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Abstract

MlPS is an 32-bit, high pcrformancc processor architecture implcmcntcd as an nMOS VLSI Gp. I’hc
processor uses a low 1~~1, strcamlincd instruction set coupled \vit!l a fast pipeline to achicvc an instruction
rate of two million instructions per second. Close interaction bctwccn the processor dcsigll and car-npilzrs for
the machine yields cfficicnt execution of programs on the chip. Simplifyin g the instruction set and the
rcquircmcnts placed on the hardware by the architccturc, facilitates both processor co:ltrol and interrupt
handling in the pipclinc. High speed MOS circuit design tcchniqucs and a sophisticxcd timing rncthodology
cnablc the processor to achieve a 250nS clock cycle.
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A computer architccturc is mcasurcd  by its cffcctivencss as a host for applications and by the pcrfi~nnance

levels ob!ainablc  by implcmcntations of the architccturc. The suitability of an architccturc as a host is

dctcrmined  by two factors: its cffcctivcncss in supporting high lcvcl languages, and the base it provides for

system lcvcl functions. The cfticicncy of an architccturc from an implcmcntation viewpoint must be based
-4

botl? on the cost and pcrformancc of implcmcntations.

MIPS is a 32-bit  processor design implcmcntcd in VLSI that attempts to seek the best compromise bctwecn

pcrformancc and functionality. The irnportancc  of thcsc factors in the ovcrali cffcctivcncss of the architecture

varies, but the role of program host probably remains most important. Howcvcr, the instruction set dcsigncr

must carefully consider both the usefulness of the instruction set for encoding programs and the performance

of implcmcntations of that instruction set.

Since most programs arc written in high level languages, the role of the architccturc as n host for programs

dcpcnds on its ability to express the code gencratcd by compilers for the high level languages of interest. The

effectiveness is a hnction of the compiler technology and, to a lesser extent, the programming language.

Compilcm-tend  to translate languages to similar types of code scquenccs. Howcvcr, some unique language. -
features may bc significant enough to dcscrve treatment at the architectural  lcvcl. Examples of such of

fcaturcs might include: support for tags in a language with tagged objects,  support fi>r 11oating  point

arithmetic,  and support for parallcl constructs. In considering such features, the architect must cvaluatc both

* the cost of implcmcnting hardware support and the USC of the feature rclativc to more commonly used

features.

.

Program optimization has become a standard part of many compilers built today. Thus, the architccturc

should bc dcsigncd as a target for compiler translation and optimization. One of the key implications of this

observation is that the architccturc should expose as much computation as possible.  Unless  the impiications of

a particular machine instruction are visible  the compiler cannot make a rcasonablc choice bctwccn two

alternatives. Likcwisc, hidden computations cannot be optimized away. This view of tho optimizing compiler

argues ft)r a simplified instruction set that maximizes the visibility of all operations  nccdcd to cxccute the

program.

A large instruction set architccturc will require microcode to implement the instruction set. In VLSI, silicon

arca limitations often force the use of microcode for all but the smallest and simplest instruction sets.  In a

processor that is microcodcd, an additional level of translation, i.c., from the machine code to

microinstructions, is done by the hardware. I)y allowing the compiler to implcmcnt rhis lcvcl uf translation,

the cost of the translation is taken once at compile-time rather than rcpctitivcly cvcry time a machine
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instruction is exccutcd. This view of the optimizin g conrpilcr  as generating microcode for a simplified

instruction set is cxpl:tincd in depth in [lo]. In addition to climinsting a lcvcl of translation, the compiler

“customizes” the gcncratcd code to fit the application [I 11. This custontizing  can bc thought of as a realizable

approach to dynamically microcoding the architecture.  h4IPS attempts  to exploit this view by “compiling

down” to a low level instruction set.
-*-a

The architccturc and its strength as a compiler target dctcrminc much of the performance at the

architectural lcvcl. However, to make the hardware usable an operating system must be created on the

hardware.  The operating  system rcquircs ccrtnin architectural capabilities  to achieve full functional

performance with a rcasonablc cfficicncy. lf the ncccssary fcaturcs arc missing, the operating  system will be

forced to forego some of its user-lcvcl fitnctions. ‘I’his nrchitcctural  support is absolutely ncccssary and will

often require underlying hardware support to achicvc acceptable pcrformancc. Among the features

considered ncccssary in the construction ofmodcrn operating systems arc:

-l Privileged and user modes with protection  of spccializcd machine instructions in user mode.

o Support for cxtcrnal interrupts and in tcrnal traps.

o McTrrory mapping support including support for demand paging, and provision for memory. -
protection.

o Support for synchronization primitives if conventional instructions cannot bc used, as in a
mu1 tiprocessor.

Some architectures pt-ovidc additional instructions for supporting the operating system. Thcsc instructions

arc included for two primary rcmns. First, to establish a standard intcrfacc for some function that may be

hardware dcpcndcnt. Second, to enhance tbc pcrfoimancc of the operating system by supporting some special

operation in the architecture. Standardizing an intcrfacc in the architectural  specification can bc more

definitive, but it can carry pcrformancc pcnaltics when compared for example, to a standard at the assembly

language level, which is implemcntcd by macros, or to an inter&e that is implcmcntcd by standard libraries.

Putting the interface into the architecture  ‘commits tile hardware designers to supporting it, but it does not

inhcrcntly cnforcc or solidify the interface.

Enhancing operating system performance via the architccturc can be beneficial. However, such

enhanccmcnts must bc compared to alternative improvcmcncs  that will incrcasc gcncral performance. Even

when significant time is spent in the operating system, the bulk of the time is spent cxccuting gcncral code

rather than special functions, which might bc supported in the architccturc. Thus, the architect must carefully

weigh the architectural  fcaturc to dctcrntinc bow it affects  other components of the instruction set (ovcrhcad

costs, etc.), as well as the opportunity cost rclatcd to tiic cornponcnts of the instruction set that could have
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been included instead. Often the cost of the feature when combined with its low merit (due primarily to

infrcquenr usage and secondly to lack of a major performance improvement) forms a strong argument agai!:s;

its prcscncc in the architecture.

The organization of the hardware for an architecture can dramatically affect quantitative measures of

au;kitcctural  pcrformancc. Since the architecture imposts implcmcntation requircmcnts on the hardware,

performance mcasurcments  made on the nrchitccturc  that arc implementation indcpcndcnt, may not yield

realistic measures of the pcrformancc of an actual implcmcntation of the architccturc. I’his is especially true

when the irllplclllentatiol~  is in VISI. In I’LSI, the interaction of the architccturc and its implcmcntntion is

more pronounced. This is due to a variety of causes, chief among them being:

l The limited speed of the technology cncouragcs the USC of parallel implcmcntations. That is, many
slower hardware components arc used rather than a smaller number of fast components. This
basic design methodology has been used by a wide range of dcsigncls  on projects as varied as
systolic arrays [14] to the MicroVAX  I datapath  chip [lG].

e The cost of complexity in the architecture. This is true in any implcmcntation medium, but IS
exacerbated in VLSI.  where complexity becomes more difficult to accommodate. A coroilary of
this rule is that no architectural  fcaturc comes for free.

. -
” .

0 Colnmun icntion is more cxpcnsivc than computation. Architectures that rcquirc significant
amounts of global in tcraction will su ffcr in implcmcntation.

e The chip boundaries impost hard limits on data bandwidth and a substantial penalty when
coniparcd to on-chip transmission times.

The architccturc affects  the pcrformancc of the hardware primarily at the organizational level, where it

imposts certain rcquircmcnts. Smaller cffccts occur at the implcmcntation lcvcl where the technology and its

propcrtics  bccomc rclcvant. The technology acts strongly as a weighting factor favoring some organizationai

- approaches  and penalizing others.

The key goal in implcmcntation is obviously to provide the fastest hardware possible; this translates into

two rules:

1. Minimize the overall clock speed of the system. This implies both reducing the ovcrhcad oil
instructions as well as organizing the hardware to minimize the delays in each clock cycle.

2. Subject to the first guidclinc, give prcfcrcnce in performance to the most heavily used parts of the
architecture.

This second rule may dictate sacrificing performance in some components of the architecture in return for

incrcascd pcrfwmancc of the more heavily used parts.
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‘i‘hc observation’ that thcsc types of tradeoffs arc needed, togcthcr with the fact that larger architectures

gcncrate additional ovcrhcad, have led to the reduced instruction set approach 122,  201.  Such architccturcs  are

streamiincd to eliminate instructions that occur with low frequency in favor of building such instructions out

ol‘ scqucnces of simpler  instructions. The ovcrhcad per instruction can be significantly reduced and the

implcmcntor does not have to dizcriminatc among the instructions in the architccturc. In fact, most simplified

in?&uction set machines use single cycle execution of instructions to eliminate complex tradeoffs both by the

harduarc implcmcntor and the compiler writer. The simple instruction set permits a high clock speed for the

instruction execution, and the one-cycle  nature of the instructions simplifies the control of the machine.

The MIPS architccturc has been dcsigncd to maximize its effcctivencss as an higtl-level Ianguagc host, to

provide sufficient  systems-lcvcl support, and to allow high performance implementation in VLSI.. MlPS uxs

a simplified, low-level instruction set. The compiler takes advantage of the instruction set by gcncrating code

requiring  little additional intcrprctation at execution  time. Because all the effects of an instruction scqucncc

arc cxposcd to rhc compiler, the compiler can optimize the code to a very low lcvcl of detail. The arcllitccturc

matches its implcmcntation WA, and many of the more complex tasks rcquircd from the architccturc are

supported by a level of software corresponding to microcode in other machines. The architccturc supports the

operating ‘system functions that arc required, and provides some extra functionality (limited memory

mapping) on-chip.

2 Architecture of MIPS

&‘ithin the constraints of the technology the goal for MIPS was to provide suitable systems support and

maximize performance for com~~ilcd  code. The instruction set is simple, orthogonal, and suitable for cfficicnt

I . -. cxccution of compiled code. This simplicity allows all instructions to execute in the same amount of time, and

all to be one word in length.

.
.

MIPS is a load/store machine; this isolates memory access instructions, as well as facilitating the fixed

instruction length and execution time. A small set of addressing modes is supported for both load and store

in&ructions. The memory is word-addressed.  This strcamlincs  the memory interface both on and off chip and

incrcascs pcrformancc,  since the bulk of the rcfcrcnccs arc to word length items. I3ytc addressing is supported

by a group of instructions that have capability similar to the byte pointer facility on a lNXZ-20.  The

comparison of byte and word addressing  together with the details of the byte addressing support arc discussed

in [9].

‘l’hcre are sixteen gcncral purpose  registers; the instruction formats treat the gcncral purpose  rcgistcrs

uniformily. All ALU instructions arc rcgistcr-rcgistcr  and arc available in two and three operand  formats; one
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of the swrce rqisters may bc replaced by a small constant. Support for integer multiplication and division

consists of special mtiltiply and divide instructions (see Section 3.6.2) that are expanded into sequences of m.11

machine instructions, No on-chip hardware is provided for floating point arithmetic.

The architecture has no condition codes. Instead, thcrc is a compare-and-branch operation. Abandoning

co&ition codes in favor of a compareand-branch instruction has benefits  for both the compiler and the

processor  implcmcntation [!I]. In gcncral, it simplifies pipclining and branch handling in the implcmcntation

and eliminates the need to attempt optimization of the condition code setting.

2.1 The visible instruction set

The compiler and operating system would prcfcr to see a simple, well-structured instruction set. I-lowcvcr,

this conflicts with the goal of exposing all operations, and allowing the internal processor organization  to

closely match rhc architecture. To ovcrcomc these two conflicting rcquiremcnts, the MIPS instruction set

architccturc is dcfincd at two lcvcls. The first lcvcl is the lcvcl that is visible to the compiler or aSscmbly

language programmer.  It prcscnts the MIPS rnachinc as a simple, streamlined processor. ‘l’able  1 sumrtr;lr  izes

the MIPS definition  at this Icvcl. Each of these assembly-level instructions is translated to machine level

. in~tructi&S; this translation process also includes a number of machine-dcpcndcnt optimizations.  ‘I’hc

machine IcvcI instruciions that are executed by the hardware and a brief description of the optimizing

translation appczr  ii] Section 3.1.1.

2.2 Systenjs issues

The ability of the processor to deal with interactions bctwcen itself and its support environment

(peripherals,  memory, etc.) can greatly affect the overall system performance, as well as limit the scalability of

the architecture across diffcrcnt  performing levels. The dcsigncr must consider the systems lcvcl aspects of the

- architccturc in a complctc and consistent fashion that will accommodate a wide range of implcmcntations,

The MIPS architecture  airns to support a variety of high performance workstation environments. At the low

cn”d we anticipate dcdicntcd control engines with no virtual memory support and few, if any, peripkcrals.  A

high end application  might bc a sophisticated  multiprocessing  workstation with several rncgabytcs of mcF?!,ry,

local disks, and network and graphics capabilities. A great many of the characteristics  of the resulting

architecture and subscqucnt  organization and implementation are based on the requirements of the high end

of this spectrum. ‘I’hc key theme is to make the systems-lcvcl architecture match the high performance

instruction set architccturc. A consistent effort  is made to minimize the complexity of the interfaces SO the

architcctirrc is useful in simpler systems. Whcrcvcr possible, flexibility for the non-CPU components is

rctaincd. Bcsidcs Icscrnins the implcmcntation task and processor  support rcquircmcnts,  simplifying the

external  intcrfaccs lcac!s to Iii&r performance.
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Op,eration  Operands C0mmei-i ts - -

Arithmetic nut-l logical operatims
Add srcl, src2, dst
And srcl, src2, dst
IC srcl, src2, dst
OF srcl, src2, dst
RIG srcl, src2, src3, dst
Ii01 srcl , src2, dst
Sll srcl, src2, dst
Sra srcl, src2, dst
Srl srcl, src2, dst
Sub SK 1, src2, dst
Subr srcl, src2, dst
xc srcl, src2, dst
x01 SK 1, src2, dst

Trmsport  operaliotn
I .d Atsrc],  dst
Ld [srcl + src2],  dst
1.d [srcl>>src2], dst
1-d ,‘. A, dst

* Ld I, dst
Mov src, dst
St srcl, A[src]
St srcl, [src2 + src3]
St srcl, [src2>>src3]1 St src, A

Coikfrol Iratu-et- operalions
Era dst
k-a Cond, srcl, src2, dst
Jmp dst

- Jmp A[src]
Jmp @A[src]
Trap Cond, srcl, src2

Ollrer operatiotrs
SavcPC A

set Cond, src, dst

dst: = src2 + srcl Integer addition
dst: = src2 & srcl I .ogical and
dst: = byte srcl of dst is rcplaccd by src2 Insert byte
dst: = src2 1 srcl Logical or
dst: = src2llsrc3  rotated by srcl positions Rotate combined
dst: = src2 rotated  by srcl positions Rotate
dst: = src2 shifted left by srcl positions Shift left logical
dst: = src2 shifted right by srcl positions Shift right arithmetic
dst: = src2 shifted right by srcl positions Slii ft right logical
dst: = src2 - srcl Intcgcr subtraction
dst: = srcl - src2 Rcversc intcgcr subtraction
dst: = byte srcl of src2 Extract byte
dst: = src2 @ srcl Logical xor

dst: = M[A + src]
dst: = M[src I+ src2)
dst: = M[srcl shifted by src2]
dst: = M[A]
dst: = I
dst: = src
M[A + SK]: = srcl
M[src2+ src3]: = srcl
M[src2  shifted by src3]: = srcl
M[A]: = src

PC: = dst + PC
PC: = dst + PC if Cond(srcl,src2)
PC: = dst
PC:= A+src
PC: = M[A + src]
PC: = 0 if Cond(src1,  ~2)

M[A]: = PC-,

dst: = -1 if Cond(src,dst)
dst: = 0 if not Cond(src,dst)

Table 1: MlPS assembly instructions

Load based
Load based-indexed
Load based-shi ftcd
Load direct
Load immediate
Move (byte or rcgistcr)
S tort based
Store based-indcxcd
Store based-shifted
Store direct

Unconditional rclativc jump
Conditional jump
Unconditional jump direct
Unconditional jump bast4
Unconditional jump indirect
Trap instruction

Save multi-stage PC after
trap or in tcrrup t
Set conditional

‘I’hc primary implications of supporting a sophisticated multiprocessing  cnvironmcnt arc that virtual

mc~nory and demand paging are ncccssary. Some sort of privilcgc support and a non-tri\fiat  tn.~1~;or’y

!licr-archy  are a!so nceded.



2.2.1 Exceptions in a pipelined machine

One of our primary goals in h4IPS is to attain higher performance lcvcls through the use of pilMning.

Though this is typically an organizational or implcmcntation issue, it strongly affects the way in which

cxccptional  conditions arc handled in the architecture. The interactions bctwccn thcsc diffcrcn t conceptual

1~~1s arc much stronger in VLSI than in 1’lLlike implcmcntation media.
-4 ->

01x of the lessons of some of the more heavily pipclined complex architectures [I, 151 is that the handling

of cxccptions can become very conlplicatcd and irregular. One of the major problems is that some

instructions change visible or hidden state  before that instruction can bc guaranteed to complctc without

’interruption. Pipelining complicates Lhis bccausc one instruction may change the machil;c state, and at some

later tilnc an instruction earlier in the pipeline (and hence carlicr in a control-flow sense) may cat!sc an

exception. This means that the machine may have to undo changes it has made in the state, so th;rt  the

instruction that faulted can be correctly restarted; this approach is often used to implcmcnt the

auto- incrcmcnt/dccrcmcnt  addressing modes on architectures  such as the VAX [16]. AltcrnAfcly, the

current state can bc saved as of the instant of the fault without retracting any changes. This introduccc an

added corrlplcsity in that it ncccssitates restarting  the machine in the middle of an instruction, as in the

. M~~torol~GSO10  [18].

Farther  problems  arc introduced by instructions with very long cxccution times. To mainrain a r-casoilablc

maximum interrupt latency, a very long instruction will need to bc intcrruptcd and rcstartcd. Many
.

ar2tlitccturcs with such instructions USC the general rcgistcr set for intcrmcdiatc computations; this helps

minin1i;l.c the amount of special  support needed for interrupting long instructions. Multiple mcmury

rcfcrcnccs per instruction arc a root cause of many of thcsc problems. When combined with demand paging

support, architccturcs with multiple memory refcrcnccs per instruction will constantly bc faced with the

- problem of partial completion  of an instruction.

.

The rcduccd-instruction-set philosophy counters many of these problems. First, all the instructions are

simple, and thus short. Instructions that alter state before previous instructions finish are not a natural part of

the architectural  style. I,oad/storc  architectures do not have the problems associated with multiple mtmory

rcfcrcnccs or the maximum in tcrrup t latency. Eliminating a few complex addressing modes, such as auto

incrcmcnt, rcmovcs the majority of the remaining cases that require the processor to be intcrruytcd after the

executing instruction has changed the visible  processor state.
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2.3 Support for virtual memory

The primary requirement of the memory system was support for virtual memory management and demand

paging. Otllcr dcsirablc attributes  are a large, uniform address space for each process,  and support for

multiprocessing. 01x mechanism for facilitating multiprocessing  is tlic incorporation of a process

identification number into the virtual memory address. This helps achicvc fast context  switches by allowing

th&achc and memory address translation units to avoid the cold start penalties. Thcsc penaltics appear in

systems that rcquirc caches and Translation Lookasidc Ruffcrs  (TLBs) to bc flushed bccausc proccsscs share

the same virtual address space. The classical solution of fixed sized segmented  address schemes (at least with

small scgmcnts) inevitably runs into problems  when a large application is run. The penalty for using

scgnlcntcd addrcssing is often quite high, both on the implementation and 011 compiled programs that must

maintain alld utilize the segmcntcd addresses.

2.3.1 Memory Mapping

‘1‘1~ primary motivation and constraint in the design of the memory managcmcnr  mechanism that was

included in the MIPS architecture was the dcsirc to retain flexibility in the implcmcntation of the proccssos

and any futur‘c systems.  The realities of the initial implcmcntation technology (a 41.Lrn channel length nMOS)

meant thiK- it was not feasible  to include all of the virtual to physical translation on the saint chip as the

processor.

Conscqucntly, a novel memory scgmcntation  scheme was added to the architecture.  Each process has a

1 process address space of 2’2 words. The first step of the translation is to rcmovc the top II bits of the address

and rcplacc them by an II bit yrcicess idenfifier (ND). Figure 1 shows this to bc the virtual address gcneratcd

by the CPU. Thus, the accessible portion of the process address space is split into the low 231-‘1 words and the

high 231-n words. An attempt to access any of the non-visible words will cause an cxccption. ‘I’hc operating

system can then remap the process identifier in such a way as to give the faulting process a smaller PID

nurnbcr and thus a larger visible  portion of its process address space. This will only happen if the program

used more heap or stack space then it was initially allocated.

The constraining factor in this scheme is that the total size of all the visible process address spaces must be

less than the size of the implcmcntation’s  virtual address space. This restricts the number of proccsscs that can

actively use the memory map; should this number of processes become very large, the operating system will

need to periodically reuse a PID. Whencvcr a process with a shared PID is mndc active, a process and cache

sweep will bc needed. This should not happen frequently, since the number of small p~~occsses  that can be

created is very large.

An additional lcvcl of translation maps the proccssois  virtual address to a physical address. A simple



J L
10 0 ,6 5 ,A C,D ,3 1

Figure 1: Address translation

Process Address
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Process ID No.
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Virtual Address
( Implementation Dependent )

Physical Address
( Application Dependent )

system might USC a small direct map or even no external memory mapping, while a more sophisticated

workstati0.p might include a TLl3 and disk-rcsidcnt page tables. The important point is that this mechanismL-
;?ll&vs portability across diffcrcnt implcmcntations of the processor. The only cffcct of ch;~nging the siyc of

the virtual address space is to change the total amount of the visible process address space. Figure 2 shows

two proccsscs running on an implementation in which the virtual address space is smailcr than the per prcccss

. address space. The 5rst process currently has G4K words visible  while the second has 8M words accessible.

Since the process addresses are 8 bits wider then the virtual addresses, n, the number of masked bils must be

grcatcr than 8, and the high order 8 bits of the process identifiers are insignificant.

2.3.2 The processor/memory interface

Since one of the goals of the design was to retain as much flexibility in the design of the memory hierarchy

as possible, the processor  architecture specified only a portion of the aspects of the processor/memory

intcrfacc. As the primary intended implementation was a single intcgratcd circuit, a major concern was a

limitation in the sp-zcd and number of busses ncccssary to match the pcrformancc of the processor. _

MIPS differentiates bctwecn instruction and data memory accesses. This helps supply adequate memory

bandwidth by simplifying the task of creating an instruction cache. Since instruction caches arc read only, and

the instruction locality is quite good for 1~11 structured programs, a small, simple cache can yield good hit

ratios [23]. Witi current RAM acccsc times, it is possible to run the current MWS implcmcntation  with a

cache only for instruction access and doins data access directly to main memory. Dcpcnding on the speed of

the mapping  hardware,  this will incur a pcrformancc penalty from O-10%.
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Process 1
Virtual
Address

FFFFFFF

FFFF800

2 -

. -

Space FFFFFFF

Heap

F 4 0 0 0 0 0

n = 16 11 = 9
PID = 00311 HI‘? - 008

103FFFFF

Code and Stack

3 0 0 0 0 0 0 0

Figure 2: Address space mapping for two proccsscs

2.4 Support for operating systems

A key concept in simplified instruction sets is transfcring complexity from the hardware  to the software

when the cxpcctcd bcncfits of a hardware implcmcntation do not warrant their cost. Mowcvcr,  thcrc arc

situations in which some minimum level of hardware support is necessary to make the resulting system

manageable.  One such situation is that of privi!cgc. The MIPS architecture provides for two levels of

privilege: supervisor and user. The set of privileged instructions consists only of those that change either the

process status register or any of the on-chip mapping rcgistcrs. To allow the rest of the system to enforce

protection,  the current privilege level is included as part of the virtual address.

A software trap instruction with an ll-bit trap code field is used for system calls. This trap code field, along

with cxccptions on illegal instructions allows extensibility of the instruction set and variation among

. im plcmen ta tions.

‘I’hc s!Iift of the burden of

handling the in frcqucnt  case

complexity

of trap Oil

from the

overflow.

hardware to software yicldcd an unusual rncthod

It is typically quite hrtrd, without slowing down

for

the
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machine, to detect that an overflow has occurred early enough to prcvcnt  the bad result from overwriting a

destination  rcgistcr. However, given one operand, the operation performed (for example, addition,

subtraction, and single steps of multiplicr\tion or division) and 32 bits of the result, one can invert the

operation  to rctricvc the second operand. ll~us, the decision on how to proceed can be made by the

programming language run-time system. It can cithcr replace the bad result with some known value, or fix an
.

o@%nd and restart, or halt the running process. Although this undoing of an operation  may cost a few dozen

instructions, it is done so infrequently  that system pcrformancc increases by putting this filnction in so&war-c

rather than lengthening the clock cycle to prevent the ovctwriting in the tlardwarc. Whiic the rccovcry from

infrcqucnt overflow events can bc done cffcctivcly in software, the dctcction of overflow after every integer

operation  would bc far too costly a burden for the software Thus. the architecture supports user-maskablc

overflow dctcction and trapping on integer operations. This two-part approach typifies the MIPS philosophy:

use a hardware implementation only where the pcrfonnancc gained, justifies the hardware cost.

3 Organization and implementation

In the MIPS processor, a close integration exists bctwcen the organization of the implcmcntation and the

archi tcclirc. This section discusses four related arcas in the processor organization and its implcmcntation.

* Tlic first part presents the gcncral processor organization and pipclinc structure,  including dct;lils of the

m;tchinc-lcvcl instruction set and the mapping from the assembly lcvcl instructions. The organiz;itiorl  and

implcmcntation of the control portions of the processor that run the pipclinc. handle cxccptions, and dccodc

. instructions are explained in the second portion of this section. The third arca details the key fcnturcs  of the

datapath  implcmcntation. Finally, WC give some intcrcsting  design metrics for the VI31 impicmcntation,

cl:tbomtc on performance  bottlcnccks, and discuss tcchniqucs WC have used to incrcasc the speed of the chip.

3.1 Ins?ruction set interpretation

.

The machine-level instruction set of MIPS is closely tied to the pipclinc structure. The five pipcstages and

their functions are summarized in Table 2. All pipestages take the same time to execute, and each instruction

makes a single pass through the stages in the order shown in Table 2. A new instruction is fctchcd on every

other pipcstagc; that is, the machine cycle is exactly two pipestages  in length.

‘flat main machine resources that arc used during the execution of an instruction arc the instruction

memory, the ALU (or the barrel shifter), and the data memory. Figure 3 illustrates the concurrent cxccution

of pipestages and t.hc allocation of the major resources to the individual pipcstages. ‘I’hc allocation of

rcsourccs to pipestagcs is static. The instruction rncmory is always 100% busy; the usage of the ALU and the

data memory dcpcnds on the instruction mix exccutcd. Many combinations of active instructions will result in

100% utilization of the machine resources.
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Staqe Mnemonic  Task(s)
Instruct ion Fetch IF

Instruction Decode  ID

Operand Decode OD

Op_%c;and Store/
Execution

sx

Operand retch OF

Instr. I + 1:

e

Instr. I:

Instr. I + 1:

Instr. I + 2:

each of the three major classes of instructions shown in Table 1:

1. an add instruction rcprcscnting the arithmetic and logical instructions,

2. a compare-and-branch insttuction  rcprcscnting the control transfer instructions,

3. a load instruction rcprcscnting the transport instructions

‘1 ‘hc add instruction needs only the ALU and can bc complct~4y cxccutcd durkg the SX cyc If.2 of tl

The cxccu tion of instructions in the pipclinc c3n bc easily understood by considering  one cxamplc from

Send out th.e VC, increment it

Decode  instruction

Compute  effective address and send to memory if load or store
Compute  new program counter if branch
Use ALU for register-register operation otherwise

Write operand if store
Use ALU for comparison if compare-and-branch
Use ALU for register-register operation otherwise

Read operand if load

Table 2: Major pipestagcs and their functions

\

IF ID OD SX
Time

H-T-
\IF ID OD SX

/ I

Instr. I + 2: IF ID

In truction
y b.2ernory

Data
w3mory

OF

s x

c
Denotes ALU reserved

for use of OD and SX of

instruction I + 1

Figure 3: Static resource allocation of the MIPS pipeline

_ . .

vz pipclinc.
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Since MIPS is a load/store architccturc, the arithmetic and logical instructions do not require USC of the ALU

during OD, nor do they USC the data memory. A compare-and-branch instruction has to execute two basic

operations:  test whcthcr the specified condition holds bctwccn the two arguments  (registers), and modify the

program counter if the condition is met- ljoth operations  require the ALU: the condition evaluation  is an

A1.U  operation, as is the addition of the relative offset to the program counter to obtain the branch

de&ation address. Thus, the compare-and-branch needs to make USC of the Al-U during both the OD and

SX cycles; it dots not utilize the data memory. The cxccution  of a load instruction requires the USC of the

ALU only once to compute the cffcctivc address of the item that is to bc rctricvcd from memory, leaving the

ALU idle during SX. All memory reference instruction acccsscs the data memory during the’ OF and SX

stages.

The static allocation of rcsourccs to pipcstagcs and the synchronous pipclinc with fixed length instructions

would typically mean that the add instruction and the load instruction would undcrutilizc the machine

resources. However, the machine-level instruction set of M 1 PS allows mui tiplc assembly language

instructions to bc packed into a machine instruction when the pipclinc rcsourcc allocation and the available

instruction encoding space both pcnnit  this packin,.0 The structure of the add instruction, which dots not use

*the data i?iQmory or the ALU during OD, and the structure of the load instruction, which dots not USC the

ALU during SX, means that these two picccs can bc cxccutcd in one machine language instruction.

Figure 4 shows the actual rcsourcc utilization for a sample instruction scqucncc. Assume that instruction I
. rctricvcs a nonzcro value irito register RO. That is, the branch is not taken. Instruction / + 2 of the sequence

is an example of a packed instruction. Two indcpendcnt  assembly-lcvcl instructions arc bound together  into

one machine-level instruction.

The second lcvcl of the MIPS processor architccturc is closely linked to the machine organization; it allows

two operator instructions (e.g., instruction I + 2 in Figure 4) and includes pipclinc scheduling constraints.

The actual hardware executes the machine-level instruction set; translation bctwccn assembly language (the

architectural  level) and the hardware instructions (organizational level) is done by the reorganizer [7]. The

pipclinc scheduling  constraints arise in two forms: the abscncc of hardware interlocks on rcgistcr access and

the dclaycd branches.

3.1.1 !nst ruction  reordering

. One of the unique features of MIPS (and the source of its name, “Microprocessor  without Interlocked Pipe

Stages”) is that the access for registers is not interlocked. Thus, the compiler is rcsponsiblc for generating

instructions that will correctly cxccutc given the structure of the MIPS pipclinc and the register accessing

pcrformcd by the instructions. Figure 2 shows that a data word read from memory by instruction I arrives
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instruction. If the branch instruction rcfcrcnccs memory, as in an indirect jump, two succeeding instructions

are fctchcd and cxccutcd. This concept of a dclaycd branch is CO~INIIOJI in microprogramming and has also

been used in the RISC [21] and IIsh4 801 architccturcs [22]. The compilers and code generators are unaware

of this behavior  of branch instructions; the reorganizer finds a suitable instruction to be the successor of a

branch. The algorithms employed arc dcscribcd in detail in [6].

3.2 Exceptions

The MIPS organization has a number of fcaturcs that simplify the implcmcntation of cxccptions. First, the

pipeline can bc dcsigncd to guarantee  that instructions do not alter any state out of order. As discussed in

detail in Section 3.4, the memory subsystem must indicate whcthcr or not a refcrcncc will complete by the

end ofSX. Thus, each memory refcrcncc is committed bcforc any subsequent instruction does any potential

harm. The synchronous nature of the pipclinc also means that the list of combinations of possible cxccptions

and pipcstagcs is quite short (see Figure 5). Furthcnnorc,  if an instruction encounters a fault in a particular

pipestagc, the state  of the other instructions in the CPU is precisely known.

Illegal Instruction

Mapping Error

Page Fault

r
Overflow -
Software Trap -
Page Fault

Mapping Error

I 1 •*
IF CM ID OD s x W T O F

Instr. Fetch Cat he fvbss Instr. @ecode Operand Dec. Store/Execute Wait Operand Fetch
w-

I I
+

Hard Bus Error

Reset

illegal Instruc?ion

Hard Bus Error

Reset

Hard Bus Error

E’igurc 5: All possible exceptions

Although it appears that handling the exceptions  should be trivial, the reality is complicated by the fact that

several  exccptiolls can happen  at WCC. ‘I’hc system can choose to handle all the exceptions simultancously,.or

one at a time. Handling the cxccptions one at a time is casicr to implcmcnt and is sufficient provided that no

irrcproduciblc infonnation is lost. ‘l’hc gcncral strategy is to report the cxccption that is associated with the



-* -1

. -

I n s t r u c t i o n s  i n  the oipel ine
I: Ld l[R14], RO -* No-op1 9
I+1: Bra Equal HO, RO, -next
I+2 : St R15, 3[R14]

Instr. Instr.
I . I+1

IF
ID
OD IF
sx ID
OF OD

s x
OF

Instr.
I+2

IF
ID
OD
s x
OF

;; Add #l, RO

Instruction
Memory ALU Data

V

Fetch
Dccodc
Fetch
Decode
Fetch
Decode

Compute address
- IDI,E -
Compute new PC
Compare operands
Compute address
Rcg-Keg operation

Rctricvc data
Rctricvc data
- 1DI-E I-
- IDLE -
Send data
Send data

L‘ . IGgure 4: Dynamic rcsourcc utilization of the MIPS pipeline

during the OF cycle of that instruction. This cycle is cxccutcd concurrently with the 011 cycle of the next

instruction (Figure 3). ?‘hus, instruction I + 1 cannot read or write the rcgistcr that is the target of the ioad

during OD cycle of instruction I + 1. The reorganizer reorc@rs the instructions for each b:lsic block to satisfy

A these constraints; this reorganization  establishes at compile time the schcdulc of instruction cxccution.

Scheduling instructions in software has two benefits: it cnhanccs pcrformancc by eliminating instances of

pipclinc interlocking, and it simplifies the pipclinc control hardware allowing a shorter time per pipestagc [6].

During this instruction scheduling process, the rcorganizcr also attempts  to pack assembly language

instructions into machine-level  instructions. When the rcorganizcr finds that it has two assembly instructions

. that can bc schcdulcd next, it chooses the instruction that can bc packed together with the previous

instruction. This packing process means that the final code density is usually greater than one assembly

language instruction per machine instruction.

3.1.2 Delayed branches

Figure 4 also illustrates another property of the MIPS hardware architccturc that is invisible at the

assembly-language level. A compare-and-branch i:lstruction modifies the program counter at the end of the

SX cycle. At this time, the next instruction has already bcc:l fctchcd and dccodcd. Rather than complicating

the processor control to flush the pipe if the branch is t:lkcn, WC define the semantics of the branch instruction

to include a delay in the cxccution of the branch. Each branch instruction always cxccutcs one succeeding



earliest instruction. lf several simultaneous cxccptions happen to the same instruction, then the most serious

cxccption is reported. For instance, if one instruction incurs an overflow in SX while its successor is faulting

with an illegal instruction in ID, then the overflow will bc the cxccption reported. If this instruction stream is

resumed, then the illegal instruction cxccption will occur again.

P’%n instruction is subject to an cxccption early on in the pipclinc, then the instructions that are ahcad of it

should bc complctcd. Othcrwisc, the instruction stream will not bc directly restartable (unless those

instructions have not affcctcd the state of the processor). This “running out” of the pipeline is not particularly

difficult; however, complications arise when a second or third cxccption happens during the flushing.

Consider the cast when the last instruction of a rcsidcnt page gcncratcs an arithmetic overflow in SX, and in

the previous pipestagc the succccdin,0 instruction (on the next page) causes a page fault on instruction fetch.

As the pipclinc is being run out. the overflow will occur. The cxccption to be rcportcd must be changed from

page fault to overflow so that it indicates the fitilcd cxccution of the earlier instruction in the pipeline.

Further confusion erupts with rcspcct to the split instruction and data memory streams. If in the previous

example, the first instruction gcncratcs a data rcfcrcncc fault rather than an overflow, a diffcrcnt problem

arises. ‘I&e instruction cache will I-cport a miss in the attempt to fetch the second instruction. While the

processor idles in cache miss states, the instruction cache tries to fcrch the word from main memory causing a

page fault. During the conscqucnt cmptyin,0 of the pipclinc, a second main memory rcfcrcnce will bc

attcmptcd for the data refcrcnccs of the first instruction. This rcfcrcncc will also f&l with a page fault, and the
. system must report the page fault of the first instruction’s data rcfercnce.

3.3 Operating System support in a hardwi red machine

Architects of microcodcd machines often USC the microcode to add support for operating systems [S]. A

- great deal of the exception stack maintenance, Tl,I3 and page table maintenance, and general exception

handling and dispatch is done by the processor’s rnicrocodc. This is not possible in MIPS for the simple

reason that it is not a microcodcd machine.

Howcvcr, thcrc is a need for these functions to bc always acccssiblc with a minimum of delay. ‘The solution

in the MIPS implcmcntation  is to have a body of code pcrmancntly rcsidcnt at location zero of physical

memory. Whcnevcr an exception occurs, the processor jumps to this location, and while executing the jump

turns off address translation and disables interrupts. This is the target rcgardlcss of the exception type. At this

location code exists to save a small amount of the more transient processor state, and to do the primary

dispatch based on the details of the event. The corresponding return-from-exception scqucncc permanently

rcsidcs in memory.
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One of the basic prcmiscs of the MIPS architccturc is that exposing the microenginc in the architecture

eliminates a level of intcrprctation and thus obtains more efficient utilization of the hardware. One could then

reasonably expect thcsc non-microl:odcd  routines to cxecutc nearly as fast as the equivalent microcodcd

routines of other machines. l’hc non-microcodcd machine’s clock cycle is limited by cache access time and hit

rate, while the microcodcd machine’s clock cycle dcpcnds on the the micromcmory access time. The non--* 3
microcodcd execution rate, coupled with the flexibility of user spccificd interrupt dispatching and state

saving, allows tailoring of this lowest lcvcl of system software to any particular application.

As dcscribcd in Section 3.1.2, the synchronous pipeline and fixed instruction execution time combine to

imply a branch delay. The maximum branch delay of two implies that three return addrcsscs must bc saved

on an ,cxccption  to ensure proper restarting of the instruction stream in the worst case. I-igurc 6 shows a

situation in which the instruction following a branch incurs an cxccption. The branch cannot bc rcpeatcd

since it succcssfi~lly completed: it may have other effects. ?‘hus the addrcsscs of the instructions to be

rcturncd to are i+ I,i+ 2, and tn.

To save these three return addresses, the program counter includes a shift rcgistcr structure that saves the

. add:-css cf the last three instructions fctchcd. After an cxccption and its subsequent jump to physical location.

zero, these three values arc accessible via a special instruction: SavcPC. Returning from an cxccption

requires  three successive indirect jumps to the addrcsscs saved. In the process of doing thcsc jumps, the

prjvi!cge and interrupt levels must bc restored to rcflcct the change from system state back to user state.
1

3.4 The memory interface

Section 2.3.2 described the architectural aspects of the intcrrdcc bctwecn main memory and the CPU. The

sp’lit instruction and data streams provide  a basic mechanism for making more cffcctive use of main memory

- bandwidth. These two streams arc intcrleavcd to cvcn out the bandwidth rcquircmcncs  across the chip’s

boundaries. Over the course of two pipcstagcs, two addresses are sent out and two words arc returned. As

there is a single mapping unit that operates on both instruction and data addresses. the natural decomposition

is to have separate data and address busses.  Combining :hcm onto a single bus would incrcasc the compicxity

ofthc intcrnai and cxtcrnal bus multiplexing  circuitry as well as doubling the rcquircd bandwidth ofthc bus.

Figure 7 shows the timing of the transfers on the address and data bus and their relation to each other.

Although the access time of the instruction cache is less than that of the data memory, both access types span

two Cycles. The external unit must signal, within the first cycle, if it needs more time to complete the rcqucst

via the hit or ready lines. These cause the insertion of cache miss or wait states  rcspcctivcly. Also within the

first cycle of cithcr type of rcfcrcilcc, the page fault lint cm bc raised to indicate that the rcfcrcnce cannot bc

satisfied.  In this cast, the pipclinc is flushed in a manner that allows it to bc rcstartcd. If the error signal is
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Phi 1

Phi 2

* *-a I. Fetch

Address Bus

Read/Write

Data Bus

/ T i m e  ------+

Figure 7: Bus timing diagram

Another conscqucnce of the synchronous pipclinc and fixed rcsourcc allocation is that one can dctcrmine at

instruction decode time whether any particular instruction is going to USC its data memory reference. The free
L’ .

-memory cycles of instructions that do not USC this particular resource would normally go unused. However,

with MIPS the rest of the system is warned of these upcoming free cycles, so that  memory can bc kept busy

doing cache prcfctches, write-backs, I/O or other 11MA activity. Thus the sys:cm can make the most of the

I peak memory bandwidth provided.  This fcaturc is significant: when running optimized code, over fifty

pcrccnt of the data memory cycles are typically unused by the processor, due to the high pcrccntagc of

rcgistcr-register operations.

3.5 The decomposition of control and decode

Most microcodcd machines and hardwircd CPUs use a collection of logic and microcode that

simultaneously  decodes the instructions, interacts with other components  of the system, and deals with the

exception handling. In MIPS however, tie instruction set and pipclinc framework allow for the very clean

decomposition  of thcsc functions into two distinct functional units: the Instruction I>ccodc Unit (TIN) and

the Master Pipclinc Control (MPC). The main fcaturc of the machine that allows this decomposition is the

uniform nature of the instructions. Bccausc all the instructions arc csscntially intcrchangcable with respect to

their size, cxccution time, and possible USC of rcsourccs, the specifics of the currently cxccuting instructions

arc largely irrelevant to the handling of exceptions. The communication bctwccn the MPC and IDU is

limited to status signals and information regarding memory use by the cxccuting instruction, used by the

MPC to drive the memory intcrfacc. This  clean chmnposition a l l ows  scparatc implcmcntation  and

optimization of the two control components of the processor.
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-.* -1

Data& hddress
%m~ry Data Register

t)iSpfl3Ck?illC?tlt  GeneratcH

1 Smatl Constant Port. 1

Eecjister File

Figure 8: Datapath  block diagram

Busses in MOS circuits provide a special challcngc for the circuit designer because
Bus Delay = k X (Capacitance X Voltage Swing)iDrivcr Size.

For busses  with many drivers, the bus loading is dominated by the drivers thcmsclves, so
Bus Capacitance  = k X Driver Six X Nutt~!m-  of Drivers.
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As a result,
Bus Delay = k X Number  of Drivers X Voltage Swing

The delay could be improved by either reducing the number of drivers (smaller rcgistcr file) or by reducing

the voltage swing. The voltage swing may bc reduced by using scnsc amplifiers, as is typically done in RAM

designs. An alternative version of MIPS has been fabricated using a clamped bus structure that is similar to a

sense amplifier with a limited swing bus. This alternative bus design rcduccs the effective voltage swing by

about a factor of four, dccrcasing the bus delay to around 1OnS and eliminating the prechargc  clock phases.

~ 3.6.2 Data path components

Arithmetic operations in the critical path rcquirc careful logic and circuit design. The arithmetic and logical

function blocks are scparatcd to cnsurc minimal loading on the adder. ‘1’11~  adder has a full carry-lookahead

tree, with propagate signals and gcncratc signals produced f(>r each pair of bits, yielding a total ALU delay of

Sons.  Adcquatc support for intcgcr multiplication and division arc an important MIPS objcctivc. _ Special

“H” (High) and ‘*L” (Low) rcgistcrs intcgratcd  into the ALU pcimit modified Booth’s algorithm

multiplication at a rate of two bits per ALU operation (four bits per instruction with packing) and non-

restoring$ivision  at a rate of one bit per ALU operation (two bits per instruction with packing). The ALU

‘ha3 been cxtcnded to 34 bits to accoinmodatc ovcrfl(;w  dctcction for this two-bit-shift-and-add operation.

The barrel shifter is used for arithmetic and logical shifts, rotates and character insertion and extraction.

This variety of functions is controlled by an input multifilexcr  that sclccts the data for each word of a.
two-word combined rotator. The shift amount dctcrmincs which 32 bit section from this 64 bit combined

quantity goes to the output. The combined rotator is implcmcntcd as a pair of cascaded shifters: the first shifts

by the shift amount divided by 4, the second by the shift amount modulo 4. Scverc pitch constraints dictated

this special shifter  organization. ‘I’hc barrel  shifter  lies bctwcen the rcgistcrs and the IZLU. During ALU

operations, both operands must be transfcrrcd through the shifter on phase one, and the result must return on

. phase two. The tight 33h pitch prohibits two bidirectional busses. One operand and the result travel on one

bidirectional bus. The other source operand bypasses  the ban-cl shifter in a special null operation.

‘I‘hc high rcsourcc utilization of the hWS pipclinc pl;~ccs scvcrc demands on the rcgistcr file. Any ccl1 may

be read onto cithcr bus on cithcr phase, and may bc written from cithcr bus on phase two as shown in Figure

9. Register rcfrcsh occurs whcncvcr the ccl1 is not written. This permits faster register write timing but

complicates register decoding and expands the arca nccdcd for control lint drivers. The register array

contains both the sixteen gcncral purpose rcgistcrs and that portion of the process status rcgistcr that holds the

trap code.
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Write A

A BUS

Refresh
-L.

I-m

Read A
.L

Write B Read B

Figure 9: Register ccl1 design

The variety of program counter operations  and the rcquircmcnt for instruction restart complicate the logical

design and layout of the program counter block. The program counter‘ must hold the current v&e, three

previous  values for pipeline restart and one possible filturc value for branching. On cvet-y cycle, one of six

possible sources must bc sclccted for the new value: increment, self-refresh, zero (to start interrupt rcsponsc),
” ^

. the branch value, or values of cithcr of the ddta busses.  Simultaneously, the old value must be shifted into the’

FIFO buffer containing old values. The PC-incrcmcntc1 could easily become the major pcrfonnancc

bottleneck, but a simple carry-look&cad  incrcmcntcr ovcrcomcs this problem.

.
The address masking primitives arc intcgratcd into the program counter structure along with the Memory

Address Rcgistcr. This masking allows a machine address to bc convcrtcd to a process virtual address. The

size of the process virtual address space is dcfincd by a bit mask in a special register. When masking is
enabled for normal operations, the high order bits of the machine address arc rcplaccd by a Process Identifier

- from another special register. These two special registers are acccssiblc only to processes running in
supervisor statz. The Address Masking Unit also hctccts attempts to access outside the legal segment and

raises an exception  to the master pipeline control.

3.6.3 Control bus design

The control bus encodes the register transfer  source and destination for each type of operation, as well as a

code for the operation  itself. It includes a set of true/complement  pairs for the two ALU sources, the ALU

destination and the memory transfer source/destination. It also includes a collection of special signals

including pipcstagc, brsllch condition results,  and various exceptional  conditions.

Each datapath control driver taps this bus with one or more NOR dccodcrs and latches the dccodcd signals

into the driver in the phase irnmcdiatcly prcccding its active USC in the datapath. Thcsc signals arc driven via
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bootstrap drivers by the appropriate clock as shown in Figure 10. The bootstrap drivers put a considerable

load on the clocks, but much car-c has been tdkcn to minimiLe skew by conscrvativc routing in metal. In a few

cases bootstrap drivers cannot bc used bccallsc the control signal may need to be active on both clock phases,

as in rcgistcr reads. ‘I’hcsc drivers arc implemcntcd as large static supcrbuffcrs.

2‘ .

CLOCK
--i

DATA OUT

b’igurc 10: Dynamic bootstrap driver design

3.6.4 The package constraint

MIPS is housed in an eighty-four pin chip carrier. This package imposes two constraints’on our VLSI

implcmcntation: a careful allocation of pins in the cxtcrnal  interface and a power budget of’ roughly two

Watts. Separate address and data pins arc crucial to achieving a high memory bandwidth. A full assortment

of control and status pins are ncccssary to support our realistic view of the computing cnvironmcnt  as a world

of faults and exceptions. The breakdown of pad usage is as follows:
.

Address 24 pins
Data 32 pins
Stms out 8 pins
Status in 7 pins
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PIPELINE

CONTHOC

INSTRUCTION

OECODE

UNIT

CONTROL BUS

REGISTER PC 23

PADS

k‘igurc  12: M II’S l)llotolnicrc,gi.aph  nnd floorplan

Rcgulztrity is the ntlmbcr of inswttinrcd rcctan$zs  per dr;Iwn rcct;lnglc.  ~hic‘h WC computed using cifstat

[4]. ‘1’1~ rcgistcr file has the highest qularity bccausc it is the 01:1y port of the chip rcplicatcd in two

dimensions cxccpt for the program counter wck. The control bus with dccodcrs and the MPC have the

lowest regularity for t~v:o reasons. First, they arc the most wdom parts of’ the chip. Ijut more importantly,

they and the pcriphcry  WIT l;lid out by SII .‘l’. a silicon assembly bngu3gc. Although at the S1I.T lcvcl much

structure  exists, Lhc Wwturc is I;lrScly 109  in compiling I0 CIF.
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Clocks, power, substrate 9 pins
LSSD 4 pins

Total 84 pins

The eighty-four pin chip carrier also imposes a power limit of about two watts. The fabricated processor

drawz$css than 350mA (1.75W).  Using a conservative estimate of power for each square of pullup, the device

power requirements may be decomposed as shown in Figure 11.

PADS (115mA)

SHIFTER

. Figure 11: MIPS current distribution

Figure 12 shows the floor-plan and a phoromicrograph  of the MIPS chip. The chip is implcmcntcd in

standard, one-levci metal nMOS using Mead-Conway design rules with buried contacts. The total

dimensions are 3750)\  by 4220h.

3.7 Design metrics and timing characteristics

Table 3 presents several design metrics for MIPS. The datapath and periphery of the chip each occupy

about 40% of the total chip are. The remaining 20% is devoted to control. Considering the fimctidnality of

the control structure (pipclining, exception  handling, and instruction decoding), 20% of the chip area is a

small price. The transistor density (i.e. ratio of percent of total transistors to percent of total area) is greater

than two to one for all units in the data path except the bar-r-cl shifter and the data path control. Thcsc two

units arc limited by communication, not by transistor sites. The MPC has the lowest transistor to area ratio of

any part except for the pads. The control section as a whole (including the dccodcrs for the data path) have

an avcragc transistor density of about enc.
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The role of the Master Pipclinc Control is to scqucncc the machine, intcrfacc with the outside world, and to

deal with all the exceptions. For the most part it is cntircly unaware of the characteristics and current

operations of the data path. It consists primarily of a sixteen state finite-stntc machine that incorporates the

rcsponscs to the nine basic cxccptions as well as the normal scqucntial operation of the machine. This state

machine deals with cache misses, cxtendcd memory cycles, and DMA cycles: it also arbitrates  among multiple

fatifi and ensures that flushing of the pipclinc is done properly. .

Once the ir!struction dccodc unit is pruned of thcsc subsidiary tasks, the lI>U can concern itself solely with

mapping instructions into control for the data path. In MIPS, the instruction set is cncodcd in such a way that

the decoding of instructions is primarily just multiplexin,0 the appropriate nibbles of the instructions onto the

control word fields. This multiplexing is csscntially a parnllcl operation with a small nurnbcr of gate delays

from the input register to the data path control drivers. ‘I‘hc careful sclcction of the location of the various

fields within the diffcrcnt instruction classes cnablcs the multiplexing  hardware to be shared. This further

reduces the amount of logic rcquircd to perform the decoding.

3.6 Datapath implementation

The MIf S datapath  consists of five principal functional blocks: the arithmetic logic unit, the barrel shifter, .. -
the rcgistcr file, the program counter and the address mask unit. Thcsc resources arc intcrconnccted through

a pair of thirty-two bit global busts and numerous local paths, as shown in Figure 8. The datapath

communicates with the remainder of the MIPS system through  the address and data ports and the datapath

’ control bus.

3.6.1 Data bus design

The machine cycle time is closely linked to the time nccdcd to move data from one resource to another in

the datapath. This delay consists of the control propagation on the polysilicon control wires and the data

propagation on the metal busses.  The control delay is reduced by strict adhcrcncc to a 33X pitch in the

datapath and by the USC of bootstrappcd control drivers. This combination holds the control delay to lOns,

which is limited primarily by the parasitic RC time constant.

Two diffcrcnt bus structures  wcrc cxamincd. The first was a prcchargcd bus that prcsct to the high state by

a separate prcchargc clock during the period between each principal clock phase. To prevent spurious bus

discharge, data must be valid as soon as the prcchargc clock falls. This prcchargc clock may overlap slightly

with the beginning of the following clock phase. This clock overlap introduces momentary contention over

the bus, but obviates a clock skew delay bctwcen the prcchargc and principal clock. The prcchargcd bus

method introduces  a delay of abotit 40ns. in addition to the prcchnrgc time.
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Given two circuits having the same number of lcvcls of logic and similar power dissipation, the faster one

will bc the one with the smaller arca. Parts of the design forced to have larger area due to communication

topologies can have this disadvantage removed by increasing power consumption. Thus, we might cxpcct to

see power consumption per area to bc roughly constant throughout the chip. Table 3 shows that power

dissipation varies  by a factor of about three around the chip. However, the most cxtrcme figures for power

pc^i%rca arc mainly dctcrmined by number- of lcvcls of logic. The ALU has many lcvcls of logic, and hence

was dcsigncd to dissipate a larger share of power to overcome this. On the other hand, the operation of the

barrel shifter.involvcs  only a small number of levels of logic, so its power dissipation is low. The power ratio

(or microamperes consumed  per transistor) confirms that power is used to overcome multilcvcl gate delays

and communication delays;  this ratio is highest in the control bus (which dots chip wide communication), the

ALU carry generation logic, and the pads (which do inter-chip communication).

P a r t % Area % Trans % Power pA/Trans Regularity Power Trans

Data Path: 39.2

ALU 6.3
Shifte_r. 5.8
-Registers 8 . 3
PC 6.1
Disp&Buf 1.7
Decode 11. -0

I Control: 18.2

MPC 9.9
IGU 8 . 3

I’criphcry: 42.6

Total 148Ml

73.5 49.2 8.6 14.6 1.3 1.9

13.7 12.3 11.5 20.7 2.0 2 . 2
8 . 6 3 . 5 5 . 2 18.3 0 . 6 1 . 5

21.3 a . 2 4 . 8 76 .8 1.0 2 . 7
14.7 7 .9 6 . 9 25.0 1.3 2 . 4

3 . 6 1.9 6 . 2 12.7 1 .1 2 .1
11.1 15.5 17.8 4 . 6 1.4 1.0

21.7 14.5 8.5 11.2

9.2 6 . 6 9 . 2 4.9
12.6 7 .9 8 . 0 20.1

4.8 36.3 98.0 9.2

24661 1.6W 12.8
l’ablc 3: MIPS design metrics

12.0

0.8 1.2

0 . 7 0.9
1.0 1.5

0.9 0.1

1 1

Figures 13 and 14 arc plots of the five most critical paths on clock phases one and two. These plots are

similarly oriented to the floorplan and photograph of the chip (Figure 12). Each jog in the plot dcjlotes a

lcvcl of logic: ends of paths arc capped with ii bar signifying a latch. Timing results for conservative, worst

cast 3pm SPICE parameters  indicate a clock cycle time of 250ns. giving a machine cycle of 500 nS. Typical

SPICE parameters  yield clock cycle times on the order of 166ns. In subsequent discussions, all timing results

will bc for the worst cast paramctcrs.

Noticeably absent  from tllc critical paths is the cntirc data path. Without the rcduccd voltage swing bus,

the data path busses bccomc part of the critical path. The improved bus design yields a total spccdup of
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.

Figure 13: Critical paths on phase one

about lSOns, which removes the busses from the critical timing path. The regular structure of the data path

also made it easier to quantify its delays and minimize them during design.

The bulk of the critical paths heavily involve the control component of the chip. Most of the delays occur

in the MPC and the control decoders.  ‘lhcrc arc several reasons for this:

1. Properly handling ten different exceptional conditions in a truly pipelined machine (i.e., a
pipeline with more than instruction prefctch) is costly.

2. The complexity of the control prcvcnted easy understanding of delays and potential critical paths
at design time [8].

3. Scvcral logic structures used (e.g., PLAs and large fan-in NOR gates in the control bus) have
inhcrcntly slow performance.
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Figure 14: Critical paths on phase two

Not much can be done to allcviatc the first cause. It is a price one must pay for the increased performance

derived from pipelining and building a processor that handles the conditions arising in the system’s.
environment.  The second cause could bc eliminated to a large extent by timing analysis on a schematics lcvcl

bcforc layout. The last cause is diflkult but not impossible to avoid. Our control synthesis tool, SLIM, IS very

useful but currently only gcncratcs PLAs, which for some structures can bc incfkicnt. Finally, large fan-in

NOR gates are inhcrcnt in many functions, and only better circuit design techniques  can help rcducc their

delay. Although power dissipation per area is the lowest in the MPC, it is difficult to power up structures

such as PLAs, since most of the delay comes from pull-down capacitance on the large fan-in NOR gates.
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3.8 Timing methodology

Some of the advanced  circuit structures .uscd in MIPS represent a deviation from standard Mead-Conw;:y

design styles f173. Anorhcr  important deviation is the use of a timing-dcpendcnt clocking methodoitigy

instead of a tinling-illdcpcndclIt approach. Like the high performance circuit structures,  this methodology can

yield higher clock speeds.
‘-4 -3

Figure 15 is a typical circuit from MIPS which relies on verification through a timing-dcpcndcnt clocking

methodology, When phase one falls, the data is latched on the storage node and the pull-up raises  node N. If

the pull-down is disabled long enough bcforc the latch is closed for node N to rise to a logic 1 (c-g. due to

clock skew), the circuit will malfunction. A timing dcpcndcnt verifier was built into TV [13, 121 to ensure

correct design of such circuits.

Phase 1
qualified

” .

. .

Figure 15: Timing-dcpcndent clocking

Although not specifically prohibited in Mead-Conway designs, other stricter two-phase timing disciphri~s

_ [19)  allow signals to pass through only one pass transistor qualified by a clock during each clock phase.  In

MIPS, most paths pass through scvcral transistors gatcd by the active clock phase. Without the ability to pass

through scvcral clock-qualilicd pass transistors during each clock phase, our design would become much

more complicated  and significantly slower. Since WC did not design with this methodology, accurate estimates

arc no! availnblc, but WC suspect that such a methodology could ncgativcly impact pcrformancc by as much as

a factor of two.

A significant difference bctclccn nh/lOS and bipolar circuits that can bc exploited is the type of latches used

In bipclar circuits and MOS circuits using master-slave, cdgc-triggcrcct flip-flops, signals must be stably ar

input to the latch at a single /,oirlf in time. At this point they arc transfcrrcd  to the output of the flip-flop. In

h4OS  tcchnologics u+I!~ silnplc pass transistor latches, the signal may propagate  through the latch during the

itilerwl when t.lw clock is high. If a critical path only drives non-critical paths, and is driven only by
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non-critical paths, time may be “borrowed” from adjacent phases to reduce the cffcctivc time of the critical

path.

Figure 16 illustrates this principle. The thin lines represent paths consisting of an arbitrary amount of logic;

the thick vertical lines rcprescnt  Iatchcs. The time to the left of each latch is the arrival time of the signal after

the-&e of the other clock. Note that one path travels through two latches on phase 2. Without borrowing,

the cycle time is simply:
Tcycle = longest phase 1 time + longest phase 2 time

= 150 16 + 120 nS
= 270 nS

Iiowcvcr, with borrowing the cycle time is actually 22011s  phase 1 being 120 nS and phase 2 being 100 nS.

This is the longest time rcquircd for two paths active on opposite  clock phases in series. Borrowing may only

occur while a clock is high; for chips that require clocks of small duty cycle borrowing may bc limited by the

high time of the clocks.

In MIPS, where one clock or another is high for about 90% of the cycle, possibilities for borrowing abound

Restrictions on borrowing arc imposed by the possibility of destroying  charge or bootstrap cffccts. For

cxample,‘b~~,rrowing is not possible for the signals that sclcct a write destination in the register file, or for the. -
pull-downs discharging a prcchat-gcd bus. Thcsc signals must be stable at the rise of a clock phase or else data

will bc lost. Similarly, data must be present at bootstrap drivers at the rise of the clock phase or else the

bootstrap cffcct may bc lost. Since the current MIPS implementation does not USC prccharging, and bootstrap
.

drivers arc only used to gate storage nodes, significant bcncfits can be attained from borrowing. TV

incorporates  a borrowing algorithm in its analysis and shows that borrowing WCS about 35% of the current

clock cycle.

4 Architectural Performance Measurement .

The MlPS processor derives its high performance from a combination of fast hardware and an efficient

match between the processor architecture and software. The M[PS  architecture exploits advances in software

technology more successfully than most other processors. The small set of simple instructions aids cffcicnt

code gcncration, and the orthogonal rcgistcr file permits  global rcgistcr allocation to rcducc memory traffic.

‘l’hc exposed pipclinc allows the software code rcorganizcr to achieve high hardware rcsourcc utilization.

The Pascal and Fortran compilers  are built on top of the UCcde system, which contains the standard phases

of parsing, intcrmcdiatc code gcncration, global optimization, rcgistcr allocation and code gcncration. The

optimiz.ations,  pcrformcd  by HOPI’ [3], include common subcxpression elimination,  code motion, induction

var-L:blc  elimination, constant folding, dead code elimination, a n d  redundant store removal. Rcgistcr
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120ns
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Figure 16: Borrowing time from less critical phases

allocation is done by a priority-based, graph coloring algorithm [2] that moves most local scalar variables into

t!?e rcgis&.r  file and rcquircs minimal spill code. The code generator products  a stream of simple operations,
. -

indcpcndcnt of all rcsourcc interaction, branch delays and instruction combinations. The code reorganizer

perform; three crucial functions. It assembles and packs one or two indcpcndcnt operations into each 32bit

instruction word. It moves appropriate instructions into the words following each dclaycd branch, and it
. rcordcrs instructions within each basic block to eliminate resource conflicts 161. Compared to simple no-op

insertion to climinatc rcsourcc interaction, the rcordcr operation cuts execution  time by 5%. Reordering

combined with instruction packing saves 10%. The complete machine lcvcl optimization done by the

rcorganizcr  (rcordcring,  packing and branch optimization) saves a total of 30% of the cxccution time. In

_ addition. shifting the burden for thcsc features to the software yields a simplification of the pipeline hardware

and allows it to run faster. We estimate that a 20% improvement  in the. clock cycle has been achieved due to

these simplifications.

4.1 Software Simulation

‘l’hc MIPS software system includes compilers for Pascal, C, and FORTRAN. MIPS has been extcnsivcly

characterized using Pascal benchmark  programs. These benchmarks include a variety of short computc-

bound programs cxcrcising al! aspects of the MIPS instruction set. The majority involve non-numeric

mnnipu!:rtion of arrays, lists and scalars. Many are recursive and contain numerous procedure calls. -1’he

Pasc:-t! benchmarks inc!ude:

o l’u~le:  Solves 3D cube packing problem
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l Queen: Solves ci$:t queens chess problem.

0 Pcrnx Computes all permutations of one through seven

o Towrs:  Solves Tom-s of Hanoi problem for 14 discs

e Intnlnl:  Multiplies two 40x40 matrices
--*5

o Bubble: Bubble sort of 500 integers

o Quick: QuickSort  of5000 integers

l Tree: Tree insertion sort of 5000 integers

All benchmarks wcrc asscmblcd with the Stanford UCode Pascal compiler with giobal optimiiration i\nd

checking turned off. Because the compilers USC the same front-end and code optimizer, the coirlpiler

technology dots not bias the performance data. All MIPS benchmarks were processed through the code

reorganizcr/assemblcr  and then passed to the instruction set simulator to gather pcrformancc dais This

simulator detects any crroncous instruction interaction and reports detailed statistics on instruction profiles. It

makes no allowance for cvcnts outside the CPU chip, such as cache misses or page faults; both of these effects
” .

- shoulJ be small because of the siyc of the benchmarks.

‘I’hc results of the Pascal benchmarks  are shown in Table 4 for MIPS (4MHz), the Motorola 68000 (8MHz)

and the Digital DlX20/60.
.

h4IPS 68000 DEC20/60
Puzzle 2.40 6.1 2 . 6
Queen .44 1.9 .5
Perm .56 3 . 0 .6
Towers .64 2 . 9 .7
Intmm .80 5.0 . .5
Bubble .58 3 . 7 .7
Quick .41 2 . 6 .4
Tree 1.01 9 . 9 1 .0

A_vg. (relative to MIPS): 1.00 5.1 1.0
T;lblc 4: Pascal bcnchmilrk pcrformancc (in seconds)

It is interesting  to cxaminc where the factor of six in improvement over the Motorola 68000 comes from.

Our examination of the data has Icd to the estimates shown in Table 5.

.
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Concept Benefits I m o r o v e m e n t

Streamlined instruction lower overhead/instruction 1.5
s e t single cycle decode

MIPS Organization Longer pipeline 1.5
Higher memory bandwidth

Loi'level Machine level optimization 2.0
instruction set Streamlined pipeline

Good compiler Better utilization 1.2 - 1.5
architecture match of hardware resources

Total High performance 5.2 - 6.6

Table 5: Breakdown of performance improvement

5 Conclusions

7%~ h4IPS design attempts to eliminate the artificial barriers  between the processor architecture  its

organization, and its implcmcntation. This synergistic approach results in hardware simplifications and in

incrcasccf i)erformancc. We have tried to consistently evaluate the needs for a particular architectural. -
capability and to dctcrminc where and how it is best implcmcnted. For cxamplc, by including the pipclinc

organization of the processor as part of the architccturc, we gain two important benefits:

1. The coml)ilcr is able to set and optimize effects that arc usually hidden but that can have
substantirtl  performance impact.

2. ljec;iusc this function can bc performed predominantly  in software without incurring any
significant penalty, tilt hardware can bc made simpler and hence faster.

Reducing the instruction set to the point where it can be exocutcd without microcode rcmovcs a Ittvrl of

interpretation and thus speeds up execution. Additional bcncfits come from the ability to decode instructions

. in a single cycle and to keep the pipeline full most of the time.

j\lthough the MIPS performance improvcmcnts come largely from its architccturc and processor

organization, a well dcsigncd implementation is ncccssary to achicvc a high pcrformancc nMOS (itip.

Without careful circuit design and a tight timing strategy we could lose a factor of three to four in

pcrformancc. ‘I’hc VLSI implcmcntation medium stresses the need for simplicity in designs and has a

fundamental impact on the metrics used to compare altcrnativc  organizations. Because the processor design

balances implcmcntation cost (in dollars and performance) against functionality. the architect must clearly

understand the interaction bctwccn the architecture, the organization, and the implcmcntation.
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