COMPUTER SYSTEMS LABORATORY

DEPARTMENTS OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

STANFORD UNIVERSITY - STANFORD, CA 94305

Gem: A Tool for Concurrency
Specification and Verification

Amy L. Lansky
Susan S. Owicki

Technical Report No. 83-251

November 1983

The author is a fellow of the Fannic and John Hertz Foundation. This work was
asosupported inpart by NSF Grant MCS-80-05336.

KR

‘».“..-—"/*.‘T
ALgsast:

HMitroy e

ey



Gem: A Tool for Concu rrendy
Specification and Verification

Amy L. Lansky
Susan S. Owicki

Technica Report No. 83-251

November 1983

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305

Abstract

The GEM model of concurrent computation is presented. Each GEM computation consists of a set of
partially ordered events, and represents a particular concurrent execution. Language primitives for
concurrency, code segments, as well as concurrency problems may be described as logic formulae
(restrictions) on the domain of possible GEM computations.  An event-oriented method of program

verification is also presented. GEM is unique in its ability to easily describe and reason about synchronization
properties. .

Key Words and Phrases: Concurrency, specification, verification, events, partial ordering.



GEM: A Tool for Concurrency Specification and Verification

Amy L.Lansky!, Susan S. Owicki
StanfordUnivctsity

Abstract

The GEM model of concurrent computation is
presented. Each GEM computation consists of a set
of partially ordered events, and represents a
particular concurrent execution. Language
primitives for concurrency, codesegments, aswell as
concurrency problems may be described as logic
formulae (rcstridtions) on the domain of possible
GEM computations. An event-oriented method of
program verification is also presented. GEM is
uniqueinitsability to easily describe and reason
about synchronization properties.

1. Introduction

Our understanding of distributed systemsand
computational concurrency is far from complete.
Languages that include concurrency are harder to
describe formally than sequential ones. Verification
of concurrent programs is complicated by the
- unpredictable order in which the actions of
independent processesoccur.

This paper introduces the Group Element
Model (G EM), abehavioral OF event-oriented model

!'the author is a fellow of the Fannic and John Hertz
Foundation. This work was also supported in part by N5I° Grant
MCS-80-15336.

of concurrent computation. GEM events arc related
by partial orderings. Bccausc of this, concurrent
action can be modeled in arealistic fashion. A given
GEM computation can represent an cxecution
which is truly distributed as well as one in which
concurrent action is simulated on asingle processor.

Wehavefound GEM’ sevent-oriented approach
to be broad enough for general purpose language
and problem specification, and powerful enough to
serve as abasisfor an event-oricntcd method of
concurrent program verification. GEM s especially
well-suited for describing and reasoning about
synchronization properties -- properties that deal
with the ordering of events. Synchronization
properties such as priority are not easily expressed by
techniques which rely upon assertions about
programvariablevalues.

Many forma models of concurrency have not
been applied to language description, or have only
been used to describe a single language. In contrat,
GEM has already been uscd to describe three very
different language primitives for concurrency: the
Monitor [9, 11}, Communicating Sequential Processes
(CSP) [12), and ADA tasks [1]. These descriptions
are fairly concise, were casy to formu'ate, and
capture language structure and semanticsin an
intuitive fashion.

GEM has been used to providedescriptions of
traditional concurrency problems such as the One
Slot Buffer, Bounded Buffer, and Readers/ Writers
problems, as well as two distributed applications: an
agorithm for performing updates to a distributed
database [5], and an asynchronous, distributed
version of the Game of Life [29]. The model has
also been used to verify Monitor, CSP, and ADA
programs. Propertiessuct aslack of deadlock and
functional correctness have been proven of the two
distributed appiications.



Sections 2-8 describe GEM’s method of
representing concurrent execution and show how
problem, language, and program specifications are
formed. The GEM verification method isdescribed
inscction 9. Finally, an overview of related work is
presented insection 10.

2. Concurrency: An Intuitive View
Before wc embark on a detailed description of
how GEM models concurrent execution, let us
examine concurrency on amoreintuitive level.
When we think of execution, wc think of actions
occurring in time as well asin space. In asequential
execution, there is only one locus of activity. Each
action enables or causes the next action to occur,
resulting in activity which is totally ordered in time.

In a concurrent execution, there are many loci of
activity. Suppose, for the present, that each action
occurs at its own persona locus of activity. Some
actions enable othersto occur, but actions may occur
independently of one another as well. For example,
an action A may fork, enabling two actions 8 and C.
Actions B and C may then enable their own subtrecs
of activity, each of which isunrelated to the other.

eq
NG

Although the actions which occur within the
subtrees belonging to B and ¢ may be ordered in
time, such atemporal ordering is aresult of chance.
In fact, it is possible for any two actions from
different subtrees to occur smultaneously. When it
is logicaly possible for two events to occur
simultancously, we will say thcy are potentially
concurrent, Or that there IS N0 observable order
bctwecen them. From this cxamplc, it is clear that
both the enabling and observable temporal
relationships between actions in a concurrent
computationispartial.

Wehave now considered the role played by the
cnabling relationship between actions. What role
docs locus of activity play? Wc havebeen assuming
that cach action has its own locus of activity. There
arc, however, scts of actions which logically occur at

the 'same location. Consider, for' cxamplc, asingle
computer storage cell. In most models of computer
exccution, all actions (reads and writes) which take
place at the same memory location arc forced to be
totally ordered intime. Although these actions may
be causally unconnected (thcrc is no enabling
relationship bctwecn them), they must occur in some
sequential order. For instance, such a Situation
ariscs when amemory location is shared between
severd logical processes of activity.

Thus there are activities which arc observably
ordered in time without being causaly related. In
our model, al events at a single locus of activity
must betotally ordered.

Some loci of activity are naturally grouped
together. For example, it would be natural to group
all loci of activity belonging to a single procedure
activation, or to a single server process.  Actions
within such agrouping are often related semantically
as well as by-the -enabling relationship. Semantic
groupings arc also often tied to the traditional
language concept of scope. For instance, the actions
of two different processes might be clustered into
two separate groups.  Because cach process is not
alowed to access the . variables belonging to the
other other process, it becomes natural to associate
the two groups with a "firewalt" which limits the
enabling relationships between them.

Given this intuitive discussion of concurrent
exccution, we shall now proceed to explain GEM’s
modcl Of exccution in a more formal way. GEM
represents the actionswithin aconcurrent execution
by objects called events. The cnabling rclationship
bctween actions is modeled by the enable relation
2. Loci of forced sequential activity are modeled



by elements, and this forced sequential order is
called the element order = . . The tctnporal order =
between actions (the observable order intime) is
simply the transitive closure of ¥ and =» (minus
identity). Semantically related loci of activity are
modeled by GEM groups.

3. Computations and Specifications

GEM is made up of two components: a model
of execution and a specification language. A GEM
computation is an abstract representation Of
concurrent execution. Each computation consists of
apossibly infinite set of objects called events, a
partial relation 2 (the enable relation), and two
strict partial orders. =» (the element order), and =
(the temporal order). Events may bc also clustered
into sets called elements and groups.

A language or concurrency problem may be
described by characterizing it as a GEM
specification ¢. Each specification is composed of a
set Of logic formulac (restrictions) over the domain
of al possible GEM computations. A computation
C islegal with respect to aspecification o (legal(C,a))
if C satisfies each regtriction in ¢. Thus, each GEM
specification admits a set of computations with a
particular desired behavior or meaning.  For
example, the restrictions describing the ADA
language primitives admit GEM computations
representing legal ADA program executions. A
solution to the database update problem is one that
obeys al restrictions specifying that problem.

As one might cxpcct, there are certain properties
that must be truc of all legal computations. These
propertics are described by aset of GEM legality
restrictions which arc automatically part of any
GEM specification.  For example, the following
must be true of al legadl GEM computations. the
temporal order between events isatransitive and
irrcflexive order, and must be equivalent to the
transitive closure of the enable relation and the
element order (minusidentity). Theway in which a
computation’ scventsarcelustered intoelements and
groups imposes legality restrictions on the element
order and enable relation.

Each GEM legality restriction has a formal
characterization. In this paper, however, we will
present these properties informally, as we describe
the basicconceptual components of GEM.2

21his paper is intended as a survey of GEM rather than a
complctc descriplion. For further details refer to[17].

4. Events, Elements, and Groups

A GEM event represents alogical action that is
regarded as atomic relative to other eventsin its
computation. For example, an assignment
statement, the forking of a process, and completion
of aninput request may bc modeled asevents. An
event may be viewed as a structured object
composed of the following kinds of information:
data parameters, thread identifiers (see section 8.3).
and the names of the element and group sets to
which it belongs. Each event is a unique occurrence
in a computation, with its own identity and
associated data. A set of similar events may be
characterized by anevent class description.

Asadready stated, a GEM specificationisused to
restrict theset of all possible computations to those
that represent meaningful executions for aparticul ar
language or problem. Thefirst way in which thisis
done is to identify which events may occur.,
Specifically, the events which may legaly occur
within a computation arc those belonging to a
specified list of elements: if legal(C,0) and event eis
in C, then e must belong to some element specified
ine.

Elements model the elementary components of a
language or problem whose associ ated actions musf
for some reason, occur sequentially. In thisscnse,
they arc similar to actors[6,10].

Each element is a unique entity and is
characterized by a nhame and the events which
belong to it. Moreover, every GEM event must
belong to exactly one element. If an event belongs
to an element, we say it “occurs’ at that clement.
All of the events occurring at the same element must
bc totally ordered by theelement order,=».3 Each
element may bc associated with an explicit list of
restrictions uponitsevents.

Let uslook at an example. Suppose we wished
to model an integer variable var. Two types of
events can bc associated with a variable, Assi gn and
Getva . In addition, wc wish to assert that cvents of
type Var.Assign and var.Getval  OCCU
sequentially, whether they arc causally related or
not. In essence, Wc are asserting alock on accessto
variable Var. Wc could write the following GEM
specification of Var:

311 we do not wish to impose an element order on events. we
can simply associate each event with its own element. In this
limiting casc, cvents are only related by the enable relation and
temporal order.



Var = ELEMENT

EVENTS
Assign(newval : INTEGER)
Getval (oldval, : INTEGER)

RESTRICTIONS

END Var

A specification which includes Var admits
computations  containing  var.Assign  and
Var. Getval eventswhich obey the restriction

(V e1,e2:{Var.Assign, Var.Getval})
[ e1=pe2 V e2=rel V el=e2 ]

as well as any additional restrictions explicitly
associated with var.

Note that because each event must belong to
exactly one element, and all events occurring at the
same element arc totally ordered, agivenevent may
be uniquely identified by naming the element a
which it occurs and its occurrence number. For
example, the assignment event denoted by
var.assigni (Or Simply var) is the ith event at
Var.

Events within a computation may aso be
clustered into groups. Groups are scts of elements
and/or other groups, and are used to describe the
compound structure of more complex language and
problem components. For instance, a process might
bc modeled as a group containing local variable
elements, local procedure groups, and a group
representing the code of the process.

Thegroupis a natural vehicle for moedeling the
static scoping rules found in most programming
languages. Conventiona scope rules limit access to
certain variables or procedures. A GEM
specification limits access to certain events by
placing those events within specific groups. Each
group structure is associated with a set of legality
restrictions which limit the enable relation 2
betweenevents. For example, suppose we were
given a specification of the followingform.

ELEMENTS EL1,EL2,EL3,EL4,ELS,EL6

G1 = GROUP(EL2,EL3)
G2 = GROUP(EL4,EL5)
G3 = GROUP(EL3,EL4)
G4 = GROUP(EL1)

G1 G2

SRCIOIRC,

G4

®) 6

The allowed communications are asfollows:4

An event in: May enable any event in:
EL1 EL1,ELG
EL2 EL2,EL3,ELG
EL3 EL2,EL3,EL4,ELG
EL4 EL3,EL4,EL5,ELG
EL5 EL4,EL5,ELG
EL6 EL6

Note how 61,62, and G4 could be representations of
processes, With 63 modeling a message channel
between 61.and 62, and EL6 representing a resource
shared by al three processes.

Certain events may be designated as port events,
and serve as “access holes’ to their groups. Using
ports, we could model the concept of da&a
abstractionasfollows:

Abstraction = GROUP(Datuml,..., DatumN,
Operl,...,OperM)
PORTS(Operl ._Start, ..., OperM.Start).

Events occurring at elements outside of
Abstract ionmay dircctly access only events of the
form Operi.Start, not those at somc Datumj.

Groups are a very flexible structuring device.
They may be digoint, hierarchical, or overlapping,

41et e@EL denotethe fact that event ebelongs to element EL.
Given that e18EL1 and e2@EL2, el can enable e2 if
access(EL1,EL2) v [e2 is a wpot of G A
access(EL1,G)]. Wc define access(x,y) to be true if
either 1) X and 'y belong to the same group or 2) y is global to x.
If we assume that al elements and groups within a specification
are enclosed within a single surrounding group, we can define
access(X,y)asfollows:

access(x,y) = (3 G)[YEG A contained(X,G)]
where Y €G denotesdirect membership and

contained(X,G) =X€G V
(3 G')[XEG' A contained(G',G)]



and may be created, deleted, or changed
dynamicaly.5  As aresult, a variety process
intercommunication Structures can be model ed.

Like elementspecifications, cach group specification

may bc associated With aset of restrictions upon its
events.

5. Event Relations

We have aready seen how elements and groups
can be used to restrict the rel ationships between
events. In this section, we examine the enable
relation, element order, and temporal order in
greater detail.

The enable relation =» models the passing of
control between actions during an exccution. For
instance, in a computation involving message
passing, a message send can enable a message
receipt. A process fork can enable the first event in
each forked process. Consecutive events within a
process enable one another.

The enablerelation may also bc used asavehicle
for describing data transfer. For example, a GEM
restriction could specify “ message passing” between
two events send and receive asfollows:

If send enables receive, then their parameters
must be equal.

send W receive D
send.parl = receive.par2

The enable relation is partia, irreflexive, and not
transitive8

As stated before, each event must occur at
exactly one element.  If we use the notation
occurred(e) toassert the occurrence of e ande@EL
to represent the fact that event e occurred at element
EL, wehave:

SComputations grow monotonically, even in the presence of
dynamic groupstructures.  Thisis because changes to group
structure arc represented as events. A complete discussion of
GEM dynamic groupstructures may bc found in{17]. The reader
should also bc aware that the scoping rules established by groups
can be subverted by passing the identities of events
(contiruations) asdataparameters.

8This lack of transitivity results from aneed to describe direct
event causality. Thisisrequired, for instance, inorder t0 express
restrictions Such as "ecach message send can enable only one
messagercccipt” .

occurred(e) 2 (3 1 EL)[ e@EL ]

All events belonging to the same element must be
totally ordered by the element order = . .

(e1@ELAe2QEL) D (el=re2)V(e2=rel)

In addition, two events belonging to different
elements cannot berelated by = . .

(el=»82) V (e2=pel) D
(3 EL)[(e1GEL A e2Q@EL)]

The element order is partia, irreflexive and
transitive.

To clarify the difference between the enable
relation and the element order, consider the
following. Suppose two processesProc1 andProc2
communicate solely through avariable var. Let
assi gn 1and assign 2 betwo eventsrepresenting
assignmentsto var. Eventassi g n 1rcpresents an
assignment to var withinProc1, andassign2, an
assgnment within Proc2. Although assign2 may
folow assignl in the e€lement order
(assigni=w»assign2), assignl and assign2
have nothing to do with each other as far as
execution  control  flow  is  concerned:
(massigntaassign2). Infact, we would have
assign1assign2 only ifassign1 andassign2
were successive assignmentsto var belonging to the
Same process.

Both e1re2 and e1=»e2 imply that e1
temporally precedes e2. Actually, the temporal
relationships implied by 2» and =» arc the only
observabletemporal  relationships  within a
distributed computation. Hence we define the third
order, the temporal order =, to be exactly the
transitive closurc of 2» and =» (minus identity).
Because a GEM computation models concurrent
action, the tempora order is neccssarily partial. For
instance, suppose el and e2 are events belonging to
distinct, non-interacting processes. In this case, e1
and e2 are potentially concurrent:

T[(e1=>e2) V (e2=>el)]



6. GEM Type Descriptions

Suppose we wished to specify a computation
with many variables,. processes, procedures, etc. As
one might cxpect, the descriptions of similar objects
arelikely to bc similar, if notidentical. Instead of
including a separatecomplete specification of, say,
each variable, it would bcconvenient to describe just
once those qualitics which all variables hold in
common. Given this generic variable description,
each variable may be described by a list of
differences fromthe specified norm.

To achieve this goal, GEM includes a flexible
type description facility. Group and clement types
may be declared. Types may bc parameterized as
well asdefined asrefinements of other types. Each
instance of a given type is an element or group with
astructure identical to that of itstype description,
except for any explicitly mentioned differences.
Semantically, the GEM type system may be viewed
as a simple text substitution facility.

As a simple illustration of GEM type
descriptions, let us return to our description of an
integer variablevar.  We might form an
Integervariab1e elementtypedescription:

IntegerVariable = ELEMENT TYPE
EVENTS

Assign(newval : INTEGER)

Getval (oldval: INTEGER)
RESTRICTIONS

END IntegerVariable

var, aswell asany other integer variable, may then
be described as an instance of type
IntegerVariable:

Var = IntegerVariable ELEMENT

Alternatively, we might describe a generic
untyped variable element type. A typed variable
element type could be described as a refinement of
this more basic variable description. The
congtruction is as follows:

Variable = ELEMENT TYPE

EVENTS
Assign(newval : VALUE)
Getval (oldval : VALUE)

RESTRICTIONS

END Variable

TypedVariable(t:TYPE) =
Variable ELEMENT TYPE
/ADD RESTRICTION
(V assign:Assign)[TYPE(assign.newval)=t]

Var = TypedVariable(INTEGER) ELEMENT

7. Histories

A GEM computation represents a complete
execution. Sometimes, however, we need to be able
to talk about particular points in the progress of a
computation. We call such points histories. A
history contains information describing “ what has
happened so far.” If a history a belongsto a
computation C, it is simply a prefix of that
computation. Namely, a consists of a subset of the
events belonging to C and the partia orders and
relaions between those events. All predecessors of
an event within a history must belong to that
history: ak=[occurred(e2) A el=>e2)] O
aF=occurred( €). We denote the prefix
relationship between two histories, or between a
history and a computation by a6Ca1 or aCc,
respectively.

Equipped with the notion of histories, we define

avalid history sequence (vhs) as a set of histories that
hasthefollowing properties:

S= af,at,... isavaid history sequence iff

1. The sequence is monotonically increasing:
a0CalC ...

2. Two events occur for the first time in the same
history only if they are potentially concurrent:
(V ai€s, i>1) (V ei,ej€{ai - ai-1})

[T ei=ej]

For example, suppose we had a computation of the
following form:

= g2 =
e
=> a3 =

The possiblehistoriesare:

al: el

al: el,e2

a2: el,el

a3: el,e2,e3

a4 el,e2,ed,ed



The possible valid history sequences for this
computation include:

al,al,al,ad
al,a2,a3, ad
al,a3,ad

Notice that the last history sequence listed above
describes an exccution in which e2 and e3 occur “at
the same time.”

History sequences have the tail closure properly:
ifsisavhs, then any tail of sisavhs.

S=a0,al,...ai-1,ai,ai+l,... s @ Vvhs D
S{i] = ai,ai+l,... is a vhs

One way of viewing a GEM computation isasthe
set of al of itsvalid history sequences.

Giventhese definitions, wc may apply GEM
restrictions not only to specific histories or to the
entire computati on(immediate assertions), but al so
to sequences of histories (temporal assertions).
Specificaly, we follow the formulation of temporal
logic as defined in[22]. For immediateassertions P,
wemay assertal=P (P istruc of history a). If we
say an immediate assertion p istrue of a history
sequence S, we mean that it istrue of the first history
in that sequence;  Sk=P = al0k=P.

We may now define the temporal operators
henceforth (Cl) and eventually (0) as follows:

P iS henceforth true for sequence Sif it is true of
every tail sequence of S. If P isan immediate
assertion, thismeans that » istruefor every history
inS.
SEOPr 3(ViZ2o0 S[i]lE®P
P iSeventually true for sequence Sif it istrue of
sometaii sequence of S. If P isan immediate
asscrtion, thismeansthat » istrue for some history
inS.
SEOP =((3i 20 S[ilEP
Woc shall demonstrate how the Cl operator is
used to describe safety properties such as priority.

The O operator is used to describe liveness
properties, Such asprogress.

8. GEM Restrictions

As We have Seen, aspecification ¢ consists of a
set of clement and group descriptions, each of which
isassociated With asct of implicit legality restrictions
about the enable relation and the element order.
Each element or group may also be associated with a
set of explicit restrictions upon its cvents. In this
scction, we examine ways in which these restrictions
arcformulated.

8.1. GEM Predicates

Among the predicates which may be applied to
GEM computationsand historiesarc thefollowing: 7

occurred(e) Event e occurred.

e @ EL Even& e occurred at element EL

d Yy e2 e 1 precedes e2 in the enable
relation

el =» a2 e 1 precedes a2 in the element
order

g = a2 e 1 precedes 82 in the femporal

order

8.2. Restriction Abbreviations

Restrictions are first-order logic formulae
composed of GEM predicates, the two temporal
operators Cl and’ 0, and equality ( =) between
events, groups, and event data. A typical example of
a redtriction utilizing =» is given below. It is part of
the Var i abl e ELEMENT description and states that a
value retrieval event, Getval, must yield the value
last assignedtova riab 1.

Variable = ELEMENT TYPE
EVENTS
Assign(newval:VALUE)
Getval(oldval:VALUE)
RESTRICTIONS
1) (V assign:Assign, getval:Getval)
[(assign=»getval) A T (3 assign” :Assign)
[assign=Passign'=»getval]] D
assign. newval = getval . ol’dval
END Variable

7We shall use the notation e : E to state that e is an cvent
belonging to the event class described by E. In general, wc use
lower casc event names to denote specific cvents. and capitalized
names to denote event classes.



[nwritingspecifications, ‘ many restrictions arise
repcatedly. When thescrestrictions are complicated,
it is useful to abbreviate them with some operator or
predicatc.  Each such abbreviation represents a
common computational pattern within concurrent
systems. Among the abbreviations commonly used
in GEM arethefollowing:

1. E1 is a prerequisite to E2

El - E2 =
(VY e2:E2)[occurred(e2) O
(3 1 el:E1)[elre2]]
A(V e1:E1)(3 at most one e2:E2)[elWye2]

An event class El is a prerequisite to an event
classe2 if every event e2 must be enabled by one
event e1, and each event e1 can enable only one
event e2. For example, if a sequential piece of code
consists of actions El, E2, E3, and €4, we would have
restriction EIl - E2 — E3 — E4. Inthe
Monitor primitive, Release Of await upon a
condition must be enabled by exactly one s i gna 1,
and every Signal can enable only one Release:
Signal - Release.

2. Nondeteministic prerequisite of E

{Event Class Set} =+ E =

(V e:E)[occurred(e) D

(3 ! o' :{Event Class Set})[e'We]]
A

(V €:{Event Class Set})

(3 at most one e:E) [e' We]

{Event cClass Set} is a nondcterministic
prerequisite to event classk if every event emust be
cnabled by a single event belonging to one of the
event classes in the set, and each cvent of aclass
belonging to the event class set can enable only one
evente. For example, SUppOse we modeled CSP
input and output statements asfollows:8

8Due 1o the limited scope of this paper, these descriptions are
quite Simplistic. Actual input and output element specifications
would incorporate the identity of the desired partner for
communication.

' = ELEMENT TYPE

EVENTS
Req({par}:SET OF VALUE)
End()

RESTRICTIONS

1) Req —* End

END 1

? = ELEMENT TYPE
EVENTS

Req()
End({par}:SET OF VALUE)

RESTRICTIONS
1) Req — End
END ?

outP = I ELEMENT
inpP = ? ELEMENT

Suppose inpP and outP were input and output
elements belonging to processe. Given a Specific
CSP program containing », we could formally
characterize two sets of events, inputset( inpP)
and outputset{outP):

inputset(inpP):
Set of 1. Req events belonging to €lements
which could legally send datato i n p P

outputset(outP):
Set of 7. Req events belonging to elements
which could legally receive data from out P

We would then add the restrictions

inputset(inpP) -+ 1inpP.End
outputset(outP) —+ outP.End

Simultaneity of I/O exchangein CSPisrepresented
by therestriction

(V inp:?, out:1)
[inp.reqrout.end < out.reqrinp.end]

3. Event FORK
E — {Event Class Set} =
(V Ei€{Event Class Set})[E — Ei]

Event JOIN
{Event Class Set} — E =
(v Ei€{Event Class Set}){Ei = E]



4, Intermediate control points

d a E2 =
occurred( 81) A —(3 e2:E2)[e1Wre2]

elat E2istrueif e1 has not enabled an event of
classE2.

new(e) =occurred(e) A —1(3 e')[e=>e']

new (€)istrueif no event has observably followed e.

8.3. GEM Thread Notation

Equipped with the descriptive tools wc have
presented so far, we may begin to build a
specification of theReader’s Priority version of the
Readers and Writers problem. We begin with a
specification of thefollowing form:

User = ELEMENT TYPE

EVENTS
Read(loc:1..N)
FinishRead(info:VALUE)
Write(loc:I.. N, info:VALUE)
FinishWrite

RESTRICTIONS

END User

DataBase = GROUP TYPE(control:RWControl,
{data[loc:l ..N]}:SET OF Variable)

RWControl = ELEMENT TYPE

EVENTS
ReqRead(1oc:1..N)
StartRead(loc:1..N)
EndRead(info:VALUE)
RegWrite(loc:l . .N, info:VALUE)
StartWrite(loc:1..N, info:VALUE)
EndWrite

RESTRICTIONS

END RWControl

RWProblem = GROUP (db:DataBase,
{u}:SET OF User)

RESTRICTIONS

1) u.Read(loc) —
db.control .RegRead(loc) —
db.control.StartRead(loc) —
db.data[loc].Getval(info) —
db.control .EndRead(info) —
u.FinishRead(info)

2) u.Write(loc,info) —
db.control .RegWrite(loc,info) —
db.control.StartWrite(loc,info) —
db.data[loc].Assign(info) —
db.control .EndWrite —
u.FinishWrite

END RWProblem

Eachuser call to Read Or write resultsin arequest,
start of operation, fulfillment of operation, end of
operation, and return to the user.

Inorder to define variousforms of priority as
well asthe mutual exclusion property, we need to be
ablc to label those events which occur as a result of
each user request. These labels can then be used to
distinguish between  events occurring due to
different requests. GEM’ sthread mechanism was
devised precisely for thistask. Asstated earlier, the
enable relation models how control is passed
between cvents. A thread is an identificr associated
with a chain of enabled events of a particular
specified form. Each thread may be thought of as
defining a sequential  process. For the
Readers/Writers problem, we define athread to
correspond to the actions occurring within a specific
Readers/Writers database transaction. Using apath
exptessiorz-like notation 4], we define thread type
wRW asfollows:

7RW = (u.Read::db.control.ReqRead::
db.control .StartRead: :
db.data[loc].Getval::
db.control .EndRead: :
u.FinishRead
|
u:Write::db.control.Rqurite::
db.control.StartWrite::
db.data[loc].Assign::
db.control .EndWrite::
u.FinishWrite)

By including this thread description within
RWSo1 ut ion, Weassert the following restrictions
upon any legal Readers/Writers computation:

« Aunique #RW thread identifier is created and
associated with cach Read Or Write event that
oceurs.

« Thisidentifier is “passed” aong its related
control path, as long as events cnable one
another in the order prescribed, until a
FinishRead or FinishWrite occurs.

The notatione wRW-1 indicates that cvent eis part
of athread instance wRW- i Of typeaRW.



To complete the Readers and Writers
specification, weproceed asfollows.  First, we
augment element RWControl With the following
restriction describing the* writersexclude others”
property. The first clause states that writers exclude
readers, and the second, that writersexclude other
writers,

Mutual Exclusion Restriction:

—(3 startread wRW-1i:StartRead,
startwrite wRW-j:StartWrite)
[occurred(startread wRW-i) A
—occurred(endread wRW-i) A
occurred(startwrite wRW-j) A
—occurred(endwrite wRW-3j)]
A
—(3 startwrite wRW-i:StartWrite,
startwrite wRW-j:StartWrite)
[occurred(startwrite wRW-i) A
—occurred(endwrite wRW-1) A
occurred(startwrite w#RW-j) A
—occurred(endwrite mRW-j)]

where #RW-1 and #RW-j are two distinct #RwW
threadidentifiers.

GEM is also able to express priority properties
easily. Reader’s priority for the Readers/Writers
problem may bedescribed asfollows:

If a request for a read and a write are pending at the
satne time, the read must be serviced before the write.

[reqread wRW-i at StartRead A
reqwrite w#RW-j at StartWrite] 2
U ([occurred(startwrite wRW-j) D

occurred(startread wRW-1)]

8.4. History vs. Current State

Because a GEM computation contains
information about all cvents that have occurred,
restrictions may refer to the entire past of a
computation or history, not just the current value of
variables  (current  slate). Description  and
verification methods which rely upon variable values
to describe state are limited in the sense that
variables abbreviate state -- they cannot easily
provide information about al that has occurred in
the past. Even if auxiliary variables are used, the
specification of many propertics becomes unwieldy.
For example, astate-oriented description of reader’s
priority would have to encode the ordering of cvent
occurrences in terms of auxiliary program variables.

‘Ihc GEM priority restriction i’ Srather Ssmply and
intuitively stated in terms of the cvent occurrence
information available within GEM historics,
augmented With the use of temporal operators.

The possibility of utilizing complete
computational informationin GEM specifications
often allows amore intuitive and gencral description
of computational propertics than state-based
mcthods,. A GEM problem description is a
representation of a problem that may be applied to
the analyses of programswrittenin any language. In
contrast, assertion or state-oricntcd methods of
specification usually describe a problem interms of
the variable values of a specific program
implementing that problem.

9. GEM Verification Methodology

GEM computations contain information about
the order of event occurrence, aswell asinformation
about their associated data values. For example,
associated with each Ass i gn event belonging to a
var i abl e clementisthevalue assigned. It is not
hard to see how proof techniques which make use of
assertions about variable values could be applied to
GEM computations. Moreover, GEM’s temporal
operators alow one to describe liveness properties
such as progress.9 Thus, temporal 1ogic methods can
be applied to GEM computations as well. Despite
this, wc have found it useful to develop an alternate
proof methodology that is cspecially well-suited to
GEM. Because GEM problem specifications are
often expressed in terms of event orders and
relations, it makessense to utilize a proof method
geared towards reasoning about these relationships
ggtween events. We briefly outline this method

ow.

Suppose we wish to prove that a given program
solves a specific problem. Our first step would be to
describe that problem by a GEM problem
specification . For example, we have alrcady
described aspecification for the Readers and Writers
problem in the preceding section. Next, wC would
describc the program by formulating a GEM

9An example of aweak progress reguirement is the following
one: if all the prerequisites of an event e arc fulfilled in history
a, and e could legally extend history a. and this remains true
until e actually occurs, then e must eventually occur. A stronger
progress requirement Would guarantee € to occur if there is an
inlinitc subscquence of histories in which it could legally enter
the computation.



program  specification  PROG. Program
specifications arc gencrated by instantiating the
groups and elements which make up GEM’s
description of the underlying implementation
language.

For example, suppose wcC were given the
following monitor as part of the implementation of
the Reader’s Priority Readers/Writcrs problem (the
dataitself must be located outside of the monitor):

ReadersWriters:MONITOR
BEGIN
readqueue, writequeue:CONDITION;
readernum: INTEGER;
/*readernum is positive if reading,
negative if writing+/

ENTRY PROCEDURE StartRead;

BEGIN

IF readernum < 0 THEN
WAIT(readqueue) ;

readernum := readernum + 1;

SIGNAL (readqueue):

END;

ENTRY PROCEDURE EndRead;
BEGIN

readernum := readernum = 1
IF readernum = 0 THEN
SIGNAL (writequeue);

END;

ENTRY PROCEDURE StartWrite;
BEGIN
IF readernum # 0 THEN

WAIT (writequeue):
readernum := -1:

END;

ENTRY PROCEDURE EndWrite;

BEGIN

readernum := O:

IF queue(readqueue) THEN
SIGNAL(readqueue)

ELSE

SIGNAL (writequeue);

END;

/*initialization*/
readernum := 0;
END ReadersWriters

In addition, we are given the following GEM
specification of theMonitor primitiveitself:

Monitor = GROUP TYPE(lock:MonitorLock,
{entry}:SET OF MonitorEntry,
{cond}:SET OF Condition,
init:Initialization,
{var}:SET OF Variable)
PORTS(lock.Req)

RESTRICTIONS

Restrictions describing how a monitor functions.
This would include rules for wailing and signalling,
initialization, etc.

END Monitor

where MonitorLock, MonitorEntry,
Condition, Initialization, and variable are
previously defined element or group types.

The monitor program given above could then be
described by thefollowing GEM specification:

ReadersWriters = Monitor GROUP
(RWLock, {StartRead,EndRead,
StartWrite,EndWrite},
{readqueue,writequeue},RWInit,
{readernum))

Every restriction within mon i t or appliesto
ReadersWriters. [n addition, each component of
ReadersWr i ters must aso befully specified. For
instance, the StartRead MonitorEntry
specification includes adescription of the statements
which belong to entry StartRead. Given an
underlying language specification, trandation of a
program into a GEM program specification is quite
simple and mechanical enough to lend itself to
automation.

Finaly, aproof iscompleted asfollows:

1. For each group, element, event type, event
parameter, and thread in P, choose a
corresponding object in PROG. We cdll these
the significant objccts of PROG.

2. Prove that each restriction Ri in P is satisfied
by the corresponding significant objectsin
PROG.

(V Ri€P) [PROG sat Ri]

GEM includes various rules which define what
is meant by sat. One intuitive explanation is
the following: 1 we examine a compu tation
which is legal with respect to PROG, and only
take note of significant objects, those significant
objects exhibit the same behavior as a
computation that is legal with respect to P.

To illustrate this proof method, wc present an



informal argument showing that reader’s actually do
get priority inthe monitor solution presented above.
First, we set up the following event
corrcspondenccs:

PROBLEM PROGRAM
ReqRead Entry StartRcad:BeG In
StartRead EntryStartRead:
readernum: =readernum+1
EndRead Entry EndRead:
readernum:=readernum-1
RegWrite EntryStartWrite:8eGIN
StartWrite EntryStartWrite:readernum: =-1
EndWrite EntryEndWrite:readernum: =0

Assume Chat we have already proved Chat
potential(startwrite) D readernum = 010
and new(startread) 2D readernum > 0. We
have also proved that al events occurring in monitor
entries or initialization code arc totally ordered by
the temporal order =. Aninformal proof of the
Reader’s priority property follows.

ReadersPriority RESTRICTION:
[reqread wRW-i at StartRead A
reqwrite wRW-j at StartWrite] D
O [occurred(startwrite wRW-j) 2
occurred(startread wRW-1i)]

Proof. By contradiction.

Let Sbeavalid history sequence for which the
ReadersPriority restriction does not hold. Then
Smust have histories a0 and a3 such that «0C a3
and

a0 = reqread #RW-i at StartRead A
reqwrite wRW-j at StartWrite

ad E= occurred(startwrite aRW-j) A
=1 occurred(startread wRW-i)

0an event is potential if it has not occurred, but all of its
prerequisites have been fulfilled. The expression "Var = N" is
an abbreviation for

(Jassigni(N):Var.Assign)[occurred(assigni(N))
A
~(3assign2:Var.Assign)[assigni(N)=>assign2]]

If wC choosea3 to bethe smallest history having
this property, then wc additionally know that a3 k=
new(startwrite wRW-j).

By examining the code of entry StartRead
(keeping in mind that execution of monitor events IS
sequential), wesce that the processexecuting thread
7RW-1i must have waited on condition readqueue,
giving us

reqread wRW-i=>wait wRW-i(readqueue)=>
startwrite @RW-j

If wc choose a as the smallest history containing
thiswait event, then we have a = new(wait
mRW-i(readqueue)), and thus 4 =
readernum<0, and a0Ca1Ca3; Now let a2 be a
history such that a1Ca2Ca3 and a2 &=
potential(startwrite wRW-j). (Such an a2
exists becausc startwrite @RW-j must be
potential beforeitoccurs). Then a2
readernum=0.

Sincereadernum<0 inal andreadernum=0 in
a2, there must be some assignment event
assignzero at variable readernun Which causes its
value to change from less than 0 to 0. Moreover,
since all assignments t0 readernum Occur
sequentially, we can choose assignzero to be the
first such assignment.  We also know that
assignzero musteitherbe a StartRead event or
End Wr i t e event (these are the only two events
which could cause readernum toincrease). Let 1
and o be histories such that

B1 = new(assignzero)
B0 = potential(assignzero)

Case 1.

Suppose that assignzero is of class
StartRead. Because new(startread) 2
readernum>0, wemust havereadernum>0 before
execution of assi gnzero. Thismeansthat 80 k=
readernum>0. But a1CBoCa2, which
contradicts the choice of ass ignzero as the first
event to increase the value of readernum to 0.
Contradiction

Case 2.

Suppose Chat assignzero is anEndWrite
cvent. Then we have



wait 7RW-i(readqueue)=>endwrite=
startwrite wRW-j

Morcover, when this endwrite occurs, we know
that at least one process is waiting on condition
readqueue, namely the process which cxccuted
wait wRW-i(readqueue). Therefore, after
endwrite, readqueue will get signalcd. The code
of entry StartRead guarantecs that all waiting
rcaders will be signalled before any other process
exccutes in the monitor.  Sequential execution
within the monitor then implics:

regread wRW-i=>endwrite=>
startread aRW-i=>startwrite 7RW-j

Contradiction

0. Related Work

The model of computation most similar to GEM
is the message-based actor model [6,10].  Greif [6]
has utilized actors to model the monitor primitive,
and to analyze various aspects of concurrent
execution. An actor system is composed of actors,
the events OCcuUrring at actors, and various partial
orders on these events. However, an actor eventisa
message receipt, rather than an arbitrary logical
action. Morcover, each event may be activated by
only asingle predecessor. Dynamic process creation
and flexible forms of intercommunication can be
described by actor systems. However, scope rules
arc notmodeled specifically, nor isthere any means
of naming particular chains of control. Nor do actor
systemsincorporate the use of temporal logic. In
addition, the actor modcl has not been used as a tool
for general purpose languagedcscription Or program
verification.

Another event-oriented model related to GEM
is Lamport’s [15, 16]. In thismodel, asin ours, an
eventisalogical action at any desired level of detall.
However, non-atomic events arc also considered.
Lamport has used his model as a framework for
solving such problems as the synchronization of
distributed clocks.

Several other models havebeen used to describe
concurrency, dthough they arc fairly different from
GEM. A detailed review of theoretical models of
concurrency may be found in [18]. Petri Nets [23]
are a good representative Of the class of transition
models. They have been widely used and studied
cxtensively, but arc static in structure and not
expressive enough to casily itlustratc data-dcpendent

propertics.  Another class of modcls may bc
dcscribed as algebraic or functional. Such models
usually focus on the input-output scgiicnecs of a set
of processes or modules, which may bc combined
algebraicadly. Milner and Milnc’s Communicating
Behaviors [ 19, 20], Kahn and MacQucen's Stream
Processing Networks [13, 14], and Pratt’s Process
Model [26] arein thiscategory. Models in this class
areusualy used for describing problems rather than
languages.

Some descriptive methods have been designed
specifically  for  application to  languages.
Denotational semantics[28] hasbeen used to provide
functional descriptions of many languages and
problems, but has some difficulty with concurrency.
Adaptations of denotational methods for concurrent
applications have been explored [24, 27] but are not

easy touse.

Methods for comparing or analyzing concurrent
language structures arc not widespread. Guarino-
Reid's model [7] is formulated as a specia-purpose
language made up of modules interconnected by
ports, and is used to describe various “abstract
communication constructs.” A method for
evaluating language concurrency primitives is
described by Bloom(3].

Much research has been devoted to the
verification of concurrent programs.  Assertion-
oriented methods have been extended to deal with
concurrency [21]. Temporal logic has been used
successfully, especially in the verification of
communications  protocols[8, 22, 25]. Most
verification techniques certify program correctness
by proving assertions about program state cast in
terms of variable values.  A. specidized, cvent-
oriented method of verification for Serializersis
utilized by Atkinson’sautomatic verifier[2].

11. Conclusion

We have described GEM, a model of concurrent
computation which is simple and general cnough to
dcscribc a variety o f  language concurrency
primi tives and problems.  GEM spcci fications
include information about the structure of a
language or problem as well as its intended
semantics.  Structure ‘is described by stating how
certain events occur at specific elements, and how
those elements arc clustered into groups. Language
or problem behavior is dcscribed by restricting cvent
occurrences to certain partial orders and relations.
Spccifieations arc often stated as synchronization



propcrtics, rather than invariant statements about
variablevalucs.

GEM has already been used to describe threc
very different language primitives: the Monitor, a
primitive based on communication viashared data;
CSP, which consists of processes communicating via
messages; and ADA’ s tasking mechanism, which
usestherendezvous for intcrproccsscommunication.
GEM has alsobeen used to specify the One-Slot and
Bounded Buffer problems, five versions of the
Readers/Writers problem, and two distributed
applications: an algorithm for updating adistributed
database and an asynchronous version of the Game
of Life.

GEM can also be used as a verification tool.
Various properties of the Monitor have been proved
such as scquential execution of monitor entries.
Monitor, CSP, and ADA solutions to the One-Slot
Buffer, Bounded Buffer, and Reader’s Priority
Readers/Writers problems have been verified.
Properties such as progress and functional
correctness have been proved of the two distributed
problems mentioned above.

Acknowledgments

Russ Atkinson had a great influence upon the
formulation of GEM. Others who have helped by
reading drafts of this paper are Pierre Wolper, Keith
Marzullo, Steven Rubin, and Polle Zellwcgcr.

References

1. Reference Manual for the AD A Programming
Language. United States Dcpartment of Defense,
1980.

2. Atkinson,R. Automatic Verification of
Serializers. Tech.Rept. TR-229, MIT Laboratory
for Computer Science, March, 1980.

3. Bloom,T. Synchronization Mechanismsfor
Modular Programming Languages. Tech.Rept. TR+
211, MIT Laboratory for Computer Science, Jan.,
1979,

4. Campbell,R.H. and Habermann,A.N. The
Specification of Process Synchronization by Path
Expressions. 1N Lecture Notes in Computer Science

16, Springer-Vcrlag, 1974.

5.Ellis,C.A. Consistency and Corrcctness of
Duplicate Database Systems. Proceedings of the 6th
Annual SymposiumonOperating SystemPrinciples,
ACM, Nov., 1977, pp. 67-84.

6. Greif,1. Semantics of Communicating Parallel
Proccsscs. Tech. Rept. TR-154, MIT Project MAC,
sept., 1975.

7. Guarino-Reid,1.. Control and Communication in
Programmed Systems. Tech. Rept. CMU-CS-80-
142, Carnegie-Mellon University, Dept. of
Computer Science, Sept., 1980.

8. Hailpem,B.T. Verifying Concurrent Processes
Using Temporal Logic. Tech. Rept. 195, Computer
SystemsLaboratory, Stanford University, Aug.,
1980.

9. Hansen,P.B.. Operating System Principles.
Prentice Hall, Englcwood Cliffs, NewJersey, 1973.

10. Hewitt,C. and Baker H. Jr. Lawsfor
Communicating Parallel Processes. InIFIP 77,
Gilchrist,B., Ed.,North-Holland, Amsterdam, 1977,
pp. 987-992.

11. Hoare,C.A.R."Monitors: An Operating System
Structuring Concept.” Cotnm. ACM 17, 10 (Oct.
1974),549-557.

12. Hoarc,C.A.R. “ Communicating Sequential
Processes.” Comm. ACM 21, 8 (Aug. 1978), 666-
677.

13.Kahn,G. The Semantics of aSimple Language
for Parallel Programming. In/FIP 74,North-
Holland, Amsterdam, 1974.

14. Kahn,G. and MacQueen,D.B. Coroutines and
Networks of Parallel Processes. InIFIP 77,
Gilchrist,B., Ed.,North-Holland, Amsterdam, 1977,
pp. 993-998.

15. Lamport,L. “ Times, Clocks, and the Ordering
of Eventsin a Distributed System.” Comm. ACM
21,7 (July 1978).

16. Lamport,L. "A New Approach to Proving the
Corroctncss of Multiproccss Programs.” ACM-
TOPLAS 1, 1(July 1979).



17.1 ansky,A. Spcci tication and Analysis of
Concurrency. Department of Computer Science,
Stanford University. Ph.1.thesis (to appear).

18. MacQueen,D.B.Models for Distributed
Computing. Tech. Rept. 351, INRIA - Paris,France,
April, 1979.

19. Milne,G. andMilner,R. Concurrent Processes
and Their Syntax. Tech. Rept. CSR-2-77, University
of Edinburgh, Dcpartment of Computer Science,
May, 1977.

20. Milner,R. Synthesis of Communicating
Behavior. 7th Symposium onMathematical
Foundations of Computer Science, Lecture Notesin
Compu ter Science, Springer Verlag,
Zakopane,Poland, Sept.,1978.

21. Owicki,S. andGries,D. " Verifying Properties of
Parallel Programs: An Axiomatic Approach.”
Comm. ACM 19, 5 (May 1976), 279-285.

22. Owicki,S., andLamport,L. * Proving Liveness
Properties of Concurrent Programs.” ACM
Transactions on Programming Languages and
Systems 4, 3 (July 1982), 455-495.

23. Peterson,J.L. "Petri Nets.”” ACM Compufing
Surveys 9, 3 (Sept. 1977), 221-252.

24. Plotkin,G.D. "A Power Domain Construction.”
SIAM Journal on Computing 5 (1976), 452-487.

25. Pnueli,A. The Temporal Logic of Programs.
18th Annua Symposium on Foundations of
Computer Science, IEEE, Oct., 1977, pp. 46-57.

26. Pratt,V.R. On the Composition of Processes.
Ninth Annual ACM Symposium on the Principles
of Programming Languages, ACM, Jan., 1982, pp.
213-223.

27. Smyth.M.B. "Power Domains.” Journal of
Computer and System Sciences /6, 1 (1978), 23-36.

28. Stoy,J.E.. Denotational Semantics= The Scott-

Strachey Approach /¢ Programming Language
Theory.MIT Press, 1377.

29. Winkowski,J. Game of Life as a Synchronous
Process That Can BcRealized Asynchronoudly.
Tech. Rept. 286, Institute of Computer Science,
Polish Academy of Sciences, Warsaw, Poland, 1977.



