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Abstract
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1. Table-Driven Code Generation

Given the diversity of architectures commonly available, and the expense inherent in the

development of quality software, it is imperative that programs be as transportable as possible. For

most programs, this goal is accomplished by using a widely available and well standardized high level

language such as Pascal or C. Transporting compilers raises special problems because the machine

for which they are to generate code is often mixed with the compiler. Considerable time and software

investments are involved to produce compiler code generators. The proliferation of programming

languages and computer architectures has created the need for automating the code-synthesis

phase in compilers [SIGN83a].

To enhance the transportability of compilers, a number of investigations have taken place in the

past decade. Previous research in automatic code generation can be broadly classified into three

categories: Interpretive code generation, pattern-matched code generation and table-driven code

generation. Interpretive code generation approaches generate code for a virtual machine and then

expand into real target code. Pattern-matched code generation approaches separate the machine

description from the code generation algorithm. Table-driven code generation approaches are

automated enhancements of pattern-matched schemes. They employ a formal machine description

and use a code-generator-generator to produce code generators automatically. For an extensive

review and critique of research in automatic code generation, the reader may refer [SURV82,83].

In table-driven code generation schemes, pattern matching is used to replace interpretation with

case analysis. Instruction patterns may be tree-structured [CATT80, WULF80] or linear as used by

Graham and Glanville [GLAN78]  and Ganapathi and Fischer [POPL82].  Correspondingly, pattern

matching is performed by heuristic search [FRAS77, CATT80] or parsing [GLAN77, GANA80].

Glanville and Graham made a significant breakthrough; while their approach is not a complete

solution, it is a big step towards automating the code generation phase in compilers: The code

generation model presented in this paper is an extension of the Graham-Glanville approach.

Semantic attributes, disambiguating predicates and a semantic evaluation framework are used to

provide formalized attribute processing and automated semantic handling. The target machine is

described by Affix grammars [KOST71]  instead of context free grammars [AHOU73].  Such

descriptions are used to formally specify the semantics of the instruction-set of the target

architecture. Intuitively, each symbol in a context free grammar is allowed to have a fixed number of

associated values, termed attributes, whose domains may be finite or infinite. The attributes

associated with a given symbol may be synthetic or inherited. Synthetic attributes, which are

prefixed by a T, are used to pass information up a parse tree. Inherited attributes are prefixed with a 1

and are used to pass information down a parse tree. Each context free production has an associated

set of attribute evaluation functions. The function symbols can be partitioned into predicate

symbols and action symbols. Predicates control applicability of productions. They use semantic

information from attributes to control parsing. Action symbols compute new attribute values. They

replace traditional semantic functions invoked upon each reduction during parsing. To evaluate an
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action symbol, its inherited attributes are first made available. The action symbol is then applied; its

synthetic attributes are computed as a result.

Affix grammar driven code generation clarifies many of the decisions in code synthesis: storage

allocation, instruction selection, machine-dependent and peephole optimization. Code generation is

performed by attributed parsing. Semantics and context are used to do all attribute evaluation in a

single bottom-up pass. When transforming the intermediate representation of a program, each

transformation causes code generation action. Transformations usually require satisfying conditions

on semantic attributes of symbols (e.g., occurrences of registers, constants in a certain range). The

results of transformations become non-terminals and their attributes in the grammar.

In this endeavor, the particular goals are:

l Design affix grammars for target architectures and generate tables automatically from
these descriptions. Real computers have numerous instructions that can be used to
effect the same result (e.g., add, add immediate, increment by a small constant).
Predicates are used to define how and when a given instruction would be selected. By
controlling production-application, predicates are used to block productions when
restricted by the target architecture.

l Evaluate the human effort involved in the construction of productions and attribute
predicates in light of architectural restrictions on the programming model. Of particular
interest are the impact of complicated and non-orthogonal addressing architectures,
irregular, inflexible and overlapping register architectures and segmentation models on
code generation

l Use special addressing modes and instructions of target architectures to produce high
quality target code. Predicates are used as a tool to incrementally add machine-
dependent and peephole optimizations [MCKE70,  WULF75] and thus improve target code
quality. These optimizations are incorporated in a cohesive manner as part of a well
understood parsing process.

2. Attributed Prefix Intermediate Representation

In a compiler written for a single programming language to run on a single target machine, an

intermediate form of program code is used primarily to allow optimization. Examples of popular

intermediate forms are quadruples, triples, tree representation of programs and direct acyclic graphs

[Al-10U77].6  Traditionally, each has been used during different phases of compilation. They have

served as a suitable model for numerous tasks including global flow analysis, loop optimizations,

expression optimizations, global register allocation, frequency reduction and code generation.

Unfortunately, these conventional intermediate forms are inadequate to serve the needs of compiler

retargetability. Quadruples and triples have been conventionally useful for program optimization.

They require explicit temporary specification. The number of temporaries required for evaluation is

6SIGN83b provides a bibliography on intermediate representations.
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often a machine-dependent issue. Furthermore, N-ary operations such as array indexing and

procedure calls must be realized as multiple unary and binary operations. N-tuples alleviate this

problem but include the drawbacks of explicit temporary specification. Trees allow a more complete

representation of programming language semantics but do not promote efficient pattern matching

during code generation. They often contain redundant information in parse-tree form. Graphs are

not a good model for code generation. Cycles must be eliminated and pattern matching poses a

greater problem. Prefix and postfix notations by themselves are inadequate for complete

representation of programming language semantics. However, the incorporation of attributes in the

intermediate representation provides a fairly adequate representation of semantics. The rationale

behind this choice, its relative standing with respect to other proposals in the literature and the

detailed design of this attributed prefix intermediate representation (IR) is explained in [SPE84].  The

main goal in this design is to minimize the effort required to retarget compiler code generators.7  The

design of an intermediate representation is critical to compiler portability and code generation

efficiency. This efficiency issue includes both the efficiency of the code generation algorithm and

that of the object code produced by the code generation algorithm. The use of a prefix

representation facilitates efficient pattern matching between IR and the description of the target

machine instruction-set. String matching algorithms can be used to perform pattern matching.

Typical parsers such as YACC [JOHN751  use very simple drivers and are efficient (i.e., linear time

algorithms) and well understood. Pattern matching in a tree is not as well understood as parsing.

Most tree-matching algorithms rely on heuristics and are not provably correct. Our richer view of an

intermediate representation makes IR specifically susceptible to various kinds of on-the-fly

processing using a single pass pattern matching scheme.

Attributes are useful in guiding the code generator to emit efficient target code. They carry forward

semantic information such as:

l environment options -- choice of display/access mechanism, choice of offsets whether
positive, negative or both, direction of run-time stack growth, first argument of procedure
parameters pushed last or first.

l storage binding -- type, size and scope of a variable.

l code optimization -- execution speed and object code space, context, state information
of basic blocks.

At code generation time, these attributes control pattern matching of IR with the machine description.

The attribute domains of operators and operands are determined by the structure of the high level

language. Consider the following fragment of Pascal code:

PROGRAM Example (input, output);
CONST

7STAN84 describes a recent effort for DEL architectures.



numitems = IO;
VAR

index : INTEGER;
BEGIN

index : = 0;
REPEAT

index I = index t= 1;
UNTIL index > numitems;

END.
The IR translation of this program reads:

: Example r2
: input tparameter  tpointer tl
: output tparameter  tpointer tl
: index tGlobal  tlonginteger ?l
:= index0
repeatlabel

: = index + index 1
< = index 10 repeatlabel

IR variables are assigned storage before code selection. The storage binding phase expands this lR

into primitives that transform the string representation of a variable into access mechanisms involving

the display. In the above example, the global variable index and the constants 0, 1 and 10 are

transformed as follows:

: = Datumti DatumtO LabeltL30 : = Datumti + Datumti Datumtl
< = Datumti DatumtlO  LabeltL30

The attribute variable i includes address information and the datum size for index; long on the VAX

and word on the iAPX-86 and the PDP-11. The mapping of this intermediate form to target code is

described in the section on Instruction Selection.

3. Machine Description

Retargetable code generation is achieved by separating the code generation algorithm from the

target machine data that drive it. The correspondence between semantic primitives in the IR and

target machine operations is built by enforcing conventions in the target machine specification. For

purposes of pattern matching and instruction selection, the instruction set of the target architecture is

represented as a set of affix-grammar productions. These productions form the input to a program

that generates a code generator for the target machine. All productions are of the form LHS -+ RHS,

where LHS stands for lefthand  side, RHS for righthand side. The LHS is a single non-terminal

appearing with synthetic attributes only. The RHS contains:

e terminals with synthetic attributes (T),

l non-terminals with synthetic attributes (T),

e disambiguating predicates (italicized) with inherited attributes (1)  and boolean operations
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on them, and

l action symbols (capitalized) with synthetic (T) and inherited (I) attributes.

Attribute occurrences may be constants or variables. Constant attributes (with the exception of

self-defining constants) are enclosed within quotes. An attribute variable is a shorthand referring to a

data structure that contains all the attributes of some symbol. Reference to a piece e/em  of an

attribute variable var is done by using the ‘.’ operator as var.elem.  The same attribute variable may

appear on both LHS and RHS of a production. Since the LHS has synthetic attributes, the RHS must

synthesize these attributes and the LHS’ synthetic attributes must appear as synthetic attributes in

RHS symbols: terminals, non-terminals and action symbols. In such cases attribute values are

implicitly copied from synthetic attributes of a symbol in the RHS to synthetic attributes of the LHS or

to inherited attributes of disambiguating predicates and action symbols. For example, in the

production:

ByteTa + Addressfa,

the attribute variable a is copied from symbol Address to symbol Byte. Disambiguating predicates

do not compute new attribute values. They yield true or false only. The disambiguating predicates of

each production are included to determine when the production is applicable, i.e., when it should be

selected as a template for code generation. For example, the production

ByteTa + Addressfa Mytela

is used only if Address has attributes that show it is a byte. A production is applicable only if the

boolean function of its component disambiguating predicates evaluates to true. In order to guarantee

that at most one production is selected, productions are tried in order of specification. In general, a

hierarchy of disambiguating predicates can be designed to select only one production. The ordering

could be selected for either decreasing object-code space or increasing execution speed but not

both with selection at code generation time. Our experience suggests that a single linear ordering

usually suffices e.g., space C time. However, in general, different implementations of the same-
instruction-set have different speeds for instructions, operands and cache effects. In such cases, a

non-linear ordering of predicates will be necessary. The kinds of productions needed for an entire

code generator can be broadly classified into addressing-mode productions, instruction-selection

productions and transfer productions. .

Addressing-mode productions

Each addressing-mode production has an RHS specifying an addressing mode of the target

architecture in the language of IR. The production creates the proper machine address, in an action

symbol. For example, the following production is used to specify a displacement addressing mode on

the VAX-1 1:

AddressTa -+ $ Datumfb DatumTc displace@ A registerlc  ADDRlblcfa
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$ is a grammar terminal that denotes the indexing operator. Datum and Address are grammar

non-terminals with attributes specifying the value of the displacement b, base register c and the

synthesized addressing mode a respectively. The attribute variable b specifies the machine data type

and offset from a frame pointer. The attribute variable c specifies the index (or display) register of the

IR variable. These attributes are determined when IR variables are bound to locations in the target

machine. The predicates displace and register specify target architecture restrictions on using this

addressing mode. Examples of such restrictions are IBM-370 restrictions on displacement and base

register use, iAPX-86 restrictions due to segmentation and index register use, and in general if c

happens to be a memory location instead of a register on most machines. If the predicate function

evaluates to false, recognition of this addressing mode production is blocked. Consequently, a

subsequent production is matched that forces, via action symbols, to satisfy target architecture

restrictions on the use of this addressing mode.

The action symbol ADDR synthesizes an address for a datum on the target machine. The attribute a

represents this address; in our implementation, it has the following components:

storage class: memory, frame, stack, base register,
an offset from the base register,
levels of indirection,
an index register (if any),
the datum size and
the name of a variable (in case it is global),

These components may vary when the code generator is retargeted to new machines. However, for a

variety of machines, including the VAX-l 1, iAPX-86, Z-8000, IBM-370 and the PDP-1 I, this structure

seems to suffice. The addressing mode productions determine the components used. For some

machines, a component may never be necessary. For example, on the PDP-11, since the index

register and the base register cannot be used simultaneously, the index-register field will never be

used. Addressing-mode productions reflect addressing modes supported by the target machine. If

the target machine does not support particular addressing modes, code sequences may be needed

for addressing purposes. For example, if a machine does not support indexing, the IR will be parsed

by other productions that represent simpler addressing modes; code for composing those modes will

be generated.

The section on machine-dependent and peephole optimization discusses productions to subsume

arithmetic within the addressing modes of the target architecture. Addressing mode side-effects such

as predecrement and postincrement are also discussed in the same section.

lnst ruction-selection productions

Each production has an RHS specifying a pattern in the IR and the corresponding code sequence

to be emitted on a match. The LHS may be an explicit result location, such as, a register or a memory

location, in which case it specifies the data type of the result, or a condition code location, or simply a

non-terminal place-holder. In the case of multiple results (e.g.9  quotient and remainder, arithmetic
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result and condition-code side effects), the LHS specifies the data type of the primary result.

Secondary results are synthetic attributes to the LHS. Consider addition on the VAX-l l/780.  There

are two-address and three-address add op-codes. Furthermore, the increment (or decrement)

instruction can be used for adding one (or subtracting one). For a byte datum, these forms of

addition are expressed as follows:

BytefrTcc  4 + Bytefl feel  ByteTrfccr  1 I3usy.j~
EMITl’incb’lrlOJOfcc

ByteTrTcc 4 + ByteTrTccr  ByteTl Tccl 1 BusyJr
EMITl’incb’lrJ010Tcc

ByteTrfcc  4 + ByteT-1  Tccl ByteTrfccr  1 Busylr
EMITl’decb’lrl010Tcc

ByteTrTcc 4 + ByteTrTccr  Bytef -1 Tccl 1 Busylr
EMITl’decb’lrlOJOTcc  .

Bytefrfcc + + ByteTafcca  BytefrTccr  1 Busylr
EMITl’addb2’laJrJOTcc

ByteTrfcc  4 + Bytefrfccr ByteTaTcca 1 Busylr
EMITl’addb2’lalrlOfcc

BytefrTcc  4 + ByteTaTcca ByteTbTccb
TEMPl’byte’Tr
EMITl’addb3’lalblrTcc

The first and second productions specify the addition of 1 to r. Both productions are needed to

represent the commutativity of addition. In case either production is selected, the op-code inch

(increment byte) is emitted. The non-terminal on the LHS (Byte), its attributes (r, cc) specify the data

type, address of the result and condition-code setting of the selected instruction respectively.

Similarly, the third and fourth productions specify the addition of -I to r. The fifth and sixth

productions specify two-address addition of a and r using op-code addb2. Similarly, the last

production specifies three-address addition of a and b using op-code addb3. In this.case, the sum is

stored in r that is obtained from action symbol TEMP. This action symbol returns a temporary

location, such as a free register, for purposes of expression evaluation. An addition of two IR data in

byte format will match the RHS of one of these productions. The last production is a default

. production and must be supplied. If this production is omitted, the code generator may block when

attempting to produce target code. If the other productions are omitted, the code generator will

produce inefficient code in certain cases but it will not block. The choice of the RHS is determined by

attribute values and the disambiguating predicates. If an operand is 1 (or -1) then an inch (or decb)

instruction is selected. Productions five through seven handle addition of a constant other than 1

(and -1) as well as variables. The predicate Busy evaluates to false if the value of its attribute variable

need not be preserved after the operation. Without inherited attributes to non-terminals, this

information (i.e., the desired left context) must be available at a constant offset from the top of the

parser stack (c.f., Section 5). Consequently, a two-address addb2 is selected. If Busy evaluates to

true, then a three-address addb3 is selected. Other productions are used to perform arithmetic in

addressing modes of the target architecture, such as movab with indexing on the VAX. This
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technique is illustrated in a subsequent section on Optimization.

Transfer Productions

Operands may be intentionally relocated by the code generator to storage locations other than the

one in which they normally reside, for any one of the following reasons:

l Destructive operations: Many machine operations, such as two-address instructions,
destroy the contents of a participating operand. For example, on the PDP-11, add A, 8
destroys the contents of location B. Thus, to implement C : = A + B, B or A must be in a
temporary location before addition.

l Data-type conversion: Most machine op-codes operate only on operands of identical
data types except where data types are explicit in the instruction or in the data. Mixed-
mode operations are therefore implemented by converting all operands to the same
machine data type before performing the operation. Thus, the statement C : = 8 + C,
where B is an integer and C a floating-point number, is implemented by converting B to a
floating-point data type and then adding B to C. Such conversions are either specified by
compiler front-ends as type coercions or are automatically performed by the code
generator (e.g., when both B and C above are integers but B occupies a byte data-type
and C occupies a word data-type). To implement data-type conversions, some machines
provide a special conversion instruction, such as, cvtbw on the VAX-l 1 whereas other
machines might require a sequence of instructions. This sequence of instructions is
specified by the instruction-set describer.

l Instruction set non-orthogonality: The orthogonality of an instruction set is the regularity
with which any op-code can be used with any machine-primitive data type and
addressing mode. Every architecture designed and marketed so far possesses some
amount of non-orthogonality. For example, on the Z-8000 and iAPX-86, no memory-to-
memory arithmetic is possible. On the PDP-1 1 and IBM-370 no memory-to-memory
multiplication or division is possible, but memory-to-memory addition and subtraction are
allowed. Such irregularities force the code generator to produce extra code for
relocating operands. To implement C : = B * C on the PDP-1 1, where both B and C are
integers in memory locations, C has to be relocated to an even register of an even-odd
pair. Consequently the corresponding odd register may need to be relocated before the
multiplication so that its contents are not destroyed as a side-effect.

Transfer code sequences implement forced operand relocations. They are specified as part of the

RHS of a transfer production. For example, to convert a word datum to a long datum on the VAX-l 1,

the following transfer production is used:

LongTrfcc ---)  Wordfafcca CheckConvertlal’word’l’long’
TEMPl’long’Tr
EMIT~‘cvtwl,~alrlOfcc

The predicate CheckConvert  is used to check if conversion from word to long format is really needed

in the current context of operation. Once again, context is determined by interrogating the parser

stack. CheckConvert  will evaluate to true if the variable represented by the attribute a must be

converted to a long datum on the target machine. This conversion usually takes place when mixed-
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mode arithmetic is performed on non-tagged architectures. The absence of transfer productions may

force code generators to block while processing a syntactically correct IR input. The inclusion of

transfer productions may cause loops in the code-generator automaton when data type conversions

are performed more than once for the same variable. For example, a word variable may be converted

to a long variable and then subsequently converted back to a word variable without consuming any IR

input. The predicate CheckConvert  is therefore used to check if conversions are performed more

than once for the same variable; thus, avoiding a potential looping configuration of the code

generator.

4. lnst ruction Selection by Attributed Parsing

The affix grammar for the target machine is input to a code-generator generator (CGG) whose

output is a specific code generator for the machine. The code generator consists of a set of transition

tables and a driver for these tables. This driver serves as a push-down automaton that parses the IR

form. Instructions (machine operations) are selected during parsing. To transport compilers to a new

machine, the affix-grammar description of that machine is given to the CGG. Transition tables for the

machine are then automatically obtained and the same driver is used. The CGG constructs a context-

sensitive parser. The parser constructor is a generalization of context-free parsing methods that

accepts a useful class of affix grammars: those that are amenable to single pass, left-to-right parsing.

Apart from the evaluation of action symbols, resulting parsers from such constructors retain the linear

performance characteristics of deterministic context-free parsers. Both top-dew-n and bottom-up

parsers have proved attractive to language implementors since they organize the translation phase of

compilers. This section discusses the use of attributed parsing techniques to organize a compiler’s

code-generation phase.

Top-down (LL) parsing is not well suited to matching prefix IRS against prefix target-machine

templates. An operator in the IR (say +) corresponds to many templates beginning with the same

operator (e.g., inch,  inc, add on the PDP-11). In top-down parsing, production identification takes

I place before all of the RHS components have been processed. Ambiguities that occur in LL parsing

are all predict-predict conflicts. A disambiguating predicate can be associated directly with the

production whose .prediction  it will determine. Since, before prediction, very little information is

available on the operands, many (unbounded) lookaheads are required to select the proper template.

Predicates need to consider the non-terminal on top of the parser stack along with these look-aheads.

In contrast, bottom-up parsing is far better suited to instruction selection because a reduction takes

place only when the entire RHS of a production has been processed. All information on operands,

available as attributes of symbols on the RHS, can therefore be used to disambiguate multiple

matches and to control parsing by resolving shift-reduce and reduce-reduce conflicts. However, affix

grammars must be restricted in the following ways to make them suitable for one pass left-to-right

attributed bottom-up processing.

l Since the proper actions to perform depend on identifying the associated production,
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action symbols may appear only at the extreme right end of a production. However, this
restriction may be lifted in certain special cases where occurrences of action symbols
before the right end of productions can be automatically replaced by non-terminals that
generate the empty string (and thus serve as markers). If such movement of action
symbols to the left is inappropriate, an unresolvable parsing conflict will arise [WATT77,
FISC83]. For LR(k) or SLR(k) grammars, to determine positions suitable for calling
semantic action routines, the reader is referred to [PURD80].

e Bottom-up parsers operate by constructing forests of derivation sub-trees and then
piecing them together. Information flowing down a sub-tree in inherited attributes cannot
guide a parse, since by the time such information becomes available the entire sub-tree
has already been constructed. Furthermore, information cannot flow from one sub-tree
to a sibling sub-tree, since the fact that they are siblings is not established until both have
been constructed. All attributes of non-terminals must therefore be synthetic.

The flow of contextual information is therefore highly restricted. In the absence of action symbols,

information can only flow strictly up the tree, while an action symbol node can receive information

only from siblings to its left.

Predicates take a fundamentally different form for LR parsers than for LL parsers. In LR parsing the

conflicts are of the shift-reduce or reduce-reduce variety. Moreover, the conflicts are present only in

the context of a particular state or configuration set. Thus, while an LL parser bases its decision on a

non-terminal and a look-ahead, an LR parser bases its decisions on a parse state and a look-ahead.

The system associates predicates with states when it builds the parse table. In practice, the

disambiguating predicates of each production are usually written as the productions are designed,

i.e., the predicates are production, and not state, oriented. They serve as a guide to when the

production is applicable. In most cases, these predicates also serve to resolve parsing conflicts, i.e.,

they control parsing by resolving shift-reduce and reduce-reduce conflicts. In practice, some

disambiguating predicates are added only after a canonical collection of configuration sets has been

computed and found to contain conflicts. Upon the occurrence of a parsing conflict, disambiguating

predicates of successive productions in the current state are polled to determine the one whose

attributes allow it to be applied. Disambiguating predicates are implemented within the standard

framework of attribute evaluation by an evaluation rule that examines the attribute stack and checks

for applicability of the productions. Attributed parsing for our implementation (CG) is limited to

single-pass left-to-right evaluation of attributes. The LHS of a production does not have any inherited

attribute. Thus, information is never passed down the tree or to left siblings. The attributed bottom-

up parser with disambiguating predicates employs the standard LR(k) parsing loop with added code

to manipulate attributes. Using two stacks, the control stack and the attribute stack, aids conceptual

clarity. The prototype code generator uses about ten attributes covering many architectures. Since

the set of attributes is relatively small, the parser does not need to be able to handle fully general

attribute sets. In our notation, RHS symbols with constant attribute values differ significantly from

RHS symbols with symbolic (variable) attributes. Symbols with constant attribute values can only

match corresponding values in productions. DatumT2  will only match a datum with an attribute value
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of 2, whereas DatumTa  can match a datum with any attribute value. On a shift operation, attribute

values of a symbol are copied onto the stack. On a reduce operation, action symbols are processed

and synthetic attributes are returned tothe LHS symbol of the production. For each action symbol, in

turn, its inherited attributes are first evaluated, and then the corresponding function (the action

symbol) is called to evaluate its synthetic attributes.

5. Examples of lnst ruction Selection

In this section, we illustrate the translation of the IR example in Section 2 to target code for the

iAPX-86, PDP-11 and VAX-l 1 using attributed parsing. The following lines trace the parsing process.

They describe every step of production recognition, showing the input to the code generator and the

transformed output for the iAPX-86. The production that is matched at each step is explained and the

code that is generated upon production recognition is enclosed within {}. The symbol E denotes the

point of a shift action in the IR string. The symbol -j denotes the point of a reduce action in the IR

string. On a reduction, predicate symbols for the configuration set are invoked in order till a match is

found.

[I] +:= Datumfi DatumfO LabelTL30 : = Datumfi + Datumfi Datumfl-
< = DatumTi DatumTlO LabelTL30

PI : = t- Datumfi DatumTO LabelTL30 : = Datumfi + DatumTi DatumTl
< = Datumfi DatumrIO  LabelfL30 ’

PI : = DatumTi + DatumfO LabelfL30 : = Datumfi + Datumfi Datumfl
< = DatumTi DatumflO  LabelTL30

The following addressing mode production is selected.

AddressT index 4 DatumTi ADDRlilOTindex

Cdl : = Addressfindex -f DatumfO LabelfL30  : = Datumfi + Datumfi DatumTl
< = Datumfi DatumTlO LabelTL30

The first predicate for this configuration set IsByte&?dex evaluates to false. The next predicate
IsWordJindex  evaluates to true.

PI : = AddressTindex  IsWordlindex  -f DatumTO LabelTL30 : = Datumfi + Datumfi DatumTl
< = DatumTi DatumrIO  LabelTL30

The following production is selected.

WordTx  4 Addressfx IsWordlx

PI : = Wordfindex k DatumfO LabelTL30 : = DatumTi + DatumTi DatumTl
< = DatumTi DatumTlO LabelTL30
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PI : = Wordrindex  DatumTO 4 LabelrL30  : = DatumTi + DatumTi DatumTl
< = DatumTi Datum’/10 LabelfL30

I31 : = Wordfindex DatumfO CheckConvertJOl ‘constant’l’word’ -j LabelfL30
: = DatumTi + Datumfi DatumTl  < = Datumfi Datum110 LabelfL30

The following transfer production is matched.

WordTc -+ Datumfc CheckConvertlcS’constant’l  ‘word’

PI : = WordTindex  WordfO  -f LabelfL30 : = Datumfi + Datumfi Datum11
< = DatumTi Datum1  10 LabelTL30

WI : = WordTindex  WordfO  1 SameJindexlO A 1 Memorylr’ndexlO  4 LabelfL30
: = DatumTi + Datumfi Datumfl < = Datumj? DatumTlO LabelTL30

The following iAPX-86 production is matched.
Same evaluates to true if its attributes are equivalent locations.
Memory evaluates to true if its attributes are both memory locations.
CCMOV is the attribute specifying the condition codes set by the iAPX-86 MOV instruction.
It is synthesized by the action symbol EMIT.

InstructionTccmov + : = Wordfx Wordty  1 Samelxly  A 7 Memorylxly
EMITJ’mov’lxlylOTccmov

WI lnstructionfccmov {mov index, 0} t- LabelfL30 : = Datumfi -t= DatumTi Datumfl
< = Datumfi Datumf 10 LabelTL30

WI InstructionTccmov {mov index, 0) LabelfL30 -j : = DatumTi + Datumfi Datumtl
< = DatumTi Datum11  0 LabelTL30

The following production is matched.

InstructionTccnotset + LabelTn  EMITl’label’~nlOJOtccnotset

P31 lnstructionfccmov {mov index, 0) lnstructiontccnotset  (L30:) k : = Datumti
+ Datumfi Datumfl < = Datumfi DatumTlO LabelrL30

WI lnstructionfccmov {mov index, 0} InstructionTccnotset  (L30:) : = k Datumfi
+ Datumfi Datumfl < = Datumfi DatumTlO LabelfL30

1151 lnstructionfccmov {mov index, 6} lnstructionfccnotset {L30:} : = Datumfi +
+ DatumTi Datumfl < = Datumfi DatumTlO Labelf”L30

The following addressing mode production is selected.

Addressfindex + Datumfi ADDRlilOTindex

WI lnstructionfccmov {mov index, 0) InstructionTccnotset (L30:) : = Addressfindex -j
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+ DatumTi Datumfl <= Datumfi DatumTlO LabelfL30

[W lnstructiontccmov {mov index, 0} lnstructionfccnotset (L30:) : = Addressfindex
Is WordSindex 4 + DatumTi Datum 1 < = DatumTi DatumTIO Label1 ‘L30

The following production is selected.

WordTx + Addressfx IsWordjx

W31 lnstructionfccmov {mov index, 0) lnstructionfccnotset {L30:} : = Wordfindex E
+ Datumf i DatumTl  < = DatumTi DatumTlO LabeltL30

WI InstructionJccmov  {mov index, 0} lnstructionfccnotset (L30:) : = WordTindex
+ k DatumTi Datum11  < = DatumTi DatumTlO LabelfL30

PO1 lnstructionfccmov {mov index, 0) lnstructionfccnotset (L30:) : = WordTindex
+ Datumfi + Datumfl < = DatumTi DatumTlO LabelTL30

The following addressing mode production is selected.

Addressfindex + DatumTi ADDRiilOfindex

PI lnstructionfccmov {mov inde x, 0) lnstructiontccnotset  {L30:}
+ Addressfindex -j DatumTl < = DatumTi DatumTlO LabelfL30

:= Wordfindex

WI lnstructionfccmov {mov index, 0} lnstructionfccnotset (L30:) : = Wordfindex
+ Addressfindex /sWordlindex  4 DatumTl  C = DatumTi Datum110 LabelfL30

The following production is selected.

Wordfx + Addressfx IsWordlx

P31 *

PI

lnstructionfccmov {mov index, 0} InstructionTccnotset  { L30:
+ Wordfindex /- DatumTl < = DatumTi DatumTlO LabelTL30

lnstructionfccmov {mov index, 0} lnstructionfccnotset (L30:
+ Wordfindex Datumf 1 + <.= Datumfi DatumflO  LabelTL30

I := Wordfindex

I := Wordtindex

[=I lnstructionfccmov (mov index, 0) InstructionTccnotset  {L30:} : = Wordtindex
+ Wordfindex Datumfl CheckConvertlI1’constant’l’word’  4
< = Datumfi DatumrIO  LabelTL30

The following transfer production is matched.

Wordtc  + DatumTc  CheckConvertlcl’constant’l’word’

1261 lnstructionfccmov {mov index, 0) InstructionTccnotset  (L30:) : = WordTindex
+ Wordfindex WordTl  -f < = DatumTi DatumTlO LabelTL30
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PI lnstructionfccmov {mov index, 0) InstructionTccnotset (L30:) : = Wordfindex
+ Wordfindex WordTl  1 Busylindex  4 < = Datumfi Datum110 LabelTL30

The following production is matched.

WordTindexfccinc  + + Wordfindex WordTl  1 Busylindex
EMITl’inc’JindexJ010fccinc

This production describes a special purpose increment instruction, applicable only if the first
operand’s contents need not be saved and the second operand is the constant 1. The predicate Busy
evaluates to false if the contents of its attribute location need not be saved. To determine this
condition, the desired left context is known by interrogating the first and second symbol below the +
operator on the attributed parser stack. In this case, these symbols are Wordtindex and : =
respectively. Thus, the variable index is the target of the assignment. Consequently, Busylindex
evaluates to false and the inc production is selected. The action symbol EMIT synthesizes the
condition codes, ccinc, set by the iAPX-86 inc instruction.

W31 InstructionTccmov {mov index, 0) InstructionTccnotset  (L30:) : = Wordtindex
Wordfindexfccinc {inc index} --j < = DatumTi  DatumrlO  LabelfL30

The following production is recognized.

Instructionjcc  + : = WordTxfccx Wordfxfcc

This production is similar to that in step [IO] except that no code is emitted. 7 Samelindexlindex
evaluates to false. Consequently, this production is matched and no iAPX-86 target code is emitted.

WI

[30]

1311

WI

WI

lnstructiontccmov (mov index, 0} lnstructiontccnotset  (L30:) lnstructionfccinc
(inc index} t- < = Datumfi DatumTlO LabelTL30

lnstructionfccmov {mov index, 0) lnstructionfccnotset {L30:} lnstructiontccinc
(inc index) < = t- DatumTi  DatumflO  LabelTL30

lnstructionfccmov {mov index, O> InstructionTccnotset (L30:) lnstructionfccinc
{inc index) < = Datumfi + DatumTlO LabefTL30

The following addressing mode production is selected.

Addressfindex --+ Datumfi ADDRlilOtindex

lnstructiontccmov {mov index, 0) lnstructionfccnotset (L30:) lnstructionfccinc
{inc index} < = Addressfindex + DatumTlO LabelTL30

lnstructionfccmov {mov index, 0} lnstructionfccnotset (L30:) Instructionfccinc
(inc index) < = AddressTindex  Is Wordlindex  -f DatumT  10 LabelTL30

The following production is selected.

Wordfx + Addresstx IsWordlx
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WI

WI

1361

[371

[381

EW

lnstructionfccmov {mov index, 0) InstructionTccnotset  {L30:} lnstructionfccinc
{inc index} < = WordTindex  k DatumTlO LabelTL30

lnstructionfccmov {mov index, 0} lnstructionfccnotset {L30:} lnstructionfccinc
{inc index} < = Wordfindex DatumTlO 4 LabelfL30

The following transfer production is matched.

Wordfc + Datumtc  CheckConvertlcl’constant’l’word’

lnstructionfccmov {mov index, 0) InstructionTccnotset  {L30:} lnstructionfccinc
{inc index} < = WordTindex  WordTlO -j LabelfL30

The following instruction-selection production is matched.

Branchf’jle’fcccmp + < = Wordfa Wordfb EMITJ’cmp’Ja~blOTcccmp

InstructionTccmov {mov index, 0) InstructionTccnotset (L30:) lnstructiontccinc
{inc index} BranchT’jle’fcccmp  {cmp index, 10) k LabelTL30 _

lnstructiontccmov {mov index, 0} lnstructiontccnotset  (L30:) lnstructionfccinc
{inc index} Branchf’jle’fcccmp {cmp index, IO} LabelTL30 4

The following production is selected.

InstructionTccbr  + Branchtbrcodetcc  Labelflab EMIT/brcodellablOJOfccbr

InstructionTccmov {mov index, 0) lnstructionfccnotset (L30:) InstructionTccinc
{inc index} lnstructiontccbr  {cmp index, 10) {jle L30)

The goal symbol of the machine grammar is Codegenerator and it is described as:

Codegenerator + Instructions

Instructions + Instructions Instruction
Instructions --+ Instruction

The iAPX-86 target code for the IR example in Section 2 reads:

move index, 0
L30:
inc index
cmp index, 10
jle L30

.

The PDP-11 target code for the same IR example is slightly different. The c/r instruction is selected
instead of a mov. Reconsider step [lo] above. The PDP-11 grammar contains the following
production:



InstructionTccclr  --) : = Wordfx WordfO  1 SamelxlB EMIT@lr’1xJOlOTcccIr

Consequently, step [l l] becomes:

WI lnstructiontccclr  {clr index} j- LabelfL30 : = DatumTi  + DatumTi  Datumfl
< = DatumTi  DatumTlO LabelTL30

Similarly, the short-branch instruction b/e is selected using the following PDP-11 productions:

Branchf’jle’T’ble’fcccmp  + < = Wordta Wordfb EMlTJ’cmp’JalblOtcccmp

lnstructionfccbr + BranchflongbrTshorbrfcc  LabelTlab Shortdistancellab
EMlTJshortbrllablOlOTccbr

Thus, the PDP-11 target code for the IR example reads:

clr index
L30:
inc index
cmp index, $12 /octal 12forlO
ble L30

The VAX-1 1 machine grammar has a completely different production to describe an
add-one-and-branch-less-than-or-equal-to instruction. The datum index is mapped to a long data
type on the VAX-1 1 0 The steps [26] till the end are replaced by a single match of the following
production:

lnstructiontccaob  + : = LongTa + Longfa Longrl  < = Longta  LongTb Labelflab
Shortdistancellab
EMITJ’aobleq’lblallabfccaob

The predicate Shortdistance evaluates to true if its attribute is a short-distance target label for an
immediate branch. In this example Shortdistancelb30  evaluates to true. Thus, the aobleq  instruction
is selected and the VAX-l 1 target code is substantially different from those of the iAPX-86 and the

. PDP-11:

clr index
L30:
aobleq $10, index, L30

6. Integrated Peephole Optimization

Attributes are used in more complex ways to make optimization decisions Incorporation of these

optimizations is advantageous for code efficiency. Constant folding, strength reduction, auto-

decrement/increment and subsumption of address arithmetic within addressing modes are some of

the optimizations that are incorporated as grammar productions Others such as delaying stores into
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memory, register tracking to avoid redundant loads and stores, and code hoisting are incorporated as

a coroutine to the instruction selection process within a basic block [AHOU77].  The use of an

integrated peephole optimizer as part of code selection, reduces the need for separate optimization

phases. Thus, need for a separate peephole optimizer is reduced if not eliminated. The rationale

behind an integrated peephole optimizer instead of a separate package, such as an algebraic

simplifier on Register-Transfer-Level descriptions [DAVl80,  GIEG83],  is explained below.

l In a separate peephole optimizer, type bindings are lost. It becomes harder to identify
pointers and negative numbers. Thus, strength reduction of multiplication by shifting is
difficult. For example, the VAX supports an arithmetic shift operation on long data types
only.

l Since IR is free of machine-specific idiosyncracies, certain peephole optimizations can
be done at the IR level without requiring live/dead context information [TANN82].  For
example, on the PDP-11, add # 7, r0 sets the carry condition-code bit whereas inc r0
does not set the carry bit. In order to replace this add with an inc, a separate peephole
optimizer package must analyze each occurrence of add # 7, r0 to determine if the carry
bit is used later. If the carry bit is used later, then inc cannot be selected.

l Auto-increment/decrement optimization can be performed within a logically adjacent
window as opposed to a physically adjacent window.

l In spite of global register allocation strategies [CHAl82,  LEVE81],  local register
management is essential for tracking register aliasing, register pairing and overlapped
sharing (e.g., AL, AX on iAPX-86; RLO, RO, RRO, RQO on Z-8000). A separate peephole
optimizer package can conflict with the local register manager [RUDM79, CROW82].

l Sometimes, strength reduction can affect register management. For example, on the
iAPX-86, the AX accumulator is sacred for many instructions and in particular for
multiplication. Consequently, before multiplication, the previous contents of AX and its
corresponding register pair DX must be saved. However, if an add is selected instead of a
multiply by 2 or if a shift is selected instead of a multiply by powers of 2, then the AX and
DX registers need not be saved. This optimization, when done in a separate peephole
optimizer package, would be late for improving register management.

Constant optimizations and constant folding

It is possible to optimize addition and subtraction of zero, multiplication and division by one and

econstant folding by expressing them as affix grammar productions. The following iAPX-86

productions describe some of these cases as examples

ByteTrfcc  + - BytefrTccr  BytefOrcc

ByteTrfcc  + / ByteTrJccr Bytefl tee

ByteTrtcc  + / ByteTaTcca BytefbTcc  ConstantSa A Constantlb
FOLDJ’/‘lalbfr



19

Strength reduction

The VAX-l 1 has a three-address arithmetic shift ash/ and both two and three-address multiply

instructions muii2, mull3  that can be exploited in its affix grammar:

Longtrfccash  + * LongfaTcca  Longfrtccr
1 Busylr  A Power2la  A Positivelr
EMITl’ashl’llog,alrlrtccash

Longfrfccash + * LongTrfccr  Longtafcca
7 Busylr  A Power2la  A Positivelr
EMITl’ashl’llog,alrlrTccash

LongfrTccmul2  + * LongtafccaLongTrfccr
-I Busylr
EMITl’mull2’lalrlOfccmul2

Longfrfccmul2 + * LongfrTccr  LongTatcca
-I Busyjr
EMIT~‘mull2’~a~r~Ofccmul2

Longfrfccash + *LongTafccaLongfbTccb
Power2la  A Positivelb
TEMPl’long’fr
EMITl’ashl’Jlog2alblr~ccash

LongTrTccash  -+ * LongtbtccbLongTafcca
Power2la  A Positivelb
TEMPl’long’Tr
EMITJ’ashl’llog,alblrfccash

LongTrfccmul3  -+ * LongTafccaLongTbTccb
TEMPl’long’tr
EMIT~‘mull3’jalb~rTccmul3

Attributes and predicates are very useful in selecting between optimization for space and

optimization for time when they conflict. The applicability of the arithmetic shift production can

depend further on whether optimization for time is to be preferred over optimization for space. The

two-address multiply on the VAX-l 1 occupies less space than an arithmetic shift which needs three

addresses. But an arithmetic shift is faster than a multiply instruction. The user may set options such

as optimization for space preferred to optimization for time as an attribute space to the multiply

operator *% The grammar writer must define a predicate such as Timepreference that evaluates to

false if the attribute of * is space. This predicate is specified in conjunction with other predicates for

all ash/ productions that appear before the mull2  productions

Similarly, if optimization for time is preferred over optimization for space, multiplication by 3 may be

strength reduced to an arithmetic shift followed by an add.
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F a n c y  i n s t r u c t i o n s  -

Many target architectures provide special-purpose instructions to yield optimized target code.

Examples of such instructions are: subtract-one-and-branch on the PDP-11,

subtract-one-and-branch-less-than-or-equal and add-one-and-branch-less-than-or-equal on the

VAX-l 1 0 It is not essential to use such instructions in the translation of user programs for the target

architecture. However, by using such instructions, compilers can produce efficient representations

of user programs. It is possible to represent these fancy instructions as grammar productions with a

long right hand side. Extra blocking predicates are used to specify the applicability of such

productions. For example, consider the subtract-one-and-branch series of instructions on the

VAX-l 1:

LonglaTccsob  + : = Longfafccl - Longfafcc2  Longfl Tcc3 > LongfaTcc4  LongTOTcc5  Labelfn
Shortdistanceln
EMITl’sobgtr’lalnlOTccsob

Longfafccsob -+ : = LongTaTccl  - LongfaTcc2  LongTl  fcc3 > = LongTaTcc4 LongTOfccS  Labelfn
Shortdistanceln
EMITJ’sobgeq’lalnlOTccsob

There are no productions to model any less-than comparisons in a similar fashion because the

VAX-l 1 does not provide corresponding instructions for subtract-one-and-branch. Such optimization

productions are added incrementally to the machine grammar to improve target code quality and to

provide fine tuning of the object code. They are specified before general instruction selection

productions so that their predicates are evaluated first. .The thrust of this addition is to facilitate

incremental development of an optimizing code generator.

Subsuming code within addressing modes

Certain instructions may be subsumed in the addressing modes of the target architecture. Thus,

the relevant arithmetic is performed implicitly by the machine hardware. The following examples

depict three such cases for the VAX architecture.

l Consider addition within the context of an address calculation. The IR representation
could be: = target Indirect + constant prefixexpression. If the prefix expression is
computed in a register then the addition could possibly be subsumed in the indexing
addressing mode:

Addressfa + Indirect + Longtdfccd  Longtifcci  Displacementld  A IndexRegisterli
ADDRldliTa

The predicates, Displacement and IndexRegister,  ensure correct applicability of the
subsumption production. If the predicate restrictions are not satisfied then the IR is
parsed via the usual instruction selection productions and code would be generated
(e.g., an add in this case). ADDR composes an address attribute a with displacement d
and base register i.
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l Some machines provide op-codes to obtain the address of a variable. Examples of these
instructions are movab, pushab, movaw, pushaw, moval, pushal etc. on the VAX and lea
on the iAPX-86. Using these instructions, certain arithmetic may be subsumed by
indexing:

AddressTafccpushal + + Longtdfccd  Longfifcci Displacementld A IndexRegisterli
ADDRldliTb
TEMPl’long’fa  Stacktopla
EMIT~‘pushal’~b)0~0fcpushal

Addressfafccmoval + + Longfdfccd Longtifcci  Displacementld  A IndexRegisterli
ADDRldliTb
TEMPl’long’Ta

l Many machines, including the VAX and the PDP, contain specialized hardware
addressing modes that could potentially yield efficient target code. A good example is
the auto-increment/decrement feature. Compilers find it difficult to recognize the special
cases in which a subtract operation can be subsumed in a later instruction by auto-
decrement or an add operation can be subsumed in an earlier instruction by auto-
increment. Such features can be exploited in affix grammar driven code generation.
Consider the following production:

LongTrTcc -+ - LongTrTccr  LongTLtfcc  Registerlr  A 1 Busyl~
DELAYl’subl2’14lrJOfcc

This production will be matched only when we find a subtraction of the constant 4 from a
long format datum in a temporary register. The subtraction from f is delayed in hopes of
realizing it as a future auto-decrement If the next use of the register r is an indirect
reference through r and the operation uses long data, then the auto-decrement
addressing mode for r is issued for the current instruction. DELAY is a version of EMIT
that delays generation of code till the updated value of its operands is actually necessary
in a computation. In this example, if the auto-decrement optimization cannot be done
subsequently or if the updated value of the expression is needed, the subtraction is
generated. Similarly, if a register is incremented by a constant that is usable in an auto-
increment, the previous use of the register-indirect addressing-mode is altered to the
auto-increment mode using a code buffering and register tracking mechanism outlined in
subsequent paragraphs. In the following production, HOIST is another variant of EMIT
that attempts to use auto-increment in an earlier instruction:

Longfrfcc + + LongfrTccr  Longf4Tcc  Registerlr  A 1 Busylr
HOIST~‘addl2’~4~r~Ofcc

Suppressing redundant code

Redundant assignments and condition code settings can be suppressed by grammar productions

Examples of redundant condition code settings are unnecessary tests that precede branches More

generally, sometimes an instruction is used only for setting condition codes If its execution would set

condition codes exactly as the preceding instruction did then the instruction is suppressed. Consider
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the following productions that describe a tstl (comparison with zero) instruction on the VAX:

Branchf’jle’fpreviouscc  + < = LongfaTcca  LongTOTpreviouscc
Samecclpreviousccl  ‘Ml

BranchT’jle’fcctstl  ---) < = Longfafcca LongTOTpreviouscc
EMIT~‘tstl’~a~0~0fcctstl

Samecc evaluates to true if previouscc is same as the condition codes set by its second attribute,

which in this case is the tstl instruction. Consequently, the test instruction is suppressed. If Samecc

evaluates to false then a tstl instruction is emitted by the second production.

lnst ruction buffering and tracking

Attributes can be used to carry around arbitrary information to aid optimization. To provide

additional power to the basic code generation process, these optimizations are incorporated in a

cohesive manner as a coroutine to the parsing process within the attributed parsing framework of

code generation. To realize these optimizations, instructions are buffered for the duration of a basic

block [AHOU77].  Upon instruction selection, code is not directly emitted as output. Instead of a

straight forward match, generate, match, generate code generation, many matches are’performed

followed by a single generate at the end of a basic block. Instruction buffering facilitates local code

motion, such as moving loads and stores closer to uses, remembering alias locations to eliminate

redundant loads and stores and to use register addressing modes instead of memory locations.

Furthermore, machine-specific idiosyncrasies such as register pairs, overlapped register use and the

contents of the stack top are tracked by means of the instruction buffer. Within basic blocks,

variables are kept in faster locations as much as possible. The code generator replaces references to

the memory address of a variable by its equivalent register alias. The principles on which this strategy

is based are:

l Whenever an assignment involves moving an operand from a cheaper addressing into a
costlier one, the generation of the move instruction is delayed. Costs are defined in terms
of storage classes such as memory, stack and register. For example, the cost of a
register would usually be less than that of memory. Consequently, the store of a register
into memory is delayed.

l Similarly, operand relocations may involve movement from a costlier addressing mode to
a cheaper mode. An example of such an occurrence would be loading a memory variable
into a register. In such cases, the move instruction is hoisted to the position after the last
use of the cheaper addressing mode within the current basic block and after all
intervening assignments to the memory variable. Then, all subsequent references to the
memory variable are replaced by the register reference provided this replacement does
not change instructions.
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7.  Grammar gyrat ions -

The previous sections described and demonstrated the advantages of attributed parsing. The key

point was the use of affix grammar machine descriptions to clarify many of the decisions in choosing

code sequences. Lest the overall perspective be dimmed by this concentration of detail, we present a

few questions that would probably have already arisen in the readers’ mind:

How can other aspects of code generation, such as register assignment, be accommodated within

the attributed parsing model? How do the grammar productions parse a superset  of the IR? How to

ensure that the attributed parser will not block? Is loop detection and elimination needed when

attribute evaluation disambiguates parsing conflicts? How does having a restricted model for

attribute evaluation affect the kind of code generated? Is multiplicity of grammar productions a

potential problem? What grammar gyrations can reduce the total number of productions and

consequently yield smaller code generator tables?

Register assignment

Invoking the action symbol PEMP is an on-the-f/y call for a temporary requirement. On irregular

architectures, a value must be loaded into the right kind of register. For example, in a multiplication

context, the operand location may need to be an even-odd register pair on the PDP-11 and the AX-DX

accumulator pair on the iAPX-86. Thus, TEMP must be attributed by appropriate storage class

requirements. The inherited attributes to TEMP may be the data type, machine storage class of the

temporary location and any other specific requirement such as the need for the AX register on the

iAPX-86. For example, TEMPlAccumulatorl’word’JAX  denotes a specific requirement for the

accumulator AX on the iAPX-86. This requirement is essential in cases of type conversion

productions and for multiplication on the iAPX-86. Similarly, TEMPlEvenl’word’lANY  denotes a

specific requirement for an even register on the PDP-Il. In the absence of inherited attributes to LHS

of productions, the context of operand use is determined by the prefix operator in the IR and the left

context that will usually be available at a constant offset from the top of the parser stack. Thus, the

affix grammar guides register assignment. However, there are no guarantees on conditions for

. register spills. In order to avoid register spills, a separate phase of global register allocation is

required. Usually, global optimizers estimate (sometimes guestimate) register allocation based on

frequency analysis of variables. The results of such estimations may be expressed as attributes to

variables in the IR and eventually passed to TEMP during code generation.

Blocking

The language generated by the affix grammar for the target machine must be a superset of the IR.

Otherwise, blocking due to mismatched IR specifications becomes a potential problem. For a correct

IR of a given program, the code generator may block if the automaton has no valid next step and thus

no match for the input IR. If the machine description is incomplete, syntactic blocks may occur. A

uniform instruction set is defined as one in which operands of an operator are valid independent of
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context [GLAN77].  That is, uniform instruction sets allow any sequence of valid operands and

operators via conversions or moves. If uniformity is established, syntactic blocking is impossible.

Similarly, in a given configuration set, if all semantic qualifications imposed by attributes and

predicates block production recognition then a semantic block may occur. The code generator

attempts to match every production in succession but fails to match because all uses of the

production pattern are restricted and the input IR does not satisfy these restrictions. To prevent

semantic blocking at least one default production that has no qualification restrictions must be

created. This production contains the syntax of the general form without semantic restrictions. When

all preceding productions fail, this production will definitely match and consequently, it guarantees no

blocking. Alternately, the user must establish that whenever a sequence of qualifications for different

productions is considered, at least one will be satisfied. To predict potential blocking configurations,

an analysis of the machine description is needed. The analysis highlights instances where non-

orthogonality of the instruction-set can be hazardous to code generation. Depending on the context

of such instances, the target-machine describer can decide, by hand, whether such a condition is

acceptable as it is or whether it should be corrected by addition of extra grammar productions. For

example, the non-existence of real operands as array indices may show up as an example of non-

orthogonality. But, this condition is legitimate because it can be guaranteed that such a case would

never appear in the input IR. Usually, syntactic blocks appear because a sufficient set of transfer

productions are not supplied. Thus, when trying to convert an operand from one data type to

another, the code generator reaches a state in which it cannot shift on the input. This problem is

corrected by providing transfer productions between every pair of data types on the target machine.

Potential code generator blocks can be automatically detected when a code generator is first created.

An analysis of the code-generator automaton states is carried out to determine uniform occurrences

of operators and operands. For each operator in the machine grammar, all its leftmost children are

determined. As a sufficient condition to prevent blocking, anywhere an operator occurs in a machine

description, all its leftmost children should be possible successors. The rightmost children of binary

operators and other children of nary operators are analyzed similarly. Alternatively, the shift-reduce

table output by the code-generator automaton can be inspected for completeness in actions for all

operators and operands. If a state S is entered by shifting an operator op and there exists an action

for that state and the next symbol n, then every state entered by shifting op must have an action for

symbol n. Rightmost and other operands of the same operator are treated similarly. In an

architecture, with addressing modes that are non-orthogonal to op-codes, if every legitimate

addressing-mode/op-code combination is explicitly specified as a separate grammar production,

then non-uniformity occurs due to the unspecified (and non-existent) combinations. In an affix

grammar machine description, addressing modes are specified as semantic attributes in instruction-

selection productions. Furthermore, the grammar being type sensitive, all op-code/addressing-mode

combinations are taken care of by the very nature of the grammar specification mechanism. Non-

orthogonal restrictions, if any, are present as predicates to productions. Thus, this kind of syntactic

blocking is treated in a uniform way as semantic blocking. Another kind of syntactic blocking appears
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in certain architectures when data-types are non-orthogonal with respect to op-codes. For example,

comparison operators may only work on integer data types only. Consequently, in a type insensitive

grammar, comparison of real operands would be a syntactic block. In a type sensitive grammar,

transfer productions could automatically convert real operands to integers and thus the syntactic

block disappears However, for a more efficient representation of real comparisons, extra grammar

productions could be specified with sequences of target code that implement real comparisons. In

effect, such productions augment the instruction set of the target architecture.

The incremental inclusion of optimization productions may contribute to fresh shift-reduce conflicts

in the machine grammar. The code generator would choose to shift in hopes of matchin,g  the longer

production. However, at a later stage, the semantic restrictions on the applicability of this production

may not be satisfied. Thus, the code generator may block if bail out productions are not supplied.

The sequence of code that must be emitted on selection of a bail out production is usually determined

by the grammar writer. However, it may be automatically obtained by removing the optimization and

bail out productions and feeding a semantically valid but blocking IR input to the code generator.

This IR would be parsed by other productions, yielding the relevant code sequence. For example,

consider the VAX-l 1 grammar production describing an sobgtr instruction. The following bail out

productions are needed to prevent blocking. A preprocessor can automatically include such

productions in the machine grammar:

LongtaTccdec  + : = LongTaTccl  -Longfafcc2LongTlrcc3>Longfafcc4Lo~gTOTcc5Labelfn
7 Shortdistanceln
EMIT~‘decl’ja~0~0~ccdec
EMITl’jgtr’lnlOJOTccnotset

Branch~‘jgtr’~‘bgtr’~cctstl  + : = Longfafccl - Longfafcc2 LongTl tcc3
>Longfbfcc4LongTOTccSLabelfn
EMIT~‘decl’~a~0~0fccdec
EMIT~‘tstl’~b~O~Ofcctstl

’ BranchT’jgtr’f’bgtr’~cccmpl  + : = LongTafccl  -LongTafcc2Longtlfcc3
> LongTbTcc4  LongTcTcc5  LabelTn  1 Zerolc

.

Looping

Another possible problem is looping in which the code generator continues to make moves, and

possibly generate code, without consuming all the intermediate form symbols. This problem can only

occur if an infinite chain of operand move productions is recognized, and, using qualifications, it can

easily be avoided. In a type sensitive grammar, such loops usually occur when data type conversions

are done more than once for the same variable. For example, a byte variable is converted to a word

variable and then again converted back to a byte variable by a sequence of reductions without

consuming any IR input. Thus, the reductions do not prune any of the IR and they return to the same
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grammar symbol. In such cases, restrictions are placed on predicates to ensure that conversions are

performed only once for a given variable unless further IR input is consumed. An analysis of of

grammar states, removing all predicates, is carried out and potential looping configurations are

determined by tracing the use of replacement chains as described in [GLAN77].  Then, predicates are

incorporated and restricted to avoid looping configurations.

Factoring

The machine grammar may be factored in a variety of ways as enumerated below. In most cases,

factoring facilitates machine description and yields a smaller number of grammar productions.

Consequently, the table size of a code generator is reduced. However, care must be taken not to

factor the grammar at the expense of readability and retargetability. In particular, predicates may be
shared by different productions to minimize code and consequently grammar factoring can be used

to avoid replication of code. However, this technique will reduce the retargetability of the code

generator.

l Simple uses of attributes allow the description writer to factor the machine grammar.
Most importantly, addressing modes are factored out from instruction descriptions by the
use of addressing mode productions. In effect, attributes are used to consolidate
information about a reduced subtree.

l Predicates may be combined to factor symmetry in instruction specification. If two
grammar productions have identical LHS and RHSs, with the only difference being their
predicates, then only one production need be specified. This production represents the
combination of these two productions and its predicate is the disjunction of the individual
predicates. Thus,

LHS + symbols Predicate, action

LHS + symbols Predicate* action

may be combined to form

LHS + symbols Predicate, V Predicate2  action

l Operator factoring is possible but is not advised. In our experience, it becomes hard to
debug the specification at the level of the grammar. For example, operator factoring
creates problems in specifying certain attributes to operators (e.g., unsigned
multiplication, time versus space optimizations when they conflict).

l Further grammar optimizations can be done by moving certain action symbols such as
TEMP (i.e., calling the temporary assigner) out of instruction selection productions and
representing it as a separate E production for an overall gain in clarity. In the absence of
inherited attributes to LHS of productions, the relevant context (e.g., data type and
storage class of the temporary) is represented syntactically in the LHS of E productions.
Thus, TEMPl’byte’ and TEMPl’word’ would be represented as two distinct E
productions:
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TempbyteTt  + E
TEMPl’byte’ft

Tempwordft + E
TEMPl’word’ft

Factoring action symbols improves the clarity of the machine grammar but increases the
number of grammar productions and consequently the table size. Furthermore, care
must be taken that the introduction of such E productions does not introduce additional
shift-reduce conflicts. In our experience, such conflicts did not appear.

8. Conclusions

Implementations of code generators (CG) for the PDP-11, VAX-l 1, iAPX-86, Z-8000 and IBM-370

exist. Code generators occupy roughly 100 Kbytes, generating about 50 lines of assembler code per

second (real time). YACC [JOHN751  was used to generate tables for these implementations YACC’s

driver was modified to accommodate predicates and create parsers for affix grammars [FISC83].  It

requires about four minutes to process each of the highly optimizing code-generation grammars

containing about 600 grammar productions and 1200 parser states for rich instruction-set

architectures such as the VAX-l 1 and very non-orthogonal instruction-set architectures such as the

iAPX-86 and Z-8000. The PDP-11 and IBM-370 grammars contain about 400 grammar productions

and 800 parser states CG produces good code when compared to native compilers on target

machines and hand-written assembly code. The target code quality is comparable to the Portable C

Compiler [JOHN781  with its post pass of peephole optimization and Intel’s Pascal compiler for the

iAPX-86. Most of CG’s strength lies in using special machine instructions and subsumption of

arithmetic within hardware addressing modes. Typically, one man month is needed to produce a

code generator for a new target architecture. This duration may increase by another man week

depending on the richness of the target architecture’s instruction-set, such as the VAX-1 I, or the

non-orthogonality of the instruction-set architecture, such as the iAPX-86 and the Z-8000. Much of

the savings in time comes from the orthogonality of the affix-grammar productions. For example, all

addresses are handled by a single set of productions. When constructing other parts of the

specification, this information need not be continually borne in mind. Furthermore, separating

addressing mode descriptions as grammar productions facilitates various addressing optimizations.

One of the major problems of Graham-Glanville machine descriptions is the multiplicity of grammar

productions” Since each op-code/data-type/addressing-mode must be written as a separate

production, the grammar can easily get very large (about 8 million productions for the VAX). To

produce a workable code generator, grammar factoring is essential. In spite of factoring, the total

number of productions are substantial (over 1000 productions for the VAX) [GRAH82].  In our

scheme, the use of attribute predicates and semantic treatment of attributes effectively replaces the

cross product of op-codes and addressing modes by their additive sum. In effect, the addressing

modes are factored from the instructions. This separation significantly reduces the total number of
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productions and consequently yields smaller code generator tables.

The use of semantic attributes provides for complex information flow, as well as selective rejection

of inappropriate productions. Multiple instruction results, such as condition codes and auto-

increment/auto-decrement side effects on registers, can be tracked as semantic attributes.

Important target machine restrictions on the programming model such as:

l register restrictions for indexing, multiplication and division,

l segmentation restrictions on compilation (e.g., iAPX-86, Z-8001),

l data type restrictions for operands to instructions,

l addressing-mode use and access restrictions,

l irregular and inflexible register architecture (e.g., iAPX-86) and

l short displacements for branch restrictions

are conveniently handled by attributes and predicates that serve to band-aid such architectural

restrictions. Thus, an architecture’s weakness is made transparent to the compiler writer. On the

other hand, an architecture’s richness such as special addressing modes and fancy instructions are

also captured in affix grammar productions using semantic attributes and predicates. The use of

semantic attributes, attribute predicates and action symbols not only allows more information to be

used to drive the parse, but also brings many of the decisions out of semantic routines into the

grammar for an overall gain in retargetability. The semantic evaluation framework facilitates many

optimizations paying more attention to the incremental development and improvement of a code

generator. The main difference between simple code generators, and more elaborate ones, is how

detailed the attributed descriptions are. Simple ones, that ignore fancy or obscure features can be

readily produced. For example, arithmetic shifts may be ignored and multiplys or divides generated in

all cases. Later, as time permits, and the need arises, more elaborate attributed descriptions, that

more fully describe the target machine can be created. This approach allows an incremental

development of a code generator, rather than an all or nothing approach.

In our scheme, adherence to single-pass code generation ruled out iterative machine-dependent

and peephole optimizations. We are caught in a nasty cleft between the resulting optimizations

gained on the one hand and speed and size of the implementation on the other. Many problems

involved in generating high quality, optimized code remain open. Our code generation algorithm uses

a restricted attributed parsing technique, forbidding inherited attributes to an LHS symbol. In some

contexts, this attribute flow is inadequate. Thus, richer attribute flows must be investigated. The

standard model of attribute evaluation assumes that a given attribute is evaluated exactly once. In

certain aspects of code generation, most notably register assignment [LEVE82]  and iterative

peephole optimizations [WULF75],  it is useful to change decisions that have already been made.
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Thus, the applicability of time varying attributes in affix grammars and multi-pass attribute evaluation

paradigms to code generation should be studied.
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