Reverse Synthesis Compilation
for
Architectural Research

Mahadevan Ganapathi

John Hennessy
Vivek Sarkar

Technical Report: CSL-TR-84-257

March 1984

This project has been supported by IBM under contract 40-81, and by the
Defense Advanced Research Projects Agency under contract MDA 903-83-C-0335.

Reverse Synthesis Compilation
for
Architectural Research

Mahadcvan Ganapathi
John Hennessy
Vivek Sarkar

Technical Report No. 84-257

March 1984

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305

Abstract

This paper discusses the development of compilation strategies for DEL architectures and tools to assist in the
evaluation of their efficiency. Compilation is divided into a series of independent simpler problems. To
explore optimization of code for DEL compilers, two intermediate representations are employed. One of
these representations is at a lower level than target machine instructions. Machine-independent optimization
is performed on this intermediate representation. The other intermediate representation has been specifically
designed for compiler retargetability. It is at a higher level than the target machine. Target code generation is
performed by reverse synthesis followed by attributed parsing. This technique demonstrates the feasibility of
using automated table-driven code generation techniques for inflexible architectures.

Key Words and Phrases: Compiler design, Retargctability, Intermediate Representation, Code-Gencrator-
Generator, Code-Generation, Optimization, Reverse Synthesis.

1.

5.

Table of Contents

Introduction

1.1 DEL Architectures

1.2 FOM

1.3 Compilation Strategy

1.4 Front-end and Global Optimizer
1.5 Reverse Synthesis

1.6 An Example

U-code to IR translation

2.1 Motivation

2.2 U-code vs. IR
2.2.1 U-machine memory vs. IR variables
2.2.2 TypesinU-code and IR
2.2.3 U-code stack operations vs. JR prefix expressions
2.2.4 Address arithmetic in U-code and IR
2.2.5 Extensibility and Robustness

23 m:1, 1:m, 1:1 & m:n transformations

2.4 Examples
2.4.1 IR Declarations
2.4.2 Expressions
2.4.3 Procedure Call
2.4.4 Address Arithmetic
2.4.5 Pascal VAR parameter declaration
2.4.6 Pascal Case Statement

2.5 Trandation details

Table-Driven Storage Binding

3.1 Introduction

3.2 Attributes for storage binding

3.3 Storage-Description tables

3.4 Allocating space

3.50pcrand access

3.6 Address Obtainability

3.7 An Example: FOM Storage description

FOM Machine Grammar and the instruction Selection Phase

4.1 Data types and grammar non-terminals

4.2 Grammar productions

4.3 Grammar Issues

4.4 Implementing Predicates and Code Gencration Algorithm
4.5 Dynamic Conflict Resolution

4.6 Output Formatting

4.7 An Example of Code Generation by Attributed Parsing

Transient 0 bse rvations

5.1 Unsupported features - possible further extensions
5.2 Codc Generator Statistics

5.3 FOM Simulation Mecasurements

aw—o O

10

10
10
1
12
13
13
14
14
15
15
17
18
19
19
21
23

28

28
30
32
33
34
36
37

40

40
41
43
46
48
49
51

53
‘53
54
54

5.4 Code Tradeoffs

5.5 Tracking

5.6 Context-Specific Temporary Allocation
5.7 Code Scheduling

5.8 Conclusion

6. References
7. Appendix A: FOM Grammar
8. Appendix B: U-code to IR Translator Design

8.1 Design
8.2 U-code to IR trandator User Manual

56
57
57
58
60
62
65
73
73
76

1. introduction

1.1 DEL Architectures

Computer architectures other than the traditiona general register machine have the potential for improved
ratio of perforrmance/cost. Oce particulariy interesting class of traditional architectures arc the Direct
Execution Languagce (IDEL) machines [Flynn 80, 83]. They form a class of von-Neumann architectures that
attempt to make the execution architecture suitable for ahigh level language (HL.L). DEL architectures use
built-in knowledge of the language environment to add more function in hardwarc to reduce system costs.
The main thrust of this approach is to remove register and resource alocation problems that exist in familiar
machines and aso to avoid problems exacerbated by limited size of storage. DEL machine architectures are
determined, in part, by the demands of programming languages. There is a one-to-one correspondence
between functional operations in the HLL and instructions specified in the target architecture. Each action in
the HLL evokes exactly one insiruction in the image processor. Consequently, there arc no overhead
instructions, such as load/’store in the target instruction-set. DEL identifiers correspond to HLL variables
rather than host registers or storage cells. There is a one-to-one correspondence between objccts named in the
HLL program and opcrands specificd in tie image architecture. Thus, the flexibility of the target machine is
sacrificed to decrease the semantic gap between it and the HLL. In effect, DELs are interpretive architectures.
Consequently, DEL machines may be too in flexible for a genera purpose environment. A general-purpose
DEL aims for encoding efficiency (both static and dynamic). The microarchitecture is optimized for code
compaction. DEL representations minimize the number of bits needed in the instruction stream for operand
specification, without resorting to frequency-of-occurrence based cncodings. The instruction format is
designed for an absolute minimum number of bits for each instruction in cach procedure. In cffect, the
instructions are bit al/igned. The opcode appears last and operand references are variable in size and format.
The instruction fields are encoded using {logzn bits, where 1 is the number of possible identifiersin the HLIL.
Instructions locate operands using a table, called the contour memory. The contour table contains the value
for simple constants, variables and labels or address for structures and non-local variables. This information is
kept for each object namicd in the HLL program.

DEL architectures can potentially outclass traditional register architectures in size of static code and
data-traffic bandwidith, The simplicity of addressing structure permits simple direct addressing and the use of
immediate operands rather than complex effective-address gencration. Studies in DEL architectures have
shown that the number of instructions required to exccute programs can be reduced by a factor of three when
compared to traditional architectures [Wakefield 83]. A contour memory buffer in a DEL. microprocessor can

reduce on-chip memory arca and cnhance off-chip memory bandwidth. However, the execution-time

performance of such machines may-be a potential problem in a general purpose cnvironment. Since
instructions arc not aigned, instruction ficlds nced to be extracied. Conscquently, the instruction-

interpretation pipcline must be handled carcfully,1 otherwise it cannot be very deep.

DEL design represents a series of tradeoffs in architecture design; the most important tradeoff being space
savings duc to conciseness in representation versus interpretation time. There exists a conflict between
efficient representation of a H1.1. program and efficient interpretation by a host sysieim. At the one extreme,
direct interpretation without the use of a compiler is possible, but such an approach has limited suitability to
many traditional languages. At the other extreme, most of the trandation can be accomplished by
compilation to microinstructions followed by minimal interpretation. Tradcoffs in the above conflicting
demand have a strong bearing on the interface between compilation and interpretation. A cot-effective
design and implementation of a DEL is till the subject of on-going research. Studies of alternative DEL
architectural strategies requires close cooperation between compiler writers (so that the machine has an
adequate sct ofprimitives) and hardware designers. Measures of architectural efficiencies niust bhe done by
comparing the results for DEL machines with the results for traditionally organized machines. This
comparison has not been possible, since both DEL compitiation and DEL architecti es have not received

anywhere ncar the study that compilation for traditional architectures has received.

1.2 FOM

FON4 is a Forcran Optimized Machinc [Brantley 82, §3] that has been designed with the motivation for high
performance in scicntific computations. It is a high performance DEL rather than a general purpose DEL. In
ageneral purposc DEL, state transitions of both image and host occur in the same order, thus, prescrving the
transparency of representation. Multiple image instructions cannot be simultaneously executed and
conseguently, the architecture cannot bc pipclined. However, contingent on the interpretation order being
the same as the image sequence, overlapped execution is alowed. To gain overall execution speed, FOM
violates rransparency and alows code scheduling. It trades cxecution speed for code compaction and has
fixed size instructions that can be extracted in at most onc pipe cycle. FOM’s CPU has multiple functional
units: Fixed Point Unit to opcrate on integer, boolean, logical, labcl and array-base data, Floating Point Unit,
Load/Store Unit to load and store array clcmcents, Exchange/Conversion Unit to move data between units,
Instruction Unit to fetch and decode, and an I/O Unit for formated 1/0. The following diagram depicts this

organization.

‘Memory may be bit-packed. but the Instruction-Cache need not be bit-packed.

Instruction fetch unit Load-store qucues convert-cxchange queues

Fixed-point unit Floating-point unit /O Unit

A number of tradeoffs were made between the organization and the instruction-set architecture of FOM.
FOM does not have condition-codes. Being a shared resource for multiple units, condition -codes degrade
performance. Consequently, boolean operations produce explicit results rather than sct coudition-codes and
are three-address instructions. Jnstead of general purpose registers, FOM provides a special hardware-
managed buffer called thie Access Look Aside Table (AILAT). Thisbuffer is alarge register-set that is
automatically block-loaded on proccdurc entry. There are four sets of registers and their block-loading can be
overlapped with the execution of the current procedure by suitable scheduling of Nxt¢Proc instructions.
Auto-indirection is another feature of this buffer that tends to produce compact code for accessing procedure
paramcters and global variables. The auto-indirect bit of an ALAT entry indicates whether the data field
contains the data or the memory address of the data. Each operand reference to an auto-indirect ALAT
location causes a memory reference. The sct of variables accessible by a procedure is recorded in memory and
in the Access Table (AT). The Environment Pointer (EP) points to the AT of the current procedure. While a
proccdurc is executing, information in the next procedure’ s AT is moved into the ALAT. ALAT is divided
between two units according to the data type: ALATI and ALATR. Thus, the high-speed buffer can hold 128
fixed-point and 128 floating-point entries in which all local variables arc automatically loaded. Since the
ALAT is4-way intcrleaved, there exists a need to avoid ALAT bank conflicts. An expression-evaluation stack

is used to reduce the number of rcferencesto ALAT.

The FGM instruction-set architecture was designed with the following motives:

e high static coding cfficiency for Fortran programs -- reduced number of instructions per Fortran
instruction. Examples of high-function operations in FOM arc NxtProc, Autoindirection and
formated [/0.

o Smplicity of implementations to improve cycles ptr instruction -- high performance with multiple

functional units. A separate floating-point unit, load/store unit and conversion unit enhance
performance.

e increased cxccu tion overlap -- delayed branches and communication between units via architccted
FIFO queues.

While DEL architectures have the potential benefit of requiring fewer number of instructions to encode a
MLL, appropriatc compiler technology must be employed to take advantage of this benefit. This paper
develops compilation strategies for DEL machincs and tools to assist in the evauation of their efficiency. In
particular, we describe the implementation of Fortran and Pascal compilers for FOM. This exercise is
interesting for the following reasons:

o The effect of machine-independent optimization is dctermined for DEL, architectures.

e Code generation is a reverse symhesis2 issue and a pattern-matching code generator is used to
efficiently compile back the reverse synthesized code.

o It demonstrates the usc of atable-driven code generator for purposes of architectliral research in
the environment of a changing instruction set and optimizations.

1.3 Ccempilation Sirategy

The primary purpose of this exercise is to develop approaches to generating machine code for a variety of
different language-oriented architectures as well as traditionally organized machines. Some of the new
machines may require substantial departures from traditional compilation techniques. Since there is an exact
mapping between the execution architecture and its host HLL, compilation is expected to bc straightforward
for the host HLL only. To host aforeign HLL or to adapt to changing instruction-sets of the DEL itself, a
rctargctable code generation scheme is required. Moreover, much of DEL research has ignored code
optimization. For maximum effect of optimization and for centralizing a global optimizer, such optimization
is traditionally performed on low-level intermediate code. In our scheme, this optimization is performed on

U-code. Conscqucently, code generation for DEL machines becomes a reverse synthesis process.

Furthermore, our aim is to support architcctural experimentation at the level of determining what the
impact of a particular architecture is on the aggregate code size and exccution time for a particular system. To
make such comparisons it is necessary to have compilers for the different architectures. A fair comparison can
best be achieved by using a single front-end with several different back-ends; one for each architecture of
interest. By using a single front-end, many of the differences that exist between compilers for different
machines will bc climinatcd. However, construction of a new back-end for cach architecture of interest

encounters two major problems:

2 . . .
Scction 1.5 discusses reverse synthesis.

e It is extremely costly: each back-end can require several man years of effort.

s It distorts the study, because of the differences that are introduced in the back-ends and the
relative abilitics of the compiler writers.

As an dternative. we have employcd a table-driven code generator. For gencral background matcrial on
automated retargelable code generation, the reader is referred to a bibliography [Notices 83a] and a survey and
critique of code gencration models [Surveys 82, 83]. In our code generation schemc, the code generator is
organized as a parser and the machine description plays the role of a grammar. Predicates [Fischer 83] are
used to extend the range and scope of context free grammars to produce code gencrators. Code generation is

performed by attributed parsing [Popl 82, Toplas 84].

Compilersfor FOM are organized as follows.

« A front-end tranglates the programming language (e.g., Fortran, Pascal) to an intermediate
representation called U-code [82].3 This low-level intermediate form allows for representing more
details of program code.

o A global optimizer is used to perform a varicty of machine-independent optimizations at the
Ucode-level [U-opt 83]. The optimizer is centralized at this level since it can see (and thus
optimize) more details.

o The reverse-synthesis phase trandates U-code to an attributed prefix linear intermediate
representation caled IR [Uwtr 81, SP&E 84}.4 IR has been specifically designed for retargetable
code generation.

o The instruction selection phase trandates IR to FOM assembler code [Popl 82]. The code
generator is automatically derived from a code-generator-generator (CGG).

3Pragmatically, U-code was selected because there is an optimizer available on U-code. Otherwise, front-ends may generate IR
directly.

4[Notices-83b] contains a bibliography on intermediate representations.

Pascal,Fortran
front-end R
reverse synthesis CG (synthesis)

FOM

U-cod@t

Following sections describe each of these phases in more detail.

Our effort parallels the P1..8 [82] effort; first, the HLL is trandated to the instruction set of a siinple abstract
machine that is at a lower level than the targct CPU. Then, machine-independent optimization is performed
on this low-level intcrmediate representation that is partially machine-dependent. Optimization is partitioned
into many independent opcrations that are independent of particular source-language constructs. The
intermediate program is translated to an equivalent program with reduced running time. Important

differences between our approach and the PL.8 approach are:

e In the FL.8 compiler, register allocation drives code selection. All computation is performed in
registers and there is heavy dependence on a global register alocator. Furthcrmorc some
optimizations may conflict with the register allocator (e.g., packing versus increased life times for
variables). On machines that do not have any registers (e.g., FOM) or on machines with a very
large number of registers, this compiler organization may be inappropriate. Thus, in our
organization register allocation does not drive code selection.

¢ We do not perform trap elimination and elimination of unnecessary branches, code straightening
and reassociation.

¢ Our instruction selection algorithm is table-driven and employs a pattern-matching approach.
This technique is used to efficiently “ compile back” asequence of low-level intermediate
operations to single target machine opcrations. The PL.8 compiler does only a limited amount of
this optimization.

1.4 Front-end and Glohal Optimizer

The front-ends for Pascal (UPAS) and Fortran (UFORT) translate an extended version of standard Pascal
and Fortran-66 to U-Code. U-Code is largely machine-independent, so the bulk of the front-ends are not
affected by the differing target machines. The only machine dependency in U-Code (ignoring register
alocation which is not relevant in the FOM code generators) is the semi-symbolic storage alocation. This

machine dependency is included for two reasons:

1. To alow the expression of addressing cal culations that may be optimized by the optimizer.

2. To permit the straightforward expression of detailed storage allocation that may result from
storage packing. U-Code uses bit-addressing to express low-level storage alocation details,
without bit addressing, highly machine dependent packing and unpacking routines would be
required.
The storage allocation strategy for cach target machine is encapsulated in a set of about twenty constants that
dictate the packed and unpacked storage sizes for al the primitive data types, the addressability guidclincs,

and the aignment restrictions. Generating a front-end for anew target machine usually takes less than a day.

The optimization phase uses two key programs:

e PMERGE - an in-line procedure expander that does selective in-lining of procedures based on
time-space tradeoffs. Although this optimization can lower calling overhead, its mgjor roleisin
lengthening the code segments between procedure calls to increase the benefit to be obtained by
register alocation. The merger is run prior to the main optimizer.

¢ UOPT - a U-Code to U-Code global optimizer, described in detail in [U-opt 83].

The main optimizations performed by UOPT include:

1. A large set of local optimizations. common subexpression elimination, stack height reduction,
constant folding, etc.

2. Loop optimizations: strength reduction, induction variable elimination, forward and backward
code motion.

3. Global optimizations. constant propagation, common subcxpression elimination, dead store and
code removal.

4. Global register alocation: using priority based coloring.

The U-Code representation is complete and no additional information is required by UOPT. It uses the
method of Partial Redundancy Elimination as its main optimization technique. Using the entirc optimizer
with the mergcr, performance improvements of 45-65 percent arc achicvablc. Much of this benefit comes

from optimizing array indexing and addressing calculations.

1.5 Reverse Synthesis

The motivation for this phase arose from observing that optimizability and retargetability can be conflicting
requirements in an intermediate language. A lower (i.c., closer to machine) level intcrmediate language can
represent more details suitable for optimization; a higher lcvel intermediate language can be targeted to a
wider range of machines. We found this to be true in the two intermediate languages, U-code and IR.
U-codeis at alower Icvcl, in that it is dcfined in terms of a hypothetical stack machine. As described in the
previous section, wc have front-ends and a sophisticated globa optimizer for U-code. IR, however, is closer
to aHLL than the machine level. IR is designed for automated retargetable code generation, using attributed
parsing. We decided to develop Fortran and Pascal compilers for FOM by using the front-ends and optimizer
from the U-code system, and the table-driven code generator from IR. A trandator from U-code to IR was

thus required, and it is this trandation from alower level to a higher level that we call reverse synthesis.

U-code and IR

U-code and IR are similar, in that they are both designed to serve as intermediate languages. Both of them
are HLL-independent (i.e., the same code generator can support intermediate code obtained from different
HLLs), aswell as machine-independent (the same front-end can gencratc intermediate code to be used by
different machines). Both U-code and IR have the notion of data iypes. They aso share the notion of storage
classes, which are used to describe the kind of memory a data object should belong to (e.g. constant, static,
dynamic, register). The fundamenta differences between U-code and IR are:

o U-code data objects are defined by locations in the hypothetical U-maching's memory aress,
whereas IR has variables asin aHLL. Address arithmetic is more explicit in U-code, and
therefore more optimizable. Also, it is easier in U-code to express those HLL features that are
semantically defined at the machine level (c.g. packing,overlaying). Thus, we see that a lower
level intermediate language, like U-code, can express a wider range of HLL features. On the
other hand, a higher level intermediate language, like IR. can support a wider range of machine
features. U-code is less targetable than IR because of its low lcvcl alocation of data objectsin
memory. FOM requires that fixed-point and floating-point objects be alocated separately. This
scparation issimplein IR, but impossible in U-code:

o IR’s syntax has been designed for table-driven code generation. One feature of IR’s syntax isits
prefix rcpresentation of expressions, which is well suited for bottom-up attributed parsing. U-
code, instead has a postfix rcprescntation, since an expression is denoted by a scquence of stack
operations.

o [R’s design for automated code generation makes it more extensible than U-code. Modifications
in IR can be easily implemented by modifying the formal specifications of its scanner and parser.
Further, attributes provide flexibility in extending IR.

5 If the target architecture’s storage model does not conform to the U-code model, the symbo! table isnecded to reailocate data objects.

NMethod

The reverse synthesis from U-code to IR is done by a single-pass, syntax-driven trandator. Conventional
code generation from U-code to a machine level does not need to be syntax-driven, as each U-code
instruction is merely expanded into a sequence of machine instructions (i.e., a 1:n mapping). However, when
trandating U-code to IR, we encounter n:1 mappings, wherc a structured sequence of U-code instructions
maps into a single IR statement. The process of identifying such a scquence of U-code instructions, is exactly

that of parsing the U-code program.

The major issues encounter-cd in this trandation are:

« Mapping U-code data obhjccts to IR variables - In generdl, it isimpossible to derive the structure of
HLL variables from a U-code program. It can only be done in simple cases, like scalar variables.
Hence, we used a synibo! table to augment the input U-code program for the purpose of
translating to IR. The symbol table is a well defined entity in the U-code system, asiit is used by
the dcbuggcr. It contains information about the type and structure of HLL variables and their
mapping to U-code locations.

¢ |dentifying temporaries - Not al U-code objects arc defined in the symbol table. In particular,
temporaries are U-code data objects that do not correspond to any HLL variable. A U-code
temporary can be easily identified by checking if the U-code location has an entry in the symbol
table (the symbol table would have to keep track of the range of locations, for non-scalar objects).
IR permits “ on the fly” variable declarations, which can bc interspersed with IR statements,
provided there is no forward reference. Temporaries can be declared in this fashion.®

e Conversion of address offsets - All U-codc address arithmetic is done directly in bits. IR’s address
arithmetic is at amore abstract level; it uses address-of and size-ofoperators, like those in the
programming language C. Thus, a U-codc address is mapped to an address-ofoperation on the
corresponding IR variable. A U-code bit offset is mapped to a size-ofopcration on the base type
of the structure being accessed. The only problem occurs for address temporaries, where the base
type is unknown. It can bc determined by using the base type of the address expression assigned
to the temporary.

e Gencrating prefix code - The limited problem of trandating U-code's postfix expressionsto IR’s
prefix expressions appears to have a simple solution - just read the postfix expression backwards!
However, this only worksiif all the operators are commutative, since a backwards scan reverses the
order of operands. For that and many other rcasons, it became necessary for the trandator to
build an expression tree, and gcncratc prefix code by a prc-order traversal.

6Wc do not need any symbol table information for deciaring temporaries becausc they are always scalar and their types arc defined in
the U-code ingtructions.

1.6 An Example

subroutine p(y.n)
common a,b,i,j
n=i

Y=a

return

end

The Fortran compiler front-end and reverse-synthesis phase produced the following IR. The symbol T
attaches an attribute to a variable. The order in which attributes of the same variable appear is unimportant.

Note that a COMMON is split into separatc fixed-point and floating-point arrays.

:p T2parameters blockbegin

: ¢$3 TImport

: c$4 TImport

. n Tparameter Tpointer Tlunit

.Y Tparameter Tpointer T lunit

: = INDIRECT Tinteger + n * OsizeTinteger INDIRECTT integer + *sizeTin teger 0 c$4
“the code generator will constant-fold the multiplications”

: = INDIRECTTreal +y * 0 sizeTreal INDIRECTTreal + * sizeTreal 0 c$3

blockend

: ¢$4 1Global finteger T2units
: ¢$3 TGlobal Treal T2units

2. U-code to iR transiation

This section discusses in detail the reverse synthesis of IR from U-code.

2.1 Motivation

Existing buck-ends in the U-code system have been developed using UGIEN[Ugen 82], a rctargetable code
generator. The effort in UGEN is to separate the machine-independent and machine dependent modules of a
code generator program. It is based on a structured programming approach, thus enabling diffcrent
buck-erzds to use the same machine-independent modules. The retargetability of such a code gencrator arises
from the fact that only the machine-dependent modules need to be modificd, to develop a code generator for
anew machine. The problem in UGEN lies in the assumptions it makes about the structure of a conventional
machine that fail miserably when considering unconventional architectures, like FOM. Therefore, even the
machine-independent modules of UGEN will have to bc modified for such architectures. Instruction
sdlection, using UGEN’s technique, poses some problems too. Duc to the interaction of al addressing modes
and op-codes, there exists a typica i’ problem. Thus, each individual instruction-selection case requires
some thought. Furthermore, it is hard to compile-back complex instructions. In effect, the entire code
generator has to be rewritten, as existing UGEN code generators cannot be retargeted to DELs such as FOM.

An alternative to the hand-coded approach in UGEN, is to use a table-driven code generator.7

CG
[Ganapathi 80] is one such implementation that uscs attribute grammars and a machine-
independent/language-independent intermediate form, JR. Thus, a U-code to IR trandlator is needed to use

CG with existing front-ends in the U-code system.

2.2 U-code vs. IR

Both U-code and IR arc designed to be machine-independent/language-independent intermediate forms.
They differ greatly in syntactic appearance,, but that is not an issue. There also exist afew fundamental
differences between the two languages, that are discussed in this section.

7[Suwcys 82] provides an overview of such automalic code generation techniques that separate the machine description from the code
generation algorithm.

1

2.2.1 U-machine memory vs. IR variables
U-code objects are defined in terms of a hypothetical "U-machine" that has six different memory areas:
1. Read-only code stor¢ (also holds string constants).
2. Expression stack
3. Static storage (S memory)
4. Heap -
5. Registers (R memory)
6. Memory stack (M memory)

U-code instructions operate only on these memory areas, and U-code objects are defined by their locations
in them. Since U-code provides no information about which memory locations correspond to different data
objects, the back-end is forced to allocate each U-machine area indivisibly. This approach is restrictive, in that
data objects are forced to be alocated in the same order as they occur in a U-machine area, the order enforced

by the front-end. However it is possible that the target machine may prefer/require a different sequencing of
objects, e.g., FOM requires that fixed point and flcating point objects be allocated separately.

IR, instead has variables just asin a high-level language. The advantage in this approach is that TR makes
no commitment about the actual sequencing of its objects in memory areas. This storage-binding problem is
postponed to the back-ertd that is better cquipped to handle it. In CG, the storage binding phase is driven by

adescription of the target maching’ s memory aress.

Each IR variable must be declared to belong to some storage class. Examples of IR storage classes are:

¢ TF - Function return value
o 1G - Global

o 7L - Loca

e TM - Actua parameter

e TP - Formal parameter

o 1T - Temporary

U-code dso imposes asimilar classification on its objects_implicitly - such a classification could be deduced

by an analysis of the U-code program, as is donc by code generators in the U-code system.

12

2.2.2 Types in U-code and IR"
Both U-code and IR arc ryped languages. This property implics that al objects, in both languages, must
have an associated data type. Also, both languages have a similar type classification. The differenceliesin the

way types are declared.

U-code types are declared through U-code instructions that state the type of their operands. IR, instcad,
uses variable declarations to specify variables’ types, asin ahigh-level language. Thus, IR operators may be
polymorphic, in that the same operator symbol can be used for operations on different types. Consider
addition as an example. In U-code, the ADD instruction has a field to identify it as fixed-point (Data typel, J
or L), or floating point (Data type Q or R). In IR, the + operator is used in both cascs. Since the data type of
all variables are known from their declarations, the type of an operator is determined by the type of its

operands.

Justification for the IR approach consists of:

1. Using the same IR operator for operations on different data types leads to smaller parse tables.
An alternate solution could be
to group all typed occurrences of an operator into a
single terminal symhel, Wn what would be an abstract syniux of IR.
The type may be considered an attribute of the operator that plays
no role in the parsing of IR, but is available to the code generation
routines.

2. Untyped operators alow for the possibility of “ mixed mode” expressions like + real integer. This
allowance is convenient for the front-end, since it can leave the type coercion to CG that can
convert the integer to real.

Type coercion could be a language-dependent issue that must

be resolved by the firont-end, rather than be incorporated in the intermediate
form. It is possible that some language may define an unconventional

fype coercion, such as integer:=real + integer should

be performed by coercing the real to integer, rather than

the inreger to real and then the sum to integer. This enforcement

would violate IR's automatic 1ype coercion convention.

To enforce the HLL convention, a convert operator is used in IR.

The attribute of the convert operator specifies the type to which the operand
is to be converted.

The IR for the example would then read:

. = Integer + Convertfinteger Real Integer

3. There exist some machines (e.g., fagged architectures), where the same operator (opcodc) is used
for operations on different types, i.e., Add real, integer isvalid. Typed opcrators in IR will not be
ablc to support such opcrations.

However, such architectures can also be accommodated in a typed
operator scheme, by including untyped as a possible type for an
operator.

Just as storage classes arc used in both U-code and IR to provide information for the storage-binding phase of

13

code generation, types could be used to qualify opcrators and provide information for the instruction-binding
(or code selection) phase. If this qualification is donc in IR, it would still be necessary to retain types in

variable declarations, becausc type information will bc needed in the storage binding phase.

2.2.3 U-code stack operations vs. IR prefix expressions

U-code stack opcrations and IR prefix expressions are two diverse rcprescntations of expressions in an

intermediate form.

U-codc stack operations essentialy form a posifix representation. The major advantage of a postfix
expression isthat it can easily bc evaluated using a stack (which is exactly what the hypothetical U-machine
has). Conscquently, it is simple to develop an interpreter for such an intermediate form, and indeed the

U-code system does have a U-code interpreter (UINT).

Some advantages of a prefix notation over a postfix notation are outlined in [Uwtr §1}(pp. 14,15). The gist
of their argument isthat an opcratcr establishes a certain context, in which its operands are to be interpreted.
It is thus more convenient for a code generator to process an intermediate form in which the operator
precedes its operands. A prefix notation has this property. This property is a definite advantage if asingle
pass code generation scheme is being used (asin CG). Naturaly, it is of no consequence if, say, the back-end

builds expression trees and uses tree pattern matching techniques to generate code.

2.2.4 Address arithmetic in U-code and IR

The degree to which address arithmetic is permitted in an intermediate form is a good indication of how
much closer the intermediate form is to alow-level machine language, rather than a high-level language. If an
intermediate form permits general address arithmetic (e.g., indexing to access the field of a Pascal record), it
has aready made some assumptions about the target machine's memory structure that may be too restrictive.
Consider floating point double word alignment as an example. Some machines may not enforce this
alignment, and may allow a floating point datum to be alocated at any location. Other machines that do
enforce this alignment require that it be allocated on a double-word boundary. This requirement obviousy
affects address calculations, indicating that the samc intermediatc form program will not be targetable to these

two different kinds of machines.

However, if an intermediate form does not allow address arithmetic, it must possess some primitive data
structures that can irnplcment high-lcvel data structures in a machine-independent fashion. For example, IR
has one-dimensional arrays that can also implement multi-dimensiond arrays. The problem here is that the

intermediate form may now become too HLLL-dependent.

14

IR scores amajor plus over U-code in address arithmetic due to a simplc abstraction. The size of a
primitive data type in IR is expressed by the keyword “ size”, attributed by the data type, ¢.g., sizeTi specifics
the size of an integer. In U-code, al address arithmetic is done in bits. "The “ machine independence” of
U-code arises from the fact that a front-end can be trivially modified to generate U-code for a particular
machine. The modification isin a table of constants that gives the actual bit size of each primitive type. A
separate table is created for cach possible target machine. Thus, a particular U-codc program can only be
translated to the target machine it was intended for, i.e., the target machine for which the jroni-end used the

table of constants, while generating U-code.

2.2.5 Extensibility and Robustness

Perhaps the most important test of an intermediate language is how well it is able to accommodate new
HLLs and new machincs. The IR is bound to need modifications, because the new HLL/machine may have
some novel features that were unheard of when the IR was designed. The ease with which these

modifications can be implemented is a direct measure of the extensibility and robustness of the IR.

Herein lies the biggest difference between U-code and IR. Attributes make IR highly extensible; for
instance, new types and new storage classes can be easily incorporated by adding new attributes. Further, the
IR system uscs table-driven code generation techniques. An advantageous consequence of this approach is
that the back-end's scanner and parser are both table-driven. Hence, a modification in IR can be supported
by merely modifying the formal specifications of the scanner and parser, rather than modifying hand-written
code in the back-end.

U-code does not have attributes, but its structure is uniform enough to facilitate extensibility.
Implementing an extension is a different matter altogether, since the U-code system does not have table-
driven scanners and parsers. A modification is implemented by changing the U-code Reader and U-code
Writer programs, atask that is generally recognized as costly and cumbersome.

2.3 m:1, 1:m, 1:1 & m:n transformations

One mcthod of comparing the expressive power of two programming languages, is to consider the
transformation of actions or data declarations from one language to another. The number of primitive
statements/instructions used to represent the same action/dcclaration in the two languages, gives a
comparative measure of the expressive power of the two languages. The language that uscs fewer
statements/instructions is more powerful. If we consider transformations from language A to language B, the

following cases arise:

15

e m:1- A nceds more than one’statement to express a construct that can be written in B using
exactly onc statement.

e 1:m - The converse; onc statement in A and many statements in B.
¢ 1:1- The construct can bc expressed by exactly one statement in both A and B.

e m:n - The construct needs more than one statement in both languages.

Comparing U-code and IR in this respect, wc see that most constructs lead to m:l transformations, implying
that IR is more expressive than U-code.

2.4 Examples

In this section we provide a few examplesto informally illustrate the issues involved in trandating from
U-code to TR. Both the U-code and IR fragments presented have been generated by programs - the U-code
by the front-end, and IR by the trandator. In some cases they have been annotated and indented to improve
readability.

2.4.1 IR Declarations

As described in Section 2.2.1, IR has variables, whereas U-code does not. For practical purposes (described
in Section 1.5), wc augment the input U-code program by a symbol table that can be optionally generated by
al the front-ends in the U-code system. The symbol table format is described in [U-code 82]. This use makes
our trandator strictly a“(U-code + Symbol Table) to IR trandator”, rather than just a“ U-code to IR
trandlator”. In fact, therc arc no U-code instructions that correspond to IR’s variable declarations except for
PSTR that dcfines aformal parameter.

Using the symbol table leads to IR variables having the same names as the corresponding HLL variables.
This property serves.as a very helpful development/debugging aid in the design of the trandator. An

example of Fortran variable declarations follows:

Fortran Declarations:

INTEGER A, B(I0)
REAL X(5), Y

U-code symbol table:

% $MAINB 11
V$A S1128<1D>
VEB S 1160

16

<4 A 32<5U 110<1><1>»
Vix S20

<G4 A32S5UISANR2RYD
vi Y S2160<2>

#

Generated IR declaratious (comments written in "'s):

A TLTIT1I " TL = Locd, Ti = integer”
:BTLTiT10" 710 = size ™

: X TLTITS

(Y TLT171

Here is another example with Pascal records:

Pascal declaration:;

VAR
X: record

i: integer;

r:red;

Z: record
b: boolcan;
a:array[1..5] of integer

end
end;

U-code svmbol table;

% PTEST3 11

V $X S12784 <4 D 288

11032<51>

R3232<6R>

1 264224<7D 224

'B032<8B>

' A 64160<9 A 32<10 U 15 <5>XX5>>
2

>

#

Generated IR declarations':

T1F$1TiT1 "Ffl=1i"
T1F27171 "F§2=1r"

8’lhc origind ficld nanics have been replaced by trandator gencrated names of the form F$n (intcger n). This replacement was done
because the current version of IR requires that all field names be distinct globally.

17

12 F$41b71 "F$4 =b"
T2 F85TiTS "F$5=a"
J1FS3TL Trec T1 "FS3=12z"
70X 1G Trec T1 " Trec = record "

"The :Tn (intcger n) indicates the nesting depth of a record ficld"

2.4.2 Expressions

Given below are the Fortran (infix), U-code (postfix) and IR (prefix) representations of the same
expression:

Fortran statement:

X=a+b-c*d/(e+0

U-code symbol table:

% SMAINB 11

V$A S11224<1R>
ViB S11260 <1>
V$§C S11296<D>
V$D S11332<1>
V$E S11368 <1>
V$F s11404<1>
VX s11512<D

#

U-code instructions;

COMM x = a+ b-c*d/(e+f)
LOD R S 11224 36
LOD R S 11260 36
ADD R

LOD R S 11296 36
LOD R S 11332 36
MPY R

LOD R S 11368 36
LOD R S1 1404 36
ADD R

DIV R

SUB R

STR R § 11512 36

Generated IR code:

:=X-+ AB/*CD+ EF

18

2.4.3 Procedure Call

The mgjor difference between a U-code procedure call and an IR procedure call is syntactic. Semantically,
both representations contain the same information.

Fortran statcment:

C P1S A DYADIC PROCEDURE, & F IS A MONADIC FUNCTION
CALL P(1, F(2))

U-code instr-ucticns:

COMM CALL P(1,F?2))
MST 2
LDC J321
STRJS 1108832 ;storein atemporary
LDA S11088 32 1088 ; address of formal parameter
PARAMO0032
; start of function call F(2)
MST 2
LDC J322
STR JS 11120 32
LDA S1 1120 32 1120
PAR AMO0032
CUP JOF11
STRJS 11152 32 :storeresult in atemporary
LDA S1 1152 32 1152 ; address of formal parameter
PAR AMO03232
CUP POP20

Generated IR code:

:T$27T7itl " declare T$2 as a temporary "9
T$37TTiT1 " declare T$3 as atemporary "
T$4TTTIT1 " declare T$4 as atemporary "

= T$21 "assign1to T$2"

= T$32 "assign 2to T$3"

= T$4 "assign F(2) to T$4 "
FTFTiT1

CALL FTP1 " cdl function F "
PR2TMTpT1 " TM = actua parameter-"
c= P$2 # T$3 " # T$3 = address of T$3 "

CALL PTP2 " call subroutine P "
P$3ITMTpTL

g'l‘hcse declarations will actually occur “ onthe fly” , i.e., just before the temporary is needed, eg., : =:TS2TTTiT1T$2 1

19

c=1'$3 #1$2 " 1st parameter = -address of T$2 "
P84TMTpTL
v=P$4 # T84 " 2nd paramcter = address of T$4 "

2.4.4 Address Arithmetic

Address arithmetic is simiiar to ordinary arithmetic, except for the LDA (Load Address) instruction and
A (Address) data type in U-code, and the IR operators, # (address of) and @ (dereference). e.qg.,

Fortran statement:

C X IS AN ARRAY DECLARED AS * INTEGER X(10)"
X(7) =3

U-code instructions;

COMM X(7)=3
LDA S 1144 360 144
LDC J367

IXA J36

DEC Al

LDC J363

ISTR J0 36

Generated TR code!?:

= @i+ " add the offset due to the ISTR "
" subtract due to the DEC "
+ X *¥T*sizefil "theIXA"
*sizeTil
*OsizeTi
3 "RHS=3"

2.4.5 Pascal VAR parameter declaration

Pascal Statements:

procedure swap (var X, y : integer);

var t:integer;

begin
t:=x;
Xi=y;
10

It should be mentioned that CG always does constant folding, so that the entire espression will be reduced to a constant address
during code generation.

Y:-t
end;

U-code symbol table:

% SWAP3 2
V$TM364<1 >
VIXM302D
V1Y M 332<2>
#

U-code instructions:

SWAPENT P23200
PSTRAM 33232
PSTRAM 3032
COMM begin t:=X;
LOD AM3032
ILOD J0 32
STRJIM 364 32
COMM x:=v;
LODAM33232
II.0DJo32
LODAM3032
SWP AJ
ISTRJO 32
COMM y:=t
LOD JM36432
LOD AM33232
SWPAJ
ISTRJ032

COM M end;

RET

DEF M 96

END SWAP

Generated IR code:

:SWAP 1P2

{
X TPTpTl
tY TPTpTl
.TTLTiT1

= T@Ti + *sizeli0 X

:= @71+ X * Osizeli @i + * sizeTi 0 Y
=@Ti+Y *OsizeTi T

3

20

2.4.6 Pascal Case Siatement

Pascal Statements:

type operator = (plud, triple, square);

function f(op:coperator; x:intcger):integer;

begin
case op of
plust:f:=x+1;
triple: f : = 3*x ;
square: f: = x*x
end
end ;

U-code instructions:

FENT J24210
PSTRJM 432 32
PSTRLLM 4032
COMM case op of
LOD LM4032
STR LM49632
UJP 1.2

L3LABO

COMM plud: f:=x+1;
LODJIM 43232
LDC L321
CVTJL

ADD J

STRJIM 464 32
UJp L1

L4LABO

COMM triple: f: = 3*x;
LOC 1180

LDC L323

LOD JM43232 .
CVvT2JL

MPY J

STRIM 46432
UJr L1

L5LABO

COMM sguare: f: = x*x
LOC 1190
1L.ODIJM 43232
LOD JM 432 32
MPY J

STR JM46432
ulp L1

21

22

L6 LABO

MST 2

ILDCIL 321
PARLMO0032
LDCI1.32 16
PARLMO03232
CUPPOSCASEERR 20
UJP L1
L7CLAB3

UJP L3

UJP L4

UJP L5
I2LABO

LOD L M 49632
XIPLL7L602
L1LABO

PLOD JM 464 32
RET

DEF M 128

END F

Generated IR code:

‘FTFTiT1 TP2
{
: OP1PTif1
- X TPTiTl

: = T$17TTiT1 T$1 OP

got0 L$2

L$3

© = T$2TTTiTL T$2 + X %1i 1

got0 L$1

L.$4

-— T$2 %1i 3 X "% = convert operator”
goto L$1

L$5

= T2 * XX

got0 L$1

L.$6

" : $CASEERRTFTO CALL $CASEERRTP2 :P$2TMTiTl: = P$2 1
:P$3ITMTiT1 : = P$3 16"

got0 L$1

L$7

got0 1.$3

gotO L$4

goto L$5

1.52

|<T$10>T$121.%6
goto + L$7 * sizeTgoto - T$1 0

23

"sizeTgoto is used to represent the size of a GO'TO instruction.

For example, sizeTgoto equals 3 in FOM because of delayed branches. "
L$1

=FT$2
3

2.5 Translation details

Since this trandation is performed in a syntax-directed fashion, the most appropriate way to specify the
trandation is through the context-free grammar used. The U-code grammar used is given below. Terminals
are distinguished by surrounding quotes. A terminal name in capita leticrs denotes the corresponding
U-code instruction: a lower case name indicates a terminal that stands for more than onc U-code instruction.
The semantic routine called performs the appropriate action depending on which instruction was actually
encountcred. An empty right-hand-side is denoted by e.

program -> module
module -> 'BGN' procedurelist singlelist 'STP’
singlelist -> "single® singlelist
-> €
procedurelist procedure procedurelist
procedure -> "ENT®" PSTRIist operationlist “END*
PSTRIist -> "PSTR® PSTRIist ;
->
operationlist operation operationlist
=2 £
operation -> expression 'popop’
-> expression expression "ISTR*
-> “"MST*® parameterlist “CUP*
-> "single”

parameterlist -> parameter parameterlist

parameter expression "PAR®
-> operation expression "PAR*

expression -> expression expression 'binaryop'
-> expression “unaryop®
-> 'pushop’
-> “MST*® parameterlist "CUF-

-> expression operation

The last production

expression -> expression operation
is necessary because it is possible in U-code for an action to occur even if the expression stack is not empty,
e.g., the STR (Store) instruction stores and pops the top entry in the expression stack, not necessarily Icaving

it empty.

24

The following productions of this grammar call semantic routines:

preccedure -> 'ENT’ PSTRIlist operationlist ‘END’
This production has two associated actions:

o shift "ENT" - Since *EN?” only occurs in this production, it is safe to call the procedure-cntry
routine whenever the parser shifts over 'ENT”. The routine called is LNT — shift in Module
ACTION. ENT- s#ifi essentially does two things:

1. Calls routine Getproctable in Module SYMTAD to process the declarations for the current
U-code procedure. Getproctable has to decide if any outer declarations should be printed.
It also takes care that parameters arc printed in the correct order by using the PSTR
- Pscudo-SToRe - U-code instruction. After collecting al the infonnation it needs, it calls
routine Printprocdecls in module IRWRIT to write out the IR procedure hcadcr, parameter
declarations and variable declarations.

2. Pushes the ENT instruction on the semantic stack for use by subsequent PLOD and RET
instructions that effect function/procedure returns.

e reduce - This production is reduced at the end of a U-code procedure. Routine end— proc in
Modulc ACTION is called to write out the closing } for the IR proccdurc. A label is also written
just before the } ; all proccdurc RETURNS are simulated by a jump to this label, since IR does
not have a RETURN statement. If the procedure is the main program, a STOP statement is
generated. Finaly, this routine pops the ENT semantic record pushed by ENT- shift.

ope ration -> expression ‘popop’

reduce - Procedure popop in Module ACTION is caled when this production is rcduccd. The production
corresponds to an IR statement that must be printed. Shifting over the nonterminal expression guarantees that
the top of the semantic stack contains the recognized expression in some intcrnal form (an expression tree, to

be precise). The terminal ‘ popop’ could be one of four U-code instructions:

¢ STR - STR corresponds to an assignment statement in IR that should be printed out in an
appropriate prefix fonnat. Procedure Printexpr in Module ACTION does a pre-order traversal of
the expression tree, to gencrate a prefix expression. It is possible that the destination of the STR is
atemporary, in which case a corresponding new IR variable has to bc declared.

« FJP, TJP - A conditional branch operation also pops an expression from the U-code expression
stack. The boolean cxpression is printed in prefix form, followed by alabel, to obtain a
conditional branch statement in IR.

e POP - Thisinstruction is ararely used U-code instruction that just pops an expression from the
U-code stack. It is effectively a no-op, and no corresponding R code is generated.

o XJP - The XJP instruction is used to implement the Pascal CASE statement by a jump table. The
cxpression on the stack is the selection cxyrcssion, and the X JP instruction has the addresses of
the jump table and thc OTHERS location.

The last thing donc by popop is to pop the expression from the top of the semantic stack.

25

operation -> expression expression ’I1STR’

The ISTR insgtruction has 3 different syntax from STR, because it also neceds the address of the destination,
besides the source expression. Procedure indirect — store in Module ACTION is called to gencrate the
corresponding IR statement, taking care of the appropriate destination address arithmetic. itdirect-store

finally pops the two cxpression entries off the semantic stack.

operation -> 'M&T’ parameterlist ‘CUP’
This production has both a shift and a reduce action associated with it.

¢ shift ‘MST’ - the MST ingtruction is merely pushed on the semantic stack, to be used when the
production is reduced.

o reduce - Routine proc ~ call in Module ACTION is called to generate this procedure call. All the
parameters are available on the top of the semantic stack, terminated by the MST ingtruction. The
procedure call is written out in IR, with appropriate declaration of al “ parameter temporaries’.
Finally, this routine must pop all the 2*n + 1 entries on top of the semantic stack, where n equals
the number of parameters in a procedure call.

operation -> ‘single’
This production is used for each U-code instruction that trandates to an cntire IR statement by itself. In
most cases, a sequence of U-code instruction maps into one IR statement. Procedure single— stmt in Module

ACTION is called to print out the IR statement in each case. There are four such U-code instructions :

1. CLAB, LAB - Print out the IR label name "L$n", where n is the integer value of the U-code label.

2. PLOD - This pseudo-load U-code instruction indicates a function return value, and a

corresponding assignment to the function hame, available from the ENT instruction on top of the
scmantic stack, is generated in the IR program.

3. RET - A procedure/function return has to bc emulated in IR, by ajump to the end of the
procedure/function, where a specia labdl is dcfincd.

4. UJP - An unconditional jump trandatesto a goto in IR.

5. SDEF - If the Static Memory Area being defined has a number > 2, it represents a Fortran
COMMON, and a corresponding IR declaration must bc generated.
parameter -> expression ‘PAR’

The semantic action is simple in this case. The PAR ingtruction is pushed on top of the expression, in the
semantic stack. In this way, the parameter list is built as a sequence of stack entries, ending at the top of the
stack.

26

pa ramete r -> operation expression ‘PAR’

Somctimes an operation (most commonly an assignment to a temporary) may occur before a parameter
expression is constructed. This production alows for such an operation. The operation itsalf will lcave the
stack asit found it, so the semantic action of pushing the PAR instruction, is the samc in this case as the one
above.

expression -> expression expression ’binaryop’

Procedure binaryop in Module ACTION is callcd when this production is reduced. It constructs a
composite expression tree from the two expressions on top of the semantic stack and the given binary
operator. It pops the two expressions, and pushes the constructed expression tree on the semantic stack. The

following binary operators arc implemented :
ADD,AND,DIV,EQU,GEQ,GRT,IOR,IXA ,LEQ,LES, MOD,MPY ,NEQ,SQR,SUB,XOR.

The INST (Indirect non-destructive store) instruction is aso treated asa ‘binaryop’ syntactically. Semantic
routine indirect-store in Moduie ACTION handles this casc. It generates an assignment of the expression on
top of the semantic stack, to the location obtained by adding a given offset to the address expression that is
second from the top. Since thisis a“ non-destructive’ store, the source expression is pushed back onto the
semantic stack, after the top two entries are popped.

expression -> expression ’unaryop’

Procedure unaryop in Module ACTION handles this production. Again, a composite expression tree is
created that replaces the given sub-expression on top of the stack. The following unary operators are
implemented :

CVT, CVT2, DEC, ILOD, INC. NEG, NOT, ODD, RND, SQR, SWP.
CVT2isunusua, in that it operates on the expression second from top of the semantic stack. So there must be
such an expression, even though the syntax does not require it. Similarly SWP exchanges the two expressions
on top of the semantic stack.

As with INST in binaryop, the NSTR (Non-destructive store) instruction is treated like a ‘unaryop’ for
syntactic purposes. It generates an assignment statcment, just as was donc for a STR. Only, it does not pop the
expression from the top of the semantic stack, since it is"non-destructive”.

expression -> ’pushop’
Procedurc pushop in Module ACTION is called to create a single node expression from the given operand,

and to push it on the scmantic stack.

27

expression -> ’pMST’ parameterlist ’'CUF’

This production is used to handle function calls. CUF is not a U-code instruction; CUP is used in U-code
for both procedures and functions. However ‘CUP’ is replaced by the terminal *"CUF’, if the CUP instruction
turns out to be a call to a function. Semantic routine /¢ — call in Module ACTION is called to process this
function call. Unlike, a procedure call, afunction call cannot be printed immediately, asit is part of an
expression tree. So the sequence of semantic stack entries from MST to the top, all have to be copied into
some other data structure, since they must be popped from the semantic stack. This action is essentially what
func — call does. Finaly, it pushes an cntry for the function call, as a single node expression tree, on top of the

semantic stack.

wae

3. Table-Driven Storage Binding

3.1 Introduction

In thisscction we discuss the issue of operand binding i.e., mapping variables, non-immediate constants,
Jabels and results of expression evaluation on to storage locations in the target machine. A source language
variable is cxpressed as an operand and it is declared with severa attributes in IR [SP&E 84]. Attributes arc
used in IR to provide the flexibility nceded to map a variety of front-ends. Furthcrmorc, they are essential for
binding variables to locations in the target architccturc. They need to be converted to machine addresses
before instructions arc selected. Some of these attributes such as class and data type are essential for storage
binding. Others such as register preference arc useful for efficient storage binding. For example, local
variables and parameters may be automatically cached by the target hardware. Consider the following Pascal

source statement:

x © array[1..10] of record
i: integer;
r: red
end;

Thecorresponding IR s

:711i TLocal Tinteger T1
:T1r Thocal Treal T1
170 x Tlocal Trecord 710

The address of record x[10} is:

+ x*-10 1 + sizeTinteger sizeTreal11
To access the field x[10].r, the IR codeis:

INDEXTreal + x * -10 1 +sizeT in teger sizefreal r

Variables may be bound to various storage classes in the target architecture. Examples of such classes are
main memory, general purpose registers, accumulators, index registers, base registers, condition code register,
stack, operand gucuc and cache. The storage-binding phasc reads in target-machine locations, architecture
properties and usability restrictions. Examples of these data are memory range, number of registers, hardware
stack, frame, direction of framc growth, positive and negative offscts, data types and their alignment
restrictions, addressability. Sometimes, there are restrictions on binding variables to certain classes of storage.

For example, variables whose addresses are needed in computation should not be alocated to ALAT

Yize7 ficldname is al'so permitted.

29

locations in FOM. They nced to be-alocated in main memory. Similarly, actua parameters of procedures
cannot be allocated on the FOM stack or queue. Furthermore, because of its data typc, a variable may never
be present in a particular storage class. Most of these storage classes arc alocatable, some arc temporarily
allocatable whereas others such as condition code register and opcrand queue are nof alocatable. Usually,
members of this latter category arc effects of special features used to implement the target hardware, such as
pipelining and operand prefetch. Such storage classes arc alocated as side effects and may be exploited as

temporaries by the instruction selection phase.

Within the category of allocatablc storage classes, a number of different data types may be supported. Each
data type specifics an operand length that is supported by at least onc machinc instruction. Due to
architectura restrictions, not al data types may be supported in al storage classes. For example, not al data
types may be representable in a register storage class on most machines. Furthermore, the choice of
display/environment set up may restrict accesses and consequently, the choice of a particular storage class.
For example, up-level addressing may not use displays.

In the following text we discuss storage binding as the following issues:

e Storage Description Tables that specify machine-dependent attributes such as storage class and
data type. This specification describes all available storage including overlap of groups of
locations that are otherwise logically distinct, alignment and addressability restrictions.

¢ Storage Mapping Tables that facilitate the mapping of IR attributes to machine-dcpendent
attributes.

e Expansion of variables into access primitives. Usualy, the target architecture does not provide
support for up-level addressing. The display/environment or static chain is a facility that is
provided to access an objcct. An IR variable is expanded in terms of these access primitives to
simplify mapping this facility to the addressing modes provided by the target architccturc.
However, if the target architecture does provide such afacility then expansion is not necessary12 .

e Expansion of certain IR operators. The expansion phase also cxpands operators with non-
mappabl e attributes in order to interface well with the instruction selection phase. Array address
calculations that are implicit, i.e., auto-scaling of array indices asin INDI-XTs are exposed if the
target architecture does not provide afacility for auto-scaling, ¢.g., 5% 1, 2 on FOM.

12, ¢ ULoad! mode, UpTip, Variableld in FOM

30

3.2 Attributes for storage binding

[l variables (names, attributes) must be converted to machine addresses before instructions are selected.
AN IR class will map to a machine storage class, e.g., memory, stack, registers and cache. An IR data type will
map to a machinc data type, e.g., byte, word, long and real. The attribute dormains IRCLASS and IRTY PE
can have the following values. These vaues are decided, in principle, by the I-ILL that is being compiled.

Attributc Domain Attribute Value
IRCLASS Global

Static

Loca

Formal Parameter

Actua Parameter binding location
Function return location

Label

Constant

Compiler Gencrated Temporary name
Address of variable necessary

Import of anon-local variable or deferred size®

IRTYPE Boolean
Character
Integer
Real
Pointer

An operand (datum) on the target machine will be addressable by the following triple; components of this

triple are attributes:
<class, offset/name, access>

. The class attribute is the operational storage segment such as main memory, stack or register. The offsct
domain is the range of the storage class also called the address space of the storage segment. It is calculated as

start-address . . cardinality

of the storage class. The access domain is a machine-addressing mode, which isinitially a grammar
production and eventually an attribute after parsing through the addressing-mode production. The
operational length of adatum is given by its data type or the address diffcrence between two successive
elements in the corresponding storage class. The machine-dependent attributes are storage class, i.e.,
operationa storage segment and machine data type, i.e., operand length. They are defined as follows:

CLASS: machine-specific type of physical storage location; e.g.,

13eAg.‘ Fortran COMMON

31

& Main memory
e general purpose registers

e stack for procedure-level or block-level alocation

These locations arc alocatablc for maximum scepe and lifetimes of variables. Other locations arc temporarily

allocatable during volatile alocation. Such volatile locations need a temporary manager to track contents to

ensure lifetimes of variables. Examples of such classes are as follows:

¢ Stack for expression evaluation
e tcmporarices in main memory

e tcmporarics in registers

These locations are allocated and managed by the Temporary manager during code generation. Some

locations are not alocatable by the code generator. The hardware implicitly allocates them usually m-the-fly.

Examples of such classes are;

« condition code hits
e cachce or high specd register buffer

o Instruction-stream constant, i.e., immediate operand.
The following classes are examplcs from FOM and I1BM-3701

FOM

Memory

Integerstack

Realstack
Integerqueue
Rcalqueue
IntegerConvertqueue
RealConvertqueue
IntegerALAT (ALATI)
RealALAT (ALATR)
Instructionstream

IBM-370
Memory

Register
Instructionstream

These classes arc assigned to variables and remembered via an attribute. The environment attribute of a

variable in IR isused to map the variable to a machine storage class. This class attribute must be set up by the

storage-binding phase before instruction selection. Otherwise, the instruction selection phase may fail to

sclect an instruction and thus, block code generation.

DATA TYPE: the length in bits required for the variable to be an operand. Using language dependent

32

data typc of avariable that appears as an attribute in IR, the variable is mapped to a machine specific data

type. Formally, data types are groups of bits that can participate as operands to instructions; e.g.,

FOM: integer, logical. boolean, rea

IBM-370: Halfword, Word, Short Float, Long Float, Decimal.

An alocatable storage class may not necessarily support all machinc data types. This architectural non-

orthogonality must be taken care of during storage allocation/binding and during instruction sclection ™,

3.3 Storage-5escriptisn tables

The Storage description for the target architecture contains the following items:

e class and range of class
e data type
e allocatability

o addressability, i.e., address obtainability.

o alignment factor. Usually, on many machines, specific addresses necd alignment restrictions such
as, byte alignment, word alignment and long-word alignment. In DELSs, such as FOM, variables
arc represented by their string names and not by offscts. Conscquently, such alignment
restrictions are not needed at the code-generator level?

e overlapping cells or sets of non-overlapping storage locations

The storage tables are enumcrated below:

1. StartOffset: StorageClass — Offset
2. BascRegister: S toragc Class — Register
3. Datatype: IR type — type {Boolean,Integer,Real in FOM)
4. Bytes: machine data type — number of bytes
5. Alignment: machinc data type — alignment number
6. StorageResidence: IR class X machine data type — storage class

€g.

Globa X Integer — Memory

Mprea’icalcs [Fischer 83] handle such restriction during instruction selection

151.&, p-c-assembler level

33

Local X Red — ALATR
Formal Paramcter X Reai - Memory
7. Allocation: Storage class X IR class — dlocated result (ASM-code, Address)
eg.
Memory X Global — name: Block <size>
ALATI X Loca — Locall name, <initialvalue>
ALATI X Globa — IGlobal name, <initialvalue>

3.4 Aliocating space

Allocation is essentially determination of storage class and offsct on the target machine or an assembler
name if assembler pseudo-ops are used to allocate space. Attributes in IR and the storage-description tables
are used to implement this mapping of variables to target locations. Space is allocated by mapping class and
data-type attributes in IR to machine attributes. storage class and target data type. The classenvironment
attribute to an IR variable describes whether the variable islocal, global, up-level or a parameter.

Considering allocatability, e.g., architectural restrictions such as parameters must be in main memory, restricted
register use, the variable is alocated to a particular storage class such as main memory, general purpose
register or stack location. For example, FOM has the following restrictions: array element areas, common
and equivalence types must be in main memory; base of the array must be in ALATI; labels and certain

constants that cannot be part of the I-stream for immediate access.

The elementary data type attribute of a variable and the how many attribute, e.g., number of array clements,
present in JR is used to determine the start address of the variable considering the minimum addressable
unit/length, i.c., bit/byte/word addressability. The variable or the variable element'® is assigned a machine-
specific data type using a data-type mapping table supplied by the describer. If an architecture supports a
contiguous allocatable segment of space17 then records and arrays in IR may be allocated contiguous blocks
of storage. Assembler primitives may also be used to set aside these blocks of storage. Alignment restrictions
are aso considercd. Machine-specific offsets, base-register/location-name/location counter are assigned and
entered into the code generator’s symbol table or assembler primitives arc used to allocate storage.
Overlapping cells'® arc automatically updated as status busy.

16'm the case of an array element

7 e.g., iIAPX-432 objects

18e.g., register pairing and sharing

34

determine — machine — class:
. obtain IR attribute of variable - local, global. outer, parameter
. congider allocatability and architecture restrictions from machine-description tables,
e.g., parameters must be in main memory
. register preference - these attributes come from I-1LL front-end
. dlocate selected class such as main memory, general purpose register or stack

determine- machine— datatype:.
. obtain Il attribute - intcger, real, boolean
. use “how many” attribute in IR, e.g., array elements
. assign a machine specific data type for variable element
using data-type mapping table from machine-description tables.

allocate; obtain name or offset class:
INPUT:
When this procedure is caled, the following attributes have already
been determined: storage class, irclass, name, size/number-of-bytes,
alignment and possibly initialized value or name for this variable.
OUTPUT:
allocate either cinits assembler storage primitives
or caculates an offset in the variable's storage class.

, if assembler primitives exist then

use symbolic names

emit assembler primitives for storage allocation

return;
. calculate the effect of alignment restrictions (offset + offset modulus alignment)
. determinc addressability

<start address, bit/byte/word addrcssability, minimum addressable unit/length>
. determine range = start address . . max- allocatablc address of class
. determine address-difference

overlapping cclls will be automatically updated as status busy,

e.g., register pairing and sharing
. assign offsets, basc register/name/location — counter and enter into symbol table.

3.5 Operand access

All attribute information regarding a variable is kept in the code-generator’s symbol table. Thus, attributes
of variables in IR need be declared only once. This symbol table supports block structure. For up-level
addressing, access is specified in terms of indexing and indirection primitives. The run-time environment is
set up using a display, a static-chain mechanism or an environment vector. Correspondingly, a frame pointer,
adisplay pointer or an environment pointer is selected from among the machine locations. Using this
environment and access mechanism, any reference to an IR variable is expanded using indirection and
indexing primitives. IR names and attributes arc expanded to machine addresses using multiple levels of

indirection and indexing. Thus, opportunities for optimization in address arithmetic arc exposed prior to

35

instruction selection. Examples of such optimizations arc the usc of hardware indexing to subsume (i.e.,
compile-back) additions and scaled multiplications, c.f., VAX-11, Motorola-MC68000 architectures. Indexing

can be defined in terms of indirection. The scaling factor is an attribute to these operators.
INDEXTs vara varb = INDIR ECTTs + vara * varb sizeTs
thus, when sizeTs = 1; INDEXT svaravarb = INDIR ECTTs + vara varb
and when varb = 0, indirection can be visualized as a special case of indexing;
INDEXTsvara0=IND IR ECTTs vara
Consider the following example using a static chain environment in the FOM architecture:
: varA Tup-level T21eve1519 Tinteger Tlunit “a static-chain example”

To achieve up-level addressing in FOM, an ALATI entry is used to store the environment pointer (stack
framc location) of the parent procedure that must have been previoudly invoked. The variable itself is

expanded into a chain of pointers:
INDEX varA INDIRECT INDIRECT framepointerTALATI

This expanded string may be mapped to any one of the following possibilities:

e asingle variable with its auto-indirect bit ON
e use of the variable as an address and load its contents

¢ load and store with the EP (environment pointer) of the referenced proccdurezo

If the scaling factor s is not directly mappable to the target architecture’s scaling factor then

INDEXTs A | is expanded to INDIRECTTs + A * | sizeTs

B JR requires that the number of levels be explicitly specified. This information can be deduced from its symbol table but then
dynamic binding cannot be supported.

2035 suggested in [Brantley 82]

36

Import of varicbles

If avariableis not declared in the current block, it must be imported. Examples of such cases are global
variables that are declared outside the current block, and forward rcfcrences of variables declared outside the
current block.2! In such cases, the variable must be declared with an attribute T1 beforeitsfirst usein the
current block. This process must be repeated in every procedure the variable is used in a sitnilar fashion. In

niost cases,

": var TImport" is equivalent to ": var TLocal Tpointer T 1 initialized?® with the variable’ s address’ .

3.6 Address Obtainability

IR provides two operators for address arithmetic. These operators are # (address of) and sizeTt, where t is
any type including record names and component field names. Array indexing is performed by arithmetic
using these operators. An array is guaranteed to be allocated as a contiguous block, so this kind of relative
address arithmetic is always valid.

Sometimes, the necessity for obtaining the address of a variable occurs on-the-fly during instruction-
selection. For example, such necessities arise when passing arguments to functions by address in Fortran and
when passing VAR parameters in Pascal. Some storage locations on the target machine may not be address-
obtainable. Examples of these classes are general-purpose registers on most machines and the ALAT in
FOM.2 There does not exist an addressing mode2* or a load-address instruction”® that can provide the
address of the variable resident in this storage class. When an address has to be copied using the Bind
instruction in FOM, the source ALAT location must be initialized with the corresponding address. This copy
isimpossible if the address being passcd is that of an ALAT object. Consequently, any object whose address
is required cannot be allocated on the ALAT. It must be allocated in memory 2 and then an ALAT entry
should be initialized with its address. In order to ensure this alocation, the IR provides an attribute T 4 that
must occur with a variable whose address would be needed. before the first use of the variable in the current

scope.

21 e.g., Fortran Common. Forward references in Pascal are not permissible on other machines.

221‘he code generator will emit a Locall var, var$Ba for every such procedure.

23ALA? is not address-obtainable because of hardware implementation issues.

24e.g., immediate address on the PDP-11

25e.g‘, LA on the IBM-370 and MOV A(bwifqd) on the VAX-11

26c, 2., using the block declaration

37

Even if the address of a variable is available in the storage location in which the variable isresident, a
problem may arise if this storage location cannot participate as an operand to the operating instruction.?’ For
example, consider scalar VAR parameters of type rcal. FOM parameters are implemented with the BindR
instruction that copies ALATR locations. If the caller’s ALATR location contains an address, then the single
word address is copicd. But there is no way for the callee to extract a single word from a double word

ALATR location. For example, a CnvR op-code is used to convert arcal variable to an integer variable.
CnvR a., X, Fix%

does not yield the least-significant-word of the double-word ALATR entry, X. Instead, it converts the
nutnerical value of X to afixed-point reprcscntation. The problem is that the address is available in the
caler's ALATR, but it needs to be supplicd in a Bind! instruction that requires its operands to bein ALATI.
Therefore, an ALATI entry should be created, initialized with the address, and used for the BindL.?® Thus,
any time the address of areal variable is nceded, a fresh local temporary*” is alocated and initialized with the

global address of the real variable. This temporary, being in ALATI, is directly used in Bindl. For example:

Locall temp, %X
LocalR X, %X
Bindl temp, 3

3.7 An Example: FOM Storage description

e Main memory, alocatable

e NO registers

e NO stack for block leve or procedure level allocation
« Stack for expression evaluation; volatile storage class
» NO condition code bits

@ High Spccd Buffer called ALAT; allocatable with restrictions, i.e., excluding arrays, common
variables and in genera whenever the address of a variable is required.,

e Large constant (small constants as immediate operands); allocatable

2z Thisredtriction is an architectura!l restriction on the programming model.

28Ideally, in FOM, the VAK parameter should be implemented by an AutoIR. But then LoadR cannot be used to accessiit: instead it
should Le accessed directly. Furthermore, the code generator does not have the information to recognize a scalar, real, VAR parameter,
i.e., the IR declaration is T Parameter T pointer T 1, which could mean a pointer to an integer or areal.

29This yields cstrancous tcmporarics in ALATI. Since dl locals are “cached” by FOM, there arc no performance problems due to
these extra tcmporarics.

¢ Queue, volatile

Storage Class

Main memory yes

Stack
Queue
Alat
Constant

Allocatable
bit/byte/word
addressable

Addressability

startaddress..finaladdress

word(16 hits)
word(16 bits)
word(16 bits)
word(16 hits)
Immediate

Allocatable range

top, top-l
front, front-15

-64 .. 63

There is NO ccl! ovcrlappirg,i.e., different names do not exist for the same physical location.

Datatype width

Integer 16
Real 32
Boolean 16
Logical 16

Alignmen t factor
modulus alignment

mod 16’
mod 32
mod 1
mod 1

Storage Mapping Tables for FOM

Storage Class

Memory
IntegerStack
RealStack
IntegerQueue
RealQueue

IntegerConvertQueue
RcalConvertQueue

ALATI
ALATR

InstructionStream

IRtype

Boolean
Character
Integer
Red
Pointer

FOM Datatype

Boolean
Tntcger
Real

Offset

Basc Register

oo nNMNMOOococo oo

None
None
None
None
None
None
None
None
None
None

FOM Datatype

Boolean
Integer
Integer

Real

Integer

Alignment
1
1
1

39

| Rclass Boolean Inteect Real
Globa Memory Memory Memory
Static Memory Memory Memory
Local ALATI ALATI ALATR
Formal Parameter ALATI ALATI ALATR
Actua Paramecter ALATI ALATI ALATR
Function Return ALATI ALATI ALATR
Label ALATI ALATI ALATR
Constant ALATI ALATI ALATR
Temporary ALATI ALATI ALATR
AddressObtaingble Memory Mecmory Memory
Allocation

(Memory, Global)
(Memory, Static)

(Memory, Address)
(ALATI, Local)

(ALATI, Formal P)
(ALATI, Function)
(ALATI, Labdl)

(ALATI, Constant)
(ALATI, Temporary) —
(ALATI, Address) —
(ALATR, Local) —
(ALATR, Formal P) —
(ALATR, Function) —
(ALATR, Constant) —
(ALATR, Temporary) —
(ALATR, Address) —

lwlwl |1}

"\n%s: \tBlock %o"
"\n%s: \tBlock %o"
"\n%s: \tBlock %0"
"\tLocall %s, %s\n"
"\tLocall %s\n"
"\tAutoll %s\n"
"\tDclLabel %s\n"
"\tLocall %s, %o\n"
"\tLocall %s, %s\n"
"\tIGlobal %s, %s\n"
"\tLocalR %s\n"
"\tLocalR %s\n"
"\tAutoIR %s\n"
"\tLocalR %s, %0, %o\n"
"\tLocal R %s\n"
"\tRGlobal %s, %s\n"

40

Bl MMachine Grammear and the instruction
ieclion Phase

4.1 Data types and grammar non-terminals
FOM supports the following data types:

« Integers, 32 bitswide

e Logical, 32 bits wide; the most significant bit (bit 0) contains the logical. The remaining 31 bits of
the word are ignored.

e Boolean, 32 bits wide; thisword is interpreted as a vector of 32 binary bits.

¢ Floating point, 64 bits wide.

Grammar non-terminals are used to represent each of the above data types. These non-terminals are
italicized below:

DataType Grammar Non-Terminal
In tegers Infeger
Logical Integer
Boolean li2teger

Floating point Real

The following section enumerates FOM instructions, restrictions on their operand usc and access, and
corresponding machine grammar productions. The most general production is listed last. This production
represents the most general form of use for the corresponding instruction. This production may or may not
appcar with a blocking predicate depending on the instruction-set architectural restrictions on the
programming model. If a production appcars with a blocking predicatc, then the production is applicable if
the blocking predicate evaluates to true. To prevent the code generator from blocking, productions must also
be supplied with the same syntactic form but without the blocking predicate. These productions will be
selected if the architectural restrictions specified by the blocking predicate are not satisfied for a syntactically
valid IR input.

Later, other productions that represent optimal use of the instruction under various contexts arc described.
These optimizations are data flow dependent and are represented by identical productions with different
disambiguating predicates. The synthetic attribute Tr contains information pertaining to the result of a
machine opcration. Machine-dependent details such as the variable location, such as stack, queue, register,

memory, cache, and the spccific address within that location form part of the attribute Tr.

41

4.2 Grammar productions

To handle Affix Grammars. i.e., semantic atiributes and predicates, the parscr driver was modified to
accommodate conrext-sensitive aspects [Fischer 83] and. thus, providc conrext-sensitive pattern matching that
isnecded for instruction selection. Thus, deriving a code gencrator.is very similar to deriving an attributed
context-fret parser. Generating code is very similar to doing attributed parsing [Toplas 843. Productions use
terminals and non-terminals with attributes. Prodicatcs control production application. Action symbols

compute attributes and emit code. As an example, consider the FOM addressing-mode production:

Addressf LDQ R — INDEXTscale IntegerTa IntegerTb scale=2
EMIT |’'loadR’lal b

where Integer and Address are grammar non-terminals with attributes ‘a and ‘b’ specifying locations that
participate in the indexing opcration. Emit is an action symbol that emits a LoadR instruction to synthesize
the attribute LDQR, i.e., result in the queue, for this datum on FOM. The predicate scale=2 specifies

FOM -architecture restrictions on synthesizing this code. If the predicate evaluaics to fu/se, recognition of this
production is blocked. Consequently, a subsequent production is matched that satisfies architectural
restrictions. Examples of similar restrictions on other architectures are IBM-370 restrictions on displacement
and base-register use, iAPX-86 restrictions due to segmentation and index register use, and in general, if the

attribute ’b’ happens to be a memory location instead of arcgister on most machines.

The use of semantic atzributes facilitates a type-sensitive machine grammar. This feature is an important
factor in reducing the grammar size. Furthermore, inclusion of type information at the grammar level permits
implicit type coercions to be driven by the grammar. This facility is especially important to support mixed-
mode arithmetic with a number of arithmetic types in the HLL. Other semantic information such as
intermediate results, i.e., temporaries in expression evaluation, immediate constants or memory references are
also handled as semantic attributes to grammar symbols. To perform individual operand accesses,

Addressing-mode productions discover feasible uses of effective address generation mechanisms of the target

machine. Consequently, an operand-access format is selected.*®

Addressta — Datumta a. class = Instructionstream

a.format = "%d" i.e., vaue
Addressf a — DatumTa a.class = ALAT

aformat = "%s" i.e., name
Addressta — Datumfa a.class = Stack

a format =" " i.e,, blank space
Addressf a — Datumf a a.class = Queue

aformat = "Load%Q" i.e., load queue

30The format then becomies a semantic attribute to the Lhs non-terminal Address.

42

The non-terminal Address reduces to another non-terminal that signifies a machine data-type in FOM:

IntegerTa — AddressTa a. type = integer
RcalTa — AddressTa « type = real

Predicates are a very uscful aid in making parsing decisions. This aid allows us to use grammars that
otherwise could not be parsed. Such predicates arc often termed disambiguating predicates because they
resolve parsing decisions that otherwise would be ambiguous. For example, the following productions
represent situations in which some form of division may be generated. These productions match the 1R ; they

generate FOM ingtructions via EMITS.

Realfr — /RcallrReal7 1
Realfr — /RealTa Reall b Constant)a A Constant| b
KFOLDTr = ab
Reallr — / Readlf aReallr -~ Busyl r
EMIT]’DivR’|alrTr
Realfa — /Real]aReal{r ~ Busy| a
EMIT]’DivR’|arTa
Reallr — /RealTa Real b Stack| TOP|b A Stack] “TOP-1"{a Temp]’real’Tr
EMIT}'RDiv’[blaTr
Reallr — /Redf aReall b Temp]'real'T:
EMIT['DivR’[albTr
The predicates Constant and NotBusy perform atwo-fold function. First, they serve as a guide to when a
production is applicable and second, they scrve to control parsing, i.e., resolve reduce-reduce conflicts that
would otherwise occur if this grammar were predicate-free. The first two productions recognize the special
case of adivision by the constant one and division of a constant by another. The third and fourth productions
investigate if the locations containing either of the operands is not busy and thus can be used to store the
result. A divide instruction is generated. The next production checks if the operands are in reverse order on
the FOM expression stack, thus requiring a ‘reverse-divide' instruction. The last production is the final

“match al” production that will obtain a temporary to store the result and then emit a divide.

Optimization productions are added incrementally to the machine grammar to improve target code quality
and to provide fine runing of the object code. They arc specified before general productions so that their
predicates are evaluated first. The thrust of this addition is to facilitate incremental development of an
optimizing code gencrator. The inclusion of such productions contributes to shift-reduce conflicts in the
machine grammar. To resolve such conflicts, predicates arc used. These predicates may be contextual
predicates or look-ahead predicates. Contextual predicates examine the current context of opcration; all
rclevant context being available on the attribute stack of the code-gencrator-generator. Look-aheadpredicates
examine the look-ahead symboal, if any, aready provided by the code-gencrator parser. This examination is

necessary to prevent blocking of the code gencerator for a valid IR input.

43

For simple instruction selection productions, a final match-all production, with no predicate restriction,
suffices to prevent blocking. On the contrary. for optimization productions, blocking resolution must be done
by adding productions with converse predicates for each non-lookahcadpredicate that evaluates to false and

follows a lvokahead predicate that evaluates to true. In FOM such cases do not arise.

Findly, we use Cost predicates to select among different implementations of the same instruction sct that
have different speeds for instructions, operands, addressing modes and cache effects. Such instruction
implementations are usualy represented as identical productions that differ only in Cost predicate values.
However, cases arise when Cost predicates are needed to resolve conflicts on the basis of instruction timings.

In such cases, they appear in non-identical productions. For example, in FOM, a
NerB a b, c

ispreferableto a
orB a, b, c; NorB 0, c, c

Thus, it seems likely that the NorB reduction should aways be preferred to an OrB reduction for an IR string
NOT OR a b

However, the code generator may choose to implement
NOT OR a b label

as either
OrB a, b, c; IfLF c, label

or
NorB a, b, c; IfLT c, label

The code generator will usc cost predicates to select the lesser of
time[OrB]+time[1 LF]

and
time[NorB]+time[If LT]

The complete FOM grammar is listed on an instruction-by-instruction basis in the Appendix.

4.3 Grammar Issues

Operands may need to be relocated intentionally by the code generator to storage locations other than the
onc they normaly reside. Such relocations may or may not bc associated with a corresponding change in the
machinc datatype. Usually, dcficicncics in instruction-set orthogonality and the inherent design of two-
address instructions that perform destructive operations31 lead to operand relocations with no associated

change in their data type. Examples of such occurrences arc:

e lack of memory-to-memory operations on the iAPX-86 and the 28000 microprocessor
architectures.

31‘1.e., one of the operands is replaced by the result of the operation

¢ impossibility of memory-to-memory arithmetic on the IBM-370 and the PDP-11 computers.

¢ two-address arithmetic operations that destroy the contents of one of the operands; consequently,
one of the operands must bc moved to atemporary location before the operation is performed.

Such operand rclocations are handled by blocking predicates and disarnbiguating predicates.

On non-tagged target architectures, the data-type encoding is part of the op-code specificr. Mixed-mode
operations arc, thercfore, implemented by converting ali operands to the same machine data-type before
performing the operation. Such conversions may bc specified explicitly as type coercions by the compiler
front-end or ptrformed implicitly by the code generator. To implement forced operand relocations associated
with data type conversions, LoopCheck predicates are used. For cxample, to convert an integer datum to a

real datum on FO4, the following production is used:

RealtCnv%Q — Integerfa CheckConvert|a) Integer’| Real”
EMIT}’CnvI’|a| Float%
The predicate CheckConvert is used to check if conversion from integer to real format is really needed in the
current context of operation. Context is determined by interrogating the attribute stack of the code generator.
The desired left sibling will usually be at a constant offset from the top of the stack for al itemsin the
configuration set. The absence of the trausfer production may force the code generator to block while
processing a semantically correct IR input. The absence of the predicate alone will result in a shift-reduce

conflict of the predicate-less production with other instruction selection productions such as

IntegerTr— + IntegerTrintegerTa EM IT|'Addl’ alr|r.

The inclusion of this transfer production may cause loops in the code-generator automaton when data type
conversions are performed more than once for the same variable. For example, an integer variable may be
converted to a real variable and then subsequently converted back to an integer variable by a sequence of
reductions without consuming any IR input. The predicate CheckCon vert is therefore used to check if
conversions are performed more than once for the same variable; thus, avoiding a potential looping

con figuration of the code generator.

Many target architectures provide special-purpose instructions to yield optimized target code. Examples of
such instructions are: subtract-one-and-branch on the PDP-11, If-Logical-False on FOM. It is not essentia to
usc such instructions in the trandation of user programs for the target architecture. However, by using such

instructions, compilers can produce efficient representations of uscr programs.

1t is possible to represent such fancy instructions as grammar productions with a longer right hand side. For

example, the IfLF instruction in FOM can be specified as:

45

Instruction — - BooleanTh LabelTn
EMIT{'IfLF'|b{n
EMIT|’'Nop’
EMIT{ Nop’

Consider the IR string -~ b n (if not b then gote label n) and a shift-reduce conflict of the above optimization

production with the following instruction selection production that describes a Nor Boolean instruction on
FOM:

BooleanTb — - BooleanTb = Busyl b
EMIT|’'NorB’[0{bTb

For purposes of this discussion, let us assume that Busy| b evaluates to false. There exist two derivation
possibilitics.

e The NorB production is selected followed by an If1.7 production:

Booleanf b —+ - BooleanTb -~ Busyl b
EMIT|’NorB']0{bTb
Instruction — Booleanfb LabelTn
EMIT/'IfLT |bin
EMIT]’Nop’
EMIT} Nop’

o The [fLF production is selected:

Instruction — -~ Booleanfb LabelTn
EMIT/'IfLF | bin
EMIT]'Nop’
EMIT/| Nop’
The IfLF isabectter choice than NorB, IfL.T and even more so if Busy| b evaluates to true in which case a
temporary dlocation could be saved too.

In view of thcse two derivations, the code-generator-generator reports a shift-reduce conflict between the
NorB and IfLF productions. If the code generator always shifts, i.e., sclects an IfLF, then it may block for a
correct IR string such as ": = A4 - b". Similarly, if the codc generator aways reduces, i.c., selects a NorB, then
poor qudity (but correct) code will be generated.

To resolve this issue correctly, an IfLF should be selected if the immediate context of operation is a
conditional. Otherwise a NorB should be selected. Because the IR is prefix, the immediate context is the left
context of the current configuration set that is aways available on the stack of the code-generator parser.

Predicates can bc used to cxamine the current context at calculated positions on the stack where a needed left

46

sibling is stored. Furthcrmorc, in practice, because of the nature of instruction-selection productions, the
desired left context will usually be at a constant offset from the top of the stack for all itemsin the

configuration set. Thus, contextual predicates arc added to the conflicting productions as follows:

Instruction — - BooleanTb context = conditional Label] n
EMIT{’IfLF’|bin
EMIT['Nop’
EMIT|'Nop’
BooleanTh — = BoolcanTb ~ Busy| b A context % conditional
EMIT|'NorB'|0|bTb
In this case, there can be some minor optimization in the code-generator speed. The context need be
examined only if the Jook-ahead at the conflicting point is a label. A look-ahead predicate LAshift could be
inserted before the contextual predicate. The predicate L. Ashift evaluates to true if the look-ahead symbol
already provided by the parser happens to be one among its arguments. In this example, the look-ahead
symbol must be a labe! so that the shift may possibly be taken in place of the reduction. The actual shift will
take place pending true evaluation of the contextual predicate. Thus, the productions can also be written as
follows:

Instruction — - BooleanT b LAshift| label A context = conditional Labelf n
EMITIfLF | bln
EMIT['Nop’
EMIT|'Nop’

BooleanTb — = Boolcaritb ~ Busyl b A context 54 conditional
EMIT|'NorB’[0}bTb

In summary, the instruction-selection phase performs the following code-generation functions:

e It selects machine addressing modes.

« It Selects target machine instructions. Somctimes, instructions are subsumed within addressing
modes or they are constant folded within address arithmetic.

o It performs temporary allocation and data type conversions where needed. To handle non-
orthogonality of the target-architecture’ s instruction-set, addressing mode conversions and other
restrictions imposcd by the target machine are handled by predicates to grammar productions
-- the control is automated through the parsing scheme.

4.4 Implementing Predicates and Code Generation Algorithm

Not all grammar forms are easily parseable. Therefore, in practice, only certain classes of grammars, most
commonly LL(1) and LALR() [Aho 73], are uscd. Due to the prefix nature of IR and since real computers
often have numerous instructions that can be used to effect the same result, top down parsing is not well-suited

to target code generation. Bottom-up parsing is preferred. For arationale, the rcader may refer to

47

[Ganapathi 80]. In this paper, we concentrate on adding predicates to LALR(1) parsers, using
YACC[Johnson 75] as a foundation. For details on implementing predicates in top down and other bottom up

parser gencrators, the reader is referred to [FFischer 83).

In many ways, a predicate symboal, i.e., asymbol that represents the invocation of apredicate, can be viewed
as a varicty of terminal symbols. The predicate symbol represents a marker verifying the semantic constraints
of the symbols on the right-hand-side of a4 grammar production. If the scmantic constraints are not satisfied,
the marker is absent, and the production is blocked. This approach is easily implcmented. We examine the
parse table entries corresponding to a given parser configuration. If a predicate symbol can be read in a given
parser configuration then the corresponding predicate is evaluated. All predicates are assumed to be side-
effect frec. If the predicate evaluates to true, a token corresponding to the predicate symbol is inserted into
the input. Look-ahead symbols must be saved prior to insertion of the predicate symbol. The insertion alows
the parser to consume it and production recognition proceeds. If the predicate evaluates to false, the
predicate symbol is net inserted, and the production is blocked, possibly causing a syntax error to be
recognized. In effect, special markers are added to the user’s input as a side-cffcct of predicate evaluation,

providing extrainformation to the parser.

In LR-type parsers, predicates that appear anywhere cxcept at the extreme right can bc implemented as
either terminal symbols, or as new non-terminals that derive only &. Implementation of predicates as non-
terminals is attractive in that predicate cvaluation can be triggered by the usua production-recognition

mechanism. Further, these non-tclminals can cause no look-ahead problems because thcy generate only e.

Another issue is the use of predicates as look aheads. A look ahead is a terminal symbol that may not be
part of the production being matched, but rather part of the context just beyond it. Predicates should only be
visible and evaluated when they are part of a production currently being matched. Their use as look-aheads
must be severely limited. In particular, all predicate symbols that appear as look aheads for reduction actions

must be removed or avoided.

The code-generation agorithm mirrors the standard LR(K) parsing loop with added code to implement

predicates.

48

PROGRAM Code-generator;

State : = 0;
Action : = Shift;

SWITCH (Action) OF

CASE Shift:
Push(Statc);
IF Look-ahead-Token exists ~ THEN
Symbol : = Look -ahead-Token
ELSE
Symbol : = Lexicalanalyser();
Action : = Nextaction(State, Symbol);
State : = Nextstate(State. Symbal);
IF Buffer £ Empty THEN
BEGIN
Look-ahead-Token : = Buffer;
Buffer : = Next symbol in Buffer
END
END;

CASE Reduce:
Pop(RHS-of -production);
State : = Top-of-stack;
Action : = Nextaction(State, I .HS-of-production);
State : = Nextstate(State, LHS-of-production);
END;

CASE Accept:
(* halt, accepting *)
END;

CASE Error:

(* halt, rgjecting *)
END

END

END.

4.5 Dynamic Conflict Resolution

Consider the following productions:

P1: A—=C
P2: B—C
P3: D—-EAB

49

P4: D—EBA

A reduce-reduce conflict is causcd by P1 and P2. To disambiguate this conflict, wc add a non-terminal

Nontcrm, a disambiguating routine disambiguate and tvkens Tokena and ‘I’ okenb as follows:

P1: A — C Nonterm Tokcna
P2: B — C Nontcrm Tokenb
P5: Nonterm — ¢

disambiguatc(A tzributestack, Tokena, Tokenb)

The decision to select P1 or P2 is made by disambiguate when areduction by P5 triggers the disambiguating
predicate. This predicate looks at the context, the attribute-stack or uses any conditions programmed by the
user and inserts either Tokena or Tokenb in the parser’ s input stream as an indication of its choice.

The parser, if it uses look-ahead, may have already read a look-ahead token. In this case, the
disambiguating token must be inserted before any such look-ahead token and the latter must be saved in a
token Buffer. For a k look-ahead parser, Bu/ffer has to be a queue of depth k so that al k parser look-aheads
can be saved in the buffer queue before disambiguate inserts any token in the parser’s input stream. The

following code illustrates this process.
PROCEDURE Disambiguatc {Tokenl, Token2....., TokenN)
BEGIN
IF Prcdicatel THEN insert(Tokenl)
ELSE IF Predicate2 THEN insert(Token2)
ELSE ...,
END;

PROCEDURE insert(Token)
BEGIN
IF Look-ahead-Token THEN Buffer : = Look-ahead-Token;
L ook-ahead-Token : = Token
END

4.6 Output Formatting

After instructions arc sclccted, a few files’ are used for output buffering. Tables are used to specify these
files and also to provide output formatting.

Variable-Prefix: Storage Class X IR Class — Prefix String

(Memory, Global) — "$Ba"
(Mcmory, Static) — "$Ba"

32'fhcsc files may bc in-corc files or disk files or & combination of the two. This implementation choice depends on the storage limits
of the system on which the code generator is resident.

50

(Memory, Function) — "$E"
(M emory, Constant) — "
(Memory, Temporary) — T

(Memory, Address) "%"

(ALATI, Global) — "$Ba"
(ALATI, Static) — "$Ba"
(ALATI, Function) - "$E"
(ALATI, Constant) - "§C"
(A LATI, Temporary) - "ET
(ALATI, Address) A
(A LATR, Global) — "$Ba"
(ALATR, Static) —~ "$Ba"
(ALATR, Function) — "$F"
(ALATR, Constant) - "$C"
(ALATR, Temporary) — T
(ALATR, Address) - %"

File: Storage Class — file number (0. . 7)

Addressing-mode Prefix: Storage Class — symbol {’a’,’k’,’q’,’s’}

Storage Class File Addressing-mode Prefix
Memo 0 ‘a
Integcgtack 5 ,:1,
RealStack 5 g
IntegerQueue 5 q
RealQuecue 5 'q’
IntegerConvertQueuc 5 qQ’
ReglGpnvertQueve § q’
a
ALATR 3 ‘d
InstructionStream 5 ‘K

Prolog: File — String

0 — "\n"

1 — "\nBecgProc"

2 — "\nALATI\n\tLocall Ret$IP\n\tLocall Ret$EP\n"
3 — "\nALATR\n"

4 — "\nEntryProcs IP$"

5 — "\n\t"

6 — "\nAlatHeader EP$"

7 — "\nEndProc ™"

Run-time Start-Up

51

runstart — "\n.inscrt fom?2.fai\n.insert fommac.fai";
runcend — "\nstopFOM \nEND";
extinscrt — "\n.insert fic.fai\n.insert frt.fai\n";

4.7 An Example of Code Generation by Attributed Parsing

Consider integer arrays A, B and C and the following Fortran assignment statement:

A(D) = B(J) + C(K)
The Attributed Polish Prefix Linear Intermediate Representation is:

:=INDEXTinteger A | + INDEXTinteger B J INDEXTinteger CK
The next phase sets the environment, assigns storage classes, such asALATI, ALATR, memory, stack, and
binds variables to storage locations in FOM. Information regarding storage classes, machine data-types,
alignment restrictions etc. are provided as separate tables. After, the storage binding and expansion phase,
every variable possesses a machine data typc33 with attributes spccifying the storage class and the machine-

specific location for that variabie. Thus, in the current example, the IR is expanded into:

: = INDEXT 1 IntegerT’ALATI a IntegerT’ALATT i

+ INDEXT1 IntegerT’ALATT,b IntegerT’ALATLj INDEXT1 IntegertT’ALATT ¢ IntegerT’ALATIL K
The next phase performs instruction selection. We now illustrate attributed parsing and the code generated
for the FOM architecture. The code that is generated upon production recognition, i.e., a reduction, is
enclosed within {}. The following lines trace the parsing process.

[1] :=INDEXT 1 IntegerT’ALATT ,a IntegerT’ALATL i
+ INDEXT1 IntcgerT’ALATY b IntegerT’ALATTj INDEXT1 IntegerT’ALATT ¢ IntegerT’ALATT k

[2] :=INDEXT 1 Integer’ALATT ,a Integert’ ALATT i
+ AddressTLAQI {Loadl aa., b, j} INDEXT1 IntegerT’ALATT ¢ IntegerT’ALATT k

[3] : =INDEXTI Integerf’ALATT .a IntegerT’ALATT i
+ IntegerT LdQI INDEXT 1 Integer]T’ALATI ¢ Integer’ALATL k

[4] :=INDEXT 1 Integert’ALATT ,a Integer]’ALATY,i
+ IntegerTLdQI AddressTLdQI {Load! aa., c, k}

[5] :=INDEXT 1 Intcgerf 'ALATT a IntegerT’ALATT i
+ IntcgerTL.dQI IntegerTLdQI

[6] :=INDEXTIIntcger’ALATD a IntegerT ‘ALATL i
+ IntegerTLdQI IntegerTLdQI Temp]’integer’TStoTemp

B Inreger inthe CUrrent ecxample

52

[7] :=INDEXT? 1 IntegerT’ALATT ,a IntegerT’ALATL i
IntegertStoTemp {AddI qua, Load%Q, Load%Q, StoTemp}

[8] : = INDEX?1 IntegerT’ALATI ,a IntegerT’ALATT i IntegerTStoTemp Lastref] '"ALATI’| StoTemp

[9] Instruction /S0l aa., a. i}
Thus, the FOM code generated for the Fortran assignment statement is.

Loadl aa., b, j

Loadl aa., c, k

Addl gga, Load%Q, Load%Q, StoTemp
Swolaa., a, i

53

5. Transient Obhservations

5.1 Unsupported features - possible further extensicns

Both U-code and IR arc considered to be langlage-independent intermediate forms. Conscquently, a
trandator from U-code to IR shouid not need any knowledge of the HILL. used to obtain the U-code. But this
observation is not so in practice. Occasionadly, the semantics of an HLL feature are defined with some
machine-dependent assumptions. Such features are very troublesome in a compilation scheme with an
intcrmcdiatc form, because the machine dependence has to be somehow implemented in the machine-
independent intermediate language. This problem does not occur in monolithic compilers where the
tranglation is performed directly to machine language.

The Ucodc-to-IR trandator is intended to work with both Fortran and Pascal. U-code features that have
not been implemented arc described below, along with remarks about what their implementations would

involve:

e Runtime support - The problem with runtimc libraries is that some of them arc nccessarily
machine-dependerit. This dependency includes procedures for 1/O, dynamic memory alocation,
runtimc errors, etc. Machine-independent libraries could bc supported by having an IR library of
the procedures, e.g., Math routines, but machinedependent routines cannot be written in IR. In
such acase, it is unavoidable that there be separate copies of these routines for different machines.
However, itissimple for IR to support separate compilation, so that. programs that use such
routines can be compiled through IR, even though the routines are not written in IR. This
solution is used in the U-code system as well.

e Sets - Sets were not implemented because they arc not supported in the current implementation
of IR. It would be a simple extension to include them by introducing vector boolean operators.
Of course, this operation can always be expressed by using a FOR loop, but that would lead to an
inefficient implecmentation on some machines.

e Non-local GOTOs - This feature has not been implemented, mainly because it is not supported by
FOM. Trandating a non-loca GOTO from U-code to IR is straightforward. The problem occurs
in the back-end that has to implement it. Non-local GOTOs can be easily incorporated in both
static chain and display register schemes. Howcver, necither of these traditional schemes can be
efficiently implemented in FOM.

¢ Procedure parameters - They have not been implemented for the same reason as non-local
GOTOs.

e String variables- String variablesis a Pascal * {Hennessy 791 feature that we have not supported.

e Import/cxport - Again, import/export of variables is a Pascal” feature that we have not
implemented.

54

e Datainitialization - The current implementation of IR does not have a compile-time data
initialization construct. Of course, a data initialization can aways be mimicked by an assignment
statement, but that would happen at run-time rather than at compile-time. This feature can be
implemented if data initialization was included in the | R implementation.

¢ Global register allocation - The current implementation of TR has no provision for specifying
registcrs.34 Therefore, the trandator docs not support U-code instructions that operate on
registers. This operation can only be done if alimited machine-dependency is permitted in the IR
implementation, as is done in U-code.

¢ Block move/compare - The only way to express block move/comparce operationsin IR is by
generating the equivalent FOR loop, which is inefficient. The translator could support these
operations once they are available in IR

5.2 Code Generator Statistics

The FOM code generator is resident on the VAX-11/780 runni ng Unix? and it occupies 100 K bytes,
mostly data space. It produces about 100 lincs of FOM assembler code per sccond. The grammar
incorporates 184 symbols and 267 grammar productions. The Code-Generator-Generator (CGG) takes about
two minutes to produce the FOM code generator. The compilers have been rctargeted to the IBM-370. The
IBM-370 codc generator occupies 120 K bytes. The grammar incorporates 200 symbols and 430 grammar
productions. The CGG takes about four minutes to produce the EM-370 code gencrator.

5.3 FOM Simulation Measurements

This section describes the results obtained by simulating 6 benchmark programs (2 Fortran & 4 Pascal) on
the ISPS simulator [Barbacci 77], driven by an ISP description of FOM. The measurement taken was the
number of instructions cxecutcd. Both the unoptimized and optimized FOM code were simulated for each
benchmark. As described carlicr, the optimizations were performed at the U-code level by yoprT.® Register
allocation was the only UOPT optimization disabled for FOM, as FOM has no registers.

Due to the dlow performance of the TSPS simulator (approximately 15 FOM instructions per CPU-second

34This featureis not important for FOM.

B e.g., by attributing the : = operator with size of the block to bc moved

36VAX is a trademark of Digital Equipment Corporation.

3 Unix 1s atrademark of Bell Laboratories.

38h¢ performance improvement obtained is about S0% for the DEC-10, MC-68000 and the VAX-11. Register Allocation is often
responsible for 30% of the optimization improvement.

55

on a DEC-20), we were forced to drastically reducc the size of the benchmark programs. This naturally leads
to a smaller improvement duc to optimization, because of the relative increase in time spent on initialization
and 1/0. Our results are therefore pessimistic about the potential spccdup obtainable by machine-

independent code optimization.

INVERT

INVERT is amatrix inversion program, written in Fortran. As a benchmark, it is designed to invert a 10x10

real matrix for 200 iterations. Wc usced only 1 iteration on a 3x3 matrix, and obtained these resuilts.

Unoptimized code: 2344 ingtructions
Optimized code: 2171 instructions
Percentage improvement: 7%

QUICKSORT

QUICKSORT isalso aFortran benchmark, which uses an explicit stack instead of recursion. It was

originally written to sort an array of 300 integers for 100 iterations. Wc used 1 iteration on an array of 5

iniegers.
Unoptimized code: 927 instructions
Optimized code: 841 instructions
Percentage improvement: 9%
BUBBLESORT

BUBBLESORT isaPascal program, written to sort an array of 70 integers for 100 iterations. We used 1

iteration on an array of 10 integers:

Unoptimized code: 2136 instructions
Optimized code: 18 52 instructions
Percentage improvement: 13%

FPRIME

PRIME is a prime number generator written in Pascal. It uses the “ Sieve of Erastosthenes’ method, and
was written to generate al prime numbers smaller than 16384, for 50 iterations. We generated prime numbers

smaller than 104, for 1 iteration:

Unoptimized code: 1881 instructions

Optimized codc: 1908 instructions

Percentage improvement: -1%
The “pessimization” of -1% is due to an unsuccessful attempt at strength reduction by the optimizer. The
multiplication in an array subscript turned out to be a multiplication by 1 that generated no code in the
unoptimized case. The optimizer attempted to reduce this multiplication to an addition by introducing a
temporary. In this case, it was a pcssimization because of the extra code generated to increment the

temporary.

56

INTMM

INTMM is an integer matrix multiplication benchmark written in Pascal. It was designed to multiply two

40x40 integer matrices (‘just once). We used two 3x3 matrices instcad:
Unoptimized code: 1756 instructions
Optimized code: 1565 instructions
Perce ntage improvement: 11%

MM

MM isjust like INTMM, except that it uses floating-point numbers instead. Again we used two 3x3

matrices instead of the original 40x40 size:
Unoptimized code: 2332 instructions
Optimized code: 1805 instructions
Percentage improvement: 23%

In comparison, the performance improvements obtained arc about 50% for the DEC-10, MC-68000 and the
VAX-11. We are in the process of obtaining similar data with the IBM-370 cG.¥

5.4 Code Tradeoffs
A number of tradeoffs can be made in the generated FOM code. Important ones are itemized below:

¢ Thc use of Autoindircction facilitates compact code space but is a drain on time. An aternate
solution would be to generate immediate stores to memory and loading from memory using Store
and Loud instructions.

o Some FOM op-codes are hon-orthogonal to data types; i.e., they do not operate on al data types
provided by FOM. For example, comparison operators opcrate on integer data types only. The
code generator (CG) will automatically convert such operations on other data types to the valid
operation by converting the operands to the valid data typc.40 This solution may lead to
inaccuracies, especially when floating-point datais converted to integer data. Thus, an alternate
solution would be to provide grammar productions for operations on other data types with
sequences Of target instructions that implement the operation.41

e Reversc-stack op-codes do not exist for certain non-commutative operators. 42 Consequently,
either the expression stack should not be used for such operations or grammar productions must .

39F’1rst, wc need to obtain an assembler and a simulator for the IBM-370.

40 In the machine grammar, such operators must appear with an attribute that specifies the valid data type.

4 Subtraction is a good tcchnigx to perform real comparison.

42 RSub and RDiv exist but reverse comparisen op-codes are absent in FOM.

57

be supplied that reflect reverse-stack operations with instructions using opposite opcodes™ or
opposite results?

5.5 Tracking

To utilize machine locations efficiently and also to produce correct code in the presence of architectural
restrictions, CG tracks the contents of certain storage classes.* On many architectures, these locations tend to
be general-purpose registers, top few locations on the stack, condition codes and other beneficial locationsin
the processor state whose contents are valid between instructions. Apart from ensuring architectural
restrictions on the operand usc, tracking also yiclds optimizations such as auto-increment, auto-decrement on
registers, avoiding redundant loads and stores, recognizing potential aliases in memory and register. In FOM,

the following locations are tracked:

Storage Class locations

Stacks top, one below the to 46
Queues front, next in queug’
ALATI last referenceto ALATI
ALATR last referenceto ALATR

The tracked information is retained as semantic attributes, to be used during attributed parsing.

5.6 Context-Specific Temporary Allocation

To improve target-code quality, context is propagated through semantic attributes. The main advantage of
the context attribute is that the target-machine describer can incrementally program the extent to which
context-dependent optimization may be pcrformced. In particular, it is a convenient method of ensuring
safety in the presence of optimizations. 8 Context specific temporary alocation is performed as itemized
below:

43 e.g., Lt for Geql, Gtl for Leql and vice-versa

44(:. g., IiLF for IfLT and vice-versa

4 Sometimes, depending on the necessity, CG can dso track temporaries. The main thrust of thisstep isto potentially overload
unavoidable temporaries that are not common-sub-expressions. Thus, the temporary store is re-used and in consequence, the total
number of temporaries is often minimized -- sec [Wulf 82].

46Could track more locations if morce than 2 stack locations are provided and indexing off the stack-top is allowed.

47Tracki ng two locations suffices for correctness but tracking more queue locations could yield optimal code.

48”Iwo examples of such interferences arc: (a) Code scheduling intcrferes with the use of the stack for temporaries, c.g., scheduling of
Loadl sk.,..... may not be safe: and, (b) Incomplete grammar specification interferes with the use of the stack without reverse-stack
op-codes.

58

e To reduce ALAT bank conflicts, the expression stack may be used instead of ALAT locations. In
the context of addition, subtraction, multiplication and division, the use of the stack, for
temporaries, yiclds optimal code. Dcpending on allocation, such uses may or may not involve
reverse-stack operations as depicted in the following examplcs:

DivR sas, , Alattempl, DivR aaa, Alattempl, Alattcmp2, Alattempl
RSub ssa, , , Alattemp?2 SubR sas., Alattempl,
AddR kaa, 0, Alattemp?2, Result AddR ksa, 0, , Result

e If the machine grammar does not contain productions that reflect reverse-stack operations for
comparison operators, then in the context of comparison operators, the expression stack is not
uscd for storage of temporary results.

¢ In a store context, the value to be stored must be the last ALA? reference. Consequently, ALAT
temporaries arc preferred to stack temporaries. Usc of the stack will introduce a move to an
ALA? location before the final store.’

o In index, indirection and conversion contexts, data gets placed in one of the FOM Queues. These
instructions are likcly to be re-scheduled.®® Stack temporaries need not be live across the code-
motion window, but ALLAT temporaries are dways live. %!

5.7 Code Scheduling

Unlike code generation for other architectures,’? in FOM, CG provides some minimal code scheduling.
The FOM architecture provides queucing disciplines®® that forces CG to provide codc reorganization.
Generating correct, leave aside optimal, code for queues can be quite tricky, e.g., for the cxpression a +b * ¢,
a naive code generator may generate:

Load a Enquecue ain queue Q

Load b Enqucue b in queue Q

Load ¢ Enqueue cinqucue Q

Multiply Q, Q, R Multiply first 2 Q elements - also dcqucue
them - and store the result in location R

AddQ, R, R Add head of Qto R

Because of the FIFO property of a queue, this code evauatesa * b + c instead of a + b * ¢. Usually, such

wrong schedules occur within the domain of an assignment statement only.

9 ndd ksa, 0, , ALATlocation

50Code Scheduling is discussed in the next section.

3 lThcre are only 2 stack locations per data type and they get re-used often: however, there arc 128 ALAT entries that get block-loaded
on procedure entry. Thus, no attempt is made to w-use/overload ALA? temporaries across instructions.

52IBM{%?O. VAX-11, iAPX-86, L-8000, MC-68000, PDP-11.

53Load-Store and Convert Queues.

59

Scheduling can be performed in & scparate post-pass optimiration phase or in tcgrated during code
generation itself. One advantage of thein tegrated scheduling approach isthat it still fitsinto a single pass
code generation scheme and the other advantage is the availability of aliasing information in attributes.
Usually, the critical problem in code scheduling is to find, and handle, aliasing information. Incomplete
knowledge about potentia aliasing conflicts restricts reordering more than other factors. Another strong
motivation for incorporating scheduling within CG was the use of the existing fracking mechanism.
Specifically, in FOM, CG tracks the last ALLAT reference, stack top and next-below entries and qucuc front
and next-in-queue cntrics. In CG, integrated scheduling is performed as a two step process by:

e tracking the front and next 11 entrics in qucucs, where n is maximum arity of op-codes in the target
machine,54 and

e performing code motion (specificaly code delaying) depending on the context of the current
operation.

In the realm of attributed parsing, consider the following example: When parsing

the operation on Queue, should be delayed until after operations on Queue operands for op,. This delay
ensures that op, operates on the correct data. In effect, such a schedule simulates a bottom-up version of

breadth-first traversal of the expression tree,” eg. thetreefora+b*cis

The bottom-up breadth-first traversal scans levels from left to right, starting at the bottom. The nodes
visited and the code generated are as follows:

Visit b Load b

Visit ¢ Load c

Visit 2 Load a

Visit * Multiply Q, Q, R
Visit + AddQ, R, R

To obtain maximum concurrency, this strategy can be extended to maximize the distance between an

Enqueue and the corresponding Dequeuc instructions, exploiting a longer queue. Furthermore, to take

54 For I'OM, n= 2; thus, it suffices to track the front and next entries.

551n atree-walk cvaluator, the bottom-up traversal can bc awkward to perform, and so a top-down approach can be used that
generates code in the reverse order. 1t would have to scan each level from right to left.

60

advantage of FOM’s pz‘u‘allclism,56 non-queue instructions such as NxiProc should bc fioisted as far as
possiblc.57 Other optimizarions of similar flavor would be Nop removals. Nops do not cost performance

but they cost space.

5.8 Conclusion

Given current compiler technology, DEL architectures seem promising. Traditionally, the optimization of
code for DEL compilers had been largely unexplored. The reverse-synthesis process is therefore an
interesting approach to measure optimizations on DEL architectures. Another advantage of this approach is
rctargctability and rchostability. Although FOM is an architecture originally designed for Fortran, it can aso
be used for Pascal. The reverse-synthesis process may seem to destroy the go21 of reducing the semantic gap
between the source program 2nd the target program. Given the up-down-up trandation process, it is hard to
guarantee that the JR to target-architecture transation is not worse than direct source to target translation.
However, the cffects of various optimizations 2nd empiric21 results do reveal that DEL architectures and this

compile-back technology can co-operate to produce efficient trandation 2nd high performance.

This experience has suggested 2 number of techniques by which CG can be potentially useful to a computer

architect. These items are enumerated below and shall be addressed in detail in future research.

o CG can identify areas in which the grammar is incompletely specified. This knowledge can reveal
extra instructions needed in the target machine' s instruction-set architecture.

e The machine grammar can provide a measure for static code-size that has 2 second order effect on
performance.

¢ |n order to mcasurc the architecture, the compiler effect is fixed by incorporating productions in
the most general form only. Predicates are first used to specify architectural restrictions only 2nd
not for optimization. With this grammar, 2 code generator is created 2nd then the architecture is
"benchmarked".

e Optimization productions arc then incorporated incrementally 2nd the-architecture is
“benchmarked” in the presence of optimizations.

56excu:uting, ingtructions in parallel with loading of ALAT

57 NxtProc should not be hoisted beyend a basic block or another NxtProc.
58

For example, safely hioisting the comparison and branch instructions two instructions before their current position within the domain
of straight-line control flow.

61

Ackncwledgements

We thank Bill Brantlcy and Fred Chow for their technical help during the course of our rescarch and Mike

Flynn for his comments.

62

6. References

e Aho 73
A.V. Aho and J.D. Ullman, “ The Theory of Parsing, Trandation and Compiling”, Vols. 1 and 2,
Prentice-Mall. Inc., 1973.

o Barbacci 77
M.R. Barbacci, G.E. Barnes, R.G. Cattcll and D.P. Siewiorek, “ The ISPS Computer Description
Language’. Technical Report, Department of Computer Science, Carnegie-Mellon University,
1977.

e Brantlcy 82
W.C. Brantlcy and J. Weiss, “FOM: A Fortran Optimized Machine - A High Performance, High
Level Language Machine”, IBM Research Report KC 9640 (#40815) 3/3/82. Also, “ A Fortran
Optimized Machine A High Performance, High Level Language Maching”, Procecdings of the
International Workshop on High-Level Language Computer Architecture, Nov. 30 - Dec. 3, Fort
Lauderdale, Florida, 1982.

e Brantley 83
W.C. Brantley and J. Weliss, “ Organization and Architecture Trade-offs in FOM”, IBM Research
Report RC 9700 (#42748) 11/11/82. Also, Proccedings of the International Workshop on
Computer Systems Organization, March 29 - 31, New Orleans, Louisiana, 1983.

¢ Fischer 83
C.N. Fischer, M. Ganapathi and R.J. LeBlanc, “ A Simple and Practical Implementation of
Predicates in Context-Free Parsers”, Technical Report #493, Computer Scicnces Department,
University of Wisconsin- Madison, 1983.

e Flynn 80
M.J. Flynn, “ Directions and Issues in Architecture and Language’, |IEEE Computer, October
1980.

e Flynn 83
M.J. Flynn and L.W. Hoevel, “ Execution Architecture: The DELtran experiment”, IEEETC, Vol.
C-32 No. 2, February 1983.

e Ganapathi 80
M. Ganapathi, “ Rctargctablc Code Generation and Optimization using Attribute Grammars”,
PhD dissertation, Technica Report # 406, University of Wisconsin - Madison, 1980.

o Hennessy 79
JL. Hennessy, “Pascal*“, Technical Report, Computer Systems Laboratory, Stanford University.

e LALR
J.L. Henncssy, “ The Stanford Pascal Parser Generator”, Computer Systems Laboratory, Stanford
University.

¢ Johnson 75

63

S.C. Johnson “ YACC - Yet Another Compiler Compiler”, C.S. Tech Report # 32, Bell Telephone
Laboratories. Murray | Iill, New Jersey, 1975.

e Koster 71
C.H.A. Koster, “ Affix Grammars’, in JE.L. Peck (editor), ALGOL 68 Implementation, North
Holland. 1971.

¢ Notices 83a
M. Ganapathi and C.N. Fischer. “ Automatic Compiler Code Generation and Recusable Machine-
Dependent Optimization -- A Revised Bibliography”, ACM SIGPLAN Notices Vol. 18 No. 4,
1983. pp. 27 - 34.

¢ Notices 83b
F.C. Chow and M. Ganapathi, “ In tcrmcdiate Languages in Compiler Construction -- A
Bibliography”, ACM SIGPLAN Notices Vol. 18 No. 11, 1983, pp. 21 - 23.

e PL.882
M. Auslander and M. Hopkins, “ An Overview of the PL.8 Compiler”, SIGPLAN 82 Symposium
on Compiler Construction, June 1982.

e Popl 82
M. Ganapathi and C.N. Fischer, “ Description-Driven Code Generation Using Attribute
Grammars’, Conference Record of the Ninth Annual ACM Symposium on Principles of
Programming Languages, Albuquerque, New Mexico, January 25 - 27, 1982.

¢ SP&E 84
M. Ganapathi and C.N. Fischer, “ Attributed Linear Intermediate Representations for
Retargctable Code Generators™, Software - Practice and Experience, to appear, April 1984.

e Surveys 82
M. Ganapathi, C.N. Fischer and J.L. Hennessy, "Retargetable Compiler Code Generation”,
ACM Computing Surveys, Vol. 14, No. 4, December 1982.

o Surveys 83
M. Ganapathi, C.N. Fischer and J.L. Hcnnessy, "Retargetable Code Generators’, ACM
Computing Surveys, Surveyors Forum, Vol. 15, No. 3, September 1983.

e Toplas 84
M. Ganapathi and C.N. Fischer, “ Instruction Sclection by Attributed Parsing”, Technical Report
#2506, Computer Systems Laboratory, Stanford University, February 1984; to appear in ACM
Transactions on Programmming Languages and Systems.

o U-code 82
U-code: an intermediate representation for Pascal* and Fortran, Peter Nye, Computer Systems
Laboratory, Stanford University, November 1982.

e Ugen 82
Ugen: a retargetable code generator for U-code, Peter Nye, Computer Systems Laboratory,
Stanford University, November 1982.

64

& U-opt 83
U-opt: a machine-independent global optimizer, Fred Chow, Phd Thesis, Computer Systems
Laboratory. Stanford University, December 1983.

o Uwtr 81
M. Ganapathi, C.N. Fischer, S.J. Scalponc and K.C. Thompson, “ Linear Intermediate
Representation for Portable Code Generation”, Technical Report # 435, University of Wisconsin
- Madison, 1981.

e Wakefield 53
S. Wakefield, PhD Thesis, Computer Systems Laboratory, Stanford University, 1983.

e Wulf 82

W. Wulf and K.V. Nori, “ Delayed Binding in PQCC”, Technical Report, Computer Sciences
Department, Carnegie-Mellon University, October 1982.

65

we

b)

7 B epemmrmeion A -
£ o A 2

pendG:X FOR

Nt B

0

l‘l:
o

Opecrations on Integers yielding an Integer result:
¢ Addl: Add Integer

IntegerT r — + IntegerTO Intcgerfr

Integerfr — + Integer]r IntegerT0

Integerfr — + IntegerTa IntegerTb Constant| a A Constant] b
KFOLDTr = a+b

Integer? r — + IntcgerTa IntegerTr = Busylr
EMIT[’Addl’lalrf:

Integer] a — + IntegerTa Integer] r - Busyla
EMIT]’Addl’}alrfa

IntegerT r — + IntegerTa IntegerTb Temp/’integerr
EMIT]’AddI’|albfr

e Subl: Subtract Integer

Integer? r — - IntegerTr IntegerT0
Integerf r — - Integerf alntcgerf b Constant) a A Constant| b
KFOLDIr = &b
Integerfr — - Integerfa Intcgerfr -~ Busyl r
EMIT/)’Subl’|alr{r
Integerta — - IntegerTa integerfr -~ Busyla
EMIT]’Subl’|alrTa
Integerf r — - IntegerTa Integerf b Temp/'integer’Tr
EMIT] Subl’|albTr

o ISub: Reverse Subtract Integer

IntegerT r — - IntegerTa IntcgerTb
Stack] 'TOP’| b A Stack] ‘TOP- | "l a Temp/’integer’fr
EMIT/[’ISub’|blafr
Integer? r — - Integerf alntegerTb
Queuel TRONT’} b Quene] FRONT-1"|a Temp]’integer'Tr
EMIT[’ISub’|blalr

o Mpyl: Multiply Integer

Integerfr — *IntegerT 1Integerfr
Integert r — *IntegerTr Integerf 1
Integert r — * Integerfalntegertb Constantla A Constant] b
KFOLDTr = a*b
Integerf r — * IntegerTa Jntegerfr » Busy|r
EMIT| ‘MpyT’lalrTr
Integerfa — * IntegerTa Intcgerfr = Busyla
EMIT|'MpyTl’lalrTa
Integertr — *IntegerTa Integerth Temp] 'integer'Tr

66

EMIT|’Mpyl'|alblr

e Divl: Divide Integer

IntegerT r — /IntegerTrinteger-T1

IntegerT r — /IntegerTaIntegerT b Constantla A Constant] b
KFOLD1r = ab

Intcgerfr — / IntegerTa IntegerTr - Busylr
EMIT}]’DivI’lal1Tr

IntegerT a — / IntegerTa Integerir -~ Busyla
EMIT]'Divl’]alrTa

Integerfr — / Integerfa IntegerTb Temp] integer’Tr
EMIT['Divl’|albTr

0 IDiv: Reverse Divide Integer

IntegerT r — /IntegerTalntegerT b
Stack] 'TOP’| b A Stack| TOP-1 '|a Temp/’integer’Tr
EMIT|’IDiv’|blalr
Integerfr — /IntegerTa IntegerTh
Queuel FRONT’| b Queue| FRONT-I }a Temp/’integer'Tr
EMIT|’'IDiv’|blalr

e Loadl: Load Integer

AddressTLdQI — INDEXT1 IntegerTa IntegerTb
EMIT| Loadl’|alb

The attribute ‘1" of the operator INDEX indicates that the index ‘b’ must be scaled by a
multiplication factor of 1 (i.e., each element of the array occupies 1 word on the FOM machine).
If this attribute is a constant other than ‘1" or "2, the storage-all ocator will expand the index
operation into a combination of addition and scaled multiplication, i.e.,

INDEXTs IntegerTa IntegerTb where s £ 1 or 2 is expanded into
INDIRECTTs + IntegerTa * IntcgerTh IntegerTs

Consequently, a’Mpyl’ may be generated followed by an *Addl’. If's’ isaconstant, * /ntegerf b
IntegerT s will be constan ¢ folded into In tegerT b*s and the expression is reduced to:

INDIRECTTs + Integerta IntegerTb*s

e Stol: Store Integer

Instruction — = INDEXT1 IntcgerTa IntegerTh IntegerTc Lastref] 'ALATT | ¢
EMIT{ Stol’}alb

The blocking predicate Lastref evaluates to true if its second attribute was the last referenced
variable in the storage location denoted by the first attribute. If this predicate evaluates to false,
one of the following productions is maiched:

Instruction — = INDEXT1 IntegerTa IntegerTh IntegerTe Storagel "ALATI | ¢
EMIT]’AddI’|0]clc

67

EMIT] Stol’|alb

The blocking predicate Storage evaluates to true if its second attribute is a member of the storage
class denoted by itsfirst attribute.

Instruction — . = INDEXT1 IntegerTa IntegerTb Integerfc Temp|'ALATT |'integer’Tr
EMIT[’Adal’{0)cTr
EMIT[Stol'jalb

Grammar factoring can be used to avoid replication of code. In particular, predicates may be
shared by different productions to minimize code. If other productions also happen to use similar
predicates, then the total number of gratnmar productions may bc reduced at the expense of
grammar readability and retargetability.

Operations on Integers yielding a Boolean result®® :
o Ltl: Less than - Integer

Integerfr — < Integerfalntegertb Constant|a A Constant] b
KFOLD?r = akb
IntegerT r — <lIntegerf alntegerTr ~ Busyl r

EMIT}’LtI’|al1Tr
IntegerT a — <IntegerTa IntegerTr - Busyla

EMIT}'LtT'|alrTa
IntegerT r — <IntegerTa Integertb Temp| integer'Tr

EMIT]’LtI’|albfr

e Lel; Less than or equal to - Integer

IntegerTr — < = IntegerTa Integerfb Constantla A Constant|b
KFOLDTr = a{=b
IntcgerT r — < =IntegerTa IntegerTr = Busylr
EMIT) Lel’|alr]r
Integerf a — < =Integerfalnteger? r - Busyla
EMIT| Lel’{alrTa
Integer] r — <= Integerfa Integerfb Temp|’integer’{r
EMIT] Lel’}albTr

o Negl: Not equal - Integer

IntegerT r — s#Integert alntegert b Constant] a AConstant| b
KFOLDTr = at#b
Integerf r — £ Intcgerf alntegerTr ~ Busyl r
EMIT] Neql’lalrTr
Integerfa — £ Integerf aIntegerf r = Busyla
EMIT|'Negl'lalrTa
Integer] r — 54 IntegerTa IntegerTb Temp]'integer'Tr

59F‘OM does not provide reverse-stack operations for comparison operators. Flowever, grammar productions can usc predicates to
check reverse-stack operations. On production selection, either the opposite op-code is emitted or the result of comparison isreversed.

68

EMIT|’'Neql'|albTr
¢ Gtl: Greater than - Integer

Integertr — > IntegerTa IntegerTb Constant|a N\ Constant| b
KFOLDTr = a>b
Integer? r — >IntegerTa IntegerTr - Busylr
EMIT|'GtI'{alrfr
IntegerT a — > IntegerTa IntegerTr - Busyla
EMIT]'GtI’|alrTa
IntegerTr — >IntegerTaIntegerTh Temp] integer’(r
EMITL’Gtl’[alblr

¢ Gel: Greater than or Equal to - Integer

Integert r — >= IntegerTa Integerfb Constantla A Constant|b
KFOLDTr = 2>=b
Integert r — >=IntegerT alnteger]r ~ Busy| 1
EMIT, Gel’|alrTr
Integerta — > = IntegerTa IntegerTr = Busyla
EMIT{'Gel’]alrTa
Integer] r — > =Integer]a IntegerTh Temp/’integer'{r
EMIT] Gel’lalbTr

¢ Eql: Equal to - Intcger

Integerir — = Integer]a IntegerTb Constant|a A\ Constant] b
KFOLDTr = a=b
Integer? r — = IntegerTa Integer{r = Busylr
EMIT}]Eql’]alrfr
Intcgerfa — = IntegerTa IntegerTr ~ Busyla
EMIT]| Eql’]ajrTa
Integerfr — =IntegerTa IntegerT b Temp] integer'{r
EMIT{ Eql’'lalbTr

Operations on Floating peints yidding a I'loating point result:

o AddR: Add Redl

Reallr — + RealT0 Realfr
Reallr — + Rcalfr Reall0
Reallr — 4+ Realta RealTb Constant)a A Constant| b

KFOLDfr=at b
Realfr — + RealTa Realfr = Busyl r

EMIT]'AddR’{a|rfr
Realfa — -+ RcalT a Rcdfr -~ Busyla

EMIT|’AddR’}a{rTa
Realfr — + RcalTa Realtb Templ'real’Tr

EMIT|'AddR’|a]bTr

69

o SubR: Subtract Real

Reallr — -Recalfr RealT0
Realfr ~— -RealTa RealTb Constantja A Constant| b
KFOLDTr = &b
Reallr — -RcalTaReallr -~ Busyl r
EMIT|'SubR’|alrfr
Redlfa — - RealfaReallr = Busyla
. EMIT|'SubR’}alrTa
Realfr — - RecalTa RealTh Temp/!’'real’r
EMIT]’SubR’|albTr

e RSuh: Reverse Subtract Real

Realfr — -RealTa RealTb
Stack} TOP’Lb A Stack] TOP-1’La Temp]’'real’Tr
EMIT|’'RSub’|blair
Realfr — - RealTa RealTb
Queue| 'FRONT’|b Qucue] FRONT-2’|a Temp|’real’Tr
EMIT|’RSub’|blalr

e MpyR: Multiply Red

Realfr — *RealTlRealjr
Reallr — *RealfrRealTl
Reallr — *RealTa Realtb Constantia A Constan t| b

KFOLDTr = &b
Realfr — * RealTa Reallr - Busy|r

EMIT|’'MpyR’]alrTr
RealTa — * Realfa Redfr ~ Busyl a

EMIT]’MpyR’[al1Ta
Rcalfr — * RealTa Redfb Temp/|’'real’Tr

EMIT|'MpyR’|albTr

¢ DivR: Divide Red

Reallr — /RecalrReal7l
Reallr — / RealTa Reallb Constant| a A Constant] b
KFOLDTr = ab
Realtr — / RcdfaReal]r ~ Busylr
EMIT|’DivR’lalrr
RealTa — / RealTa Redfr = Busyla
EMIT|’DivR’}alrTa
Realfr — / RealTa Realfb Temp/|'real’Tr
EMIT[’DivR’[albTr

e RDiv: Reverse Divide Real
Realfr — /RealTaReallb

70

Stack’TO P’ b A Stacky'TOP-1’, aTemp|'rcal’T r
EMIT{'RDiv’|blafr
Real]r — / RealTa RealTb
Queue| TRONT'Lb Queuel ’FRONT-1" a Temp/ 'real’Tr
EMIT]'RDiv’|blalr

e [.oadR: Load Rea

AddressTLdQR — INDEXf2 IntegerTa Integerfb
EMIT| LoadR’|alb

The attribute ‘2’ of the operator INDEX indicates that the index ‘b’ must be scaled by a
multiplication factor of 2 (i.e., each element of the array occupies 2 words on the FOM machine).
If this attribute is a constant other than ‘1’ or *2’, the storage-allocator will expand the index
operation into a combination of addition and scaled multiplication, i.e.,

INDEXTs IntegerTa IntegerTb where s 5% 1 or 2 is expanded into
INDIRECTTs + IntegerTa * IntegerTb IntcgerTs

Consequently, a’Mpyl’ may be gencrated followed by an’Addl’. If's’ is a constant, * IntegerTh
InzegerT swill be constant folded into IntegerTb*s and the expression is reduced to:

INDIRECTTs + IntegerTa IntegerTb*s

e StoR: Store Red

Instruction — = INDEXT?2 IntegerTa IntegerTb RealTc Lastref) 'ALATR ’| ¢
EMIT|'StoR’]alb

The blocking predicate Lastrefevaluates to true if its second attribute was the last referenced
variable in the storage location denoted by the first attribute. If this predicate evaluates to false,
onc of the following productions is matched:

Instruction — = INDEX7T2 IntegerTa Intcgerfb RealTc Storagel "ALATR | c
EMIT|’AddR’}0/clc
EMIT|’StoR’|alb

The blocking predicate Storage evaluates to true if its second attribute is a member of the storage
class denoted by itsfirst attribute.

Instruction — = INDEX?2 IntcgerTa IntegerTb Reafc Templ’ALATR’]'real’fr
EMIT|’AddR™[0)cTT
EMIT]’StoR’}alb

Grammar factoring can be used to avoid replication of code. In particular, predicates may be
shared by different productions to minimize code. If other productions also happen to use similar
predicates, then the total number of grammar productions may be reduced at the expense of
grammar readability and retargetability.

FOM does not provide comparison opcodcs for floating point data types. Therefore, code must be explicitly

71

provided with productions for floating point comparison@' , or, the code generator will automatically

transform floating point comparisons to integer comparisons.

Operations on Booleans and Logicals yielding a Boolean or Logical result:

¢ AndB: And Boolean

Integert0 — & IntegerTO Integerfr
IntegerT0 — & Integer(r IntegerT0
IntegerTr — & IntegerT! Integerfr
Integerfr — & IntegerTr IntegerTl
Integerfr — & IntegerTa IntegerTb Constantla A Constant| b
KFOLDTr = a&b
IntegerTr — & IntegerTalntegerir -~ Busylr
EMIT| AndB’jalr]r
Integer-f a — & IntegerTa Integerfr - Busyla

EMIT{'AndB’}alrTa
Integerr — & IntegerTaIntegerTh Temp/ integer'Tr
EMIT|'AndB’|alblr

OrB: Or Boolean

Integerfr — | Integer0 Intcgerfr

Integer? r — | Integer?r IntegerT0

Integer? 1 — | IntegerT 1 Integerfr

Integert 1 — |IntegerTr Integer-f 1

IntegerT r — |Integer] alnteger?b Constant|a A Constant) b
KFOLD1r = alb

IntegerT r — |IntegerTaIntegerTr - Busylr

EMIT}’OrB’lal T
IntegerT a — | IntegerTa Integerfr - Busyla

EMIT]’OrB’|alrTa
Integerir — |Integerfa IntegerT b Temp/ integer’Tr

EMIT]'OrB’[alblr

e NorB: Nor Boolean

IntegerT 0 — | Integerf 1 Integert:
IntegerTO — =] Tntegerfr IntegerT 1
Integerfr — | IntegerTa IntegerTb Constantla A Constantlb
KFOLDTr = ~ alb
Integerfr — - | IntegerTa Integerfr ~ Busy| r
EMIT| NorB’lalr]r
Integerf a — -] IntegerTa Integerlr -~ Busyla
EMIT|'NorB’|alrTa
Integert r — -|Integerta IntegerTb Temp|’integer’Tr

6Ofor example, SubR aas a b: CnvR .., , Signum%; LT ga, Cnv%Q, Label

72

EMIT|"NorB'|a/bTr

Operations on /ntegers yielding a floating point result:
e Cnvl: Convert Integer

RealTCnvQR — Integerfa
EMIT| CnvI’|a} Float%’

Operations on Floating points yielding an in‘eger result:
« CnyR: Convert Redl

IntegerfCnvQl — Realfa
EMIT} CnvR’|a}’Fix%’

Loca Control-Flow Operations
The two instructions that follow a branch instruction (called the subject instructions), are dways executed.
Therefore, in the moss general form, these instructions are emitted with two ‘Nops' following them. By use of
instruction buffering, Nop remova optimization may be accomplished wherever feasible.

o Goto: Go to
Instruction — GotoLabelln
EMIT]’Goto’n
EMIT] Nop’
EMIT]'Nop’
o IfLT: If Logicd True
Instruction — Integerfr Labeln
EMITIfLT {rin
EMIT| Nop’
EMIT| Nop’
o IfLF: If Logical Fase
Instruction — - Integerir LabelT n
EMITHLE | rin
EMIT| Nop’

EMIT] ‘Nop’

73

8. Appendix B: U-code to I Transiator Design

This section describes the design of the trandator in detail. It is written to serve as a summary program
documentation for people who may want to modify/extend the trandator. The references to system
itnplcmentation details (e.g., file names) can be ignored by the casua reader.

8.1 Design

The U-code to IR trandator is written entirely in DECSY STEM-20 Pascal (i.e., Hedrick Pascal). The
non-standard Pascal fcatures used have been limited to a few system features (QUIT, RUNTIME, TTY,
random file access) that should make this translator simple to transport to other Pascal implementations. No
non-standard data or control structures have been used. The trandator consists of 8 separately compilable
modules that are described later. The following naming conventions have been used for file name extensions.

= .PAS - a.PAS (Pascdl) file contains the program text of a module.

¢ IMP - a . IMP (Import) file contains EXTERN procedure & function declarations of the module
that can be INCLUDEdJ® by other modules.

¢ .INC - a.INC file contains CONST and TY PE declarations that can also be INCLUDEJ by other
modules.

The physical specifications of the trandator are as follows:

Number of modules = 8
Total program text size = 84 pages = 210K chars ~ SK lines
Total cxecutable program size = 69 pages = 34.5K words

Average execution spced ~ 500 U-code instructions/CPU second

The trandator has 8 modules that are described below, aong with the names of the files that contain them:

Main program - UCTOIR.PAS

This program is the main module of the trandator. It calls al the required file initialization routines, and
then hands over control to the parser for the rest of the program execution. At the end, it displays some job
statistics of the trandation performed - the number of U-code instructions processed and the amount of CPU

time spent on the trandation.

81 The INCLUDE statement in DECSYSTEM-20 Pascal is used to insert the contents of the specified file at that point.

74

U-code initialization - UINILIMP, UINI.PAS
This module has a giobal array, Utabrec that stores the following information for each U-code instruction:

e Opcode name
¢ Instruction length

¢ Instruction format

This information is then used by the U-code rcadcr. The array isinitialized by a call to procedure Uini from
the main program. This module is directly available in the U-code system, and has not been modified in our
translator.

U-code reader - BREAD.INC, BREAD.IMP, BREAD.PAS

Readers for both U-code and B-code (binary U-code) are available in the U-code system. Our trandator
uscs the B-code reader, as binary U-code requires less space and can be read faster. This module has an input
procedure (ReadUinstr) that reads one U-code instruction at a time and returns an encoding of the instruction
in a Pascal record (TY PE Bcrec).

Symbol table reader - D.INC, DREAD.IMP, DREAD.PAS
This module is an adaptation of the Symbol table reader, DREAD (Debugger READ) available in the

U-code system debugger. The debugger uses this module to parse the U-code symbol table file. Our
tranglator also uses it for the same purpose. It was necessary to make some modifications because the
debugger aso used a random access data structure, initialized elsewhere, that was not used in our trandator.

Symbol table module - SYMTAB.IMP, SYMTAB.PAS

Our trandator requires more sophisticated symbol table access than just reading a procedure’ s declarations
sequentially. This facility is required because IR has block structure like Pascal, and so al outer declarations
have to be printed before a procedure’s own declarations. Further, parameters have to be identified and
declared in the callee, in the same order as they occur in the caller. The U-code symbol table entries are
sorted alphabetically, which destroys the ordering of parameters. Thus, the U-code PSTR instructions have to
be uscd to identify the correct order. This module exports PROCEDURE Getproctablc that docs al this
processing required to print the procedure’ s declarations correctly.

U-code parser - PARSECONSTS.INC, PARSE.INC, PARSE.IMP,
PARSE.PAS

An automatic parser, generated by an LALR(1) parser generator [LALR], is used to parse the input U-code.
It is not sufficient to examine cach U-code instruction indcpendently asis done in code gencrators. For

trandation to IR, it becomes necessary to identify structured scquences of U-code instructions, ¢.g., a

75

sequence of stack opcrations represents an arithmetic expression. The actual trandlation is achieved by

scmantic routines that need to be called at correct instants in the parse.

Semantic Routings - ACTION.INC, ACTICN.IKMP, ACTION.PAS
Semantic routines may be associated with either of these two parsing actions.

1. shift - This action normally has alimircd use, because the corresponding semantic action must be
performed, whenever the terminal is encountered, irrespective of context. We have used it for the
MST and ENT U-code instructions.

2. reduce - This action is the conventional technique of incorporating semantic actions into bottom-
up parsing. The production used for reduction determines the semantic routinc to be caled.

All the semantic routines communicate with each other through the semantic stack. This stack is polymorphic,
and a stack entry is essentially one of:

1. An expression tree - the semantic record for the non-terminal expression that is the only
non-terminal for which any information needs to be stored.

2. A U-code instruction - the scmantic record for any rerminal that needs to be stored, since all
tenminals arc U-code instructions.

Each semantic routine uses a certain nutnber of stack entries from the top, pops thosc entrics when it is done,
and possibly pushes a new entry, along with generating appropriate IR code. This scheme is therefore ensured
to work for semantic routines calied by nested syntactic structures.

IR writer - IRWRIT.IMP, IRWRIT.PAS
This module controls the generation of the output IR program. All other modules use its routines to finally

output the trandation.

Files used

The following isthe list of files that make up the U-code to IR trandator; the number of lines of source

code islisted in parentheses alongside:

ACTION.INC - CONST/TYPE declarations defined in module ACTION. (52 lines)
ACTION.IMP - Procedures exported by module ACTION. (37 lines)

ACTION.PAS . Modulc ACTION. (933 lines)

ACTION.REL - Compiled, binary, rclocatable code.

BREAD.INC - CONST/TYPE declarations defined in module BREAD. (6 lines)
BREAD.IMP - Procedures exported by module BREAD. (11 lines)

BREAD.PAS - Module BREAD. (644 lines)

BREAD.REL - Compiled, binary, relocatable code.

D.INC CONST/TYPE declarations defined in module DREAD. (119 lines)

DREAD.IMP -
DREAD.PAS y
DREAD.REL

IRWRIT.IMP -
IRWRIT.PAS -
IRWRIT.REL -

PARSEFILE
PARSECONSTS.INC -

PARSE.INC
PARSE.IMP
PARSE.PAS -
PARSE.REL -

SYMTAB.IMP
SYMTAB.PAS
SYMTAB.REL -

UCODE.INC -
USYS.FOM

UCTOIR.PAS -
UCTOIR.REL -
UCTOIR.EXE -

UINLIMP
UINLPAS
UINLREL

76

Procedures exported by mocule DREAD. (9 lincs)
Module DREAD. (638 lines)
Compiled, binary, relocatable code.

Proccdurcs exported by module IRWRIT. (88 lines)
Module IRWRIT. (1224 lines)
Compiled. binary, relocatable code.

Automatically generated parsing tables used by the LALR(l) U-code parser.
CONST declarations for production and grammar symbol numbers

in the parser. (30 lines)

CONST/TY PE declarations defined in module PARSE. (13 lines)
Procedures exported by module PARSE. (10 lincs)

Module PARSE. (505 lines)

Compiled, binary, relocatable code.

Procedures exported by module SYMTAB. (7 lines)
Module SYMTARB. (251 lines)
Compiled, binary, relocatable code.

CONST/TYPE declarations in the U-code system.
CONST/TYPE declarations for FOM.%2

Module UCTOIR - the main program. (100 lines)
Compiled, binary, relocatable code.

Executable code for the entirc trandlator obtained entirely
from compiling the 8 modules, and linking their .REL files.

Procedures exported by module UINI. (6 lines)
Module UINI. (327 lines)
Compiled, binary, relocatable code.

8.2 U-code to IR translator User Manual

This section describes how

(binary U-code) program file

file X.IR, say) as output. The file, UCTOIR.EXE, contains the exccutable version of the trandator. It may be

to use the U-codce to IR trandator. The trangdlator takes as input a B-code
(say X.BCO) and its symbol table file (say X.SYM). and generates IR code (in

invoked as shown below (characters to bec typed in by the user are shown in hold face):

@RUn UCTOIR
BCODE-IN : X.BCO
SYMBOLTABL : X.SYM
IR=0OUT :XIR
FARSEFII_E : PARSEFILE

6?This table is the machine-dependent table of constants used to gencrate U-code for a particular machine. It is nceded by the
trandator to correctly convert the machine-dcpendenr sizes and offsets to machine-independent valuesin IR

71

Echo U-code instructions in IR program? (y/n) [Default:n] :
Start exccution of U-code to IR trandator . . .

End execution.

Runtime = 2934 milliscconds.

Number of U-code instructions processed = 1654
Avcrage processing rate = 550.2 instructions/second.

@

PARSEFILE contains the parsing tables to be used by the LALR(]) parser for U-code. The option of
echoing U-code instructions as comments in IR code is useful for comparing the two intermediate languages.
It is also a useful debugging/development aid for further extensions to the trandator. As indicated above, the
option is invoked by typing a’y’ in response to the question. Anything else will disable the option.®® The
trandator will abort execution in an error situation, e.g., if an unsupported feature is present in the U-code
program. In this casc, the * End execution” message will not be displayed on the terminal. Error messages
appear at the end of the IR ouput file, and are easily recognized as they are enclosed within two *****’ strings.
If the error message refers to an unsupported feature, then that feature should be removed from the origina
HLL program, which should then be re-compiled.

Fifes belonging to the translator system

All files that belong to the trandator are outlined in the preceding section. Therc is one more filc that helps
identify missing files. It is called FILES.CTL, and it contains a DIRECTORY command with the list of al
the files used by the trandator. It can be invoked by typing

@DO FILES.CTL

The DIRECTORY command will automatically notify the user of any missing files.

630“ TOPS-20, you need to hit <return> twice, if you do not type any character.

