
I

i

DEPARTMENTSOFELECTRlCALENGlNEERlNGANDCOMPUTERSClENCE
STANFORD UNIVERSITY $TANFORD,CA 94305

Gem: A Tool for Concurrency
Specification and Verification

Amy L. Lansky
Susan S. Owicki

Technical Report No. 83-251

November 1983

11x author is a fellow of the Fannie and John h’crtz Foundation. This work was
also supported in parI by NSF Grant MCS-80-05336.

COMPUTERSYSTEMSLABORATORY

Gem: A Tool for Concu rrendy
Specification and Verification

Amy L. Lansky
Susan S. Owicki

Technical Report No. 83-251

November 1983

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

Abstract

The GEM model of concurrent computation is presented. Each GEM computation consists of a set of
partially ordered events, and represents a particular concurrent execution. Language primitives for
concurrency, code segments, as well as concurrency problems may be described as logic formulae
(restrictions) on the domain of possible GEM computations. An event-oriented method of program
verification is also presented. GEM is unique in its ability to easily describe and reason about synchronization
properties. .

Key Words and Phrases: Concurrency, specification, verification, events, partial ordering.

GEM: A Tool for Concurrency Specification and Verification

Amy L. Lanskyl, Susan S. Owicki
Stanford Univctsity

Abstract

The GEM model of concurrent computation is
prcscntcd. bch GEM computation consists of a set
of partially ordered events, and represents a
particular concurrent execution. Language
primitives for concurrency, code segments, as well as
concurrency problems may be described as logic
formulae (rcstridtions) on the domain of possible
GEM computations. An event-oriented method of
program verification is also presented. GEM is
unique in its ability to easily describe and reason
about synchronization properties.

1. Introduction
Our understanding of distributed systems and

computational concurrency is far from complete.
Languages that include concurrency are harder to
describe formally than scqucntial ones. Verification
of concurrent programs is complicated by the

- unpredictable order in which the actions of
mdepcndcnt processes occur.

This p<lpcr introduces the Group Element
NJodcl (G EiM), a behavioral or ewrlt-orietlteci model

’ ‘171~ author is a fellow of the Falal;nic and John lkrtz

I:ou&Iion. This work was also supported in part by NSF Grant
MCS-80- 15336.

of concurrent computation. GEM events arc related
by partial orderings. Bccausc of this, concurrent
action can be modeled in a realistic fashion. A given
GEM computation can represent an execution
which is truly distributed as well as one in which
concurrent action is simulated on a single processor.

We have found GEM’s event-oricntcd approach
to be broad enough for general purpose language
and problem specification, and powerful enough to
serve as a basis for an event-oricntcd method of
concurrent program verification. GEM is especially
well-suited for describing and reasoning about
synchrotlizatiotl properties -- properties that deal
with the ordering of events. Synchronization
properties such as priority are not easily expressed by
techniques which rely upon assertions about
program variable values.

Many formal models of concurrency have not
been applied to language description, or htivc only
been used to describe a single language. In contrast,
GEM has already been used to dcscribc three very
different language primitives for concurrency: the
Adotiitor 19, II.], Commtrtticatirlg Sequential Processes
(CSP) [12), and AD/i tasks [l]. These descriptions
are fairly concise, were easy to formu!atc, and
capture language structure and semantics in an
intuitive fashion.

GEM has been used to provide descriptions of
traditional concurrency problems such as t!lc One
Slot l3uffcr. Bounded J<uffcr, and KcadcrsNriters
problems, as well as two distributed applications: an
algorithm for performing updates to a distributed
d&#asc [5], and an asynchronous, distributed
version of the Game of Life [29]. The model has
also been used to verify Monitor, CSP, and ADA
programs. Properties such as lack of deadlock and
fimctional correctness have been proven of the two
distributed appiications.

Sections 2-8 describe GEM’s method of
representing concurrent execution and show how
problem, language, and program specifications are
formed. The GEM verification method is described
in section 9. Finally, an overview of related work is
prescntcd in section 10.

2. Concurrency: An Intuitive View
Before WC embark on a detailed description of

how GEM models concurrent execution, let us
examine concurrency on a more intuitive level.
When we think of execution, WC think of actions
occurring in time as well as in space. In a sequential
execution, there is only one locus of activity. Each
action enables or causes the next action to occur,
resulting in activity which is totally ordered in time.

In a concurrent execution, there are many loci of
activity. Suppose, for the prcscnt, that each action
occurs at its own personal locus of activity. Some
actions enable others to occur, but actions may occur
independently of one another as well. For example,
an action A may fork, enabling two actions B and C.
Actions B and C may then enable their own subtrecs
of activity, each of which is unrelated to the other.

Although the actions which occur within the
subtrees belonging to B and C may be ordered in
time, such a temporal ordering is a result of chance.
In fact, it is possible for any two actions from
different subtrees to occur simultaneously. When it
is logically possible for two events to occur
simultaneously, we will sr~y they are potentially
cumurretg or that there is no o6serva6lc order
bctwecn them. From this cxamplc, it is clear that
both the enabling and observable temporal
relationships between actions in a concurrent
computation is partial.

We have now considered the role played by the
enabling relationship between actions. What role
dots locrrs of activity play? WC have been assuming
that each action has its own locus of activity. There
arc, however, sets of actions which logically occur at

the -same location. Consider, for’ cxamplc, a single
computer storage cell. In most models of computer
cxccition, all actions (reads and writes) which take
place at the same memory location arc forced to be
totally ordcrcd in time. AIthough thcsc actions may
be causally unconncctcd (thcrc is no enabling
relationship bctwecn them), they must occur in some
sequential order. For instance, such a situation
arises when a memory location is shared between
several logical processes of activity.

Prqc2

Thus there are activities which arc observably
ordered in time without being causally related. In
our model, all events at a single locus of activity
must be totally ordered.

Some loci of activity are naturally grouped
together. For example, it would be natural to group
ali loci of activity belonging to a single procedure
activation, or to a single server process. Actions
within such a grouping are often rciated semantically
as well as by-the -enabling relationship. Semantic
groupings arc also often tied to the traditional
language concept of scope. For instance, the actions
of two different processes might bc clustered into
two separate groups. Because each process is not
allowed to access the . variables belonging to the
other other process, it becomes natural to associate
the two groups with a “firewall” which limits the
enabling relationships between them.

Given this intuitive discussion of concurrent
execution, we shall now proceed to explain GEM’s
model of cxccution in a more formal way. GEM
represents the actions within a concurrent execution
by objects called everrts. The enabling relationship
bctwccn actions is modeled by the enable relation
>. Loci of forced scqucntial activity are modeled

by ela?zents, and this forced scqucntial order is
called the efernet~~ order = . . The tctnporal order =S
between actions (the observable order in time) is
simply the transitive closure of > and =b (minus
identity). Semantically related loci of activity are
modclcd by GEM groups.

3. Computations and Specifications
GEM is made up of two components: a model

of execution and a spccifieation language. A GEM
computation is an abstract rcprcsentation of
concurrent execution. Each computation consists of
a possibly infinite set of objects called events, a
partial relation 2, (the enable relation), and two
strict partial orders: = b (the element order), and *
(the tempo& order). Events may bc also clustered
into sets called elements and groups.

A language or concurrency problem may be
described by characterizing it as a GEM
specification u. Each specification is composed of a
set of logic formulae (restrictions) over the domain
of all possible GEM computations. A computation
C is legal with respect to a specification u (legd(C,o))
if C satisflcs each restriction in u. Thus, each GEM
specification admits a set of computations with a
particular desired behavior or meaning. For
example, the restrictions describing the ADA
language primitives admit GEM computations
representing legal *ADA program executions. A
solution to the database update problem is one that
obeys all restrictions specifying that problem.

As one might cxpcct, there are certain properties
that must be true of all legal computations. These
propertics are described by a set of GEM legali@
restrictions which arc automatically part of any
GEM specification. For example, the following
must be true of all legal GEM computations: the
temporal order between events is a transitive and
irrcflexive order, and must be equivalent to the
transitive closure of the enable relation and the
element order (minus identity). The way in which a
computation’s cvcnts arc clustcrcd into elcmcnts and
groups imposes legality restrictions on the element
order and enable relation.

Each GEM legality restriction has a formal
characterization. In this paper, however, we will
prcscnt these properties informally, as we describe
the basic conceptual components of GEM.2

2’Ms paper iq intended as a survey of GIN rather than a
complctc dcscriplion. For kthcr details refer to [17].

4. Events, Elements, and Groups
A GEM event reprcscnts a logical action that is

regarded as atomic rclativc to other events in its
computation. Fo r example , an assignment
statement, the forking of a process, and completion
of an input request may bc modeled as events. An
event may be viewed as a structured object
composed of the following kinds of information:
data parameters, thread identifiers (set section 8.3).
and the names of the clement and group sets to
which it belongs. Each event is a unique occurrence
in a computation, with its own identity and
associated data. A set of similar events may be
charactcrizcd by an evenl cfnss description.

As already stated, a GEM specification is used to
restrict the set of all possible computations to those
that represent meaningful executions for a particular
language or problem. The first way in which this is
done is to identify which events may occur.,
Specifically, the events which may legally occur
within a computation arc those belonging to a
specified list of elements: if ZegaZ(C,u) and event e is
in C, then e must belong to some element specified
in 0.

EZements model the elementary components of a
language or problem whose associated actions musf
for some reason, occur sequentially. In this sense,
they arc similar to actors [6, lo].

Each element is a unique entity and is
characterized by a name and the events which
belong to it. Moreover, every GEM event must
belong to exactly one element. If an event belongs
to an element, we say it “occurs” at that element.
All of the events occurring at the same element must
bc totally ordcrcd by the elcmcnt order, =,.3 Each
element may bc associated with an explicit list of
restrictions upon its events.

Let us look at an example. Suppose we wished
to model an integer variable Var. Two types of
events can bc associated with a variable, Ass i gn and
Getval . ln addition, WC wish to assert that events of
type Var.Assign and Var.Getval occur
sequentially, whether they arc causally related or
not. In essence, WC are asserting a lock on access to
variable Var. WC could write the following GEM
specification of Var :

31f WC do not wish to impost an element order on events. we
can simply associatc each event with its own clement. In this
limiting cast. cvcnts xc only rclstcd by the enable relation and
temporal order.

Var = ELEMENT
EVENTS

Assign(newval:INTEGER)
Getval(oldval,:INTEGER)

RESTRICTIONS
.

END Var
.

A specification w h i c h includes Var admits
computations containing Var.Assign and
Var. Getval events which obey the restriction

(V el,eZ:{Var.Assign, Var.Getval})
[el=be2 V e2=bel V el=e2]

as well as any additional restrictions explicitly
associated with Var.

Note that because each event must belong to
exactly one element, and all events occurring at the
same element arc totally ordered, a given event may
be uniquely identified by naming the element at
which it occurs and its occurrence number. For
example, the assignment event denoted by
Var.assigni (or simply Vari)is the ith eventat
Var.

Events within a computation may also be
clustered into groups. Groups are sets of elements
and/or other groups, and are used to describe the
compound structure of more complex language and
problem components. For instance, a process might
bc modeled as a group containing local variable
elements, local procedure groups, and a group
representing the code of the process.

The group is a natural vehicle for modcling the
static scoping rules found in most programming
languages. Conventional scope rules limit access to
certain variables or procedures. A GEM
specification limits access to certain events by
placing those events within specific groups. Each
group structure is associated with a set of legality
restrictions which limit the enable relation 2,
between events. For example, suppose we were
given a specification of the following foml.

ELEMENTS ELl,EL2,EL3,EL4,ELS,EL6

Gl = GROUP(ELE,EL3)
62 = GROUP(EL4,ELS)
63 = GROUP(EL3,EL4)
64 = GROUP(EL1)

0EL6

The allowed communications are as follows:4

An event in: May enable any evenl in:
EL1 ELl,ELG
EL2 EL2,EL3,EL6
EL3 EL2,EL3,EL4,EL6
EL4 EL3,EL4,EL5,EL6
EL5 EL4,EL5,EL6
EL6 EL6

Note how Gl, 62, and 64 could be representations of
processes, with G3 modeling a message channel
between Gl and 62, and EL6 representing a resource
shared by all three processes.

Certain events may be designated as porf even&,
and serve as “access holes” to their groups. Using
ports, we could model the concept of da&a
abstraclion as follows:

Abstraction = GROUP(Datuml,...,DatumN,
Operl,...,OperM)

PORTS(Operl.Start,...,OperM.Start).

Events occurring at elcmcnts outside of
Abstract i on may directly access only events of the
formOperi.Start,notthoseatsomkDatumj.

Groups are a very flexible structuring device.
They may be disjoint, hierarchical, or overlapping,

41rt e@EL denote the fact that event e belongs to element EL.
Given that el@ELl and e2@EL2, el can enable e2 if
access(ELl.EL2) v [e2 is a port of G A

access(ELl,G)]. WC define access(x,y) to be true if
cithcr 1) x and y belong to the same group or 2) y is global to x.
If we assume that all elements and groups within a specification
are enclosed within a single surrounding group, we can define
access(x .y) as follows:

a c c e s s (x , y) ~(3 G)[YEG A contained(X,G)]

where Y EG denotes direct mcmbcrship and

c o n t a i n e d (X , G) =XXEG V
(3 G')[XEG' A contained(G',G)]

a n d m a y b e created, d&ted, o r changed
dynamically.5 As a result, a variety process
intercommunication structures can be modeled.
Like element specifications, each group specification
may bc associated with a set of restrictions upon its
events.

5. Event Relations
We have already seen how elements and groups

can be used to restrict the relationships between
events. In this section, we examine the enable
relation, element order, and temporal order in
greater detail.

The enable relation - models the passing of
control between actions during an execution. For
instance, in a computation involving message
passing, a message send can entroIe a message
receipt. A process fork can enable the first event in
each forked process. Consecutive events within a
process enable one another.

The enable relation may also bc used as a vehicle
for describing data transfer. For example, a GEM
restriction could specify “message passing” between
two events send and receive as follows:

If send enables
must be equal.

r e c e i v e, then their parameters

send > receive >
send.parl = receive.par2

The enable
lransilive.6

relation is partial, irreflexive, and nol

As stated before, each event must occur at .
exactly one element. If we use the notation
occurred(e) to assert the occurrence of e and e@EL
to represent the fact that event e occurred at element
EL, we have:

jcomputations grow monotonically, even in the prcscncc of
dynamic group structures. This is because changes to group
structure arc represented as events. A complete discussion of
GEM dynamic group structures may bc found in [17]. The reader
should also bc aware that the scoping 1~1cs established by groups
can be subverted by passing the identities of events
(contirxtations) as data paramctcrs

-

occurred(e) > (3 ! EL)[e@EL]

All events belonging to the same element
totally ordered by the element order = . .

must be

(el@ELAe2@EL) > (el=be2)V(e2=bel)

In addition, two events belonging to different
elements cunnof be related by = . . *

(el=be2) V (e2=bel) 3
(3 EL)[(elBEL A e2@EL)]

The element order is partial, irreflexive and
transitive.

To clarify the difference between the enable
relation and the element order, consider the
following. Suppose two processes Procl and Proc2
communicate solely through a variable Var. Let
ass i gn 1 and ass i g n 2 be two events representing
assignments to Var. Event ass i g n 1 represents an
assignment to var within Procl, and ass ign2, an
assignment within Proc2. Although ass ign2 may
follow assign1 in the element order
(assignl=bassign2), assign1 and assign2
have nothing to do with each other as far as
execution control flow is concerned:
(-assignI-assign2). In fact, we would have
assignl>assign2 only if assign1 and assign2
were successive assignments to Var belonging to the
same process.

Both el*e2 and el=be2 imply that el
temporally precedes 62. Actually, the temporal
relationships implied by % and =b arc the only
observable temporal relationships within a
distributed computation. Hence we define the third
order, the tempomf order *, to be exactly the
transitive closure of > and =F (minus identity).
Because a GEM computation models concurrent
action, the temporal order is necessarily partial. For
instance, suppose el and e2 are events belonging to
distinct, non-interacting processes. In this case, ei
and e2 are potentially concurrent:

l[(el*e2) V (eeael)]

blhis lack of transitivity results from a need to dcscribc direct
ebcnt causality. This is required. for instance. in order to cxpr&
restrictions such as “each mcssagc send can cnab!c only one
message rcccipt”.

6. GEM Type Descriptiohs
Suppose we wished to specify a computation

with many variables,. processes, procedures, etc. As
pne might cxpcct, the descriptions of similar objects
are likely to bc similar, if not identical. Instead of
including a separate complete specification OF, say,
each variable, it would bc convenient to describe just
once those qualities which all variables hold in
common. Given this generic variable description,
each variable may be described by a list of
differences from the specified norm.

To achieve this goal, GEM includes a flexible
type description facility. Group and clement types
may be declared. Types may bc parameterizcd as
well as defined as refinements of other types. Each
instance of a given type is an element or group with
a structure identical to that of its type description,
except for any explicitly mentioned differences.
Semantically, the GEM type system may be viewed
as a simple text substitution facility.

As a simple illustration of GEM type
descriptions, let us return to our description of an
integer variable Va r . We might form an
I n t e g e r V a r i a b 1 e element type description:

IntegerVariable = ELEMENT TYPE
EVENTS
Assign(newval:INTEGER)
Getval(oldval:INTEGER)

RESTRICTIONS

END'IntegerVariable

Var, as well as any other integer variable, may then
be described as an instance of type
IntegerVariable:

Var = IntegerVariable ELEMENT

Alternatively, we might describe a generic
untyped variable element type. A typed variable
element type could be described as a refinement of
this more basic variable description. The
construction is as follows:

Variable = ELEMENT TYPE
EVENTS
Assign(newval:VALUE)
Getval(oldval:VALUE)

RESTRICTIONS

TypedVariable(t:TYPE) =
Variable ELEMENT TYPE

/ADD RESTRICTION
(v assign:Assign)[TYPE(assign.newval)=t]

Var = TypedVariable(INTEGER) ELEMENT

7. Histories
A GEM computation represents a complete

execution. Sometimes, however, we need to be able
to talk about particular points in the progress of a
computation. We call such points histories. A
history contains information describing “what has
happened so far.” If a history a belongs to a
computation C, it is simply a prefix of that
computation. Namely, CY consists of a subset of the
events belonging to C and the partial orders and
relations between those events. All predecessors of
an event within a history must belong to that
history: ak[occurred(e2) A el=+e2)] >
akoccurred(el). We denote the prefix
relationship between two histories, or between a
history and a computation by aOCa1 or aCC,
respectively.

Equipped with the notion of histories, we define
a valid histov sequence (vlrs) as a set of histories that
has the following properties:

s = aO,al,. . . is a valid history sequence iff

1. The sequence is monotonically increasing:
CrOCalC

2. Two evenls occurfot the first time in the same
hisrory only if they are potenticzlly concurrent:

(V aicS, i>l) (V ei,ejc(ai - ai-1))
[1 eiaej]

For example, suppose we had a computation of the
following form:

e l
82
83

84

The possible histories are:

a0: e l
a l : el,e2
a2: 81.63
a3: el,e2,e3
a 4 : el,e2,e3,84

END Variable

The possible valid history scqucnces for this
computation include:

aO,al,a3,a4
aO,a2,a3,a4
aO,a3,a4

Notice that the last history sequence listed above
describes an execution in which e2 and e3 occur “at
the same time.”

History sequences have the tail closure properly:
ifs is a vhs, then any tail of S is a vhs.

S=aO,al,. . . ai-l,ai,ai+l,... is a v h s >
WI = ai,ai+l ,... is a vhs

One way of viewing a GEM computation is as the
set of all of its valid history sequences.

Given thcsc definitions, WC may apply GEM
restrictions not only to specific histories or to the
entire computation (immediafe asserfions), but also
to sequences of histories (temporal assertions).
Specifically, we follow the formulation of temporal
logic as defined in [22]. For immediate assertions P,
we may assert ak P (P is true of history a). If we
say an immediate assertion P is true of a history
sequence S, we mean that it is true of the first history
in that sequence: St=P = aOi=P.

We may now define the temporal operators
henceforlh (Cl) and eventually (0) as follows:

P is henceforfh true for sequence S if it is true of
every tail sequence of S. If P is an immediate
assertion, this means that P is true for every history
in S.

Si=clP 3 (V i 2 0) S[i] i= P

P is even&ally true for sequence S if it is true of
some taii sequence of S. If P is an immediate
assertion, this means that P is true for some history
in S.

SI=OP G (3 i 2 0) S[i] I= P

WC shall demonstrate how the Cl operator is
used to describe safety properties such as priority.
The 0 operator is used to describe liveness
properties, such as progress.

8. GEM Restrictions
As we have seen, a specification B consists of a

set of clement and group descriptions, each of which
is associated with a set of implicit legality restrictions
about the enable relation and the element order.
Each element or group may also be associated with a
set of explicit restrictions upon its cvcnts. In this
section, we examine ways in which these restrictions
arc formulated.

8.1. GEM Predicates
Among the predicates which may be applied to

GEM computations and histories arc the following:7
occurred(e) Evenl e occurred.
e (3 EL Even& e occurred at eiemenl EL
el > e2 e I precedes e2 in the enable

relarion
el =b 82 e 1 precedes e2 in the element

order
el * 82 e 1 precedes e2 in the remporal

8.2. Restriction Abbreviations

Restrictions are first-order logic formulae
composed of GEM predicates, the two temporal
operators Cl and’ 0 , and equality (=) between
events, groups, and event data. A typical example of
a restriction utilizing =b is given below. It is part of
tiic Var i abl e ELEMENT description and States that a
value retrieval event, Getval, must yield the value
last assigned to Va r i a b 1 e.

V a r i a b l e = ELEMENT TYPE
EVENTS

A s s i g n (n e w v a l : V A L U E)
G e t v a l (o l d v a l : V A L U E)

RESTRICTIONS
1) (V a s s i g n : A s s i g n , g e t v a l : G e t v a l)

[(assign=bgetval) A ~(3 a s s i g n ’ :Assign)
[assign=bassign’=Fgetval]] 3

assign. newval = getval . ol’dval
E N D V a r i a b l e

7We shall use the notation e : E to state that e is an event
belonging lo the event class described by E. In general. WC use
1.0~~ cm event names lo denote specific cvcnts. and capitalized
names to dcnotc event classes.

In writing spccifkations, ‘many restrictions arise
repeatedly. When thcsc restrictions are complicated,
it is useful to abbrcviatc them with some operator or
prcdicatc. Each such abbreviation represents a
common computational pattern within concurrent
systems. Among the abbreviations commonly used
in GEM are the following:

1. EI is n prerequisite to E2

El -+ E2 G
(V e2:E2)[occurred(e2) 1

(1 1 el:El)[el>e2]]
A(v el:El)(j at most one e2:E2)[el>e2]

An event class El is a prerequisite to an event
class E2 if every event e2 must be enabled by one
event el, and each event el can enable only one
event e2. For example, if a sequential piece of code
consists of actions El, E2, E3, and E4, we would have
restriction El --, E2 + E3 + E4. In the
Monitor primitive, Release of a wait upon a
condition must be enabled by exactly one S i gna 1,
and every Signal can enable only one Release:
Signal --, Release.

2. Nondeteministic prerequisite of E

{Event Class Set} --)+ E s
(V e:E)[occurred(e) >
(3 ! 8' :{Event Class Set})[e'>e]]

A
(V e’: {Event Class Set})
(3 at most one e:E) [e"L;re]

{Event Class Set} is a nondcterministic
prerequisite to event class E if every event e must be
enabled by a single event belonging to one of the
event classes in the set, and each cvcnt of a class
belonging to the event class set can enable only one
event e. For example, suppose WI= modeled CSP
input and output statcmcnts as fo1lows:8

*Due to Ihc limited scope of this paper, thcsc descriptions are
quite simplistic. Actual input and output elcmcnt specifications
would incorporate the identity of the desired partner for
communication.

! = ELEMENT TYPE
EVENTS

Req({par}:SET OF VALUE)
EndO

RESTRICTIONS
1) Req --) End
END I

7 = ELEMENT TYPE
EVENTS
fw 1
End({par}:SET OF VALUE)

RESTRICTIONS
1) Req + End
END ?

0utP = I ELEMENT
inpP = 7 ELEMENT

Suppose inpP and outP were input and output
elements belonging to process P. Given a specific
CSP program containing P, we could formally
characterize two sets of events, inputset(inpP)
andoutputset(outP):

inputset(inpP):
Set of ! . Req events belonging to elements
which could legally send data to i n p P

outputset(outP):
Set of 7 . Req events belonging to elcmcnts
which could legally receive data from out P

We would then add the restrictions

inputset(inpP) ++ inpP.End
outputset(outP) ++ outP.End

Simultaneity of I/O exchange in CSP is reprcscnted
by the restriction

(V inp:?, out:!)
[inp.req>out.end * out,req*inp.end]

3. Event FORK
E + {Event Class Set} =

(V Eic{Event Class Set})[E + Ei]

Event JOIN
{Event Class Set} --* E =
(V Eic{Event Class Set})[Ei --) E]

4. Itltemrediate con(ro1 points

el at E2 E
occurred(61) A ~(3 e2:E2)[el*e2]

el at E2 is true if e 1 has not enabled an event of
class E2.

new(e) Eoccurred(e) A I(3 e’)[e=+e’]

new (e) is true if no event has observably followed e.

8.3. GEM Thread Notation
Equipped with the descriptive tools WC have

prescntcd so far, we may begin to build a
specification of the Reader’s Priority version of the
Readers and Writers problem. We begin with a
specification of the following form:

User = ELEMENT TYPE
EVENTS

Read(loc:l..N)
FinishRead(info:VALUE)
Write(loc:l.. N, info:VALUE)
FinishWrite

RESTRICTIONS

END User

DataBase = GROUP TYPE(control:RWControl,
{data[loc:l ..N]}:SET OF Variable)

RWControl = ELEMENT TYPE
EVENTS

ReqRead(loc:l..N)
StartRead(loc:l..N) .
EndRead(info:VALUE)
ReqWrite(loc:l ..N, info:VALUE)
StartWrite(loc:l.,N, info:VALUE)
EndWrite

RESTRICTIONS

END RWControl

RWProblem = GROUP (db:DataBase,
{u}:SET OF User)

RESTRICTIONS
1) u.Read(loc) +

db.control.ReqRead(loc) +
db.control.StartRead(loc) +
db.data[loc].Getval(info) +
db.control.EndRead(info) +
u.FinishRead(info)

2) u.Write(loc,info) +
db.control.ReqWrite(loc,info) --*
db.control.StartWrite(loc,info) +
db.data[loc].Assign(info) 3
db.control.EndWrite +
u.FinishWrite

END RWProblem

Each user call to Read or Write results in a request,
start of opcratiotl, fulfillment of operation, end of
operation, and return to the user.

In order to define various fotms of priority as
well as the mutual exclusion property, we need to be
able to label those events which occur as a result of
each user request. These labels can then be used to
distinguish bctwecn events occurring due to
different requests. GEM’s thread mechanism was
devised precisely for this task. As stated earlier, the
cnablc relation models how control is passed
between cvcnts. A thread is an identifier associated
with a chain of enabled events of a particular
specified form. Each thread may be thought of as
defining a sequential process. For the
Readers/Writers problem, we define a thread to
correspond to the actions occurring within a specific
Readers/Writers database transaction. Using a path
exptessiorz-like notation [4], we define thread type
TRW as follows:

nRW = (u.Read::db.control.ReqRead::
db.control.StartRead::
db.data[loc].Getval::
db.control.EndRead::
u.FinishRead

I
u:Write::db.control.ReqWrite:: -

db.control.StartWrite::
db.data[loc].Assign::
db.control.EndWrite::
u.FinishWrite)

I3y including this thread description within
RWSol ut i on, we assert the following restrictions
upon any Icgal RcadcrsIWritcrs computation:

l A unique nRW thread identifier is created and
associated with each Read or Write event that
occurs.

l This identifier is “passed” along its related
control path, as long as events enable one
another in the order prescribed, until a
FinishReadorFinishWriteoccurs.

The notation e nRW-i indicates that cvcnt e is part
of a thread instance TRW- i of type nRW.

‘1’0 complete the Readers and Wri ters
specification, we piocccd as follows. First, we
augment elcmcnt -RWControl with the following
restriction describing the “writers exclude others”
property. The first clause states that writers exclude
readers, and the second, that writers exclude other
writers.

Mutual Exclusion Restriction:

'(3 startread nRW-i:StartRead,
startwrite TRW-j:StartWrite)

[occurred(startread vRW-1) A
loccurred(endread TRW-i) A
occurred(startwrite TRW-j) A

loccurred(endwrite nRW-j)]
A
~(3 startwrite nRW-i:StartWrite,

startwrite nRW-j:StartWrite)
[occurred(startwrite TRW-i) A
loccurred(endwrite TRW-I) A
occurred(startwrite TRW-j) A

loccurred(endwrite nRW-j)]

where TRW-i and TRW-j are two distinct nRW
thread identifiers.

GEM is also able to express priority properties
easily. Reader’s priority for the Readers/Writers
problem may be described as follows:

If a request for a read attd a wrire are pending al lhe
satne lime, the read tnusl be serviced before the write.

[reqread nRW-i at StartRead A
reqwrite nRW-j at StartWrite] 3
q [occurred(startwrite TRW-j) 3

occurred(startread TRW-i)]

8.4. History vs. Current State
Because a GEM computation contains

information about all cvcnts that have occurred,
restrictions may refer to the erilire past of a
computation or history, not just the current value of
variables (current slate). Description and
verification methods which rely upon variable values
to describe state are limited in the sense that
variables abbreviate swc -- they cannot easily
provide information about all that has occurred in
the past. Even if auxiliary variables are used, the
specification of many propertics becomes unwieldy.
For example, a state-oricntcd description of reader’s
priority would have to cncodc the ordering of cvcnt
occurrences in terms of auxiliary program variables.

‘lhc GEM priority restriction i’s rather simply and
intuitively stated in terms of the cvcnt occurrence
information available within GEM histories,
augmented with the use of temporal operators.

The possibility of utilizing complete
computational information in GEM specifications
often allows a more intuitive and gcncral description
of computational propertics than state-based
methods. A GEM problem description is a
representation of a problem that may be applied to
the analysts of programs written in any language. In
contrast, assertion or state-oricntcd methods of
specification usually describe a problem in terms of
the variable values of a specific program
implementing that problem.

9. GEM Verification Methodology
GEM computations contain information about

the order of event occurrence, as well as information
about their associated data values. For example,
associated with each Ass i gn event belonging to a
Var i abl e clement is the value assigned. It is not
hard to see how proof techniques which make use of
assertions about variable values could be applied to
GEM computations. Moreover, GEM’s temporal
operators allow one to describe liveness properties
such as progress.9 Thus, temporal logic methods can
be applied to GEM computations as well. Despite
this, WC have found it us&A to develop an alternate
proof methodology that is especially well-suited to
GEM. Because GEM problem specifications are
often expressed in terms of event orders and
relations, it makes sense to utilize a proof method
geared towards reasoning about these relationships
between events. We briefly outline this method
below.

Suppose we wish to prove that a given program
solves a specific problem. Our first step would be to
describe that problem by a GEM problem
specification P. For example, we have already
described a specification for the Readers and Writers
problem in the prcccding section. Next, WC would
describe the program by formulating a GEM

9An e..amplc of a weak progress requirement is tic following
one: if all the prerequisites of an event e arc fulfilled in history
a. and e could legally crtcnd history a. and this remains true
until e actually occurs, then e must cvcntually occur. A stronger
progress rcquircmcnt would guarantee e to occur if there is an
inlinitc subscqucncc of histories in which it could legally enter
the computation.

program specification PROG Program
specifications arc gcncratcd by instantiating the
groups and elements which make up GEM’s
description of the underlying implementation
language.

For example, suppose WC were given the
following monitor as part of t!lc implementation of
the Reader’s Priority Readcrs/Writcrs problem (the
data itself must be located outside of the monitor):

ReadersWriters:MONITOR
BEGIN

readqueue, writequeue:CONDITION;
readernum:INTEGER;

/+readernum is positive if reading,
negative if writing+/

ENTRY PROCEDURE StartRead;
BEGIN
IF readernum < 0 THEN

WAIT(readqueue);
readernum := readernum + 1;
SIGNAL(readqueue):
END :

ENTRY PROCEDURE EndRead;
BEGIN
readernum := readernum - 1;
IF readernum = 0 THEN

SIGNAL(writequeue);
END;

ENTRY PROCEDURE StartWrite;
BEGIN
IF readernum f 0 THEN

WAIT(writequeue):
readernum := -1:
END;

ENTRY PROCEDURE EndWrite:
BEGIN
readernum := 0:
IF queue(readqueue) THEN

SIGNAL(readqueue)
ELSE

SIGNAL(writequeue);
END;

/*initialization*/
readernum := 0;
END ReadersWriters

In addition, we are given the following GEM
specification of the Monitor primitive itself:

Monitor = GROUP TYPE(lock:MonitorLock,
{entry}:SET OF MonitorEntry,
{cond}:SET OF Condition,
init:Initialization,
{var}:SET OF Variable)

PORTS(lock.Req)
RESTRICTIONS

Restrictions describing how a monitor functions.
This would include rules for wailing and signalling,
inilializa~ivn, etc.

END Monitor

where MonitorLock, MonitorEntry,
Condition, Initialization, and Variable are
previously defined element or group types.

The monitor program given above could then be
described by the following GEM specification:

ReadersWriters = Monitor GROUP
(RWLock, {StartRead,EndRead,
StartWrite,EndWrite},

{readqueue,writequeue},RWInit,
{readernum))

Every restriction within Mon i t or applies to
ReadersWr i ters. In addition, each component of
ReadersWr i ters must also be fi~lly specified. For
instance, the StartRead MonitorEntry
specification includes a description of the statements
which belong to entry StartRead. Given an
underlying language specification, translation of a
program into a GEM program specification is quite
simple and mechanical enough to lend itself to
automation.

Finally, a proof is completed as follows:
1. For each group, element, event type, event

parameter, and thread in P, choose a
corresponding object in PROG. We call these
the significant objects of PROG.

2. Prove that each restriction Ri in P is satisfied
by the corresponding significant objects in
PROC.

(v RicP) [PROG sat Ri]

GEM includes various rules which define what
is meant by sat. One intuitive explanation is
the following: If we examine a compu falion
which is legal with respect to PROG, and only
lake note of significant objects, those significant
ob j e c t s exhibir t h e s ame b ehav i o r a s a
computation that is legal with respect to P.

To illustrate this proof method, WC present an

informal argument showing that rcadcr’s actually do
get priority in the monitor solution prescntcd above.
First, we set up the following event
corrcspondcnccs:

PROBLEM PROGRAM

ReqRead Entry SCart&ad:BEG IN

StartRead Entry StartRead:
readernum:=readernum+l

EndRead Entry EndRead:
readernum:= readernum-1

ReqWrite Entry %XtWlite:BEGIN

StartWrite Entry StartWtite:readernum:=-1

EndWrite Entry EndW&:readernum:=O

Assume Chat we have already proved Chat
potential(startwrite) 3 readernum = 010
and new(startread) > readernum > 0. we

have also proved that all events occurring in monitor
entries or initialization code arc totally ordered by
the temporal order *. An informal proof of the
Reader’s priority property follows.

ReadersPriority RESTRICTION:
[reqread TRW-i at StartRead A
reqwrite TRW-j at StartWrite] 1
0 [occurred(startwrite nRW-j) 1

occurred(startread nRW-i)]

Proof. By contradiction.

Let S be a valid history sequence for which the
ReadersPriority restriction does not hold. Then
S must have histories a0 and a3 such that aOCa3
and

a0 k= reqread TRW-i at StartRead A
reqwrite nRW-j at StartWrite

(r3 k occurred(startwrite nRW-j) A
-t occurred(startread TRW-i)

loAn event is potential if'ithas not occurred,butallofits
prerequisites have been fulfilled. 'Ihe expression "Var = N" is
an abbreviation for

If WC choose 013 to bc the’ smallest history having
this property, then WC additionally know that ar3 I=
new(startwrite 'ITRW-j).

By examining the code of entry StartRead
(keeping in mind that execution of monitor events is
sequential), we see that the process executing thread
TRW-i must have waited on condition readqueue,
giving us

reqread TRW-i-7wa
startwrite TRW-j

it nRW-i(readqueue) 3

If WC choose al as the smallest history containing
this wait event, then we have al I= new(wait
nRW-i(readqueue)), and thus al I=
readernum<O, and aOCalCa3.^ Now let a2 be a
history such that alCa2Ca3 and a2 t=
potential(startwrite RRW-j). (Such an a2
exists because startwrite nRW-j must be
potential before it occurs). Then a2 I= *
readernum=O.

Since readernum<O in al and readernum=O in
a2, there must be some assignment event
assignzero at variable readernum which causes its
value to change from less than 0 to 0. Moreover,
since all assignments to readernum occur
sequentially, we can choose assignzero to be the
first such assignment. We also know that
assignzero musteitherbe a StartRead event or
End Wr i t e event (these are the only two events
which could cause readernum to increase). Let pl
and /?O be histories such that

pl I= new(assignzer0)
PO I= potential(assignzer0)

Case 1.

Suppose that assignzero is of class
StartRead. Because new(startread) 3
readernum>O, we must have readernum>O bcforc
execution of ass i gnzero. This means that PO I=
readernum20. But alCjIOCa2, which
contradicts the choice of ass ignzero as the first
event to increase the value of readernum to 0.
Contradiction

Case 2.

Suppose Chat assignzero is an EndWrite
cvcnt. Then we have

(Iassignl(N):Var.Assign)[occurred(assignl(N))
A
-(%xsign2:Var.Assign)[assignl(N)P,assign2]]

wait nRW-i(readqueue)*endwrite*
star twr i te nRW-j

Moreover, when this endwrite occurs, we know
that at least one process is waiting on condition
readqueue, namely the process which cxccutcd
wait nRW-i(readqueue). Therefore, aficr
endwrite, readqueue will get signallcd. The code
of entry StartRcad guarantees that all waiting
rcadcrs will be signalled bcforc any other process
exccutcs in the monitor. Sequential execution
within the monitor then implies:

reqread TRW-iaendwritea
s ta r t read TRW-i-startwrite nRW-j

Contradiction I

IO. Related Work
The model of computation most similar to GEM

is the message-based actor model [6, lo]. Greif [6]
has utilized actois to model the monitor primitive,
and to analyze various aspects of concurrent
execution. An actor system is composed of actors,
the events occurring at actors, and various partial
orders on these events. However, an actor event is a
message receipt, rather than an arbitrary logical
action. Moreover, each event may be activated by
only a single predecessor. Dynamic process creation
and flexible forms of intercommunication can be
described by actor systems. However, scope rules
arc not modeled specifically, nor is thcrc any means
of naming par/icuZar chains of control. Nor do actor
systems incorporate the use of temporal logic. In
addition, the actor model has not been used as a tool
for general purpose language description or program
verification.

Another event-oriented model related to GEM
is Liilnport’s [15, 161. In this model, as in ours, an
event is a logical action at any desired level of detail.
However, non-atomic events arc also considered.
Lamport has used his model as a framework for
solving such problems as the synchronization of
distributed clocks.

Several other models have been used to dcscribc
concurrency, although they arc fairly different from
GEM. A detailed rcvicw of thcorctical moclcls of
concurrency may be found in [18]. Pefri Nets [23]
are a good rcprcsentative of the class of fransi/ion
tttodels. ‘Ihcy have been widely used and studied
cxtcnsively, but arc stiltic in structure and not
exprcssivc enough to easily illustrate data-dcpcndcnt

propcrtics. Another class of models may bc
dcscribcd as algybraic 01’ functional. Such models
usually focus on the input-output scqiicnccs of a set
of processes or modules, which may bc combined
algebraictily. Milner and Milnc’s C’omtnunica~ing
Behaviors [19,201, Kahn and MacQuccn’s Sfreatn
Processing Networks [13, 141, and Pratt’s Process
b[odel[26] are in this category. Models in this class
are usually used for describing problems rather than
languages.

Some descriptive methods have been designed
specifically for application to languages.
Denofalional semantics [28] has been used to provide
fUnctiona descriptions of many languages and
problems, but has some difficulty with concurrency.
Adaptations of denotational methods for concurrent
applications have been explored [24,27] but are not
easy to use.

Methods for comparing or analyzing concurrent
language structures arc not widespread. Guarino-
Reid’s model [7] is formulated as a special-purpose
language made up of modules interconnected by
ports, and is used to describe various “abstract
communication constructs.” A method f o r
evaluating language concurrency primitives is
described by Bloom [3].

Much research has been devoted to the
verification of concurrent programs. Assertion-
oriented methods have been extended to deal with
concurrency 1211. Temporal logic has been used
successfUlly, especially in the verification of
communications protocols [8,22,25]. Most
verification techniques certify program correctness
by proving assertions about program state cast in
terms of variable values. A. specialized, cvent-
oriented method of verification for Serializers is
utilized by Atkinson’s automatic verifier [2].

11. Conclusion
We have described GEM, a model of concurrent

computation which is simple and general enough to
dcscribc a variety o f language concurrency
primi tivcs and problems. GEM spcci fications
include information about the structure of a
language or problem as well as its intended
semantics. Structure ‘is described by stating how
certain events occur at specific elements, and how
those elements arc clustcrcd into groups. Language
or problem behavior is dcscribcd by restricting cvcnt
occurrcnccs to certain partial orders and relations.
Spccifieations arc often stated as synchronization

propcrtics, rather
variable values.

than invariant stiltemcnts about

GEM has already been used to describe three
very diffcrcnt language primitives: the Monitor, a
primitive based on communication via shared data;
CSP, which consists of proccsscs communicating via
messages; and ADA’s tasking mechanism, which
uses the rcndczvous for intcrproccss communication.
GF.M has also been used to specify the One-Slot and
Bounded Buffer problems, five versions of the
Rcadcrs/Writers problem, and two distributed
applications: an algorithm for updating a distributed
database and an asynchronous version of the Game
of Life.

GEM can also be used as a verification tool.
Various properties of the Monitor have been proved
such as scqucntial execution of monitor entries.
Monitor, CSP, and ADA solutions to the One-Slot
Buffer, Bounded Buffer, and Reader’s Priority
Rcadcrs/Writers problems have been verified.
Properties such as progress and functional
correctness have been proved of the two distributed
problems mentioned above.

Acknowledgments

Russ Atkinson had a great influence upon the
formulation of GEM. Others who have helped by
reading drafts of this paper are Pierre Wolper, Keith
Marzullo, Steven Rubin, and Polle Zellwcgcr.

References

1, Reference Manual for rhe AD A Programming
Language. United States Dcpartmcnt of Defense,
1980.

2. Atkinson,R. Automatic Verification of
Serializers. Tech. Rept. TR-229, MIT Laboratory
for Computer Science, March, 1980.

3. Bloom,T. Synchronization Mechanisms for
Modular Programming Languages. ‘l&h. Rept. TR-
211, MIT Laboratory for Computer Science, Jan.,
1979.

4. Campbel1,R.H. and Habermann,A.N. The
Specification of Process Synchronization by Path
Expressions. In Leclure Notes in Computer Science
16, Springer-Vcrlag, 1974.

5. Ellis,C.A. Consistency and Corrcctncss of
Duplicate Database Systems. Proceedings of the 6th
Annual Symposium on Operating System Principles,
ACM, Nov., 1977, pp. 67-84.

6. Grcif,l. Semantics of Communicating Parallel
Proccsscs. Tech. Rcpt. TR-154, Ml?’ Project MAC,
scp t., 1975.

7. Guarino-Reid,L. Control and Communication in
Programmed Systems. Tech. Rept. CMU-CS-80-
142, Carnegie-Mellon University, Dept. of
Computer Science, Scp~, 1980.

8. Hailpem,B.T. Vcrifjling Concurrent Processes
Using Temporal Logic. Tech. Rept. 195, Computer
Systems Laboratory, Stanford University, Aug.,
1980.

9. Hansen,P.B.. Operating Syslem Principles.
Prentice Hall, Englcwood Cliffs, NewJersey, 1973.

10. Hewitt,C. and Baker H. Jr. Laws for
Communicating Parallel Processes. In IFZP 77,
Gilchrist,B., Ed.,North-Holland, Amsterdam, 1977,
pp. 987-992.

11. Hoare,C.A.R. “Monitors:An Operating System
Structuring Concept.” Cotnm. ACM 17,lO (Oct.
1974), 549-557.

12. Hoarc,C.A.R. “Communicating Sequential
Processes.” Comm. ACM 21,8 (Aug. 1978), 666-
677.

13. Kahn,G. The Semantics of a Simple Language
for Parallel Programming. In IFIP 74, North-
Holland, Amsterdam, 1974.

14. Kahn,G. and MacQueen,D.B. Coroutines and
Networks of Parallel Processes. In IFIP 77,
Gilchrist,B., Ed.,North-Holland, Amsterdam, 1977,
pp. 993-998.

15. Lampo&L. “Times, Clocks, and the Ordering
of Events in a Distributed System.” Comm. ACM
21.7 (July 1978).

16. Iamport,L. “A New Approach to Proving the
Corroctncss of Multiproccss Programs.” ACM-
TOPLAS 1.1 (July 1979).

17. I .nnsky,A. Spcci ticat ion and Analysis of
Concurrency. Department of Computer Science,
Stanford University. Ph.D. thesis (to appear).

18. MacQuccn,D.B. Models for Distributed
Computing. Tech. Rept. 351, INRIA - Paris,France,
April, 1979.

29. Winkowski,J. Game of I,ifc as a Synchronous
Process That Can Bc Realized Asynchronously.
Tech. Rcpt. 286, Institute of Computer Science,
Polish Academy of Sciences, Warsaw, Poland, 1977.

19. Milne,G. and Milncr,R. Copcurrent Processes
and ‘l’hcir Syntax. Tech. Rept. CSR-2-77, University
of Edinburgh, Dcpartmcnt of Computer Science,
May, 1977.

20. Milner,R. Synthesis of Communicating
Behavior. 7th Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in
Compu tcr Science, Springer Verlag,
Zakopane,Poland, Sept., 1978.

21. Owicki,S. and Gries,D. “Verifying Properties of
Parallel Programs: An Axiomatic Approach.”
Comm. ACM 19,5 (May 1976), 279-285.

22. Owicki,S., and Lamport,L. ‘*Proving Liveness
Properties of Concurrent Programs.” ACM
Transactions on Programming Languages and
Systems 4,3 (July 1982). 455-495.

23. Pcterson,J.L. “Petri Nets.” ACM Compufing
Surveys 9,3 (Sept. 1977), 221-252.

24. P1otkiqG.D. “A Power Domain Construction.”
SIAM Journal on Computing 5 (1976), 452-487. *

25. Pnue1i.A. The Temporal Logic of Programs.
18th Annual Symposium on Foundations of
Computer Science, IEEE, Oct., 1977, pp. 46-57.

26. Pratt,V.R. On the Composition of Processes.
Ninth Annual AC?.4 Symposium on the Principles
of Programming Languages, ACM, Jan., 1982, pp.
213-223.

27. Smyth,M.B. “Power Domains.” Journal of
Computer and System Sciences 16,1(1978), 23-36.

28. Stoy,J.E.. Denotational Semantics= The Scott-
Strachey Approach to Programming Language
Theov. MIT Press, 1377.

