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Abstract

This paper discusses the development of compilation strategies for DEL architectures and tools to assist in the
evaluation of their efficiency. Compilation is divided into a series of independent simpler problems. To
explore optimization of code for DEL compilers, two intermediate representations are employed. One of
these representations is at a lower level than target machine instructions. Machine-independent optimization
is performed on this intermediate representation. The other interrncdiate  representation has been specifically
designed for compiler retargelability.  It is at a higher level than the target machine. Target code generation is
performed by reverse synthesis followed by atlribuledparsing.  This technique demonstrates the feasibility of
using automated table-driven code generation techniques for infexibZe  architectures.

Key Words and Phrases: Compiler design, Retargctability, Intermediate Representation,  Code-Gencrator-
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1 .I DEL Archikectu  res

Computer architccturcs other than the traditional general register  machine have the potential for improved

ratio of performance/cos!.  Oce particulsr;y interesting class of traditional architectures arc the Direct

Execution Lnnguagc (DF,L-)  machines [Flynn 80,  831.  ‘I’hcy form a class of von-Neumann architectures that

attempt to inakc the execution architecture suitable  for a high lcvcl language  (HLL,). DEL architectures use

built-in knowledge of the language environment to add more function in hardware to reduce system costs.

The main thrust of this approach is to remove register and resource allocation problems that exist in familiar

machines and also to avoid problems exacerbated by limited size of storage. DEL machine architectures are

determined, in part, by the demands of programming languages. There is a one-to-one correspondence

between fUnctiona operations in the HLL and instructions specified in the target architecture. Each action in

the HLL evokes er;aTtly one insiructio:~  in the: image processor. Consequently, there arc no overhead

instructions, such as Zuac;r/‘stow  in the t;;r.get  instruction-set. DEL idcntificrs correspond to HLL variables

rather than host registers or storage cells. There is a one-to-one correspondence between objects named in the

HLL program and operands spccificd in the image architecture. Thus, the flexibility of the target machine is

sacrificed to decrease the semantic gnp bctwccn it and the FILL. In effect, DELs are interpretive architectures.

Consequcjltly, DEL machines may be too in flexible for a general purpose environment. A general-purpose

DEL aims for encoding efficiency (both static and dynalmic).  The microarchitecture is optimized for code

compactiiin.  DEL representations minimize the number  of bits needed  in the instruction stream for operand

specification, without resorting to frequency-of-occurrence based encodings.  The instruction format is

designed for an absolute minimum number  of bits for each instruction in each procedure. In effect, the

instructions are bit uligned.  The opcode appears last and operand references are variable in size and format.

The instruction fields are encoded using [login bits, where 11 is the number of possible identifiers in the HLL.

Instructions locate operands using a table, called the coiztour melno~. The contour table contains the value

for simple constants, variables and labels or address for structures and non-local variables. This information is

kept for each object named in the I-IT-L program.

DEL architectures can potentially outclass traditional register  architectures in size of stutic  code and

data-txflc  bnndwidth.  The simplicity of addressing structure permits simple direct addressing and the use of

immediate operands rather than complex effective-address gcncration. Studies in DEL architectures have

shown that the number of instructions reqcired to exccutc programs can be reduced by a factor of three when

compared to traditional architectures DVakeficld S3]. A cc~l;lour MCWOV-~  buffer in a DEI, microprocessor can

reduce on-chip memory arca and cn1~11m  off-chip mcrnory bandwidth. Howcvcr, the execution-time
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performance of such machines may-be a potential problem in a general purpose environment.  Since

instructions arc not aligned, instruction fields riced to be cxtrllc*ied. Conscqucntly, the instruction-

interpretation pipeline must be handled carcfully,l  othcrwisc it cannot be very deep.

DEL design represents a series of tradeoffs in architecture design; the mos[ important tradeoff being space

savings due to conciseness in representation versus interpretation time. There c;\;ists a conflict between

efficient representation of a WI, program and efficient interpretation  by a host system. At the one extreme,

direct interpretation without the use of a compiler is possible, but such an approach has limited suitability to

many traditiorlal  languages. At the other extreme, most of the translation can be accomplished by

compilation to microinstructions followed by minimal interpretation.  Tradeoffs in the above conflicting

demand have a strong bearing on the interface between compilation and interpretation. A cost-effective

design and implementation of a DEL is still the subject of on-going research. Studies of alternative DEL

architectural strategies requires close cooperation between compiler writers (so that the machine has an

adequate set ofprimitives) and hardware de$ncrs. Rileasures of clrchiccctural  r:fficiencies n:ttst bc done by

comparing the results for DEI, mtchincs  with the results for traditionally organized  machines. This

comparison has not been possible, since both DEL compikion and DEL architect!li es have not rcccived

anywhere near the study that compilation for tradition;ll  architectures has received.

FOh4 is a Forcran Optimized Machine [lkantlcy  82, 831 that has been designed with the mo;ivation for high

performance in scicntik computations. It is a high perfonzra~we  DEL rather than a gerze&puiposc  DEL. In

a general purpose DEL, state transitions of both image and host occur in the same order, thus, prcscrving the

n-ampmeq)  of representation. Multiple image instructions cannot be simultaneously executed and

consequently, the architecture cannot bc pipclincd. However, contingent on the intcrprctation  order being

the same as the image sequence, overlapped execution is allowed. To gain overall execution speed, FOM

violates Iranspareucy  and allows code scheduling. It trades cxccution speed for code compaction and has

fixed size instructions that can be extracted in at most one pipe cycle. FOM’s CPU has multiple functional

units: Fixed Point Unit to opcratc on integer, boolean, logical, label and array-base data, Floatil!g Point Unit,

Load/Store  Unit to load and store array clcmcnts, Exchange/Conversion Unit to move data between units,

Instruction Unit to fetch and decode, and an I/O Unit for formated I/O. The following diagram depicts this

organization.

‘Memory may bc bit-packed. but the Instruction-Cache  need not bc bit-packed.



Instruction fetch unit

I/O Unit

A number of tradeoffs were made between the organization and the instruction-set architecture of FOM.

FOM does not have condition-codes. Being a shared rcsourcc for multiple units, condition -codes degrade

pcrfo:mance.  Consequently, boolean operations produce explicit results rather than set coildition-codes and

are three-address instructions. Jnstead of general purpose registers, FOM provides a special hardwarc-

managed buffer called tl,e Access Look Aside Table (ALAT). This b:lffcr is a large register-set that is

automatically block-loaded on proccdurc entry. There are four sets of rcgistcrs and their block-loading C;N be

overlapped with the execution of the current procedure by suitable scheduling of Nxt19oc  instructions.

Auto-indirection is another feature of this buffer that tends to produce compact code for accessing procedure

parameters and global variables. The auto-indirect bit of an ALAT entry indicates whether  the data field

contains the data or the memory address of the data. Each operand reference to an auto-indirect ALAT

location causes a memory reference. The set of variables accessible by a procedure  is recorded in memory and

in the Access Table (AT). The Environment Pointer (EP) points to the AT of the current procedure. While a

proccdurc is executing, information in the next procedure’s AT is moved into the ALAT. ALAT is divided

between two units according to the data type: ALATI and ALATR. Thus, the high-speed buffer can hold 128

fixed-point and 12s floating-point entries in which all local variables arc automatically loaded. Since the

ALAT is 4-way interleaved, there exists a need to avoid ALAT bank conflicts. An expression-evaluation stack

is used to reduce the number  of rcfcrcnces to ALAT.

The FOM instruction-set architecture was designed with the following motives:

8 high static coding cfficicncy for Fortran programs -- reduced number  of instl:tictions per Fortran
instruction. Examples of high-hnction operations in FOM arc h’xtf’roc,  Autointlircictiorz  and
formated I/O.

d, simplicity of implementations to improve cycles ptr instruction -- high performance with multiple
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functional units. A separate ifoating-point unit, load/sLorc unit and conversion unit enhance
performance.

o increased cxccu tion overlap -- delayed branches and communication between units via architccted
FIFO queues.

While DEL architectures have the potential benefit of requiring fewer number of instructions to encode a

MLL, appropriate compiler technology must be employed to take advantage of this benefit. This paper

develops compilation strategies for DEL mxhincs  and tools to assist in the evaluation of their efficiency. In

particular, we describe the implementation of Fortran and Pascal compilers for FOM. This exercise is

interesting for the following reasons:

o The effect of machine-independent optimization is determined  for DEL, architectures.

e Code generation is a re\Terse sy?zthesi? issue and a pattern-matching code generator is used to
efficiently compde  back the reverse synthesized code.

.lral research incs It demonstrates the ux of a table-driven code generator for purposes of architect1
the environment of a changing insuuction  set and optimizations.

The primary purpose of this exercise is to develop approaches to generating machine code for a variety of

different language-oriented architectures as well as traditionally organized machines. Some of the new

machines may require substantial departures from traditional compilation techniques. Since there is an exact

mapping between the execution architecture and its host HLL, compilation is expected to bc straightforward

for the host HLL only. To host a foreign HLL or to adapt to changing instruction-sets of the DEL itself, a

rctargctable code generation scheme is required. Moreover, much of DEL research has ignored code

optimization. For maximum effect of optimization and for centralizing a global optimizer, such optimization

is traditionally performed on low-level intermediate code. In our scheme, this optimization is performed  on

U-code. Conscqucntly, code generation for DEL machines becomes a reverse synthesis process.

Furthermore, our aim is to support architectural cxperimcntation  at the level of determining what the

impact of a particular architecture is on the aggregate code size and cxccution time for a particular system. To

make such comparisons it is necessary to have compilers for the different architectures. A fair comparison can

best be achieved by using a single front-end with several different back-ends; one for each architecture of

. interest. By using a single front-end, many of the differcnccs that exist between compilers for different

machines will bc climinatcd. However, construction of a new back-end for each architecture of interest

encounters two major problems:

2Section I.5 discwes reverse synthesis.



e It is extremely costly: each back-end can require scvcral man years of effort.

8 It distorts the study, bezausc  of the differences that are introduced  in the back-ends and the
relative abilities of the compiler writers.

As an alternative. we have employed a table-driven code generator. For gcncral background material on

iruronzu/cd  retargetablc  code gurerutioq  the reader is referred to a bibliography INotices 83a] and a survey and

critique of code generation models [Surveys 82, 831. In our code generation schcmc, the code generator is

organized as a parser and the machine description plays the role of a grammar. Predicates [Fischer 831  are

used to extend the range and scope of context free grammars to produce code generators.  Code generation is

performed by attribuledpursirlg  lpopl82,  Toplas 841.

Compilers for FOM are organized as follows.

l A front-end translates the programming language (e.g., Fortran, Pascal) to an intermediate
representation called U-code [82].3  This low-level intermediate form allows for representing more
details of program code.

a A global optimizer is used to perform a variety of machine-independent optimizations at the
Ucode-level rI-opt 831.  The optimizer is centralized at this level since it can see (and thus
optimize) more details.

o The reverse-synthesis phase translates U-code to an attributedprefix  hear  itztermcdiate
represerltation  called IR [Uwtr 81, W&E 84].4 IR has been specifically designed for retargetable
code generation.

o The instruction selection phase translates IR to FOM assembler code [pop1 821.  The code
generator is automatically derived from a code-generator-generator (CGG).

?
- Pragmatically, U-code was selected bccxlsc there is an optimizer available on U-code. Otherwise, front-ends may generate IR

directly.

4[Noticcs-83b] contains a bibliography on intermediate representations.



Pascal,Fortran

Following sections describe each of these phases in more detail.

Our effort parallels the PL.8  [82]  effort; first, the HLL is translated to the instruction set of a siinplc abstract ’

machine that is at a Solver /eve/ than the target CPU. Then, machine-independent optimization is performed

on this low-level intermediate  representation that is partially machine-dependent. Optimization is partitioned

into many independent operations that are independent of particular source-language constructs. The

intermediate program is translated to an equivalent program with reduced running time. Important

differcnccs between our approach and the PL.8 approach are:

e In the FL.8 compiler, register allocation drives code selection. All computation is performed in
registers and thcrc is heavy dependcncc  on a global register allocator. Furthcrmorc some
optimizations  may conflict with the register allocator (e.g., packing versus increased life times for
variables). On machines that do not have any registers (e.g., FOM) or on machines with a very
large number of registers, this compiler organization may be inappropriate. Thus, in our
organization register allocation does not drive code selection.

o We do not perform trap elimination and elimination of unnecessary branches, code straightening
and reassociation.

8 Our instruction selection algorithm is table-driven and employs a pattern-matching approach.
This technique is used to efficiently “compile back” a sequence of low-level intermediate
operations to single target machine operations. The PL.8 compiler does only a limited amount of
this optimization.



6

1 A Front-end and Global  Optimizer

The front-ends for Pascal (UPAS) and For&In (UFORT) translate  an extended version of standard Pascal

and Fortran- to U-Code. U-Code is largely machine-independent,  so the bulk of the front-ends are not

affected by the differing target machines. The only machine dependency in U-Code (ignoring register

allocation which is not relevant in the FOM code generators) is the semi-symbolic storage allocation. This

machine dependency is included for two reasons:

1. To allow the expression of addressing calculations that may be optimized by the optimizer.

2. To permit the straightforward expression of detailed storage allocation that may result from
storage packing. U-Code uses bit-addressing to express low-level storage allocation details;
without bit addressing, highly machine dependent packing and unpacking routines would be
required.

The storage allocation strategy for each target machine is encapsulated in a set of about twenty constants that

dictate the packed and unpacked storage sizes for all the primitive data types, the addressability guidclincs,

and the alignment restrictions. Generaring a front-end for a new target machine usually takes less than n day.

The optimization phase uses two key programs:

Q PMERGE  - an in-line procedure expander that does selective in-lining of procedures based on
time-space tradeoffs. Although this optimization can lower calling overhead, its major role is in
lengthening the code segments between procedure calls to increase the benefit to be obtained by
register allocation. The merger is run prior to the main optimizer.

o UOPT - a U-Code to U-Code global optimizer, described in detail in [U-opt 831.

The main optimizations performed by UOPT include:

1. A large set of local optimizations: common subexpression elimination, stack height reduction,
constant folding, etc.

2. Loop optimizations: strength reduction, induction variable elimination, forward and backward
code motion.

3. Global optimizations: constant propagation, common subcxpression elimination, dead store and
code removal.

4. Global rcgistcr  allocation: using priority based coloring.

. The U-Code representation is complete and no additional information is required by UOPT. It uses the

method of Partial Redundancy  Elimination as its main optimization technique. Using the entire optilmizer

with the mcrgcr, pcrformancc itnprovemcnts of 45-65 pcrccnt arc achicvablc. Much of this benefit comes

from optimizing array indexing and addressing calculations.



1.5 F?everse Synthesis

The motivation for this phase arose from observing that upti~tGzubiZi[~~  and retargefabilify  can be conflicting

requircmcnts  in an intelmediate  language. A ZOMW  (i.e., closer to machine) level intcrmcdiate  language can

represent  more details suitable for optimization; a higher lcvcl intermediate language car1 be targeted to a

wider range of machines. We found this to be true in the two intermediate languages, U-code and IR.

U-code is at a lower lcvcl, in that it is defined in terms of a hypothetical stack machine. As described in the

previous section, WC have front-ends and a sophisticated global optimizer for U-code. iI<, however, is closer

to a HLL than the machine level. IR is designed for automated retargctablc code generation, using attributed

parsing. WC decided to dcvclop Fortran and Pascal compilers for FOM by using the front-ends and optimizer

from the U-code system, and the table-driven code generator from IR. A translator from U-code to III was

thus required, and it.is this translation from a lower level to a higher level that we call reversc synlhesis.

U-code and IR

U-code and IR are similar, in that they are both designed to serve as intermediate languages. Both of them

are HLL-i/ldependerzt  (i.e., the same code generator can support intermediate code obtained from different

HLLs), as well as nzaclline-inc~e~)eildeizl  (the same front-end can gencratc intermediate code to be used by

different machines). Both U-code and IR have the notion of dala  rypes. They also share tile notion of storage

classes, which are used to describe the kind of memory a data object should belong to (e.g. constant, static,

dynamic, register). The fundamental differences between U-code and IR are:

o U-code data objects are defined by locations in the hypothetical U-machine’s memory areas,
whereas IR has variables as in a HLL. Address arithmetic is more explicit in U-code, and
therefore more optimizable. Also, it is easier in U-code to express those HLL features that are
semantically defined at the machine level (e.g. packin,,0 overlaying). Thus, we see that a lower
level intermediate  language, like U-code, can express a wider range of HLL features. On the
other’ hand, a higher level intermediate  language,  like IR. can support a wider range of machine
features. U-code is less targetable than IR because of its low lcvcl allocation of data objects in
memory. FOM requires that fixed-point and floatin?-point objects be allocated separately. This
separation is simple in IR, but impossible in U-code.-

8 TR’s syntax has been designed for table-driven code generation. One feature of IR’s syntax is its
~WJX rcprcscntation of expressions, which is well suited for bottom-up attributed parsing. U-
code, instead has a postJix  rcprcscntation, since an cxprcssion  is dcnotcd by a scqucncc of stack
operations.

o IR’s design for automated code generation makes it more extensible than U-code. Modifications
in IR can be easily implemented by modifying the formal specifications of its scanner and parser.
Further, attribu/es  provide flexibility in extending 11~.

5 If the target architecture’s storage model does not conform to the U-code model, the symbo! table is nccdcd to rcailocate data objects.



The T-~VP~SC  synthesis from U-code to IR is done by a single-pass, syntax-driven translator. Conventional

code generation from U-code to a machine level does not need to bc syntax-driven, as each U-code

instruction is merely expanded into a sequence of machine instructions (i.e., a l:n mapping). However, when

translating U-code to IR, we encounter n:l mappings, where a structured sequence of U-code instructions

maps into a single IR statement. The process of identifying such a sequence of U-code instructions, is exactly

that of parsing  the U-code program.

The major issues encounter-cd in this translation are:

l Mapping U-code data objects to IR variables - In general, it is impossible to derive the structure of
HLL variables from a U-code program. It can only be done in simple cases, like scalar variables.
Hence, we used a synzl>ol table to augment the input U-code program for the purpose of
translating to IR. The s>vnboZ  table is a well defined entity in the U-code system, as it is used by
the dcbuggcr. It contains information about the type and structure of HLL variables and their
mapping to U-code locations.

6 Identifying temporaries - Not all U-code objects arc defined in the symbol table. In particular,
temporaries are U-code data objects that do not correspond to any HLL variable. A U-code
temporary can be easily identified by checking if the U-code location has an entry in the symbol
tabZe (the symbol table would have to keep track of the railge  of locations, for non-scalar objects).
IR permits “on the fly” variable declarations, which can bc interspersed with IR statements,
provided there is no forward reference. Temporaries  can be declared in this fashion.6

o Conversion of address offsets - All U-code address arithmetic is done directly in bits. IR’s address
arithmetic is at a more abstract level; it uses ad&-ess-ofand  size-ofoperators, like those in the
programming language C. Thus, a U-code address is mapped to an address-ofoperation on the
corresponding IR variable. A U-code bit offset is mapped to a size-ofopcration on the base type
of the structure being accessed. The only problem occurs  for address temporaries, where the base
type is unknown. It can bc determined by using the base type of the address expression assigned
to the temporary.

e Generating prefix code - The limited problem of translating U-code’s post’x  expressions to TR’s
prefix expressions appears to have a simple solution - just read the postjix  expression backwards!
However, this only works if all the operators are commutative, since a backwards scan rcverseq the
order of operands. For that and many other reasons, it bccamc ncccssary for the translator to .
build an expression tree, and gcncratc prefix code by a prc-order traversal.

%Ve do not need any symbol table information for deciaring temporaries bccausc they are always scalar and their types xi: dcfincd in
tic U-code instructions.
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subroutine p(y,n)
common a,b,i,j
n = i
Y a=
return
end

The Fortran compiler front-end and reverse-synthesis phase produced the following IR. The symbol t

attaches an attribute to a variable. The order in which attributes of the same variable appear is unimportant.

hott that a COMMON is split into scparatc fixed-point and floating-point arrays.

:p T2yaramelers blockbegin

: ~$3 JImport
: ~$4 TImport
: n Iparameter Tpointcr  Tlwzit
: y Tparamctcr  tpointcr  T lunit

: = INDIRECTTinteger  + n * 0 sizelintegcr  TNDIRECTf integer + * sizeTin teger 0 ~$4

“the code generator will constant-fold the multiplications”

: = INDIRECTfreal + y * 0 sizeTrca1  INDIRECTtreal + * sizeTreal0 ~$3

blockend

: ~$4  fGloba1  finteger T2units
: ~$3 TGlobal ‘/real T2units



This section discusses in detail the reverse synthesis of 11~  from U-code.

2.1 Motivation

Existing buck-ends in the U-code system have been dcvcloped using UGEN[Ugcn  821,  a rctargetable code

generator. The effort in UGEN is to separate the machine-independent and machine dependent modules of a

code generator program. It is based on a structured programming approach, thus enabling diffcrcnt

buck-erzds to use the same machine-independent modules. The retargetability  of such a code generator arises

from the fact that only the machine-dependent modules need to be modified, to develop a code generator for

a new machine. The problem in UGEN lies in the assumptions it makes about the structure of a conventional

machine that fail miserably when considering unconventional architectures, like FOM. Therefore, even the

1?2aLnJzinE-i/ldel)c?zdeill  modules of UGEN will have to bc modified for such architectures. Instruction

selection, using UGEN’s technique, poses some problems too. Due to the interaction of all addressing modes

and op-codes, there exists a typical I,* problem. Thus, each individual instruction-selection case requires

some thought. Furthermore, it is hard to compile-back complex instructions. In effect, the entire code

generator has to be rewritten, as existing UGEN code generators cannot be rctargcted to DEJA such as FOM.

An alternative to the hand-coded approach in UGEN, is to use a table-driven code generator.7 CG

[Ganapathi 801  is one such implementation that uses attribute grammars and a machine-

independent/language-independent intermediate form, JR. Thus, a U-code to IR translator is needed to use

CG with existingfiorzl-ends  in the U-code system.

2.2 U-code vs. IR

Both U-code and IR arc designed to be machine-independent/language-independent interrncdiate  folms.

They differ greatly in syntactic appearance,, but that is not an issue. There also exist a few fLlndamenta1

differences between the two languages, that are discussed in this section.

7[Su*-vc~~  821 provides
generation algorithm.

an ovcrvicw of such au tomalic code gcncration that scpaxllc the machine description from the code
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2.2.1 U-machine memory vs. IR variables

U-code objects are defined in terms of a hypothetical “U-mtlchine” that has six different memory areas:

1. Read-only code store (also holds string constants).

2. Expression stack

3. Static storage (S memory)

4. Heap ’

5. Registers (R memory)

6. Memory stack (M memory)

U-code instructions operate only on these memory areas, and U-code objects are defined by their locations

in them. Since U-code provides no information about which memory locations correspond to different data

objects, the back-md  is forced to allocate each U-machine area indivisibly. This approach is restrictive, in that

data objects are forced to be allocated in the same order as they occur in a U-machine area, the order enforced

by the fr-ml-end.  However it is possible that the target machine may prefer/require a different sequencing of .

objects, e.g., FOM requires that fixed point and flcating point objects be allocated separately.

IR, instead has variabZes just as in a high-level language. The advantage in this approach is that TR makes

no commitment about the actual sequencing of its objects in memory areas. This storage-binding problem is

postponed to the back-ertd that is better equipped to handle it. In CG, the storage binding phase is driven by

a description of the target machine’s memory areas.

Each IR variable must be declared to belong to some storage cZ~7s.s.  Examples of IR storage classes  are:

Q TF - Function return value

o TG - Global

e TL - Local

8 TM - Actual parameter

0 TP - Formal parameter

o TT - Temporary

U-code also imposes a similar classification on its objects m - such a classification could bc deduced

by an analysis of the U-code program, as is done by code generators in the U-code system.
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2.2.2 Types in U-code and IR-
l

Both U-code and IR arc t~~~dlanguages. ‘I’his property implies that all objects, in both languages, must

have an associated data type. Also, both languages have a similar type classification. The difference lies in the

way types are declared.

U-code types are declared through U-code instructions that state the type of their operands. IR, instead,

uses variable declarations to specify variables’ types, as in a high-level langu‘.s‘2~. Thus, IR operators may be

pol~~morphic,  in that the same operator symbol can be used for operations on different types. Consider

addition as an example. In U-code, the ADD instruction has a field to identify it as fixed-point (Data type I, J

or L), or floating point (Data type Q or Ii). In IR, the + operator is used in both casts. Since the data type of

all IVariables are known from their declarations, the type of an operator is determined by the type of its

operands.

Justification for the IR approach consists of:

1. Using the same IR operator for operations on clifferent data types leads to smaller parse tables.
An alternate solution could be
to group all typed occurrences of an operator into a
single terminal symbol in what would be an abstractsymx of IR.
The type may be cinsidired an attribute of the operator that plays
no role in the parsing of IR, but is available to the code generation
routines.

2. Untyped operators allow for the possibility of “mixed mode” expressions like + real irzleger. This
allowance is con-Genient for the fronf-end,  since it can leave the t~ve coercion to CG that can
convert the integer to real.

Typecoercion could be a language-dependent issue that must
be resolved by the fionkcnd, rather than be incorporated in the intermediate
form. It is possible that some language may define an unconventional
gpe coercion, such as inleger:= real + inreger should
be performed by coercing the real to integer, rather than
the lnre,oer to real and then the sum to integer. This enforcement
would violate IR's automatic ojpecoercion convention.
To enforce the t-ILL convention, a convert operator is used in IR.
The attribute of the convert operator specifies the type to which the operand
is to be converted.
The IR for the example would then read:

: = Integer + ConvcrtTintcgcr Real Integer

3. Thcrc exist some machines (e.g., fagged architectures), where the same operator (opcodc) is used
for operations on different types, i.e., Add reaZ,itzteger  is valid. Typed operators in IR will not be
able to support such operations.

However, such architectures can also be accommodated in a typed
operator scheme, by including untyped as a possible type for an
operator.

Just as storage classes arc used in both U-code and IR to provide information for the storage-binding phase of
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code generation, types could be used to qualify operators and provide information for the it7sttucriotrbinding

(or code selccfion)  phase. If this qualification is docc in IR, it would still be necessary to retain types In

variable declarations, because type information will bc needed in the storage binding phase.

2.2.3 U-code stack operations vs. IR prefix expressions

U-code stack operations and IR prefix expressions are two divcrsc rcprcscntations of expressions  in an

intermediate form.

CT-code  stack operations essentially form a p0stfi.x  representation. The major advantage of a postfix

expression is that it can easily bc evaluated using a stack (which is exactly what the hypothetical U-machine

has). Consequently, it is simple to develop an interprctcr  for such an intermediate form, and indeed the

U-code system does have a U-code interpreter (UINT).

Some advantages of a prefix notation over a postfix  notation are outlined in [Uwtr Sl](pp.  14,15). The gist

of their argument is that an operatcr  establishes a certain context, in which its operands are to be interpreted.

It is thus more convenient for a code generator to process an intermediate form in which the operator

precedes its operands. A prefix notation has this property. This property is a definite advantage if a single

pass code generation scheme is being used (as in CG). Naturally, it is of no consequence if, say, the back-erld

builds expression trees and uses tree pattern matching techniques to generate code.

2.2.4 Address arithmetic in U-code and IR

The degree to which address arithmetic is permitted in an intermediate form is a good indication of how

much closer the intermediate form is to a low-level machine language, rather than a high-level language. If an

intermediate form permits general address arithmetic (e.g., indexing to access the field of a Pascal record),  it

has already made some assumptions about the target machine’s memory structure that may be too restrictive.

Consider floating point double word alignment as an example. Some machines may not enforce this

alignment, and may allow a floating point datum to be allocated at any location. Other machines that do

enforce this alignment require that it be allocated on a double-word boundary. This requirement obviously

affects address calculations, indicating that the same intermediate  form program will not bc targetable to these

two different kinds of machines.

However, if an intermediate form does not allow address arithmetic, it must possess some primitive data

structures that can irnplcmcnt high-level data structures in a machine-independent fashion. For example, IR

has one-dimensional arrays that can also implcmcnt  multi-dimensional arrays. The problem here is that the

intermediate form may now bccomc too I-ILL-dcpcndcnt.
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IR scores a major plus over U-code in address arithmetic due to a simple abstraction. The size of a

primitive data type in 11~  is cxpresscd  by the keyword “size”, attributed by the data type. e.g., sizeri specifics

the size of an integer. In U-code, all address arithmetic is done in bits. ‘L‘hc “machine independence” of

U-code arises from the fact that a-fiofzi-elrd can be trivially modified to generate U-code for a particular

machine. The modification is in a table of constants that gives the actual bit size of each primitive type. A

separate table is created for each possibic target machine. Thus, a particular U-code program can only be

translated to t;he target machine it was iutended  for, i.e., the target machine for which the~‘;.o17~-~~zd  used the

table of constants, while generating U-code.

2.2.5 Extensibility and Robustness

Perhaps the most important test of an intclmcdiatc  language is how well it is able to accommodate new

HLLs and new machines. The IR is bound to need modifications, because the new HLL/machine may have

some novel features that were unheard of when the IR was designed. The ease with which these

modifications can be implemented is a direct measure of the extensibility and robustness of the IR.

Herein lies the biggest difference between U-code and IR. Attributes make IR highly extensible; for

instance, new types and new storage classes can be easily incorporated by adding new attributes. Further, the

IR system uses table-dr-ivm  code generation techniques. An advantageous conscquencc olT this approach is

that tlx back-em&  scanner and parser are both table-driven. Hence, a modification in IR can be supported

by merely modifying the formal specifications of the scanner and parser, rather than modifying hand-written

code in the back-end.

U-code does not have attributes, but its structure is uniform enough to facilitate extensibility.

Implementing an extension is a different matter altogether, since the U-code system does not have table-

driven scanners and parsers. A modification is implcmentcd  by changing the U-code Reader and U-code

Writer programs, a task that is generally recognized as costly and cumbersome.

2.3 m:l, l:m, I:1 & m:n transformations

One method of comparing the expressive power of two programming languages, is to consider the

transformation of actions or data declarations from one language to another. The number of primitive

statements/instructions used to represent the same action/declaration  in the two languages, gives a

comparative measure of (he expressive power of the two languages. The language that uses fewer

statements/instructions  is more powerful. If we consider transformations from language A to language  I!( the

following cases arise:
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o m:l - A needs more than one-staiemcnt to express a construct that can be written in I3 using
exactly one statement.

e 1:m - The converse: one statement in A and many statements in B.

8 1:l - The construct can bc expressed by exactly one statement in both A and B.

8 m:n - The construct needs more than one statement in both languages.

Comparing U-code and IR in this respect, WC set that most constructs lead to m:l transformations, implying

that IR is more expressive than U-code.

2.4 Examples

In this section we provide a few examples to informally illustrate the issues involved in translating from

TJ-code to TR. Both the U-code and IR fragments presented have been generated by programs - the U-code

by the fioorzz-e&, and IR by the translator. In some cases they have been annotated and indented to improve

readability.

2.4.1 IR Declarations

As described in Section 2.2.1, IR has variables, whereas U-code does not. For practical purposes (described

in Section l.S), WC augment the input U-code program by a s~~lbol table that can be optionally generated by

all the frorztwrds  in the U-code system. The symbol table format is described in [U-code 821.  This use makes

our translator strictly a “(U-code + Symbol Table) to IR translator”, rather than just a “U-code to IR

translator”. In fact, there arc no U-code instructions that correspond to IR’s variable declarations except for

PSTR that defines a formal parameter.

Using the symbol table leads to TR variables having the same names as the corresponding HLL variables.

This property servesas a very helpful development/debugging aid in the design of the translator. An

example of Fortran variable declarations follows:

Fortran Declarations:

INTEGER A, B(lO)
REAL X(5),  Y

U-code symbol table:

5% $h4i2INB 1 1
V $ A S 1 128 <1 J>
V $13 S 1 160
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<4 A 32 <5 U 110 <l>Xl>>
v $ x s20
<4 A 32 <5 U 15 <1>><2 ii> >
v $ J S 2 160 <2>
#

Gcncrnted TR dcclaratiol!s (comments written in I’s):

: A TLTiTl  ” ‘/I = Local, ti = integer”
: B TLfiflO ” TlO = size ”
: X TLTrT5
: Y TLTrTl

Here is another example with Pascal records:

Pascal declaration:

VAR
x: record

i: integer;
r: real;
z: record

b: boolean;
a:array[1..5] of integer

end
end ;

U-code svmbol table:

5% PTEST3 11
V $ X S 12784 <4 D 288

! I 0 32 <5 J>
! R 32 32 <6 R>
! Z 64 224 <7 D 224
! B 0 32 <8 B>
! A 64 160 <9 A 32 <lO U 15 <5>X5>>
.>
.>
#

Generated IR declarations’:

:tl F$lliTl ” F$l = i ”
:Tl F$2frTl ” F$2 = r ”

8.Ihc original field name’.;  have bcw rcplaccd by translator gcncratcd lames  of the form F$n (intcgcr 11). This rcpiaccment was done
bccausc the current version of IK rcquircs t!!at zll field names be distinct globa!ly.



:T2 FS4fbl‘l
:T2 F$5Ti T5
:Tl F$3 TL Tscc Tl
:TO X TC Tree Tl

” F$4 1 b “
” F$5 = a ”
” F$3 = z ”
” Tree = record ”
“The :Tn (intcgcr n) indicates the nesting depth of a record field”

2.4.2 Expressions

Given below are the Fortran (infix), U-code (postfix) and JR (prefix) rcprescntations  of the same

expression:

Fortran sutcmcnt:

X =a+b-c*d/(e+f)

U-code symbol table:

% $IMAINB 11
V$A S 11224 <l R>
V $ B S 11260 <l>
V $6 S 11296<1>
V $ D S 1 1332 <l>
V $ E S 11368 <l>
V $ F s 11404 <l>
V$X s 11512 <l>
#

U-code instructions:

COMM x =  a +  b-c*d/(e+f)
LOD R S 11224 36
LOD R S 11260 36
ADD R
LOD R S 11296 36
LOD R S 11332 36
MPY R
LOD R S 11368 36
LOD R S 1 1404 36
ADD R
DIV R
SUB R
STR R S 11512 36

Generated IR code:

:=X- +  AB/ * C D +  E F
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2.4.3 Procedure Call

The major difference between a U-code procedure call and an IR procedure call is syntactic. Semantically,

both representations contain the same infknation.

Fortran statcmcnt:

C P IS A DYADJC PROCEDURE, & F IS A MONADIC FUNCTION
CALL P( 1, F(2) )

U-code instr-ucticns:

COMM CALL P( 1, F(2) )
MST 2
LDC J321
STR J S 1 1088 32 ; store in a temporary
LDA S 1 1088 32 1088 ; address of formal parameter
PAR A M 0 0 32

; start of function call F(2)
MST 2
LDC J322
S’I’R J S 11120 32
LDA S 1 1120 32 1120
PAR AM0032
CUP JOFll

STR J S 1 1152 32 ; store result in a temporary
LDh S 1 1152 32 1152 ; address of formal parameter
PAR AM03232
CUP POP20

Generated IR code:

:T$2TTTifl ” declare T$2 as a temporary ‘I9
:T$3fTfifl ” declare T$3 as a temporary ”
:T$4TTTiTl ” declare T$4 as a temporary ”

: =  T$21 ” assign 1 to T$2  ”
:= T$32 ” assign 2 to T$3 ”
: =  T$4 ” assign F(2) to T$4 ”

:FfFTiTl
CALL FTPl ” call function F ”
:P$2TMTpTl ” TM = actual parameter-”
* - P$2 # T$3.- ” # T$3 = address of T$3 ”

CALL PTP2 ” call subroutine P ”
:P$3TMfpfl

9.ficse declarations will actually occur “on the fly”, i.e., just before the temporary is needed, e.g., : = :T$2TTTiTl T$2 1
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: = I’$3 # ‘I-$2 ” 1st parameter = -address of T$2 ”
:I’$4lhlTpTl

* - P$4 # T$4. - ” 2nd parameter  = address ofT$4 ”

2.4.4 Address Arithmetic

Address arithmetic is simiiar to ordinary arithmetic, except for the LDA (Load Address) instruction and

A (Address) data type in U-code, and the IR operators, # (address of) and @ (&reference).  e.g.,

Fortran statemeat:

C X IS AN ARRAY DECLARED AS “INTEGER X(10)”
X(7) = 3

U-code instructions:

COMM X(7) = 3
LDA S 1144 360 144
LDC J367
IXA J 36
DEC Al
LDC J363
JSTR J 0 36

Generated IR code”:

: =  @?Ti+ ” add the offset due to the ISTR ”
” subtract due to the DEC ”

+  X  *7*sizeTil “thcIXA”
* sizeTi 1

* 0 si<eTi
3 ” RHS = 3”

2.4.5 Pascal VAR parameter declaration

Pascal Statements:

procedure  swap (var x, y : integer);

var t : integer;
begin

t x;:=
x y;:=

‘“It should bc mentioned  that CG slwaqs does constant folding, so that the cntirc esprcssion will be reduced io a constant address
during code gcncration.
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. -Y t. -
end;

U-code svmbol table:

%I SWAP 3 2
1’ $ T M 3 64 <I. J>
VTXM30<2J>
1’ T Y M 3 32 <2>
#

U-code instructions:

SWAPENT P23200
PSTR A M 3 32 32
PSTR A M 3 0 32
COMM begin t : = x;
LOD AM3032
ILOD J 0 32
STR J M 3 64 32
COMM x:= y;
LOD A M 3 32 32
ILOD J 0 32
LOD A M 3 0 32
SWP AJ
ISTR J 0 32
C O M M  y : = t
LOD JM36432
LOD AM33232
SWP A J
IS’I‘R J 0 32
COM M end;
RET
DEF M 96
END SWAP

Generated TR code:

:SWAP TP2
i

: x rP1P-v
: Y tPTpTl
. T TLTiTl.

: =  T@Ti  +  *sizcTiOX
: = @Ti + X * 0 sizeTi @Ti + * sizeri 0 Y
: = @ri + Y * 0 sizeTi T

3
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2.4.6 Pascal Case Siatement

type 0pc1;\t0r = (plusl, triple, square);

function f(op:cperator;  x:intcgcr):integer;
begin

case op of
plusl:  f : = x + 1 ;
triple: f : = 3*x ;
square: f: = x*x

end
end ;

U-code instructions:

FEKr J24210
PSTR J M 4 32 32
PSTR L M 4 0 32
COMM case op of
LOD LkI4032
STR LM49632
UJP L2
L3LAB 0
COMM plusl: f : = x + 1 ;
LOD J M 4 32 32
LDC L321
CVT J L
ADD J
STR J M 4 64 32
UJP Ll
L4 LAB 0
COMM triple: f : = 3*x ;
LOC XL80
LDC L323
LOP, J M 4 3 2 3 2  .
CVT2 J L
MPY J
STR J M 4 64 32
UJP Ll
L5 LAB 0
COMM square: f: = x*x
LOC 1190

. LOD 3 M 4 32 32
LOD J M 4 32 32
MPY J
STR JM46432
UJP Ll
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L6 LAB 0
MST 2
LDC I_ 32 1
PAR L M 0 0 32
LDc I,32 16
PAR L M 0 32 32
CUP P 0 $CASEERR  2 0
UJP Ll

L7 CLAB 3
UJP L3
UJP L4
UJP L5

1~2 LAB 0
LOD L M 4 96 32
XJP LL7L602

1~1 LAB 0
PLOD J M 4 64 32
RET
DEF M 128
END F

Gem-atcd IR code:

:F TFjirl TP2
c

: OP TPTirl
: X TPTiTl

: = :T$lTTTiTl  T$l OP
got0 L$2
L$3
: = :T$2TTTiTl  T$2 + X %Ti 1
got0 L$l
I,$4 .
- -  T$2
got0 L$l

* %Ti 3 X “% = convert operator”

L$5
: =  T$2* X X
got0 L$l
L$6

” : $CASEERRTFfO  CALL $CASEERRTIJ2 :P$?TM~iTl  : = P$2 1
:P$3TMti’rl : = I)$3 16”

got0 L$l
L$7
got0 L$3
got0 L$4
got0 I,$5
I$2
1 < ‘I‘$1 0 > l‘$l 2 I-$6

goto + L$7 * sizcTgoto  - T$l 0
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” sizc+[goto  is used to represent the Cc’of a GO’I’O  instruction.
For example, sizeTgoto  equals 3 in FOM because of delayed branches. ”
L$l
: = F n2

2.5 Translation details

Since this translation is performed in a syntax-directed fashion, the most appropriate way to specify the

translation is through the context-free grammar used. The U-code grammar used is given below. Terminals

are distinguished by surrounding quotes. A terminal name in capital leticrs denotes the corresponding

U-code instruction: a lower case name indicates a terminal that stands for more than one U-code instruction.

The semantic routine called performs the appropriate action depending on which instruction was actually

encountered.  An empty right-hand-side is denoted by e.
program -> module

module -> 'BGN' procedurelist singlelist 'STP'

singlelist -> 'single' singlelist
-> E

procedurelist

procedure

PSTRlist

procedure procedurelist

-> 'ENT' PSTRlist operationlist 'END'

->
->

operationlist
->

'PSTR' PSTRlist ;

operation operationlist
&

operation -> expression 'POPOP'
-> expression expression 'ISTR'
-> 'MST' parameterlist 'CUP'
-> 'single'

parameterlist ->

parameter
->

parameter parameterl?st

expression 'PAR'
operation expression 'PAR'

expression -> expression expression 'binaryop'
-> expression 'unaryop'
-> 'pusllop'
-> ‘MST' parameterlist 'CUF'
-> expression operation

The last production
expression -> expression operation

is necessary because it is possible in U-code for an action to occur cvcn if the cxprcssion  stack is not empty,

e.g., the SIX (Store) instruction stores and pops the top entry in the cxprMon stack, not ncccssarily leaving

it empty.
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The following productions of this grammar call semantic routines:

pxxedure  -> ‘ENT PSTRIist  operatiordist  ‘END’

This production has two associated actions:

8 shift ‘03’ - Since ‘EN?” only occurs in this production, it is safe to call the procedure-cntrl
routine whcncvcr the parser shifts over ‘ENT’. The routine called is ENT-s&f1  in Module
ACI’ION.  ENT- s/z13  essentially does two things:

1. Calls routine Gezyrc~ctabl~ in Module SYh4TAB  to process the declarations for the current
U-code procedure. Gelproctable  has to decide if any outer declarations  should bc printed.
It also takes care that parameters arc printed in the correct order by using the PS’I‘R
- Pseudo-SToRe - U-code instruction. After collecting all the infonnation it needs, it calls
routine Prirztprucdecls  in module IRWRIT to write out the IR procedure hcadcr, parameter
declarations and variable declarations.

2. Pushes the ENT instruction on the semantic stack for use by subsequent PLOD and RET
instructions that effect function/procedure returns.

o reduce - This production is reduced at the end of a U-code procedure. Routine md-proc  in
h4odulc ACTION is called to write out the closing ) for the IR proccdurc. A label is also written
just before the > ; all proccdurc RETURNS are simulated by a jump to this label, since IR’docs
not have a RETURN statement. If the procedure is the main program, a STOP statement is
generated. Finally, this routine pops the ENT semantic record pushed by ENT- shifi.

ape ration -> expression ‘popop’

retluce - Procedure popop in Module ACTION is called when this production is rcduccd. The production

corresponds to an IR s+Atement  that must be printed. Shifting over the nonterminal expression guarantees that

the top of the semantic stack contains the recognized expression in some internal form (an expression tree, to

be precise). The terminal ‘popop’ could be one of four U-code instructions:

Q STR - STR corresponds to an assignment statement in IR that should be printed out in an
appropriate prefix fonnat. Procedure Prirlfexpr  in h4odule ACTION does a pre-order traversal of
the expression tree, to generate a prefix expression. It is possible that the destination of the STR is
a temporary, in which case a corresponding new IR variable has to bc declared.

c, HP, T,JP  - A conditional branch operation also pops an expression from the U-code expression
stack. The boolean cxprcssion is printed in prefix form, followed by a label, to obtain a
conditional branch statement in IR.

e POP - This instruction is a rarely used U-code instruction that just pops an expression from the
U-code stack. It is effectively a no-op, and no corresponding IR code is generated.

g XJP - The XJP instruction is used to implement the Pascal CASE statement by a jump table. The
cxprcssion on the stack is the selection cxyrcssion, and the XJP instruction has the addrcsscs of
the jump table and the OTE33<S location.

The last thing done by popop is to pop the expression from the top of the semantic stack.
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operaiiion -> expression expression ‘LISTR’

The ISTR instruction has 3 different syntax from STR, because it also needs the address of the destination,

besides the sour-cc expression.  Procedure irrdiwct  - store in Module ACTiON  is called to gcncratc the

corresponding TR statement,  taking crtre of the appropriate destination address arithmetic. itdirect-store

finally pops the two expression cntrics off the semantic stack.

operation -> ‘FZST’ parameterlist ‘CUP’

This production has both a shifi and a educe action associated with it.

o shift ‘MST’ - the MST instruction is merely pushed on the semantic stack, to be used when the
production is reduced.

o reduce - Routine proc -call in Module ACTION is called to generate this procedure call. All the
parameters are available on the top of the semantic stack, terminated by the MS’I’ instruction. The
procedure call is written out in IR, with appropriate declaration of all “parameter temporaries”.
Finally, this routine must pop all the 2% + 1 entries on top of the semantic stack, where n equals
the number of pzramctcrs in a procedure call.

operation -> ‘single’

This production is used for each {J-code instruction that translates to an entire IR statemcni by itself. In

most cases, a sequence of U-code instruction maps into one iR statement. Procedure single--  sf~ in Module

ACTION is called to print out the IR statement in each c3sc.  There are four such U-code instructions :

1. CLAB, LAB - Print out the IR label name “L$n”, where n is the integer value of the U-code label.

2. PLOD - This pseudo-load U-code instruction indicates a tinction return value, and a
corresponding assignment to the fimction name, available from the ENT instruction on top of the
semantic stack, is generated in the IR program.

3. RET - A procedure/function return has to bc emulated in IR, by a jump to the end of the
procedure/function, where a special label is dcfincd.

4. UJP - An unconditional jump translates to a goto in IR.

5. SDEF - If the Static Memory Area being defined has a number > 2, it represents a Fortran
COMMON, and a corresponding  IR declaration must bc generated.

parameter -> expression ‘PAR’

The semantic action is simple in this case. The PAR instruction is pushed 011  top of the expression, in the

semantic stack. In this way, the parameter  list is built as a sequence of stack entries, ending at the top of the

stack.
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pa tarnete  r -> operation expression ‘PAR’

Somctimcs an operation (most commonly an assignment to a temporary) may occur before a parameter

expression is constructed. This production allows for such an operation. The operation itself will lcave the

stack as it found it, so the semantic action of pushing the PAR instruction, is the same in this case as the one

above.

expression -> expression expression ‘bimryop’

Procedure binayop  in Module ACTION is called when this production is reduced. It constructs a

composite expression tree from the two expressions on top of the semantic stack and the given binary

operator. It pops the two expressions, and pushes the constructed cxprcssion  tree on the semantic stack. The

following binary operators arc implemented :

The INST (Indirect non-destrT!ctive store) instruction is also treated as a ‘binaryop’ syntactically. Semantic

rourine indirect-store in h4odule ACTION handles this cast. It generates an assignment  of the expression on

top of the semantic stack, to the location obtained by adding a given offset to the address expression that is

second from the top. Since this is a “non-destructive” store, the source expression  is pushed bdck canto the

semantic stack, after the top two entries are popped.

expression -> expression ‘unaryop’

Procedure unayop  in Module ACTION handles this production. Again, a composite expression tree is

created that replaces the given sub-expression on top of the stack. The following unary operators are

implemented :
CVT, CVT2, DEC, ILOD, INC. NEG, NOT, ODD, RND, SQR, SWP.

CVT2 is unusual, in that it operates  on the expression second from top of the semantic stack. So there must be

such an expression, even though the syntax does not require it. Similarly SWP exchanges the two expressions

on top of the semantic stack.

As with INST in binaryop, the NSTR (Non-destructive store) instruction is treated like a ‘unaryop’ for

syntactic purposes.  It generates an assignment  statcmcnt, just as was done for a STR. Only, it does not pop the

expression from the top of the semantic stack, since it is “non-destructive”.

expression -> ‘pushop’

Procedure pushop  in Module ACTION is called to create a single node expression  from the given operand,

and to push it on the semantic stack.
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expression -> ‘k4S T’ pwaSmeterlist  ‘CUF’

This production is used to handle function calls. CUF is not a U-code instruction; CUP is used in U-code

for both procedures and functions. However ‘CUP’ is replaced by the terminal ‘CUF,  if the CUP instruction

turns out to be a call to a function. Semantic routine Allc- caZ2 in Module ACTION is called to process this

function call. Unlike, a procedure call, a function call cannot bc printed  immediately, as it is part of an

expression  tree. So the sequence of semantic stack entries from MST to the top, all have to be copied into

some other data structure, since they must be popped from the semantic stack. This action is essentially what

futw - call does. Finally, it pushes an entry for the filnction call, as a single node expression tree, on top of the

semantic stack.
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3.1 Introduction

In this section we discuss the issue of uyet-nrld  birding  i.e., mapping variables, non-immediate constants,

labels and results of expression  evaluation on to storage locations in the target  machine. A source language

variable is cxprcssed  as an operand and it is declared with several attributes in IR [W&E 841.  Attribufes  arc

used in IR to provide the flexibility needed to map a variety of front-ends. Furthcrmorc, they are essential for

binding variables to locations in the target architccturc. They need to be converted to machine addresses

before instructions arc selected. Some of these attributes such as class and data type are essential for storage

binding. Others  such as register prefcrencc arc useful for efficierzt  storage binding. For example, local

variables and parameters may be automatically caclzed by the target hardware. Consider the following Pascal

source statement:

x : array[l..lO]  of record
i: integer;
r: real

end;

The corresponding IR is:

:Tl i TLocal Tintcger Tl
:Tl r TLocal  Treal Tl

:TO x TLocal Trecord TlO

The address of record x[lO] is:

+x*- 10 1 + sizcTintcgcr size/real”’

To access the field x[lO].r, the IR code is:

INDEXTreal + x * - 10 1 + sizct in teger sizetreal r

Variables may be bound to various storage classes  in the target architecture. Examples of such classes are

main memory, general purpose registers, accumulators, index registers, base registers, condition code register,

stack, operand qucuc and cache. The storage-binding phase reads in target-machine  locations, architecture

properties and usability restrictions. Examples of these data are memory range number of registers, hardware

stack, frame, direction of frame growth, positive and ncgativc offsets,  data types and their alignment

restrictions, addressability. Sometimes,  there are restrictions on binding variables to certain classes of storage.

For example,  variables whose addresses are needed in computation should not be allocated to ALAT

11 sizcT ficldname is also permitted.
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locations in FOM. They riced to be-allocated in main memory. Similarly, actual parameters of procedures

cannot be allocated on the FOM stack or queue. Furthermore, because of its data type, a variable may never

be present in a particular storage class. Most of these storage classes arc allocatable, some arc ~mporarily

allocatable whereas others such as condition code register and operand queue arc no{ allocatable. Usually,

members of this latter category arc cffccts of special fcaturcs used to implcmcnt  the target hardware, such as

pipelining and operand prefctch. Such storage classes arc allocated as side eJ%cts  and may be exploited as

temporaries by the instruction selection phase.

Within the category of allocatablc storage classes, a number of different data types may be supported. Each

data type specifics an operand length that is supported by at least one machine instruction. Due to

architectural restrictions, not all data types may be supported in all storage classes. For example,  not all data

types may be representable in a regisfer  storage class on most machines. Furthermore, the choice of

display/environment set up may restrict accesses and consequently, the choice of a particular storage class.

For example, up-level addressing may not use displajrs.

In the following text we discuss storage binding as the following issues:

Q Storage Description Tables that specs,,‘f\~ machine-dependent attributes such as storage class and
data type. This specification describes all available storage including overlap of groups of
locations that are otherwise logically distinct, alignment and addressability restrictions.

Q Storage Mapping Tables that facilitate the mapping of IR attributes to machine-dcpcndent
attributes.

o Expansion of \~i~ri;\blcs into access primitives. Usually, the target architecture does not provide
support for up-lcvcl addressing. The display/environment or static chain is a facility that is
provided to access an object. An IR variable is cxpandcd in terms of these access primitives to
simplif) mapping this facility to the addressing modes provided by the target architccturc.
However, if the target architecture does provide such a facility then expansion is not neccssary12  .

e Expansion of certain IR operators. The expansion phase also expands  Qperators  with non-
mappable attributes in order to interface well with the instruction selection phase. Array address
calculations that are implicit, i.e., auto-scaling of array indices as in INDFXTs are exposed if the
target architecture does not provide a facility for auto-scaling, e.g., s # 1, 2 on FOM.

Izq., ULoadI mode, UpEp, VariableId in FOM
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3.2 Attributes for storage binding

III variables (names, attributes) must be convcrtcd to machine addzsse.s before instructions are selected.

An IR clcrss will map to a machine storage class, e.g., memory, stack, rcgistcrs and cache. An IR data type will

map to a machine data type,  e.g., byte, word, long and real. The attribute do?nains  IRCLASS and IRTYPE

can have the following values. These values are decided, in principle, by the I-ILL that is being compiled.

Attribute Domain Attribute Value

IRCLASS Global
Static
Local
Formal Parameter
Actual Parameter binding location
Function return location
Label
Constant
Compiler Generated  Temporary name
Address of variable necessary
Import of a non-local variable or deferred sizeI

IRTYPE Boolean
Character
Integer
Real
Pointer

An operand (datum) on the target machine will be addressable by the following triple; components of this

triple are attributes:
<class, offset/name, access>

. The class attribute is the operational storage segment such as main memory, stack or register. The offset

domain is the range of the storage class also called the address space of the storage segment. It is calculated as
start-address . . cardinality

of the storage class. The access domain is a machine-addressing mode, which is initially a grammar

production and eventua!ly an attribute after parsing through the addressing-mode production. The

operational length of a datum is given by its data type or the address diffcrcncc between two successive

elements in the corresponding storage class. The machine-dependent attributes are storage class, i.e.,

operational storage segment and machine data type, i.e., operand length. They are defined as follows:

CLASS: machine-specific type of physical storage location; e.g.,

13e.g., Fortran COMMON
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6 main memory

Q general purpose registers

o stack for procedure-level or block-level allocation

These locations arc allocatablc for maximum stop e and lifetimes of variables. Other locations arc tcnrporarily

allocatable during volatile allocation. Such volatile locations need a temporar~~  ruaungcr-  to track contents to

ensure lifetimes of variables. Examples of such classes are as follows:

o stack for expression evaluation

0 tcmporarics in main memory

0 temporaries in registers

These locations are allocated and managed by the Temporary rnalzager  during code generation. Some

locations are not allocatable by the code generator. The hardware implicitly allocates them usually m-the-fly.

Examples of such classes are:

l condition code bits

cp cache or high speed register buffer

Q Instruction-stream constant, i.e., immediate operar-ld.

The following classes are examples from FOM and IBM-3701

FOM
Memory
Integerstack
Realstack
Integerqueue
Rcalqueue
IntegcrConvertqueue
RealConvertqueue
IntegerALAT (ALATI)
RcalALAT (ALATR)
Instructioilstream

Memory
IBM-370

Register
Instructionstream

These classes arc assigned to variables and remembered via an attribute. The environment attribtlte of a

variable in IR is used to map the variable to a machine storage class. This class attribute must bc set up by the

storage-binding phase before instruction selection. Otherwise, the instruction selection phase may fail to

sclcct an instruction and thus, block code generation.

DATA TYPE: the length in bits required  for the variable to be an operand. Using language  dcpcndent
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da&j type of a variable that appears as an attribute in IR, the variable is rnappcd to a machine specific data

type. Formally, data types are groups of bits that can participate as operands to instructions; e.g.,

FOM: integer, logical. boolean, real
IBM-370: Halfword, Word, Short Float, Long Float, Decimal.

-4n allocatable storage class may not ncccssarily support all machine dat;l types. This architectural non-

orthogonality must be taken car-c of during storage allocation/binding and during instruction sclcction 14 .

3.3 Storage-5 escriptisn tables

The Storage description for the target architecture contains the following items:

e class and range of class

e data type

0 allocarability

0 addressabilit~~,  i.e., address obtainability.

o alignment factor. Usually, on many machines, specific addresses need alignment restrictions such
as, byte alignment, word alignment and long-word alignment. In DELs, such as FOM, variables
arc represented by their string names and not by offsets.  Conscqucntly, such alignment
restrictions are not needed at the code-generator level?

0 overluppilrg  cells or sets of non-overlapping storage locations

The storage tables are enumerated  below:

1. StartOffset: StorageClass -+ O f f s e t

2. BascRcgister: S toragc Class -+ R e g i s t e r

3. Datatype: IR type -+ type (Boolean,Integer,Real  in FOM)

4. Bytes: machine data type -+ number of bytes

5. Alignment: machine data type --) alignment number

6. StoragcResidence: IR class X machine data type -+ storage class

e.g.,
Global X Integer --) M e m o r y

14prcdicatcs [Fischer 831 handle such rcstrictiorl during instruction selection

15i.e ., p-c-assembler level
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Local X Real + AI,ATR
Formal Parameter X Reai --+ Memory

7. Allocation:

e.g.,

Storage class X IR class + allocated result (ASM-code, Address)

Memory X Global -+ name: Block <six>
ALATI X Local -+ I,ocalI name, <initialvalue>
ALA?‘1  X Global + IGlobal name, <initialvalue>

3.4 Aliocating space

Allocation is essentially determination  of storage class and offset on the target  machine or an assembler

name if assembler pseudo-ops are used to allocate space. Attributes in IR and the storage-description tables

are used to implement this mapping of variables to target locations. Space is allocated by mapping class and

data-type attributes in IR to machine attributes: storage class and target data type. The class/environment

attribute to an IR variable describes whether the variable is local, global, up-level or a parameter.

Considering allocatability, e.g., architectural restrictions such as parameters must be irr mairl memory, restricted

register use, the variable is allocated to a particular storage class such as main memory, general purpose

register or stack location. For example, FOM has the following restrictions: array element areas, common

and equivalence types must be in main memory; base of the array must be in ALATI; labels and certain

constants that cannot be part of the I-stream for immediate access.

The elementary data type attribute of a variable and the how many attribute, e.g., number of array elements,

present in JR is used to determine the start address of the variable considering the minimum addressable

unit/length, i.e., bit/byte/word addressability. The variable or the variable element16 is assigned a machine-

specific data type using a data-type mapping table supplied by the describer. If an architecture supports a

contiguous allocatable segment of space l7 then records and arrays in IR may be allocated contiguous blocks

of storage. Assembler primitives may also be used to set aside these blocks of storage. Alignment restrictions

are also considered. Machine-specific offsets, base-register/location-name/location counter are assigned and

entcrcd into the code generator’s  symbol table or assembler  primitives arc used to allocate storage.

Overlapping cclis’* arc automatically updated as status busy.

16.111  the case of an array element

17 e.g., iAPX-432 objects

18 e.g., register pairing and sharing
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delerttzhe-  ttlacllirte  - class:
. obtain IR attribute of variable - local, global. outer, parameter
. consider allocatability  and architccitrrc  restrictions from machine-description tables,

e.g., parameters must be in main memory
. rcgistcr prcfcrence - thcsc attributes come from I-ILL front-end
. allocate selected class such as main mcmoqI, general purpose register or stack

determine- ttmclzinc-  datatype:
. obtain III attribute - integer, real, boolean
. use “how many” attribute in IR, e.g., array elements
. assign a machine specific data type for variable element

using data-type mapping table from machine-description tables.

allocate; obtain  name or offsel,class:
INPUT:

When this procedure is called, the following attributes have already
been determined: storage class, irclass, name, size/number-of-bytes,
alignment and possibly initialized value or name for this variable.

OUTPUT:
aillocale  either emits asscmblcr  storage primitives

or calculates an offset in the variable’s storage class.

. if assembler primitives exist then
use symbolic names
emit assembler primitives for storage allocation
return;

. calculate the effect of alignment restrictions (offset + offset modulus alignment)

. determine addressability
<start address, bit/byte/word addrcssability, minimum addressable unit/length>

. dctcrmine  range = start address . . max- allocatablc address of class

. determine address-difference
overlapping cells will be automatically updated as status busy,
e.g., register pairing and sharing

. assign offsets, base register/name/location - counter and enter into symbol table.

3.5 Operand access

All attribute information regarding a variable is kept in the code-generator’s symbol table. Thus, attributes

of variables in IR need bc dcclarcd only once. This symbol table supports block structure. For up-level

addressing, access is specified in terms of itzdexing  and itzdirecliotl  primitives. The run-time environment  is

set up using a display, a static-chain mechanism or an environment vector. Correspondingly, a frame pointer,

a display pointer or an environment pointer is selected from among the machine locations. Using this

environment and access mechanism, any reference to an IR variable is expatlded  using itrdirecriotl  and

irldcxitzg  primitives. lR names and attributes arc expanded to machine addresses using multiple lcvcls of

indirection and indexing. Thus, opportunities for optimization in address  arithmetic arc exposed prior to
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insn-uction selection. Examples of such optimizations arc the cw of hardware indexing to subsume (i.e.,

compile-back) additions and scaled multiplications, c.f., 1’AX-11, l\lotorola-!VlC68000 architectures. Indexing

can be defined in terms of indirection. The scaling factor is an attribute to thcsc operators.

INDEXTs vara varb = IXDIR  ECUs  + vara * varb sizers

thus, when sizers = 1; iAW?J’T s vara varb = INDIR  ECns  + vara varb

and when varb = 0, indirection can be visualized as a special case of indexing;

IAIDEXT  s vara 0 = IND IR ECTs  vara

Consider the following example using a static chain environment in the FOM architecture:

: varA Tup-1~x1 T2levelsl’ J’intcger  ‘[lunit “a static-chain example”

To achieve up-level addressing  in FOM, an AL&AT1 entry is used to store the environment pointer (stack

frame location) of the parent procedure  that must have been previously invoked. The variable itself is

expanded into a chain of pointers:

INDEX varA INDIRECT INDIRECT framcpointcrTALAT1

This expanded string may be mapped to any one of the following possibilities:

e a single variable with its auto-indirect bit ON

o use of the variable as an address and load its contents

6 load and store with the EP (environment pointer) of the referenced procedure 20

If the scaling factor s is not directly mappable to the target architecture’s scaling factor then

INDEXTs A I is expanded to INDIRECTTs + A * I sizeTs

19 JR requires that tttc number of levels be explicitly specified. This information can be deduced from its symbol table but then
dynamic binding cannot bc supported.

2oas suggested in [Urantley 821
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Import of variables _

If a variable is not declared in the current block, it must be imported. Examples of such casts are global

variables that are declared outside the current  block, and forward rcfcrcnccs of variables declared outside the

current block.21 In such cases, the variable must be dcclarcd with an attribute f1 before its first use in the

current block. This process must be repeated in every procedure the variable is used in a sitnilar fashion. In

niost cases,

“: var TImport” is equivalent to ‘I: \rar TLocal  Tpointcr  7 1 initializcdZ2  with the variable’s address”.

3.6 Address Obtainability

IR provides two operators  for address arithmetic. These operators are # (address of) and sizert, where t is

any type including record names and component field names. Array indexing is performed by arithmetic

using these operators. An array is guaranteed to be allocated as a contiguous block, so this kind of relative

address arithmetic is always valid.

Sometimes, the necessity for obtaining the address of a variable occurs or&e-f2-y  during instruction-

selection. For example, such necessities arise when passing arguments to functions by address in Fortran and

when passing VAR parameters in Pascal. Some storage locations on the target machine may not be address-

obtainable. Examples of these classes are general-purpose registers on most machines and the ALAT in

FOM.23  There does not exist an addressing mode24 or a load-address instruction25 that can provide the

address of the variable resident in this storage class. When an address has to be copied using the Bind

instruction in FOM, the source ALAT location must be initialized with the corresponding address.  This copy

is impossible if the address being passed is that of an ALAT object. Consequently, any object whose address

is required cannot be allocated on the ALAT. It must be allocated in memory 26 and then an ALAT entry

should be initialized with its address. In order to ensure this allocation, the IR provides an attribute TA that

must occur with a variable whose address would be needed. before the first use of the variable in the current

scope.

21 e.g., Fortran Common. Forward references in Pascal are not permissible on other machines.

22I’he code generator will emit a Local1 var, varSBa  for every such procedure.

23 ALA?‘ is not address-obtainable bccausc of hardware implementation issues.

. .
24e.g., immediate address on the PDP-11

25e.g., LA on the IBM-370 and MOVA(bwlfqt1) on the VAX-11

26 c.g., using the block declaration
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Even if the address of a variable is available in the storage location in which the variable is resident, a

problem may arise if this storage location cannot participate as an operand to the operating instr.uction.27  For

example, consider scalar VAR parameters of type real. FOM parameters are implemented with the BindR

instruction that copies ALATR locations. If the caller’s ALATR location contains an address, then the single

word address is copied. But there is no way for the callee to extract a singic word from a double word

ALATR location. For example, a CW~< op-code is used to convert a real variable to an integer variable.
CnvR a.., X, Fix%

does not yield the least-significant-word of the double-word ALATR entry, X. Instead, it converts the

nutnerical \.alut of X to a fixed-point reprcscntation. The problem is that the address is available in the

caller’s ALATR, but it needs to be supplied in a BindI  instruction that requires its operands to be in ALATI.

Therefore, an ALATI entry should be created, initialized with the address, and used for the BindI. Thus,

any time the address of a real variable is needed, a fresh local temporary ” is allocated and initialized with the

global address of the real variable. This temporary, being in ALATI, is directly used in BindI. For example:
Locall temp, %X
LocalR X, %0x
Bind1 temp, 3

e Main memory, allocatable

o NO registers

o NO stack for block level or procedure level allocation

o Stack for expression evaluation; volatile storage class

0 NO condition code bits

e High Speed Buffer called ALAT; allocatable with restrictions, i.e., excluding arrays, common
variables and in general whenever the address of a variable is required.,

o Large constant (small constants as immediate operands); allocatable

27 This restriction is an architectura! restriction on the programming model.

28 Ideally, in FOM, the VAK parameter should be implemented by an AutoIR. I3ut then LoadR cannot be used to access it: instead it
should be acccsscd directly. Furthermore, the code generator does not have the information to rccogize a scalar, real, VAR parameter,
i.e., the IR declaration is fParanlctcrTpointerf1,  which could mean a pointer to an integer or a real.

29 This yields cstrancous tcmporarics in ALA’I’I. Since all locals are “cached” by FOM, there arc no pcrformancc  problems due to
these extra tcmporarics.
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o Queue; volatile

Sroraqc  Class A/locatable Addressability
bir/l?r*te/word star-taddrcss..finaladdrcss
addressable

Main memory yes
Stack 110

Queue no
Alat . Yes
Constant Yes

word( 16 bits)
word( 16 bits)
word( 16 bits)
word( 16 bits)
Immediate

_Allocatablc range

top, top-l
front, front-15

-6L.63

There is NO ccl! ovcrlappin,,0 i.e., different names do not exist for the same physical location.

Data tape width Aligmwrl  f factor
modulus alignment

Integer 16 mod 16’
Real 32 mod 32
Boolean 16 mod 1
Logical  16 mod 1

Storage Mapping Tables for FOhd

Storage Class Offset

Memory 0
IntegerStack 0
RealStack 0
IntegerQueue 0
RealQueue 0
InregerConvertQueue  0
RcalConvcrtQueue  0

Base Rcaister

None
None
None
None
None
None
None

ALATI
ALATR
InstructionStream

IRtvve

2 None
0 None
0 None

FOM Da tatvpe

I3oolean Boolean
Character Integer
Integer Integer
Real Real
Pointer Integer

FOM Datatvpe

Boolean
Tntcgcr
Real

Pvtes

1
1 1
2 1

Alignment

1
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Global
Static
Local
Formal Parameter
Actual Pahimcter
Function Return
Label
Constant
Temporary
Address Obtainable

Allocation

(Memory, Global)
(Memory, Static)
(Memory, Address)
(ALATI, Local)
(ALATI, Formal P)
(ALATI, Function)
(ALATZ, Label)
(ALATI, Constant)
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In teecrw- Real

Memory Memory
M cmory Memory
AL,ATI ALATI
ALATI AL.ATI
ALAT ALATI
ALATI ALATI
ALATI ALATI
ALATI ALATI
ALA?‘1 ALA?‘1
Memory Memory

-+
+
----t
3
3
3
3
-i

(ALATI, Temporary) -+
(ALATI, Address) -+
( A L A T R ,  L o c a l )  -+
(ALATR, Formal P) -+
(ALATR, Function) -+
(ALATR, Constant) --)
(ALATR, Temporary) +
(ALATR, Address) -+

Memory
Memory
ALATR
ALATR
ALATR
ALATR
ALATR
ALATR
ALATR
Memory

“\n%s: \tBIock %o”
“\n%s: \tBIock %o”
“\n%s:  \t Hock %o”
“\t iocaII %s, %s\n”
‘VLocaII %sW
“\tAutoII %sW
“\tDclLabeI  %s\n”
“\tLocall %s, %o\n”
“\tLocalI  %s, %sW
“\tIGlobal %s, %sW
“\tLocalR  %s\n”
“\tLocalR  %sW
“\tAutoJR  %s\n”
‘VLocaIR %s, %o, %o\n”
“\tLocal  I< %s\n”
“\tRGIobaI  %s, %sW



4.1 Data types and grammar non-terminals

FOM supports the following d&r types:

o Integers, 32 bits wide

a Logical, 32 bits wide; the most significant bit (bit 0) contains the logical. The remaining 31 bits of
the word are ignored.

o Boolean, 32 bits wide; this word is interpreted as a vector of 32 binary bits.

e Floating point, 64 bits wide.

Grammar non-terminals are used to represent each of the above data types. These non-terminals are

italicized below:

Data TvPe Grammar Non-Terminal
In tegcrs Infeger
Logical Integer
Boolean Ii2 tcger
Floating point Real

The following section enumerates FOM instructions, restrictions on their operand USC and access, and

corresponding machine grammar productions. The IUOS~ general production is listed last. This production

represents the most general form of use for the corresponding instruction. This production may or may not

appear with a blocking predicate depending  on the instruction-set architectural restrictions on the

programming model. Tf a production appears  with a blocking prcdicatc, then the production is applicable if

the blocking predicate evaluates to [rue. To prevent the code generator from blocking, productions must also

be supplied with the same syntactic form but without the blocking predicate. These productions will be

selected if the architectural restrictions spccificd by the blocking predicate are not satisfied for a syntactically

valid IR input.

Later, other productions that represent optimal use of the instruction under various contexts  arc described.

These optimizations are dataflow  dependent and are represcntcd  by identical productions with different

disambiguating  predicates. The synthetic attribute Tr contains information pertaining to the result of a

madhinc operation. blachine-dcpcndcnt details such as the variable location, such as stack, queue, register,

memory, cache, and the specific address within that location form part of the attribute Tr.
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4.2 Grammar productions

To handle Affix Grammars. i.e., semantic atiributes and predicates,  the parser driver was modified to

accommodate conlexf-serzsitive  aspects [Fischer 831  and. thus, provide cotztext-sensitive pattern matching that

is needed for instruction selection. Thus, deriving a code gencrator.is very similar to deriving an attributed

context-fret parser. Generating code is very similar to doing attributed  parsing [I’oplas  843. Productions use

terminals and non-terminals with attributes. Prodicatcs control production application. Action symbols

compute attributes and emit code. As an example, consider the FOM addressing-mode production:

Addressf LDQ R -+ INDEXTscale  IntegerTa  IntegcrTb  scale=2
EMIT i’LoadR’J.al  b

where Integer and Address are grammar non-terminals with attributes ‘a’ and ‘b’ specifjfing locations that

participate in the indexing operation. Emit is an action symbol that emits a LoadR instruction to synthesize

the attribute LDQR, i.e., result in the queue, for this datum on FOM. The predicate scaZe=2  specifies

FOM-architecture restrictions on synthesizing this code. If the predicate evaluales to fulse, recognition of this

production is blocked. Consequently, a subsequent production is matched that satisfies architectural

restrictions. Examples of similar restrictions on other architectures are IBIM-370  restrictions on displacement

and base-register use, iAPX-86 restrictions due to segmentation and index register  use, and in gcncral, if the

attribute ‘b’ happens to be a memory location instead of a register  on most machines.

The use of semantic attdwtcs  facilitates a type-sensitive machine grammar. This feature is an important

factor in reducing the grammar size. Furthermore, inclusion of type information at the grammar level permits

implicit type coercions to be driven by the grammar. This facility is especially important to support mixed-

mode arithmetic with a number  of arithmetic types in the HLL. Other semantic information such as

intermediate results, i.e., temporaries in expression evaluation, immediate constants or memory rcfcrences are

also handled as semantic attributes to grammar symbols. To perform individual operand accesses,

Addressing-mode poductions discover fcasiblc uses of effective address generation mechanisms of the target

machine. Consequently, an operand-access format is selectedq3’

AddressTa -+ DatumT a n class = Inslrucliorrstream
a.format = “%d” i.e., value

Addressf a --) DatumT a aclass = ALAT
a.format = “%s” i.e., name

AddrcssTa -+ DatumTa eclass  = Sfack
a. fomlat = ” ” i.e., blank space

Addressf a + Datumf a aclass  = Queue
a.format = “Load%Q” i.e., load queue

30The format then becomes a semantic attribute to the Lhs non-termina: Address.
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The non-terminal Address reduces to another non-terminal that signifies a machine data-type in FOM:

IntegcrTa -+ AddressT  a a. type = integer
RcalTa -+ AddressT a CL type = real

Predicates are a very uschll aid in making parsing decisions. This aid allows us to use grammars that

otherwise could not be parsed. Such prcdicatcs arc often termed dismhiguating predicates because they

re5olvc parsing decisions that otherwise would be ambiguous. For example, the following productions

represent situations in which some form of di\-ision may be generated. These productions match the 1R; they

generate FOM instructions via EMITS.

RealTr -t / Rcalf r RealT 1
RcalTr --+ / RealTa RcalT b C0nslantJ.a  A Constantl  b

KFOLDTr = a/b
RealTr --t / Realf a RealTr 1 Busy1 r

EMITL’DivR’JalrTr
RealTa + / Reali a RealTr 1 Busy./.  a

EMITJ’DivR’laJ.rTa
RealTr -+ / RealTa Real jb Stack1  T0P’J.b  A Stack1  “TOP-I ‘J.a  TempJ’rcal’Tr

EMITJ’RDiv’JblaTr
I?calTr  -+ / Realf a RcalT b Templ’real’T  1

EMI’IJ’DivR’lalbTr

The predicates Constatzt  and NotBusy  perform a two-fold function. First, they serve as a guide to when a

production is applicable and second, they serve to control parsing, i.e., resolve reduce-reduce conflicts that

would otherwise occur if this grammar were predicate-free. The first two productions recognize the special

case of a division by the constant one and division of a constant by another. The third and fourth productions

investigate if the locations containing either of the operands is not busy and thus can be used to store the

result. A divide instruction is generated. The next production checks if the operands are in reverse order on

the FOM expression stack, thus requiring a ‘reverse-divide’ instruction. The last production is the final

“match all” production that will obtain a temporary to store the result and then emit a divide.

Optimization productions  are added incrementally to the machine grammar to improve target code quality

and to providcfifze turlirlg  of the object code. They arc specified before general productions so that their

predicates are evaluated first. The thrust of this addition is to facilitate incremental development of an

optimizing code gcncrator. The inclusion of such productions contributes to shift-reduce conflicts in the

machine grammar. To resolve such conflicts, predicates arc used. These predicates may be contextual

predicates or look-ahead predicates. Corztextual predicates examine the current  context of operation; all

rclcvant context being available 011  the attribute stack of the code-gcncrator-gcncrator.  Look-aheadpredicates

examine the look-ahead symbol, if any, already provided by the code-gcncrator  parser. This examination is

necessary to prevent blocking of the code gcncrator for a valid IR input.
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For simple insttzrctiotz  sele~tiot7  productions, a final matcll-ull  production, with no predicate restriction,

suffices to prevent blocking. On the contrary. fox optimizatiorr productiotzs,  blocking resolution must be done

by adding productions with converse  predicates for each non-lookahcadpredicate that evaluates to false and

follows a Iookalreadyredicatc  that evaluates to true. In FOM such cases do not arise.

Finally, we use Cost predicates to select among different implementations of the same instruction set that

have different speeds for instructions, operands, addressing modes and cache effects. Such instruction

implementations  are usually represented  as identical productions that differ only in Cost predicate values.

However, cases arise when Cost predicates are needed to resolve conflicts on the basis of instruction timings.

In such cases, they appear in non-identical productions. For example,  in FOM, a
NorB a, b, c

is preferable to a
OrB a, b, c; NorB 0, c, c

Thus, it seems likely that the hTorL3  reduction should always be preferred to an O&I reduction for an IR string
NOT OR a b

However, the code generator may choose to implement
NOT OR a b label

as either
Or-B a, b, c; IfLF c, label

or
NorB a, b, c; IfLT c, label

The code generator will USC cost predicates to select the lesser of
time[OrB]+time[  If LF]

and
time[EJorB]+time[  If LT]

The complete FOM grammar is listed on an instruction-by-instruction basis in the Appendix.

4.3 Grammar Issues

Operands may need to be relocated intentionally by the code generator to storage locations other than the

one they normally rcsidc. Such relocations may or may not bc associated with a corresponding change in the

machine data-type. Usually, dcficicncics in instruction-set orthogonality and the inherent  design of two-

address instructions that perform destructive operations 31 lead to operand relocations with no associated

change in their data type. Examples  of such occurrences arc:

e lack of memory-to-memory operations on the iAPX-86 and the 28000 microprocessor
architectures.

31.i.e., one of the operands is replaced by the result of the operation
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c impossibility of memory-to-memory arithmetic on the IBM-370 and the PDP-11 computers.

o two-address arithmetic operations that destroy the contents of one of the operands; consequently,
one of the operands must bc moved to a temporary location before the operation is pcrrormed.

Such operand relocations  are handled by bZocki)zg  predicates and disambiguatifzg  predicates.

On non-tagged target architectures, the data-type encoding is part of tine op-code specifier. h4ixedmodc

operations arc, thcrcfore, implemented by convcrtin,0 ali operands to the same machine data-type before

performing the operation. Such conversions may bc specified explicitly as type coercions by the compiler

front-end or ptrformcd implicitly by the code generator. To implement forced operand relocations associated

with data type conversions, LoopCheck  predicates are used. For example,  to convert an integer datum to a

real datum on FOh4, the following production is used:

RealTCnv%Q --$ Integerfa ChcckConvertJaJ  ‘Inleger’J  ‘Real’
Eh4 ITL’CnvI’laJ Float%

The predicate CheckConvert  i(; used to check if conversion from integer to real format is really needed in the

current context of operation. Context is determined by interrogating the attribute stack of the code generator.

‘T’he desired left sibling will usually be at a constant offset from the top of the stack for all items in the

configuration set. The absence of tlx frai-qf2rproduction  may force the code generator to block while

processing a semantically correct IR input. The absence of the predicate alone will result in a shift-reduce

conflict of the predicate-less production with other instruction seleclion productions such as

In tegerT r + + InlegerT r InlegerT a EM ITJ.  ‘AddI’J aJ rJ. r.

The inclusion of this transferproductiorl  may cause loops in the code-generator automaton when data type

conversions  are performed more than once for the same variable. For example, an integer variable may be

converted to a real variable and then subsequently converted back to an integer variable by a sequence of

reductions without consuming any IR input. The predicate CheckCon  \iert  is therefore used to check if

conversions are performed more than once for the same variable; thus, avoiding a potential looping

con figuration of the code generator.

Many target architectures provide special-purpose instructions to yield optimized target code. Examples of

such instructions are: subtracl-or/e-and-branch  on the PDP-11, If-Logical-False on FOM. It is not essential to

USC such instructions in the translation of user programs for the target architecture. However, by using such

instructions, compilers can produce efficient representations of user programs.

It is possible to represent such fancy instructions 2s grammar productions with a longer right hand side. For

example, the IfLF instruction in FOL4 can be specified as:



45

-
Instruction + 1 BoolcanTb LabclTn

EMITi’IfLF’J.bJn
EMITJ’Nop’
EMI’I’J.‘Nop’

Consider the IR string 1 b 17 (jflzol b then  solo Zabcl  n) and a shift-reduce conflict of the above optirnizatiorl

yroductiorz  with the following ijzstruction  selection production that describes a Nor Boolean instruction on

FOM:

BoolcanT  b -+ 1 BoolcanTb 1 Busyj, b
EMITJ’NorB’JOlbTb

For purposes of this discussion, let us assume that Busy1 b evaluates to false. There exist two derivation

possibilities.

e The NorB production is selected followed by an IfZ,Tproduction:

Booleanf b --) 1 BoolcanTb 1 Bttsyl b
EMITJ’NorB’lO/bT b

Instruction + Booleanfb LabelTn
EMIT~‘IfL.T’~b~n
EMI’T’~‘Nop’
EM I’I’J’Nop’

o The IflFproduction is selected:

Instruction ---) 1 Booleanfb Labelfn
EMIT~‘IfLF’/bln
EMITJ,‘Nop’
EMITl’Nop’

The IfZF is a better choice than Nor& IfLT  and even more so if Busy1 b evaluates to true in which case a

temporary allocation could be saved too.

In view of these two derivations, the code-generator-generator reports a shift-reduce conflict between the

NorB and IflT=productions.  If the code generator always shifts, i.e., selects an IfLF, then it may block for a

correct IR string such as “:= A 1 b”. Similarly, if the code generator always reduces, i.e., selects a Nor& then

poor quality (but correct) code will be generated.

To resolve this issue correctly, an IjZJ’should be selected if the immediate corztexz of operation is a

conditional. Otherwise a NorB  should be selected. Because the IR is prefix, the immediate coiztext  is the left

context of the current configuration set that is always available on the stack of the code-generator parser.

Predicates can bc used to cxaminc the current context at calculated positions on the stack where a needed left



46

sibling is stored. Furthcrmorc, in practice, because of the nature of instruction-selection productions, the

dcsircd left conicxt will usually be at a constant offset from the top of the stack for all items in +he

configuration set. Thus, coiztextuulyredicatcs  arc added to the conflicting productions as follows:

Instruction -+ 1 RoolcanTb context = conditiorlal  LabelT  n
E~4ITj’IfLF’~bJn
Eh4lTJ’Nop’
EMITl’Nop’

Boolean7 b -+ 1 BoolcanTb 1 Busy1  b A context # conditional
EMITJ.‘NorB’iOJ  bT b

In this case, there can be some minor optimization in the code-generator speed. The confext need be

examined only if the look-aheud  at the conflicting point is a label. A look-ahendyl-cr!icate  LAshift  could be

inscrtcd before the contextual predicate. The predicate LAshifi  evaluates to true if the look-ahead symbol

already provided by the parser happens to be one among its arguments. In this example, the look-ahead

symbol must be a label so that the shift may possibly be taken in place of the reduction. The actual shift will

take place pending true evaluation of the corltex/ual  predicate. Thus, the productions can also be written as

follows:

Instruction ---)  1 BooleanT  b LAshzJiJ,  label A context = conditional Labclt  n
EMITJ’IfLF’Jbln
EMITJ’Nop’
EMITl’Nop’

BooleanT  b -+ 1 BoolcariTb 1 Busy1  b A context # conditional
EMIT1‘NorB’JO./,bTb

In summary, the instruction-selection phase performs the following code-generation functions:

Q It selects machine addressing modes.

l It Selects target machine instructions. Sometimes,  instructions are subsumed within addressing
modes or they are constant folded within address arithmetic.

o It performs temporary allocation and data type conversions where needed. To handle non-
orthogonality of the target-architecture’s instruction-set, addressing mode conversions and other
restrictions irnposcd by the target machine are handled by predicates to grammar productions .
-- the control is automated through the parsing scheme.

4.4 Implementing Predicates and Code Generation Algorithm

Not all grammar folms are easily parseable. Therefore, in practice, only certain classes of grammars, most

commonly LL(1) and LALR(l) [Aho 731,  are used. Due to the prefix nature of IR and since real computers

often have numerous instructions that can be used to cffcct the same result, top down parsing is not well-suited

to target code generation. Bottom-up parsing is preferred. For a rationale, the rcadcr may refer to
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[Ganapathi 801. In this paper, weconccntratc  on adding prcdicatcs to LALR(1)  parsers, using

YACCCJohnson 7.51 as a foundation. For details on implementing predicates in top dc\vx  and other bottom up

parser  generators,  the reader is referred to [Fischer 831.

In many ways, a predicate symbol, i.e., a symbol that reprzscnrs  the invocation of a predicate, can be viewed

as a vxicty of temziual  symbols. The prcdicatc symbol reprcscnts a marker verifying the semantic constraints

of the symbols on the right-hand-side of a grammar production. If the semantic constraints are not satisfied,

the marker is absent, and the production is blocked. This approach is easily implcmcnted. We examine the

parse table entries corresponding to a given parser configuration. If a predicate symbol can be read in a given

parser configuration then the corresponding predicate is evaluated. All predicates are assumed to be side-

effect free. If the predicate evaluates to true, a token corresponding to the predicate symbol is inserted into

the input. Look-ahead symbols must be saved prior to insertion of the predicate symbol. The insertion allows

the parser to consume it and production recognition proceeds. If the predicate evaluates tofilse, the

predicate symbol is net in?,crte;l, and the production is blocked, possibly causing a syntax error to be

recognized. In effect, special marker:; are added to the user’s input as a side-cffcct of predicate evaluation,

providing extra information tc! the parser.

In LR-type parsers, predicates that appear anywhere cxccpt at the extreme right can bc implemented as

either terminal symbols, or as new non-terminals that derive only E. Implementation of predicates as non-

terminals is attractive  in that predicate evaluation can be triggered by the usual production-recognition

mechanism. Further, these non-tclminals can cause no look-ahead problems because they generate only e.

Another issue is the use of predicates as Zook  aheads.  A Zook  ahead is a terminal symbol that may not be

part of the production being matched, but rather part of the context just beyond it. Predicates should only be

visible and evaluated when they are part of a production currently being matched. Their use as look-aheads

must be severely limited. In particular, all predicate symbols that appear as look ahcads for reduction actions

must be removed or avoided.

The code-generation algorithm mirrors the standard LR(k) parsing loop with added code to implement

predicates.
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PROGRAM Code-generator;

State : = 0;
Action : = Shift;

SWITCH (Action) OF

CASE Shift:
Push( S tatc);
IF Look-ahead-Token exists THEN

Symbol : = Look -ahead-Token
ELSE

Symbol : = L,exicalanalyser();
Action : = Nextaction(State, Symbol);
State : = Ncxtstate(State. Symbol);
1F Buffer # Empty THEN

BEGIN
L,ook-ahead-Token  : = Buffer;
Buffer : = Next symbol in Buffer

END
END;

CASE Reduce:
Pop(RHS-of-production);
State : = Top-of-stack;
Action : = Nextaction(State, I ,HS-of-production);
State : = Nextstate(State,  LHS-of-production);

END;

CASE Accept:
(* halt, accepting *)

END;

CASE Error:
(* halt, rejecting *)

END

END

END.

4.5 Dynamic Conflict Resolution

Consider the following productions:

Pl: A-+C
P2: B4C
Y3: D-+EAB
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1’4: D--+EBA

A reduce-reduce conflict is caused by P1 and Ph.7 To disartzbiguate  this conflict, WC add a non-terminal

Nontcrm, a disambiguating routine disambiguate  and tvkcns Tokcna and ‘l’okcnb as follows:

1’1:
Y2:
P5:

A -+ C Nonterm  Tokcna
B -+ C Nontcrm Tokenb
Nonterm  -+ E

disambiguatc( n ltributes/ack,Tokcna,Tokenb)

The decision to select Pl or P2 is made by disalnbipute  when a reduction by P5 triggers the disambiguating

predicate. This predicate looks at the context, the attribute-stack or uses any conditions programmed by the

user and inserts either Tokena or Tokcnb in the parser’s input stream as an indication of its choice.

The parser, if it uses look-ahead, may have already read a look-ahead token. In this case, the

disamhiguatiq  token must be inserted before any such look-ahead token and the latter must be saved in a

token fiuff3..  For a k look-ahead parser, BE@+ has to be a queue of depth k so that all k parser look-aheads

can be saved in the buffer queue before disarnbiguate  inserts any token in the parser’s input stream. The

follo?ving code illustrates dais process.
PROCEDTJRE  Disambiguatc (Tokenl,  Token2,...., TokenN)

BEGIN
IF Prcdicatel THEN inscrt(Token1)
ELSE IF Predicate2 THEN insert(Token2)

ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . .
END;

PROCEDURE insert(Token)
BEGIN

IF Look-ahead-Token THEN Buffer : = Look-ahead-Token;
Look-ahead-Token : = Token

END

4.6 Output Formatting

After instructions arc sclccted, a few files32 are used for output buffering. Tables are used to specify these

files and also to provide output formatting.

Variable-Prefix: Storage Class X IR Class + Prefix String

(Memory, Global) + “$Ba”
(Memory, Static) -+ ‘Wa”

32. fhc.~c files may bc in-coic files or disk files or ;l combination of the two. lhis implcmcntation choice dcpcnds  on the s~ongc limits
of the system on which the code generator is resident.



(Memory, Function)
(M emery, Constant)
(Memory, Temporary)
(Memory, Address)
(ALA-D, Global)
(ALAT[, Static)
(ALATI, Function)
(ALATI, Constant)
(A LATI, Temporary)
(ALATI, Address)
(A LATR, Global)
(,4LATR, Static)
(ALATR, Function)
(ALATR, Constant)
(ALA’I’R, Temporary)
(ALATR, Address)

File: Storage Class -+ file number (0 . . 7)
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-+ "SF"
+ "K"
+ "$T"'IQ '1h
-+ “$Ba”
-b “$Ba”
+ “W”
--$ “$C”
+ “$T”
--) “W
+ “$Ba”
+ “$B.J’

---) “$F”
+ “$C”
+ “$T”
-+ “%”

Addressing-mode Prefix: Storage Class + symbol {‘a’,‘k’,‘q’,‘s’)

Storage Class && Addressing-mode Prefix

Memory 0 ‘a’
IntegerStack 5 , 3S
RealStack 5 , ,S
IntcgerQueue 5 ‘q’
RealQucue 5 ‘cl’
IntegerConvcrtQueue 5 ‘q’
RcalConvertQueue 5 ‘q’ALATI 2 , ,a
ALATR 3 ‘a’
InstructionStream 5 ‘k’

Prolog: File + String

“h”
“\n BcgProc ”
“\nALA’TI\n\tI,ocalI  Rct$IP\n\tLocalI Ret$EP/n”
“\nALATR\n”
“\nEntryProcs  IP$”
“\n\t”
“\nAlatHeader EP$”
“\nEndProc ”

Run-time Start-Up
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runstart + “\n.inccrt  fom2.fai\n.inscrt  fommacfai”;
runend --+ “\nstopFOM  \lEND”;
extinscrt -+ “\n.inscrt  fic.fai/n.insert  frt.fai\n”;

4.7 An Example of Code Generzltion  by Attributed Parsing

Consider integer arrays A, B and C and the following Fortran assignment statement:

A(1) = B(J) + C(K)

The Attributed Polish Prefix Linear Intermediate Representation is:

: = INDEXTinteger A I + INDEXTinteger B J INDEXfintcgcr C K

The next phase sets the environment, assigns storage classes, such as ALATI, ALATR, memory, stack, and

binds variables to storage locations in FOM. Information regarding storage classes, machine data-types,

alignment restrictions etc. are provided as separate tables. After, the szorage billding arrd  expansiofl  phase,

every variable possesses  a machine data type33 with attributes specifying the storage class and the machine-

specific location for that variabie. Thus, in the current  example, the IR is expanded into:

: = INDEXf 1 IntegcrT’ALATI’,a IntegerT’ALATI’,i
+ INDEXTl JntegcrT’ALAT!‘,b IntegcrT’ALIZ’I’i’,j INDEX’rl  Integcrf’ALATI’,c Integert’ALATI’,k

The next phase performs instruction selection. We now illustrate attributed parsing and the code generated

for the FOM architecture. The code that is gencratcd upon production recognition, i.e., a reduction, is

enclosed within {J’. The following lines trace the parsing process.

111 : = INDEXT 1 IntcgcrT’ALATI’,a  IntegerT’ALATI’,i
+ INDEXTl  Integcrf’ALATI’,b Integcrr’ALATI’,j INDEXTl  IntegerT’ALATI’,c IntegerT’ALA’I’I’,k

PI : = INDEXT 1 Intcgerr’ALATI’,a IntcgcrT’ALATI’,i
+ AddressTLdQI  {LoadI  aa., b, ~2 INDEXTl  Intcgert’ALATI’,c Integerf’ALATI’,k

PI : = INDEXfl Integert’ALATI’,a  IntegerT’ALATI’,i
+ Integert LdQI INDEXT 1 IntegcrT’ALATI’,c IntegerT’ALATI’,k

[4] : = INDEX7 1 IntegcrT’AL,ATI’,a  IntegerT’ALATI’,i
+ IntegcrTLdQI AddresstLdQI  {l,oadI  aa., c, k)

[5] : = INDEXt 1 Intcgerf ‘ALATI’,a  IntegerT.‘ALATI’,i
+ IntcgerTL,dQI IntegerTLdQI

, bl : = INDEXT I IntcgerT’ALATI’,a  Integerf ‘ALATI’,i
+ IntegerTLdQI IntegcrTLdQI Templ’integcr’TStoTemp

33 I~~~E,ou in the current example
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VI : = INDEXT 1 IntegcrT’ALATl’,a  IntegcrT’ALATI’,i
IntcgcrfStoTcmp  {AddI  qqa, Load%Q,  Load%Q,  StoTemp]

PI : = INDEXTl  IntegcrT’ALATI’.a Intcgerr’ALATI’,i IntcgcrTStoTemp  Lasrrcfl  ‘ALATI’JJ’foTemp

[9] Instruction jrStoI aa., a. i)

Thus,  th\: FOM code gencratcd for the Fortran assignment statement is:

Load1 aa., b, j
Load1 aa., c, k
Add1 qqa, Load%Q, Load%Q, StoTcmp
St01 aa., a, i
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5.1 Unsupported features - possible further extensicms

Both U-code and IR arc considered to be langu c,age-indcpcndent  intcrmediatc  forms. Conscqucntly, a

translator from U-code to IR shouid not riced any knowlcdgc of the I-ILI, used to obtain the I-J-code. But this

observation is not so in practice. Occasionally, the semantics  of an HLL feature are defined with some

machine-dcpendcnt  assumptions. Such features are very troublesome in a compilation scheme with an

intcrmcdiatc form, because the machine dependence has to be somehow implemented in the machine-

independent intermediate language. This problem does not occur in monolithic compilers where the

translation is performed directly to machine language.

The Ucodc-to-IR translator is intended to work with both Fortran and Pascal. U-code features that have

not been implemented arc described below, along with remarks about what their impicmentations  would

involve:

e Runtime support - The problem with runtimc libraries is that some of them arc necessarily
machine-dcpendcr!t.  This dependency includes procedures for I/O, dynamic memory allocation,
runtimc errors, etc. Illacllinc-in~lcper7dent libraries  could bc supported by having an IR library of
the procedures, e.g., Math rou%es, bbt machinedependent routines cannot be written in IR. In
such a case, it is unavoidable that there be separate copies of these routines for different machines.
However, it is simple for IR to support separate compilation, so that. programs that use such
routines can be compiled through IR, even though the routines are not written in IR. This
solution is used in the U-code system as well.

a Sets - Sets were not implemented because they arc not supported in the current implementation
of IR. It would be a simple cxtcnsion  to include them by introducing vector boolean operators.
Of course, this operation can always be exprcsscd  by using a FOR loop, but that would lead to an
inefficient impiementation  on some machines.

o Non-local GOTOs - This feature has not been implemented,  mainly because it is not supported by
FOM. Translating a non-local GOT0 from U-code to IR is straightforward. The problem occurs
in the back-end that has to implement it. Non-local GOTOs can be easily incorporated in both
static cllaiii and dis~~ln~  register  schemes. HO~CYCI,  ncithcr  of thcsc traditional schemes can be .
efficiently implemented in FOM.

e Procedure parameters - They have not been implemented for the same reason as non-local
GOTOs.

o String variables - String variables is a Pascal* [Hennessy 791 feature that we have not supported.

o Import/export  - Again, import/export of variahlcs is a Pascal” feature that we have not
implemented.
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o Ihta initialization - The current implcmcntation  of Iii does not have a compile-time data
initialization construct. Of course, 2 data initialization can always be mimicked by an assignment
statement, but that would happen at run-time rather than at compile-time. This feature can be
implemented  if data inirialization was included in the I R implementation.

+ Clols;tl  rcgistcr  allocation - The current implementation of TR has no provision for specifying
rcgistcrs?  Therefore, the translator dots not support U-code instructions that operate on
rciistcrs.  This operation can only be done if a limited machine-dependency is pcrmittcd  in the IR
implementation, as is done in U-code.

8 Hock rnovehompare  - The only way to express block movc/comparc  operations in IR is by
generating the equivalent FOR loop, which is inefficient.  The translator could support these
operations once they are available in IR.35

5.2 Code Generator Statistics

The FOM code generator is resident on the VhX-11/7803G  running Unix37 and it occupies 100 K bytes,

mostly data space. It produces about 100 lines of FOM assembler code per second. The grammar

incorporates 184 symbols and 267 grammar productions. The Code-Generator-Generator (CGG) takes about

two minutes to produce +hc FOM code generator. The compilers have been rctargeted to the 111&I-370.  The

IBM-370 code generator occupies 120 I( bytes. The grammar incorporates 2110  symbols and 430 grammar

productions. The CGG takes about four minutes to produce the EM-370 code generator.

5.3 FOM Simulation Measurements

This section describes the results obtained by simulating 6 benchmark programs (2 Fortran SL 4 Pascal) on

the ISPS simulator [Barbacci 771,  driven by an ISP description of FOM. The measurement taken was the

number  of instructions cxecutcd. Both the unoptimized and optimized FOM code were simulated for each

benchmark. As described carlicr, the optimizations were pcrfolmed  at the U-code level by UOPT.38  Register

allocatiorz was the only UOPT optimization disabled for FOM, as FOM has no registers.

Due to the slow performance of the TSPS simulator (approxitnately 15 FOM instructions per CPU-second

34 This feature is not important for FOIM.

35 e.g., by attributing the : = operator with size of the block to bc moved

36 VAX is a trademark of Digital Equipment Corporation.

37 Umx IS a trademark of Bell Laboratories.

38The performance  improkcmcnt  obtained is about 50% for the DIX-10, hIC-68000  and lhe VAX-11. Register Allocation is often
responsible for 30% of the optimization improvement.



on a I>EC-20),  we were forced to drastically rcducc the size of the benchmark programs. This naturally leads

to a smaller improvement due to optimization, bccausc of the rclativc increase in time spent on initialization

and I/O. Our results are therefore pessimistic about the potential spccdup obtainable by machine-

independent code optimization.

INVERT is a matrix inversion program, written in Fortran. As a benchmark, it is designed to invert a 10x10

real matrix for 200 iterations.  WC used only 1 iteration on a 3x3 matrix, and obtained these results:
Unoptimizcd code: 2344 instructions
Optimized code: 2171 instructions
Percentage improvement: 7%

QUICKSORT  is also a Fortran benchmark, which uses an explicit stack instead of recursion. It was

originally written to sort an array of 300 integers for 100 iterations. WC used 1 iteration on an array of 5

in iegers:
Unoptimized code: 927 instructions
Optimized code: 841  instructions
Percentage improvement: 9%

BUBi3LESORT

RUMLESORT  is a Pascal program, written to sort an array of 70 integers for 100 iterations. We used 1

iteration on an array of 10 integers:
Unoptimizcd code: 2136 instructions
Optimized code: 18 52 instructions
Percentage improvement: 13%

PRIME is a prime number generator written in Pascal. It uses the “Sieve of Erastosthenes” method, and

was written to generate all prime numbers smaller than 16384, for 50 iterations. We generated prime numbers

smaller than 104, for 1 iteration:
Unoptimized code: 1851 instructions
Optimized code: 1908 instructions
Percentage improvement: -1%

The “pessimization” of -1% is due to an unsuccessful attempt at s/relzgt/l reduction by the optimizer. The

multiplication in an array subscript turned out to be a multiplication by 1 that generated no code in the

unoptimizcd case. The optimizer attempted to reduce this multiplication to an addition by introducing a

temporary. In this case, it was a pcssimization txcausc  of the extra code generated to increment  the

tc-mporary.
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INTMM

INTMM is an integer matrix multiplication benchmark written in Pascal. It was designed to multiply two

40x40 integer matrices (‘just once). We used two 3x3 matrices instead:
Unoptimizcd  code: 1756 instructions
Optimized code: 1565 instructions
Pcrcc ti tagc improvement: 11%

M M

MM is just like INTMM, except that it uses floating-point numbers instead. Again we used two 3x3

matrices instead of the original 40x40 size:
Unoptimized code: 2332 instructions
Optimized code: 1805 instructions
Percentage improvement: 23%

In comparison, the performance improvements obtained arc about 50% for the DEC-10, MC-68000 and the

VAX-H. We are in the process of obtaining similar data with the IBM-370 CG.3g

5.4 Cade Tradeoffs

A number of tradeoffs can be made in the gcneratcd FOM code. Important ones are itemized below:

o The use of Autoindircction facilitates compact code space but is a drain on time. An alternate
solution would be to generate immediate stores to memory and loading from memory using Store
and Loud instructions.

o Some FOM op-codes are non-orthogonal to data types; i.e., they do not operate on all data types
provided by FOM. For example, comparison operators operate on integer data types only. The
code generator (CG) will automaticaliy convert such operations on other data types to the valid
operation by converting the operands to the valid data type.40 This solution may lead to
inaccuracies, especially when floating-point data is converted to integer data. Thus, an alternate
solution would be to provide grammar productions for operations on other data types with
sequences of target instructions that implement the operation.41

e Rcversc-stack op-codes do not exist for certain non-commutative operators. 42 Consequently,
either the expression  stack should not be used for such operations or grammar productions must .

39First, WC need to obtain an assembler and a simulator for the IBM-370.

40 In the machine gr,ammar,  such operators must appear with an attribute that specifies the valid data type.

41 Subtraction is a good tcchniqx to perform real comparison.

42RSub and RDiv exist but reverse compariscn op-codes are absent in FOR/I.
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be supplied that rcflcct revers&tack  operations with instructions using opposite opcodes”’ or
opposite results?

5.5 Tracking

To utilize machine locations efficiently and also to produce correct code in the presence of architectural

restrictions, CG tracks the contents of certain storage classes. 45 On many architectures, these locations tend to

be general-purpose registers, top few locations on the stack, condition codes and other beneficial locations in

the processor state whose contents are valid between instructions. Apart from ensuring architectural

restrictions on the operand USC, tracking also yields optimizations such as auto-increment, auto-decrement on

registers, avoiding redundant  loads and stores, recognizing potential aliases in memory and register. In FOM,

the following locations are tracked:

Storage Class locations

Stacks
Queues
ALATI
ALATR

top, one below the to
front, next in queue”?

46

last reference to ALATI
last reference to ALATR

The traclced information is retained as semantic attributes, to be used during attributed parsing.

5.6 Context-Specific Temporary Allocation

To improve target-code quality, context is propagated through semantic attributes. The main advantage of

the context attribute is that the target-machine describer can incmmentally  program the extent to which

context-dependent optimization may be pcrformcd. In particular, it is a convenient method of ensuring

safety in the presence of optimizations.48 Context specific temporary allocation is performed as itemized

below:

43 e.g., LtI for GeqI, GtI for LeqI and vice-versa

44 e.g., IfLF for KLT and vice-versa

45 Sometimes, depending on the necessity, CC can also track temporaries. The main thrust of this step is to potentially overload
unavoidable temporaries that are not common-sub-expressions. Thus, the temporary store is re-used and in consequence, the total
number of temporaries is often minimized -- set FVulf 821.

46Could  track more locations if more than 2 stack locations are provided and indexing off the stack-top is allowed.

47 Tracking two locations suffices for correctness but tracking more queue locations could yield optimal code.

48.Iwo examples of such intcrfcrences arc: (a) Code scheduling intcrfcrcs with the use of the stack for temporaries, c.g., scheduling or
Load1 sk. . . , . . . . . may not be safe: and, (1))  Incomplete grammar specification intericres with the use of the stack without revcrsc-stack
op-codes.
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8 To reduce ALAT bank conflic_ts, the expression stack may be used instead of ALAT locations. In
the context of ilddition, subtraction, multiplication and division, the use of the stack, for
temporaries,  yields optimal code. Dcpcnding on allocation, such uses may or may not involve
reverse-stack operations as depicted in the following examples:

DivR sas, , Alattempl, Divli aaa, Alattcmpl,  Alattcmp2, Alattempl
RSub  ssa, ) , Alattemp:! SubR sas. , Alattempl,
AddR kaa, 0, Alattcmp2,  Result AddR ksa, 0, , Result

o If the machine grammar does not contain productions that reflect reverse-stack operations fol
comparison operators, then in the context of comparison operators, the expression stack is not
used for storage of temporary results.

e In a szow context, the value to be stored must be the last ALA?’ reference. Consequently, ALAT
temporaries arc preferred to stack temporaries. USC of the stack will introduce a move to an
ALA?’ location before the final store.4g

8 In irldex,  indirection and corzver.sio?z  contexts, data gets placed in one of the FOM Queues. These
instructions are likely to be re-sclleduled.50 Stack temporaries need not be live across the code-
motion clindow, but ALAT temporaries are always live.51

5.7 Cock Scheduling

Unlike code generation for other architectures,52 in FOM, CG provides some minimal code scheduling.

The FOM architecture provides queucing disciplines53 that forces CG to provide code reorganization.

Generating  correct, leave aside optimal, code for queues can be quite tricky, e.g., for the expression  a -t b * c,

a naive code generator may generate:
Load a
Load b
Load c
Multiply Q, Q, R

Add Q, R, R

Enqueue  a in queue Q
Enqucue b in queue Q
Enqueuc  c in queue Q
Multiply first 2 Q elements - also dcqucue
them - and store the result in location R
Add head of Q to R

Because of the FIFO property of a queue, this code evaluates a * b + c instead of a f b * c. Usually, such

wrong schedules occur within the domain of an assignment statement only.

49 Add ksa, 0, , ALATlocation

50 Code Scheduling is discussed in the next section.

51There are only 2 stack locations per data type and they get re-used often: however, there arc 128 ALAT entries that get block-loaded
on procedure entry. Thus, no attempt is made to w-use/overload ALA?‘ temporaries across instructions.

52113AM-370,  VAX-11, iAt’X-86,  L-8000, MC-68000, PDP-11.

53 Load-Store and Convert Queues.
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Scheduling can be performed in a- separate post-pass optimi;lation  phase or in tcgrated during code

generation itself. One ad\rantagc vf the in tegratcd scheduling approach is that it still fits into a siilsle pass

code generation scheme and the other advantage is the availability of aliasing  information in attributes.

Usually, the critical problem in code scheduling is to find, and handle, aliasing information. Incomplete

knowledge about potential aliasing conflicts restricts reordering more than other factors. Another strong

motivation for incorporating scheduling within CG was the use of the existing tmckhg  mechanism.

Specifically, in FOM, CG tracks the last ALA’1 reference, stack top and next-below  entries and queue front

and next-in-queue cntrics. In CG, integrated scheduling is performed as a two step process by:

e tracking the front and next II entries in qucucs, where n is maximum arity of op-codes in the target
macl~ine,54 and

e performing code motion (specifically code delaying) depending on the context of the current
operation.

In the realm of attributed parsin p, consider the following example: When parsing

. . . . . . Op, OperandTQueuel Op2 OperandTQueue2 . . . . . .

the operation on Queue1 should be delayed until after operations on Queue operands for op2. This delay

ensures that op2 operates on the correct data. In effect, such a schedule simulates a bottom-up version of

breadth-first traversal of the expression tree,55  e.g., the tree for u f- b * c is:

+
/ \

2 *
/ \

b C

The bottom-up breadth-first traversal scans levels from left to right, starting at the bottom. The nodes

visited and the code generated are as follows:
Visit b Load b
Visit c Load c
Visit 2 Load a
Visit * Multiply Q, Q, R
Visit + Add Q, R, R

To obtain maximum concurrency, this strategy can be extended to maximize the distance between an

Enqueue and the corresponding Dequeuc instructions, exploiting a longer queue. Furthermore,  to take

54 For FOM, II= 2; thus, it suflices to track the front and next entries.

55 In a tree-Lvalk evaluator, the bottom-up traversal can bc awkward to perform, and so a top-down approach can be used that
generates code in the reverse order. It would have to sca11  each  lcvcl from right to left.
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adv,antage  of FOM’s par2llclism,56 non-queue instructions such as Nxfl’roc  should bc lloisred as far as

possiblcSs7 Other optimizarions of similar flavor would be Nop removals.58 Nops do not cost perfollnance

but they cost space.

5.8 Conclusion

Given current compiler technology,  DEL architectures seem promising. Traditionally, the optimization of

code for DEL compilers had been largely unexplored. The reverse-synthesis process is therefore an

interesting approach to measure optimizations on DEL architectures. Another advantage of this approach is

rctargctability and whostability. Alt!lough FOM is an architecture originally designed for Fortran, it ~211 also

be used for Pascal. The reverse-synthesis process may seem to destroy the go21 of reducing the semantic gap

between the source program 2nd the target program. Given the up-down-up translation process, it is hard to

guarnrztec  that the JR to target-architecture translation is not worse than direct source to target translation.

Fiowcver, the cffccts of various optimizations 2nd empiric21 results do reveal that DEL architectures and this

compile-bnck  technology can co-operate to produce efficient translation 2nd high performance.

This cxpericnce has suggested 2 number of techniques b>~ which CG can be poteniially useful to a co1nputer

architect. These itezns are enumerated  below and shall be addressed in detail in future research.

c) CG can identify arcas in which the grammar is incompletely specified. This knowledge can reveal
extra instructions needed in the target machine’s instruction-set architecture.

o The machine grammar can provide a measure for static code-size that has 2 second order effect on
performance.

e In order to mcasurc the architecture, the compiler pffict is fixed by incorporating productions in
the most general form only. Predicates are first used to specify architectural restrictions only 2nd
not for optimization. With this grammar, 2 code generator is created 2nd then the architecture is
“benchmarked”.

8 Optimization productions arc then incorporated increlncntally  2nd the,architecture  is
“benchmarked” in the prcsencc of optimizations.

56executir,g instructions in parallel with loading of ALAT

57 NxtProc should not be hoisted beyond a basic block or another NxtProc.

58 For cxamplc, safely /loisring the comparison and branch instructions two instructions before their current position within Lhc domain
of straight-line control flow.
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Opcratims  on Irz~cg~rs yielding an Iutrger  result:

e ,\ddI: Add Integer

Integer7 r + + IntegcrTO Intcgerfr
IntegerTr -3 + IntegcrTr IntegcrTO
IntegerTr -+ + IntcgcrTa  IntegerTb  Coilstarztj  a A Comtantl  b

KFOLDTr = a+b
IntegerT r -+ + Intcgcrra IntcgerTr 1 Busylr

EMITJ’AddI’Ja~rfI
IntegerT a -+ + IntegerTa  IntegerT r 1 BusyJa

EMTTJ.‘Addl’laJr-ia
IntegerT r -+ + Integerta IntegerTb  Templ’integer’tr

EMI’lJ’AddI’lalbTr

e SuhI: Subtract Integer

IntegerT r --+ - IntcgcrTr IntegertO
Integerf r -+ - Integerf a Intcgcrf b Constan  tl a A Constantj.  b

KFOLDTr = a-b
Integertr  + - Intcgerra Intcgerlr 1 BusyJ. r

EMIT1’SubI’laJ.r~r
In tegcrt  a --+ - Intcgerfa IntcgerTr 1 Busyla

EMITl’SubI’Jaj.rTa
Integerf r -+ - IntegerTa  Integcrf b Temp./‘intcger’~r

EMITl’SubI’laJ.bTr

Q ISub: Reverse Subtract Integer

IntegerT r 3 - IntegerTa  Intcgertb
Stack1  ‘TW”~  b A Stack1  ‘TOP- I ‘j.a Tcmpl’integer’fr

EMITl’ISub’lb)afr
IntegerT r -+ - Integerf a Integer? b

Qucuel  ‘FR  ONT’l b Queuel  ‘FRONT-1 ‘J.a Templ’integer’rr
EMITl’ISub’lbla+/?

o lQy1: Multiply Integer

I n t e g e r f r  + * IntegcrT 1 Intcgerrr
Intcgerf  r -+ * In tegcrT r Integerf 1
IntegerT r -+ * Integerfa Integcrtb C0nstantJ.a  A Constantl b

KFOLDTr = a*b
Integcrf  r -+ * IntegcrTa  Jntegerfr 1 13myj.r

EMITJ ‘Mp y I’JaJ rT r
In tegcrf a + * Intcgcrta Intcgerfr 1 Busyia

EMITl’MpyT’lalrta
IntcgcrTr --+ * TntcgcrTa  IntcgCrTb  TcmyJ’il~tcgcr’~r
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EMITl’h’lpyI’J.albTr

e XXVI: Divide Integer

IntcgcrT r ---) / TntegerTr Integer-T 1
IntegcrT r --+ / JntcgcrTa lntcgcrf b Constant~a  A Comtantl  b

KFOLDTr = a/b
I n t c g c r f r  -+ / IntcgcrTa IntegerTr 1 Busylr

EMIT1’DivI’lalrTr
Int,egerT a --$ / IntcgerTa Integerjr 7 Busylc!

EMITJ’DivI’lalrfa
Integer/r ---t / Integcrfa IntegerTb  Templ’integer’tr

EMI’I’J’DivI’la/bTr

o IIXv: Reverse Divide Integer

IntegerT r + / Intcgcrra Integerf b
Stack1  ‘TOP’J b A Stack1  TOP-I ‘J.a Templ’integcr’fr

EMTTl’IL>iv’Lblatr
Integertr + / IntcgcrTa Integertb

Queue1  F’RONT’l  b Queuel  ‘FRONT-I ‘la Templ’integer’fr
EMI’l’l’IDiv’lblajr

o LoadI: Load Integer

AddrcssT LdQI + INDEXtl 1nteger)a Integcrtb
EMITJ ‘LoadI’lal b

The attribute ‘1’ of the operator INDEX indicates that the index ‘b’ must be scaled by a
multiplication factor of 1 (i.e., each element of the array occupies 1 word on the FOM machine).
If this attribute is a constant other than ‘1’ or ‘2’, the storage-allocator will expand the index
operation into a combination of addition and scaled multiplication, i.e.,

INDEXTs IntegcrTa  IntegcrTb where s # 1 or 2 is expanded into
INDIRECTTs + IntegerTa * Intcgcrtb IntegerTs

Consequently, a ‘MpyI’ may be generated followed by an ‘AddI’.  If’s’ is a constant, * 1trtegerT  b
JjzregerT s will be constar  t folded into In tegerT b*s and the expression  is reduced to:

INDIRECTTs + IntegcrTa Integertb*s

9 StoI: Store Integer

Instruction -+ : = INDEXTl  IntcgcrTa IntegerTb  IntegerTc  LastTeA  ‘ALATI’lc
EMI’IJ’StoT’lalb

The blocking predicate Laslrefevaluates  to true if its second attribute was the last referenced
variable in the storage location denoted by the first attribute. If this predicate evaluates to jklse,
one of the following productions is matched:

Instruction + : = INDEX~l IntcgcrTa TntcgcrTb IntcgcrTc Storage1 ‘A/,iiTI’~c
EMI’l‘J’AddI’~O~clc
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EMIT)‘StoI’lalb

l‘hc blocking prcdicatc Storage evaluates to true if its second attribute is a member of the storage
class dcnotcd by its first attribute.

Instruction + : = INDEXJ3 IntegcrTa  IntegerTb  Integerfc Temp~‘ALATI’l’integer’Tr
EMITJ,‘AdtiI’~OJ.cTr
EMITl’StoI’Jalb

C;I-an7nzarfnctal-ilIg  can be used to avoid replication of code. In particular, predicates may be
shared by different productions to minimize code. If other productions also happen to use similar
predicates, then the total number  of gratnmar productions may bc reduced at the expense of
grammar readability and wtarge/ability.

Operations  on Integers yielding a Bookan  result5’ :

Q Ltk LCSS than - htcger

I n t e g e r f r  + < Integerta IntegerTb  Comtantla  A Constant1 b
KFOLDTr = a<b

IntegerT r -+ < Integcrf a IntegerTr 1 Busy1 r
EMITJ’LtI’la)rfr

IntegcrT a -+ < Tntegcrfa IntegerTr 1 Rtlsyln
EMITJ’LtI’LaJrTa

IntegcrT r --) < InregerTa IntegcrTb  Templ’integer’fr
EMIT~‘LtI’~a/bTr

6 LcI: Less than or equal to - Integer

IntegerTr  -+ < = IntegerTa  Integerfb Comtantla  A Constantlb
KFOLDTr = a<=b

IntcgerT r + < = IntegerTa  IntegerTr 1 Busylr
EMITl’LeI’lalrfr

Integerf a + < = IntcgcrTa  IntegerT r 1 Busyla
EMITJ’LeI’lalrTa

IntegerT r -+ <= IntegerTa  Integerfb Templ’integ’cr’Tr
EMITJ’LeI’/al bTr

o NeqI: Not quid - Integer

IntcgerT c -+ # In tegcrl a In tcgerT b Comtau  11 a A ConstantJ. b
KFOLDTr =  a#b

IntcgerT r -+ # Intcgerf a IntegerTr 1 Busy1 r
EMITl’NcqI’laJrTr

Intcgtlrfa  ---) # Intcgerf a Integcrf r 1 Uusy~a
EMITl’NeqI’laJrTa

Integerf r --f # IntegcrTa  IntegerTb TempJ’integer’Tr

59 FOAf dots not provide lrvcrse-stack operations for comparison operators. Flowcvcr, grammar productions can USC prcdicatcs to
check reversc-stack operations. On production wlcction, either the opposite op-code is emitted or the result of comparison is rcvcrscd.
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EMI’i’l’NeqI’laJ.bTr

o GtI: Greater than - Integer

IntcgerTr + > IntcgcrTa IntcgcrTb  Comtatltla  /\ Constantlb
KFOLDTr = a>b

Integer? r -+ > IntegcrTa IntcgcrTr 1 BlASYiI
Eh4ITJ’GtI’lalrTr

IntegerT a -+ > IntcgcrTa IntegcrTr 1 BusyJ,a
EMITl’GtI’Ja.j.rTa

In tcgerT r --t > Tntegerta  IntegcrTb  TempJ’intcger’Tr
Eh4IT~‘GtI‘~a~bTr

o GeI: Greater than or Equal to - Integer

Integer1  r -+ >= Integerla Integerfb Constantla  A Constantlb
KFOLDTr = a>=b

IntegerT r + > = IntcgerT a IntegcrTr  1 Busy1  I
EhlIT~‘GeI’~aJrTr

In tegert  a -+ > = IntegerTa IntegerTr  1 BttsyJa
EMITl’GeI’lalrTa

IntegerT r -+ > = IntegerTa  IntegerTb Templ’intcgcr’tr
Eh4IT1’GeI’JaJbTr

c E$: Equal to - Integer

Intcgerj? -+ = Integerta IntcgerTb  ConstantJa  A Constantl  b
KFOLDTr = a=b

IntcgerT r --$ = IntegerTa  IntcgcrTr 7 Bztsylr
EMITl’EqI’lalrj’r

IntcgerTa  -+ = IntegerTa  IntegerTr 1 Busyla
EMITJ’EqT’j,alrTa

In tegerr r -+ = Integerta IntcgcrT b Tcmpl’intcger’Tr
EMITl’EqI’lalbfr

Operations 011 Fioatingpoiuts  yielding a Floutiugpoint  result:

e AddR: Add Real

RealTr ---) + RcalTO  RealTr
RcalTr -+ + Rcalfr RealTO
I’\calTr  -+ + RcalTa RcalTb Constantla  A Comtantl  b

IWOLDTr = a+ b
RealTr -+ + RealTa RealTr 1 Busy1  Y

EMIT.j,‘AddR’laLrfr
Rcalfa --+ -!- Rcalf a Rcalfr 1 Busyla

EhUTL’AddR’laJrTa
RealTr -+ + RcalTa RealTb Tetnpj3cal’Tr

EMITl’AddR’lalbTr
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* SdR: Subtract Real

RealTr -+ - RcalTr  RcalTO
Realfr -+ - RcalTa RcalTb ComtantJa  A ConstnntJ.  b

KFOLDTr = a-b
RcalTr --+ - RcalTa RcalTr 1 BusyJ r

EMITJ’SubR’Ja~rTr
Realfa --t - RealTa RealTr 7 BusyLu

RealTr -+
EMITl‘SubR’l:tJxTa

- RcalTa RcalTb Templ’real’Tr
EMIT&~bR’LaJ bTr

Q R&b: Reverse Subtract Real

Realfr -+ - RealTa RealTb
StackJ  ‘TOP’Jb  A Stack1  TOP-Z’la  Templ’real’Tr

EMITJ’RSub’JbJ.aTr
RealTr 4 - RealTa RcalTb

Queuei  ‘FA0NT’J.b  QwueJ  ‘FRONT-2 ‘la TempJ’real’Tr
EMITJ’RSub’JblaTr

8 ItlpyR: Multiply Real

Realfr -+ * RealTl  RealTr
RealTr + * RealTr Realjl
RealTr -+ * RealTa RcalTb Constantla  A Corzstan  tj, b

KFOLDfr  = a*b
Realfr -+ * RcalTa RealTr 1 Busylr

EMITJ’MpyR’laJrfr
RealTa -+ * RealTa Realfr 1 BusyJ  a

EMITl’MpyR’laJrTa
Rcalfr --$ * RealTa Realfb Templ’real’fr

EMITl’MpyR’laJ.bTr

o DivR: Divide Real

RealTr ---) / Rcalf r RealT 1
RealTr -+ / RealTa RealTb Constantla  A Constantj.  b

KFOLDTr = a/b
RealTr + / Rcalfa RealTr 1 BUSJJ~~

EMITl’DivR’Jalrtr
Realta  + / RcalTa Realfr 1 Busyla

EMIT~‘DivR’la~rTa
RealTr -+ / RealTa Realfb Templ’real’fr

EMITJ’DivR’Jalbfr

8 RDiv: Reverse Divide Real

RcalTr -t / RealTa RealTb
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Stackl +TO P 1 b A Stack1  TOP- I ‘1 a TempJ’rcal’T r
EMITJ’RDiv’JblaTr

RealTr -+ / RcalTa RealTb
Queue1 ‘FR OhTT’Jb  Queue1 ‘FRO1VT-I  ‘la TcmpJ’rcal’Tr

EMITJ’RDiv’.j, blatr

o LoadR: Load Real

AddressTLdQR -+ INDEXf2 IntegerTa  Integerfb
EMITl’LoadR’lalb

The attribute ‘2’ of the operator INDEX indicates that the index ‘b’ must be scaled by a
multiplication factor of 2 (i.e., each element of the array occupies 2 words on the FOM machine).
If this attribute is a constant other than ‘1’ or ‘2’, the storage-allocator will expand the index
operation into a combination of addition and scaled multiplication, i.e.,

INDEXTs JntegerTa IntegerTb  where s # 1 or 2 is expanded into
INDIRECTTs + IntegerTa  * Intcgertb Intcgerts

Consequently, a ‘MpyI’ n2aJj  be generated followed by an ‘AddI’.  If’s’ is a constant, * IfrtegerTb
In tegerT s will be constar-It  foZded into I~?fegerTb*s  and the elrprcssion is reduced to:

INDIRECTfs + IntegerTa  IntegcrTb*s

6 StoR: Store Real

Instruction ---t : = INDEXT2 IntegcrTa  IntegerTb  RealTc Lastr&.  ‘ALATR ‘lc
EMIT1 ‘S toR’la1 b

The blocking prcdicatc Lastrefcvaluatcs  to fruc if its second attribute was the last referenced
variable in the storage location dcnotcd by the first attribute. If this predicate evaluates to false,
one of the following productions is matched:

Instruction ---t : = INDEXT2 Intcgerta Intcgerfb RcalTc Storngel  ‘ALATR ‘.lc
EMITJ..‘AddR’JOlclc
EMITJ’StoR’lalb

The blocking predicate Storage evaluates to true if its second attribute is a member of the storage
class denoted bv its first attribute..#

Instruction ---) : = INDEXT2 IntcgerTa  IntcgerTb  Realfc Tcmpl’hLATR’l’real’fir
EMITj.‘AddR’~OlcTr
EM1’I‘~‘StoI~‘&t~b

Grammcrfactoring  can be used to avoid replication of code. In particular, predicates may be
shared by different productions to minimize code. If other productions also happen to use similar
predicates,  then the total number of grammar productions may be reduced at the expense of
grammar readabilitJy  and retargetability.

FOM does not provide comparison opcodcs forfloatitrg  point dati types. Therefore, code must be explicitly
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provided with productions for floating point comparison@’ , or, the code generator will automatically

transform floating point comparisons to integer comparisons.

Operations on Booleans  aud Logicals  yielding a Boolean or Logical result:

e AndR: And Boolean

IntcgcrTO
IntegerTO
IntqxT r
IntegcrT r
Integer-i r

Integer7 r

Integer-f a

IntegcrTr

+ SL IntegcrTO IntegerTr
-+ 6r IntcgcrTr  Integer-TO
-+ & IntcgcrTl IntcgcrTr
+ 6r IntegcrTr fntegcrfl
-+ & TntegerTa Integertb ConstantJa  A Constantlb

KFOLDTr = a&b
-+ Br. IntegcrTa Integer-T r 1 BusyL r

EMITJ’AndB’JalrTr
-+ & IntegerTa Integcrfr 1 BusyJ.a

EMITL’AndB’Ja&T’a
---) & IntegerTa IntegerTb Tcmpl’integcr’Tr

EMIQ’AndB’JalbTr

e OrB: Or Boolean

IntcgcrTr -+ 1 In tcgcrt0 Intcgerfr
IntegcrT r + [ IntcgerTr IntegerTO
IntcgerT 1 -+ 1 Integer-T  1 Integerfr
IntegcrT 1 + 1 IntegcrTr Integer-f 1
IntegcrT r -+ 1 Integer-T  a Integer? b Conslan  li a A Constan  tJ b

KFOLDfr  = alb
Integer-f r ---) I IntegerTa Integer-jr 1 BusyJ~

EMITl’OrB’JaJrTr
IntegerT a -+ I IntcgerTa  Integertr 1 BusyJa

EMITJ’OrB’lalrTa  .
IntcgerTr + I Integerfa IntegerT b Templ’integcr’fr

EMITJ’OrB’la~bTr

o NorB: Nor Boolean

IntcgcrT 0 ---t 1 I Integerf 1 IntegerTr
In tcgerT 0 -+ 1 1 Tntcgcrfr IntcgerTl
IntcgcrTr --) 1 I Intcgerta IntcgerTb  Cotlslarllla  A Constant~b

KFOLDTr = 1 sib
IntegerTr --$ 1 I IntegerTa Integerfr 1 Busy1  r

Eh’lITl’NorB’lalrTr
Integerf a + 1 I IntegerTa IntegerTr  1 Busyla

EMITl’NorB’lalrTa
IntegerT r + 1 I Integcrta IntegcrTb  Tcmpl’integcr’Tr

6ofor example, SubR  aas a b- CnvR s> * 9 .., 9 Signum%; IfLT qa., Cnv%Q,  Label
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Operations on Inlegers yielding a-flotrling  point result:

0 Cd: Convert Integer

RealTCnvQR --+ Integerfa
ErvIITl’CnvI’lal’Float%’

Opcratiok  on Floating points yielding an iniegcr  result:

l Cn;R: Convert Real

IntegerT CnvQI -+ RealTa
EMITJ’CnvR’lal’Fix%’

Local Control-Flow Operations

The two instructions that follow a branch instruction (called the SU~JJ&Y  im~ructions),  are always executed.

Therefore, in the moss general form, these instructions are emitted with two ‘Nops’ following them. By use of

imlruction  bufiring,  Nop removal optimization may be accomplished wherever feasible.

e Goto: Go to

Instruction + Goto Labelf n
EMITl’Goto’Jn
EMIT/‘Nop’
EMIT1 ‘Nop’

8 IfLT: If Logical True

Instruction + IntcgerTr  Labelf n
EMITl’IfLT’Jr@
EMITl’Nop
EMITl’Nop’

o IfLF: If Logical False

Instruction + 1 IntcgerTr  Labelf  n
EMITJ’IfLF’Jrln
EMT’Tl’Nop’
EM ITI ‘Nop’



This section describes the design of the translator in detail. It is written to serve as a summary program

documentation for people who may want to modify/extend the translator. The references to system

itnplcmcntation details (e.g., file names) can be ignored by the casual reader.

The U-code to IR translator is written entirely in DECSYSTEM-20 Pascal (i.e., Hedrick Pascal). The

non-standard Pascal features used have been limited to a few system features (QUIT, RUNTIME,  TTY,

random file access) that should make this translator simple to transport to other Pascal implementations. No

non-standard data or control structures have been used. The translator consists of 8 separately compilable

modules that are described later. The following naming conventions have been used for file name extensions:

* PAS - a .PAS (Pascal) file cr>ntains  the program text of a module.

o .IlVlP - a .IMP (Import) file contains EXTERN procedure & function declarations of the module
that can be INCLUDEd’l by other modules.

o JNC - a JNC file contains CONST and TYPE declarations that can also be INCLUDEd  by other
modules.

The physical specifications of the translator are as follows:

Number of modules = 8

Total program text size = 84 pages = 210K chars m SK lines

Total executable program size = 69 pages = 34SK words

Average execution speed w 500 U-code instructions/CPU second

The translator has 8 modules that are described below, along with the names of the files that contain them:

Mzin program - KTOIR.PAS

This program is the main module of the translator. It calls all the required file initialization routines, and

then hands over control to the parser for the rest of the program execution. At the end, it displays some job

statistics of the translation performed - the number of U-code instructions processed and the amount of CPU

time spent on the translation.

61 The INCLLTDE statement in DIXSYSTEM-20  Pascal is used to insert the contents of the specified file at that point.
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U-code initiahization  - UlWlMP,  UINLPAS

This module has a giobal array, Iltabrec  that stores the following information for each U-code instruction:

8 Opcode name

8 Instruction length

0 Instruction format

This information is then used by the U-code rcadcr. The array is initialized by a call to procedure Uini  from

the main program. This module is directly available in the U-code system, and has not been modified in our

translator.

U-code reader - BREAD.INC,  BREAD.IMP, BREAD.PAS

Readers for both U-code and B-code (binary U-code) are available in the U-code system. Our translator

uses the B-code reader, as binary U-code requires less space and can be read faster. This module has an input

procedure (ReadUinstr) that reads one U-code instruction at a time and returns an encoding of the instruction

in a Pascal record (TYPE Bcrec).

. Symbol table reader  - D.INC, DRE~~D.iMP, DREAD.PAS

This module is an adaptation of the Symbol table reader, DREAD (Debugger READ) available in the

U-code system &bugger. The debugger uses this module to parse the U-code symbol table file. Our

translator also uses it for the same purpose. It was necessary to make some modifications because the

debugger also used a random access data structure, initialized elsewhere, that was not used in our translator.

Symbol table module - SYMTAB.l!!!lP,  SYMTAB.PAS

Our translator requires more sophisticated symbol table access than just reading a procedure’s declarations

sequentially. This facility is required because IR has block structure like Pascal, and so all outer declarations

have to be printed before a procedure’s own declarations. Further, parameters have to be identified and

declared in the callec, in the scame order as they occur in the caller. The U-code symbol table entries are

sorted alphabetically, which destroys the ordering of parameters. Thus, the U-code PSTR instructions have to

be used to identify the correct order. This module exports PROCEDURE Getproctablc that dots all this

processing required to print the procedure’s declarations correctly.

U-code parser - PARSECONSTS.1NC,  PARSE.iNC,  PARSE.IMP,
PARSE.PAS

An automatic parser, generated by an LALR(1)  parser generator [LALR], is used to parse the input U-code.

It is not sufficient to examine each U-code instruction indcpcndcntly as is done in code gcncrators. For

translation to IR, it bccomcs ncccssary to identify structured  scqucnccs of U-code instructions, c.g., a
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sequcncc of stack opcrlttions  represents an arithmetic expression. The actual translation is achieved by

semantic routines that need to be called at correct instants in the parse.

Semantic Routines  - ACTlOWlNC,  ACTION.lh~P,  ACTION.PAS

Semantic routines may be associated with either of these two parsing actions:

1. shift - This action normally has a limircd use, because the corresponding semantic action must be
performed, whenever the terminal is encountered,  irrespective of context. We have used it for the
MST and ENT U-code instructions.

2. reducs - This action is the conventional tcchniquc of incorporating semantic actions into bottom-
up parsing. The production used for reduction determines the semantic routine to be called.

All the semantic routines communicate with each other through the semantic stack. This stack is polymorphic,

and a stack entry is essentially one of:

1. An expression tree - the semantic record for the wwlermirzal  expression that is the only
non-tennirzal for which anq’ information needs to be stored.

2. A U-code instruction - the semantic record for any rermiual  that needs to be stored, since all
lerminals  arc U-code instructions.

Each semantic rolltine uses a certain nutnbcr of stack entries from the top, pops those zntrics when it is done,

and possibly pushes a new entry, along with generating appropriate III code. This schcmc is therefore ensured

to work for semantic routines calied by nested syntactic structures.

lR writer - IRbVRlT.IMP,  lRWRIT.PAS

This module controls the generation of the output IR program. All other modules use its routines to finally

output the translation.

Files used

The following is the list of files that make up the U-code to IR translator; the number of lines of source

code is listed in parentheses alongside:

ACTION.INC  - CONST/TYPE declarations defined in module ACTION. (52 lines)
ACTTON.IMP - Procedures exported by module ACTION. (37 lines)
ACTION.PAS  - Module ACTION. (933 lines)
ACTIONXEL - Compiled, binary, relocatable code.

BREAD.INC - CONST/TYPE  declarations defined in module BREi1D. (6 lines)
BREADJMP  - Procedures exported by module BREAD. (11 lines)
BRFAD.PAS  - Module BREAD. (644 lines)
BREAD.REL - Compiled, binary, relocatable code.

D.INC COWWTYPE  dcclzr-LItions dcfincd in module DREAD. (119 lines)
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DREADPAS  -
DREAD.REL -

IRWRIT.IT\/IP  -
IRWKI’r.PAS  -
IRWRIT.REL  -

PARSEFILE -
PARSECON  STS.INC -

PARSE.INC -
PARSE.IMP
PARSE.PAS -
PARSE.REL -

SYMTAB.iMP  -
SYMTAB.PAS -
SYMTAB.REL  -

UCODE.INC  -
USYS.FOlM
UCTOIR.PAS -
IJCTOIR.REL  -
UCTOIR.EXE -

UINI.IMP
UINI.PAS
UINI.REL

Procedures exported by module DREAD. (9 lines)
Module DREAD. (638 lines)
Compiled, binary, relocatable code.

Proccdurcs exported by module IRWRIT. (88 lines)
Module IRWRIT. (1224 lines)
Compiled. binary, relocatable code.

Automatically generated parsing tables used by the LALR(l) U-code parser.
CONST declarations for production and grammar symbol numbers
in the parser. (30 lines)
CONST/TYPE declarations defined in module PARSE. (13 lines)
Procedures exported by module PARSE. (10 lines)
Module PARSE. (505 lines)
Compiled, binary, relocatable code.

Procedures exported by module SYMTAB. (7 lines)
Module SYI\4TAB.  (251 lines)
Compiled, binary, relocatable code.

CONST/TYPE  declarations in the U-code system.
CONST/TYPE  declarations for FOM.62
Module UCTOIR - the main prosram. (100 lines)
Compiled, binary, relocatable code.
Executable code for the entire translator obtained entirely
from compiling the 8 modules, and linking their .REL files.

Procedures exported by module UINI. (6 lines)
Module UlNI. (327 lines)
Compiled, binary, relocatable code.

8.2 U-code to IR translator User Manual

This section describes how to use the U-code to IR translator. The translator takes as input a B-code

(binary U-code) program file (say X.BCO) and its symbol table file (say X.SYM). and generates TR code (in

file X.IR, say) as output. The file, UCTOIR.EXE, contains the executable version of the translator. It may be

invoked as shown below (characters to bc typed in by the user are shown in bold face):

@Run UCTOIR
BCODE-IN : X.BCO
SYMBOLTAI3L : X.SYM
IR - OUT : XJR
FARSEFII E - YXRSEFILF4 . ,

62fiis table is the machine-dependent table of cons:anls used to gcncratc U-code for a particular machine. It is nccdcd by the
translator to correctly convert the machine-dcpendcnr sizes and offsets to machine-independent values in IR



Echo U-code instructions in IR program? (y/n) [Dcfault:n] :

Start cxccution of U-code to IR translator . . .

End execution.
Runtime  = 2934 milliseconds.
Number of U-code instructions processed = 1654
Average processing rate = 550.2 instructions/second.
@

PARSEFILE contains the parsing tables to be used by the LALR(l) parser for U-code. The option of

echoing U-code instructions as comments in IR code is useful for comparing the two intermediate languages.

It is also a useful debugging/development aid for further extensions to the translator. As indicated above, the

option is invoked by typing a ‘y’ in response to the question. Anything else will disable the option.63 The

translator will abort execution in an error situation, e.g., if an unsupported feature is present in the U-code

program. In this cast, the “End execution” message will not be displayed on the terminal. Error mcssagcs

appear at the end of the IR ouput file, and are easily recognized as they are enclosed within two ‘****’ strings.

If the error message refers to an unsupported feature, then that feature should be removed from the original

HLL program, which should then be re-compiled.

Fifes belonging to the translator system

All files that belong to the translator are outlined in the preceding section. There is one more file that helps

identify missing files. It is called FILES.CTL, and it contains a DIRECTORY command with the list of all

the files used by the translator. It can be invoked by typing

@DO FILES.CTL

The DIRECTORY command will automatically notify the user of any missing files.

63 011  TOPS-20, you need to hit <return> twice, if ~011  do not type any character.


