada constructs. (Because adequate proof methods for the semantic correctness of
parallel programs have not yet been developed, use of informal arguments is the best step towards
verification of tasking translators that can be expected at the moment.)

.

Starting with the compiler for the parallel constructs of Adam, we implemented the tree
transformations required for a substantial subset of Ada multitasking, including task types,
rendezvous, select, conditional entry call, and a simplified abort statement (no abortion of dependent
tasks). Less than two man months were required to write and debug the Maclisp code added to the
compiler. Relatively few difficulties arose during the translation implementation and those that did
were generally resolved at the level of the Adam text. The transforming operations emit a subtree of
an Adam program, utilizing the context of the Ada abstract syntax tree. When a problem was
encountered in the implementation, it was possible to identify the Adam source which was needed in
the tree, to compile and write out the syntax tree for that Adam program, and then simply to write the
(correct) constructor for that tree. We anticipate that the advantages of using Adam in our initial
implementation of Ada tasking will carry over to the alternative implementations currently underway.

7.5.2 USING ADA AS A TARGET  FOR TRANSLATING ADA

One might ask whether the same advantages of using a high level language for the target of the
multitasking translation would not have accrued if a pure subset of Ada had been used. For those
parts of the translation specification which describe only sequential operations, Ada would certainly
suffice, since sequential Adam is sequential Ada. However, one would still have to deal with
describing concurrency by using a restricted target subset of Ada. The target, of course, could not
utilize any form of rendezvous. One could restrict the usage of tasks to only those with no entries,
eliminate select and accept statements, and have all inter-task communication be carried out by
operations on shared data structures (packages) for which one had explicitly written the exclusion
and synchronization mechanisms. However, in such an Ada system, the problems of interfacing to a
supervisor and of naming tasks would still be present. Furthermore, the discipline of scheduling the
visible operations of the shared data structures would have to be carefully followed. In such a system
in Ada, it would not be possible to determine from their visible parts which packages were shared by
tasks (and hence had scheduling) and which packages were not. These problems motivated many of
the constructs of Adam, and, hence, specifying the multitasking translation should be easier and
clearer in Adam.

7.5.3 MULTIPROCESSORS AND OPTIMIZATION

The use of an intermediate transformation into Adam to implement Ada multitasking should expedite
research into multiprocessor implementations and optimization techniques. The translation
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algorithms we currently use separate all scheduling operations and rendezvous code from the thread
of control of a task, thus making it easier both to identify computations which may be truly executed in
parallel, and to isolate the critical sections and synchronizations required for multiprocessor
environments.

7.5.4 DISADVANTAGES OF THE TRANSLATION TECHNIQUE

The use of Adam in developing the tasking translation algorithms has had some drawbacks. First,
strong typing was occasionally very annoying and cumbersome. For example, in a message passing
implementation of rendezvous, it is necessary to declare complicated variant record types in which
the variant parts are lists of the parameters of the task entries or, alternatively, to use unchecked
conversions (with potentially dangerous consequences). In a directly compiled implementation the
manipulation of the parameters could be handled without the type definitions. A second difficulty
encountered was due to some mismatch between the Adam constructs and the desired translated
semantics. For example, the task type construct for tasks with entries is not readily translatable into
Adam. The actual implementation of task types required modifying the code generator of our Adam
compiler to permit creation of copies of scheduled module local data (almost like including a module
type). Most of the mismatch problems occurred because much of the Adam design was based on
Preliminary Ada (1979) and was maintained although the tasking was siginificantly revised in July
1980 Ada.

7.5.5 FUTURE  RESEARCH
. -

Our experience thus far has not been sufficient to allow us to draw conclusions about a number of
questions associated with the multitasking translation. We have not been able to evaluate the
compilation overhead and implementation efficiency of translating the internal form as compared to
directly checking semantics and generating assembly code for the tasking constructs. Our
experiments with modifying and replacing supervisors have been limited, and have not yet included
supervisors and tasking for multiprocessor systems. The use of the multitasking translation for
specification and verification of Ada task systems, including proof of equivalence of an Ada program
and its corresponding Adam program. These questions are the objects of ongoing research.
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APPENDIX A: A STANDARD SUPERVISOR.

This appendix presents a simplified version of the standard runtime  supervisor that we have been
using in our implementation of Adam on SAIL WAITS. Processes are given a fixed size time slice and
are preempted if they exceed their time slice. Scheduling within a pricrity level is round-robin. The
WAITS operating system provides timer interrupts to implement the timing. The priority of a process
may be specified by a pragma.

scheduled device SUPERVISOR is
type INIT-DATA  is limited private;

subtype TICK-COUNT is INTEGER range 0 . . INTEGER’LAST;
subtype PRIORITY is INTEGER range 0 . . 10;
subtype ADDRESS is INTEGER range 0 . . 2 ** 18 - 1;
procedure SUSPEND;
procedure ACTIVATE (P : PROCESSNAME);
procedure SWITCH (P : PROCESSNAME);
procedure START (D : INIT-DATA);
procedure FINISH;
procedure DELAY-FOR (I : TICK-COUNT);

private
type  INIT-DATA  is

record
PNAME : PROCESSNAME;

. _ CODESTART : ADDRESS;
STKSTART : ADDRESS;
PRIORITY : PRIORITY;

end record ;

interrupt TIMER-INTERRUPT called from 0;

end SUPERVISOR:

w i t h  DEClO-INSTRUCTIONS;

scheduled device body SUPERVISOR is

- - DEClO~INSTRUCTIONS  is a package
- - which defines the formats for inserting
- - machine code.

MAX-PROCESSES : constant INTEGER : = 40;
subtype PT-INDEX is INTEGER range 0 . . MAX-PROCESSES;

NO-PROCESS : constant PT-INDEX : = 0;
type PROCESS-STATUS is (RUN, READY, BLOCKED):

type QHEADER is
record

FIRST : PI-INDEX ;
LAST : PTJNDEX;

end record ;

type  READYQS  is
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array (PRIORITY) of QHEADER;

type REGISTER-SET is
a r r a y  ( 0  *. 15) of INTEGER;

type PROCESS-DATA is
record

NAME : PROCESSNAME ;
STATUS : PROCESS-STATUS;
PC : ADDRESS ;
REG : REGISTER-SET;
PRIORITY : PRIORITY;
DELAY-TIME : TICK-COUNT;
NEXT, PRIOR : PT-INDEX;

end record :

PT : array (PT-INDEX range 1 . . MAX-PROCESSES) of PROCESS-DATA;
.

MAIN-PROGRAM : constant PT-INDEX := 1;
RUNNING : PTJNDEX := MAIN-PROGRAM;

D- table index of the currently running process
FREE : PT-INDEX := 2;

READYQ : READYQS;
DELAYQ : QHEADER; ‘.

BLOCKED-COUNT : INTEGER := 0; - - count of number of blocked processes

TICK-LENGTH : constant INTEGER := 6;
-- = 6/60 of a second

TIME-SLICE :  c o n s t a n t  TICKiCOUNT  := 1 0 ;
- em = 10 * TICK-LENGTH = 1 second

RUNNERS-TICKS : TICK-COUNT := 0;

SP : constant INTEGER := 14: - - register which points to stack frame
TOP : constant INTEGER := 15;

MAIN-PRIORITY : PRIORITY: - - priority of the main program

for MAIN-PRIORITY use at “PRITY*“; -- this representation specification
VW is known at link time

scheduler S is
procedure ENTER:
procedure LEAVE ;
pragma INLINE (ENTER, LEAVE);

end S;

module Q is

procedure INSERT (Q :  inout QHEADER; i : PT-INDEX);
procedure REMOVE (Q : in out QHEADER; i : in out PT-INDEX);
procedure DELETE (Q : in out QHEADER; i : PT-INDEX) ;
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funct ion EMPTY (Q : QHEADER) r e t u r n  BOOLEAN;
pragma INLINE ( E M P T Y ) ;  -

p r o c e d u r e  I N S E R T  ( A  :  inout R E A D Y Q S ;  i  :  P T J N D E X ) ;
procedure REMOVE (A : in out READYQS; i  : in out PTJNDEX) ;
procedure DELETE (A : in out READYQS; i  : PT-INDEX);
function EMPTY (A : READYQS) return BOOLEAN ;
function FIRST (A : READYQS) return PTJNDEX;
pragma INLINE ( E M P T Y , DELETE,  INSERT);

end Q;

device CPU is
procedure IDLE ;

- - machine dependent code

procedure START-PROCESS (D : PROCESS-DATA);
procedure SAVE-CONTEXT (D :  inout PROCESS-DATA);
procedure DISABLE;
procedure ENABLE;
pragma INLINE ( E N A B L E ,  DISABLE) ;

procedure STARTUP (D : P R O C E S S - D A T A ) ;
procedure SAVE-STATE (D :  inout P R O C E S S - D A T A ) ;

end CPU;

function NAME-TO-INDEX (P : PROCESSNAME) return PI-INDEX is
-- convert a process name into a table index

begin
if P /= null then

for  i  in  PT-INDEX’FIRST  + 1  *. PTJNDEX’LAST loop
i f  P T  ( i ) . N A M E  =  P  t h e n

return i;
end if;

end loop;
end if;
return NO-PROCESS;

end N A M E - T O - I N D E X ;

p r o c e d u r e  U N B L O C K  ( i  :- P T J N D E X )  i s
PCB : PROCESS-DATA renames PT (i)  ;

begin
i f  PCB.DELAY-TIME  >  0 t h e n

Q.DELETE (DELAYQ, i);
PCB.DELAY-TIME := 0;

end if;
end ;

procedure DO-SUSPEND is
begin

CPU.SAVE-CONTEXT (PT (RUNNING));
P T  ( R U N N I N G ) . S T A T U S  : =  B L O C K E D ;
BLOCKED-COUNT := BLOCKED-COUNT + 1:

if Q.EMPTY (READYQ) then
CPU. IDLE;

else
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’Q . R E M O V E  ( R E A D Y Q ,  R U N N I N G ) ;
P T  ( R U N N I N G ) . S T A T U S  : =  R U N ;
CPU.START-PROCESS (PT (RUNNING));

end if;
end DO-SUSPEND;

p r o c e d u r e  S T A R T  ( D  :  INIT-DATA) i s
schedul ing ( E N T E R ,  L E A V E )  ;
i : PT-INDEX;

begin
if FREE = NO-PROCESS then

raise STORAGE-ERROR;
e l s e

i := F R E E ;  F R E E  : = P T  ( F R E E ) . N E X T ;

P T  ( i )  := ( N A M E => D . P N A M E ,
STATUS = >  R E A D Y ,
PC => DeCODESTART,
REG => ( S P  => DSTKSTART)  o t h e r s  => 0).
PRIORITY => D - P R I O R I T Y ,
DELAYLTIME => 0,
NEXT 1 PRIOR => N O - P R O C E S S ) ;

QJNSERT ( R E A D Y Q ,  i ) ;
end if;

end START ;

pioiedure FINISH is
scheduling (ENTER, null)  ;

begin
PT (RUNNING) .NEXT := FREE;
F R E E  : = RUNNING;
P T  ( R U N N I N G ) . N A M E  : =  n u l l :
if  Q. EMPTY (READYQ) then

CPU. IDLE;
else

Q.REMOVE  (READYQ, RUNNING);
PT (RUNNING).STATUS := RUN;
CPU.START-PROCESS (PT (RUNNING));

end if;
end FINISH;

procedure  A C T I V A T E  ( P  :  P R O C E S S N A M E )  is
schedul ing ( E N T E R ,  L E A V E )  ;
i : c o n s t a n t  PTJNDEX  : =  N A M E - T O - I N D E X  ( P ) ;

begin
if i /= N O - P R O C E S S  andthen P T  (i).STATUS = B L O C K E D  t h e n

U N B L O C K  ( i ) ;
BLOCKED-COUNT : = B L O C K E D - C O U N T  + 1 ;
Q.INSERT (READYQ,  i ) ;
P T  ( i ) . S T A T U S  : =  R E A D Y ;
end if;

end A C T I V A T E ;
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procedure SUSPEND is
scheduling (ENTER, null);

begin
DO-SUSPEND;

end SUSPEND ;

procedure  S W I T C H  ( P  :  P R O C E S S N A M E )  is
scheduling (ENTER, LEAVE) ;
i : c o n s t a n t  PTJNDEX := NAME-TO-INDEX (P);

procedure  DO-SAVE (D  :  in  out  P R O C E S S - D A T A )  is
begin

CPU.SAVE-CONTEXT ( D ) ;
end;

begin
if i /= N O - P R O C E S S  and then P T  ( i )  .STATUS /= R U N  then

D O - S A V E  ( P T  ( R U N N I N G ) ) ;
P T  ( R U N N I N G ) . S T A T U S  : =  B L O C K E D ;
R U N N I N G  : =  i ;
i f  P T  ( i )  .STATUS =  R E A D Y  t h e n

Q,DELETE ( R E A D Y Q ,  i ) ;
B L O C K E D - C O U N T  : = B L O C K E D - C O U N T  +  1;

else
. _ UNBLOC’K ( i ) ; *.

end if;
P T  ( i ) . S T A T U S  : =  R U N ;
CPU.START-PROCESS ( P T  ( i ) ) ;

end if;
end SWITCH;

procedure DELAY-FOR (I : TICK-COUNT) is
scheduling (ENTER, LEAVE) ;

begin
if I > 0 then

QJNSERT (DELAYQ, RUNNING);
P T  (RUNNING).DELAY-TIME  := I ;
DO-SUSPEND;

end if;
end :

module body Q is
. . e

end Q;

device body CPU is
u s e  DEClO-INSTRUCTIONS;
use REGISTERS;

procedure DISABLE is
begin

45
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UUO’(INTMSK, ( L I T E R A L ,  0 ) ) ;
end ; m

procedure ENABLE is
begin

UUO’(INTMSK,  ( L I T E R A L ,  - 1 ) ) ;
end ;

procedure STOP is
begin

FAIL-INSERTION’ (TEXT => exit) ;
end ;

procedure SLEEP is - - this procedure is called when there are
-D only blocked processes

begin
loop

ENABLE ;
Rl := 1;
UUO’(SLEEP,  1,  (QUOTED,  ““9);

se sleep for 1 second
D I S A B L E ;
if not Q. EMPTY (READYQ) then

Q.REMOVE (READYQ, RUNNING);
. _ PT (RUNNING).STATUS := RUN;

CPUSTART-PROCESS (PT (RUNNING));
end ifs

end loop;
end ;

procedure IDLE is

begin
RUNNING := NO-PROCESS;

- - this procedure is called when there are no
- - ready processes to run

if BLOCKED-COUNT = 0 then
STOP;

else
SLEEP;

end if;
end :

procedure SAVE-STATE (D : in out PROCESS-DATA) is
-0 this procedure is called when a process is
- - preempted during a timer interupt

SAIL-REG-SAVE : REGISTER-SET;
SAIL-PC-SAVE : INTEGER;
for SAIL-REG-SAVE use at 16; - - Registers and PC are copied to these
for SAIL-PC-SAVE use at 87; - - locations by the WAITS OS when

begin - - an interrupt occurs.
D.REG : = SAIL-REG-SAVE ;
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DEClO’(HRRZ, 1, (ADDRESS/SAIL-PC-SAVE));
D .PC :=  Rl;

end ;

procedure STARTUP (D : PROCESS-DATA) is
begin

CPU.DISABLE;
UUO’(OP => DEBREAK);
CPU.START-PROCESS ( D ) ;

end ;

procedure START-PROCESS (D : PROCESS-DATA) is
begin

RUNNERS-TICKS := 0;
RO := D.PC;
DEClO’(MOVEM,  0 ,  (LABEL,  “XFER”,  1 ) ) ;
DEClO’(MOVS1,  0, (ADDRESS, INTEGER’(D.REG)));
DEClO’(BLT, 0 ,  ( R E G ,  1 5 ) ) ;
UUO’(INTDEJ,  (LA$EL, “XFER”, 0 ) ) ;
FAIL-LABEL’(“XFER”, ( V A L U E ,  - 1 ) ) ;
DIRECTIVE’(BLOCK, (VALUE, 1));

end ;

. -procedure SAVE-CONTEXT (D : in out PROCESS-DATA) is

begin

-- this procedure must be called 3 dynamic
- - links away from the stack frame of the
-a caller of the kernel

DEClO’(HLRZ,  1 ,  ( I N D E X ,  0 ,  1 4 ) ) ;
- - get caller’s saved return address

DEClO’(HLRZ, 1 ,  ( I N D E X ,  0 ,  1 ) ) ;
- - by following dynamic links

DEClO’(HRRZ,  0 ,  ( I N D E X ,  0 ,  1 ) ) ;
D.PC := RO;
DEClO’(HLRZ,  0 ,  ( I N D E X ,  0 ,  1 ) ) ;

- - get caller’s dynamic link
D.REG(SP) : =  R O ;
D.REG(TOP)  :=  Rl - 1 ; -- save caller’s top of stack pointer

end ;
end CPU;

procedure DO-WAKEUPS is
i : PT-INDEX : =  DELAYQ.FIRST;  j  : P T - I N D E X ;

begin
w h i l e  i  /= NO-PROCESS loop

declare PCB : PROCESS-DATA renames PT ( i) ; begin
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PCB.DELAY-TIME  : =  PCB.DELAYJIME - 1 ;
i f  PCB.DELAY-TIME  <=  0  then

j := i; i := PCB.PRIOR;
Q.DELETE (DELAYQ, j);
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QJNSERT  (READYQ,  j ) ;
BLOCKEDJOUNT := BLOCKED-TIME - 1;

else
i := PCB ‘ PRIOR;

end if;
end ;

end loop;
end ;

interrupt TIMER-INTERRUPT called from 0 is
i : PTJNDEX  ;

begin
DO-WAKEUPS;

if RUNNING /= NO-PROCESS then
RUNNERS-TICKS := RUNNERS-TICKS + 1;
if not Q. EMPTY (READYQ) and then

(RUNNERS TICKS > TIME SLICE or
PT (Q.FIkT (READYQ)),PRIORITY  > Pi (RUNNING).PRIORITY) then
CPUSAVE-STATE  (PT (RUNNING));
PT (RUNNING).STATUS := READY;
Q.REMOVE (READYQ, i);
QJNSERT  (READYQ, RUNNING);
RUNNING := i;
PT (i)‘.STATUS := RUN;

. _ CPUSTARTUP  ( P T  ( i ) ) ;
end if;

end if; m
end TPMERJNTERRUPT;

scheduler body S is
procedure ENTER is
begin

CPU.DISABLE;
end ;

procedure LEAVE is
begin

CPU.ENABLE;
end ;

end S;

begin
PT (MAIN-PROGRAM) := (NAME => PROCESSNAME’(

STATUS => RUM,
PC =9 0,
REG => ( o t h e r s  = >  0 ) ,
PRIORITY => MAIN-PRIORITY,
DELAY-TIME =9 0 ,
NEXT 1 PRIOR=9 NO-PROCESS);

for i in PRIORITY loop
READYQ(i).FIRST := NO-PROCESS;



end loop;

DELAYQ.FIRST

for i in PTJ
P T  ( i ) . N
P T  ( i ) . N

end loop:
PT (PTJNDEX
PT (PT-INDEX
CPU.ENABLE;
UUO’(CLKINT,

APPENDIX A: A SPANDARD SUPERVISOR.

l = NO-PROCESS;.

NDEX’FIRST + 2 e. PTJNDEX’LAST - 1 loop
EXT := i + 1;
AME : =  n u l l ;

‘LAST).NEXT := NO-PROCESS;
‘LAST).NAME :null

(VALUE, TICK-LENGTH));
- - enable timer interrupts
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end SUPERVISOR;
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APPENDIX B: ADA MULTITASKING TkANSLATlON  EXAMPLE.

This appendix presents an example of techniques used in translating the multitasking constructs of
Ada into Adam. Various algorithms for such translation are being developed and are described in
detail in [13].

Tasking in Ada provides a very general, expressive, and elegant means of designing parallel systems.
However, because of their generality’ the high level tasking constructs of Ada pose a significant
challenge for language implementers. Much concern has been expressed about the efficiency and
even possibility of implementing the full multitasking capabilities of Ada. The multiprocessing
constructs of Adam, on the other hand, are much lower level than those of Ada and create no major
compilation difficulty. Hence, by developing implementations of Ada tasking in Adam problems in
Ada multitasking may be readily identified and studied. Automation of the algorithms will permit
testing and comparing performance of implementations which use different execution, scheduling,
and resource allocation schemes. Also, the algorithms may be used with the existing Adam compiler
to produce a two-step compiler for Ada tasking.

The essential step of the translation algorithms is to transform the components of an Ada multitasking
system into corresponding elements of an Adam system. Any Ada task which does not have visible
entries is transformed into an Adam process. Ada tasks with entries, which we term “service’tasks”,
are translated into both a process and a scheduled module in Adam. This division of the service task
into two parts separates the truly independent thread of control of the task from the synchronization
and inter-task communication functions of the task.

I The example below presents the general form of translation for a very simple Ada task system, a
buffer and two user tasks. In Ada, such a system might appear as follows:

task CHARACTER-BUFFER is
entry PUT-CHAR (C : in CHARACTER).;
entry GET-CHAR (C : out CHARACTER) ;

end CHARACTER-BUFFER;

task body CHARACTER-BUFFER is
MAX : constant INTEGER := 200;

subtype BUFFER-POINTER is INTEGER range 0 *. MAX;

BUFFER : array (1 . . MAX) of CHARACTER;
IN-PTR : BUFFER-POINTER := 1;
OUT-PTR : BUFFER-POINTER := 0;

begin
loop

select
when IN-PTR /= OUT-PTR =9

accept PUT-CHAR (C :in CHARACTER) do
BUFFER (IN-PTR) := C;

end PUT-CHAR ;
IN-PTR := IN-PTR mod MAX + 1;
if OUT-PTR = 0 then

OUT-PTR : = 1; .
end if;
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OK
when OUT-PTR =/ 0 => .

accept GET-CHAR (C :out CHARACTER) do
c := BUFFER (OUT-PTR);

end GET-CHAR;
OUT-PTR := OUT-PTR mod MAX + 1;
if OUT-PTR = IN-PTR then

O U T - P T R  := O;IN-PTR := 1 ;
end if;

end select;
end loop;

end CHARACTER-BUFFER;

task PRODUCER ; - - the body of PRODUCER contains  calls fo
-- CHARACTER-BUFFER.PUT

task CONSUMER; - - the body of CONSUMER contains calls to
- -  CHARACTERJJFFER.GET

One algorithm used for translation of Ada tasking uses procedure call to implement the user
task/service task rendezvous. In this scheme, the calling task executes the body of the accept and
awakens the service task at completion of the rendezvous to perform scheduling and internal actions

scheduled module CHARACTER-BUFFER is
procedure PUT-CHAR (C : in CHARACTER):

. -procedure GET-CHAR (C : out CHARACTER) ;
p r o c e d u r e  N E W - P R O C E S S - E N T R Y ;  - - this procedure corresponds fo the separafe

me thread of cofitrol of the service fask
end CHARACTER-BUFFER;

scheduled module body CHARACTER-BUFFER is
MAX : constant INTEGER := 200;
subtype BUFFER-POINTER is INTEGER range 0 Q. MAX;
BUFFER : array (1 . . MAX) of CHARACTER;
IN-PTR : BUFFER-POINTER := 1;
OUT-PTR : BUFFER-POINTER := 0;

type ENTRY-NAME is (PUT-CHAR, GET-CHAR) ;
subtype SYNCHRONIZATION-LEVEL is INTEGER range 1 *. 3;
SL .’ SYNCHRONIZATION-LEVEL; - - this variable is used to track which

9- accepf or select statement is being executed

scheduler BUFFER-SCHED is
imports ( IN-PTR, OUT-PTR : in; SL : in out) ;
procedure ENTER (E : in ENTRY-NAME);
procedure COMMON-EXIT;
procedure AWAIT ;

end BUFFER-SCHED;

procedure PUT-CHAR (C : in CHARACTER) is
scheduling (ENTER (PUT-CHAR), COMMON-EXIT);

begin
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B”F&R .( IN PTR) := C;
end PhJHiR ;

- - ekecufed by the calling process

procedure GET-CHAR (C : out CHARACTER) is
scheduling (ENTER (GET-CHAR), COMMON-EXIT);

begin
c := BUFFER (OUT-PTR); - - executed by the calling process

end GET-CHAR;

procedure NEW-PROCESS-ENTRY is
begin

loop

SL := 1;

- - executed by the thread of control
se of the buffer

B U F F E R - S C H E D . A W A I T ;  - - schedule entry calls and suspend
me until entry call is complete

case SL is - - current value of SL determines which
WV call was accepted

when 2 ‘=> IN-PTR := IN-PTR mod MAX + 1;
if OUT-PTR = 0 then

OUT-PTR := 1;
end if;

when 3 => OUT-PTR := OUT-PTR + 1;
if OUT-PTR = IN-PTR then

OUT-PTR := O;IN-PTR  : =  1;
end if;

when others => null:
end case; *

end loop:
end NEW-PROCESS-ENTRY;

Note:

The bodies of the visible procedures above contain the translation of the Ada source statements; the
scheduler procedures below contain the implementation of scheduling and mutual exclusion for entry
calls which would be provided by the compiler in an implementation of Ada.

scheduler body BUFFER-SCHED is
PROTECTION : LOCK; o- mutual exclusion in module scheduling
BUSY : BOOLEAN : = TRUE; -- whether module is in use
ENTRY-OPEN : array (ENTRY-NAME) of BOOLEAN:

- - which entries open
ENTRY-Q : array (ENTRY-NAME) of CONDITION;

- - queues for names of calling processes
BUFFER-NAME :  P R O C E S S N A M E ;  - - infernal name for thread of

- - control of the buffer

procedure ENTER (E :in ENTRY-NAME) is
begin

SET (PROTECTION);
if BUSY or else not ENTRY-OPEN(E) then
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-- module is in use
INSERT (ENTRY-Q (E), MYNAME 0);

RESET (PROTECTION):
SUSPEND;

else
BUSY := TRUE;
RESET (PROTECTION);

end if;
case E is

when PUT-CHAR =>
SL := 2;

when GET-CHAR =>
SL := 3;

end case;
end ENTER;

mm or guard is false
- - so calling process
- - suspends itself

procedure COMMON-EXIT is
begin

ACTIVATE (BUFFER-NAME);
end COMMON-EXIT;

procedure AWAIT is
NEXT :’ PROCESSNAME ;”

begin
SET (PROTECTION) ; -- waif for protection on scheduling
BUFFER-NAME := MYMAME (9; -- setup infernal name for buffer
ENTRY-OPEN l = (IN-PTR /= OUT-PTR, OUT-PTR /= 0);
BUSY := FALSE; Be anticipate module not busy
for E in ENTRY-NAME t iIRST *. ENTRY-NAME ‘LAST loop

if ENTRY-OPEN(E) and then not EMPTY (ENTRY-Q (E)) then
case E is

when PUT-CHAR =>
SL:=2; - - Put call is being accepted

when GET-CHAR =>
SL := 3; -- Get call is being accepted

end case:
REMOVE (ENTRY- Q (E), NEXT);

we remove next caller from queue
BUSY : = TRUE; -- set module is busy
ACTIVATE (NEXT) --  and act ivate
exit;

end if;
end loop:
RESET (PROTECTION); -P release scheduling protection
SUSPEND; mm and suspend

end AWAIT ;

-- call is accepted so set module
- - in use

- - Put call is being accepted.

- - Get call is being accepted

-0 Acfivafe thread of control of buffer

end BUFFER-SCHED;

end CHARACTER-BUFFER;
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process NEW-PROCESS is Be this process is the separate thread
0 - - of control of the buffer

channels CHARACTER-BUFFER:
end NEW-PROCESS;

process body NEW-PROCESS is
begin

CHARACTER-BUFFER.NEW_PROCESS_ENTRY;
end NEW-PROCESS;

process PRODUCER is
channels CHARACTER-BUFFER;

end PRODUCER;

- - the body of PRODUCER contains calls
- -  toCHARACTER_BUFFER.PUT_CHAR

process CONSUMER is
channels CHARACTER-BUFFER;

end CONSUMER;

-0 the body of CONSUMER contains calls fo
- -  CHARACTER-BUFFER.GET_CHAR

Note that the scheduling used for calls to the CHARACTER-BUFFER will accept PUT’s before GET’s
whenever the Buffer is not full. This selection scheme is consistent with the specification of Ada;
which only requires that the choice among open alternatives be “performed arbitrarily”. In general,
however, identification of an optimal selection scheme depends on the global semantics of a
program, so it is not possible to make such an identification in the syntax directed translation used
with the Adam compiler. The method of selection implemented in Ada to Adam translation utilizes a
pseudorandom number generator to make a choice among the open aternatives. Thus, the general
implementation of select is random, which is also consistent with the Ada requirement for
arbitrariness.

.
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