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Abstract

MIPS is an 32-bit, high performance processor architecture implcmented as an nMOS VLS chip. ‘The
processor uses a low level, streamlined instruction set coupled with a fast pipeline to achicve an instruction
rate of two million instructions per second. Close interaction bctween the processor design and cornpilers for
the machine yiclds cfficient cxecution of programs on the chip. Simplifying the instruction sct and the
requirecments placed on the hardware by the architecture, facilitates both processor control and intcrrupt

handling in the pipclinc. High speed MOS circuit design techniques and a sophisticxed timing methodology
cnable the processor to achicve a 250nS clock cycle.
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1 Introductian

A computer architccturc is measured by its cffcctivencss as a host for applications and by the perforimance
levels obtainable by implementations of the architccturc. The suitability of an architccturc as a host is
determined by two factors: its cffcctivencss in supporting high Icvel languages, and the base it provides for
system Icvcl functions. The cfticiency of an architccturc from an implementation viewpoint must be based
bé'fl-f on the cost and performance of implecmentations.

MIPS is a 32-bit processor design implemented in VLS| that attempts to seek the best compromise between
performance and functionality. The importance of these factorsin the overall cffcctivencss of the architecture
varies, but the role of program host probably remains most important. However, the instruction set designer
must carcfully consider both the uscfulness of the instruction set for encoding programs and the performance
of implcmentations of that instruction set.

Since most programs arc written in high level languages, the role of the architccturc as a host for programs
depends on its ahility to express the code gencrated by compilers for the high level languages of interest. The
cffectiveness is a function of the compiler technology and, to a lesser extent, the programming language.
Compilers-tend to trandate languages to similar types of code scquences. Howevcer, some unique language
.fe;atures may bc significant cnough to deserve trcatment at the architectural level. Examples of such of
features might include: support for tags in a language with tagged objects, support for floating point
arithmetic, and support for paralicl constructs. In considering such features, the architect must evaluate both
the cost of implementing hardware support and the usc of the feature relative to more commonly uscd
features.

Program optimization has become a standard part of many compilers built today. Thus, the architccturc
should bc designed as a target for compiler trandation and optimization. One of the key implications of this
observation is that the architccturc should expose as much computation as possible. Unless the impiications of
a particular machine instruction are visible the compiler cannot make a reasonable choice bctween two
aternatives. Likewise, hidden computations cannot be optimized away. This view of tho optimizing compiler
argucs for a simplificd instruction sct that maximizes the visibility of al operations nceded to cxecute the
program.

A large instruction set architccturc will require microcode to implement the instruction sct. In VI.SI, silicon
arca limitations often force the use of microcode for all but the smallest and simplest instruction sets. In a
processor that is microcodcd, an additional level of translation, i.c., from the machine code to
microinstructions, is donc by the hardware. By allowing the compiler to implement this Ievel of trandation,

the cost of the trandation is taken once at compile-time rather than repctitively cvery time a machine



instruction is exccutcd. This view of the optimizing compiler as generating microcode for a simplified
instruction sct is explained in depth in [10]. In addition to eliminating a lcvcl of trandation, the compiler
“ customizes’ the generated code to fit the application {11]. This customizing can be thought of as a realizable
approach to dynamically microcoding the architecture. MIPS attempts to exploit this view by “ compiling

down” to alow level instruction sct.

ALY

The architccturc and its strength as a compiler target determine much of the performance at the
architectural lcvel. However, to make the hardware usable an opcerating system must be crecated on the
hardware. The operating system requires certain architectural capabilities to achieve full functiona
performance with arcasonable cfficiency. If the nceessary features arc missing, the operating system will be
forced to forego some of its user-level functions. This architectural support is absolutely nccessary and will
often require underlying hardware support to achieve acceptable performancc.  Among the features

considcred nccessary in the construction ofmodcern operating systems arc:

« Privileged and user modes with protection of specialized machine instructionsin uscr mode.
o Support for external interrupts and in tcrnal traps.

_ e Mefriory mapping support including support for demand paging, and provision for memory
protection.

0 Support for synchronization primitives if conventional instructions cannot bc used, as in a
multiprocessor.

Some architecturcs provide additional instructions for supporting the operating system. These instructions
arc included for two primary reasons. First, to establish a standard intcrfacc for some function that may be
hardware dcpendent. Sccond, to enhance the performance of the operating system by supporting some special
operation in the architecture. Standardizing an intcrfacc in the architectural specification can bc more
definitive, but it can carry pcrformance penalties when compared for example, to a standard at the assembly
language level, which isimpiemented by macros, or to an interface that isimplecmented by standard libraries.
Putting the interface into the architecture ‘commits the hardware designers to supporting it, but it does not

inherently enforce or solidify the interface.

Enhancing opcrating system performance via the architccturc can be beneficial. However, such
enhancements must bc compared to aternative improvements that will increase gencral performance. Even
when significant time is spent in the operating system, the bulk of the time is spent cxecuting general code
rather than special functions, which might bc suppaorted in the architccturc. Thus, the architect must carcfully
weigh the architectural feature to determine bow it affects other components of the instruction set (overhead

costs, ctc.), as well as the opportunity cost related to the components of the instruction set that could have



been included instead. Often the cost of the feature when combined with its low merit (due primarily to
infrequent usage and secondly to lack of 4 major performance improvement) forms a strong argument again:st
its prcsencc in the architecture.,

The organization of the hardware for an architecture can dramatically affect quantitative measures of
atchitectural performance.  Since the architecture imposes implementation requirements on the hardware,
performance measurcments made on the architecture that arc implementation indcpendent, may not yicld
realistic measurces of the performance of an actual implcmentation of the architccturc. This is especialy true
when the implementation is in VLSI. In VLSI, the interaction of the architccturc and its implementntion is

more pronounced. Thisisduc to avariety of causcs, chief anong them being;:

o Thelimited speed of the technology encourages the USC of parallel implcmentations. That is, many
slower hardware components arc used rather than a smaller number of fast components. This
basic design methodology has been used by a wide range of designers on projects as varied as
systolic arrays|14] to the MicroVAX | datapath chip [16].

e The cost of complexity in the architecture. This is true in any implcmentation medium, but s
exacerbated in V1.S1, where complexity becomes more difficult to accommodate. A corollary of
thisrule isthat no architectural feature comes for free.

. o Communicntion is more cxpensive than computation. Architectures that require significant
amounts of global in teraction will su fier in implecmentation.

e The chip boundarics impose hard limits on data bandwidth and a substantial penalty when
compared to on-chip transmission times.

The architccturc affects the performance of the hardware primarily at the organizational level, where it
imposcs certain requircments. Smaller effects occur at the implementation Ievel where the technology and its
properties become rclcvant. The technology acts strongly as a weighting factor favoring some organizational
approaches and penalizing others.

The key goal in implcmentation is obviously to provide the fastest hardware possible; this translates into
two rulces:

1. Minimize the overall clock speed of the system. This implies both reducing the overhead on
instructions as wcll as organizing the hardware to minimize the delays in cach clock cycle.

2. Subject to the first guidclinc, give prcference in performance to the most heavily used parts of the
architecture.

This sccond rule may dictate sacrificing performance in some components of the architecture in return for

increased performance of the more heavily used parts.



The obscrvation” that these types of tradeoffs arc needed, together with the fact that larger architectures
generate additional overhead, have led to the reduced instruction set approach [22, 20]. Such architecturcs are
streamnlined to eliminate instructions that occur with low frequency in favor of building such instructions out
of scquences of simnpler instructions. The overhead per instruction can be significantly reduced and the
implcmentor does not have to discriminate among the instructions in the architccturc. In fact, most smplified
ingfruction set machines usc single cycle execution of instructions to climinate complex tradcoffs both by the
hardware implcmentor and the compiler writer. The simple instruction set permits a high clock speed for the

instruction execution, and the one-cycle nature of the ingtructions simplifies the control of the machine.

The MIPS architccturc has been designed to maximize its effectiveness as an high-level language host, to
provide sufticient systems-level support, and to alow high performance implementation in VLS!.. MIPS uses
asimplified, low-level instruction sct. The compiler takes advantage of the instruction set by gencrating code
requiring little additional interpretation at execution time. Because al the effects of an instruction scquence
arc cxposed to the compiler, the compiler can optimize the code to a very low level of detail. The architecture
matches its implementation well, and many of the more complex tasks required from the architccturc are
supported by alevel of software corresponding to microcode in other machines. The architccturc supports the

_operating system functions that arc required, and provides some extra functionaity (limited memory

mapping) on-chip.

2 Architecture of MIPS

Within the congtraints of the tecchnology the goa for MIPS was to provide suitable systems support and
maximize performance for compiled code. The ingtruction set is simple, orthogona, and suitable for cfficient
exccution of compiled code. This simplicity allows al instructions to exccute in the same amount of time, and

allto be onc word in length.

MIPS is a load/store machine; this isolates memory access instructions, as well as facilitating the fixed
instruction length and exccution time. A small set of addressing modes is supported for both load and store
instructions. The memory is word-addressed. This streamlines the memory interface both on and off chip and
increases performance, since the bulk of the rcferences arc to word Iength items. Byte addressing iS supported
by a group of instructions that have capability similar to the byte pointer facility on a DEC-20. The
comparison of byte and word addressing together with the details of the byte addressing support arc discussed
in[9].

‘I"hcre are sixteen general purpose registers; the instruction formats treat the gencral purpose registers

uniformily. All ALU instructions arc register-register and arc available in two and three operand formats; one



of the source registers may bec replaced by a small constant. Support for integer multiplication and division
consists of special multiply and divide instructions (see Scction 3.6.2) that are expanded into sequences of real
machine instructions, No on-chip hardware is provided for floating point arithmetic.

The architecture has no condition codes. Instead, there is a compare-and-branch operation. Abandoning
condition codces in favor of a compareand-branch instruction has benefits for both the compiler and the
processor implementation [9]. In general, it simplifics pipclining and branch handling in the implcmentation
and eliminates the nced o attempt optimization of the condition code setting.

2.1 The visible instruction set

The compiler and operating system would prcfer to see a simple, well-structured instruction set. However,
this conflicts with the goal of exposing al operations, and alowing the interna processor organization to
closely match the architecture. To overcome these two conflicting rcquiremcents, the MIPS instruction set
architccturc is defined at two levels. The first Icvel is the Ievel that is visible to the compiler or asscnibly
language programmer. It presents the MIPS machine as a simple, streamlined processor. Table 1 summatizes
the MIPS definition at this level. Each of these asscmbly-level instructions is trandlated to machinc level
. instructichs; this translation process also includes a number of machine-dcpendent optimizations. The
machine level instructions that are executed by the hardware and a bricf description of the optimizing
trandation appear in Scction 3.1.1.

2.2 Systems issues

The ability of thc processor to deal with interactions between itself and its support environment
(periphcrals, memory, ctc.) can greatly affect the overall system performance, as well as limit the scalability of
the architecture across diffcerent performing levels. The designer must consider the systems Icvcl aspects of the
" architccturc in a complete and consistent fashion that will accommodate a wide range of implementations.

The MIPS architecture airns to support avariety of high performance workstation environments. At the low
end we anticipate dedicnted control engines with no virtual memory support and few, if any, peripherals. A
high cnd application might bc asophisticated multiprocessing workstation with several rncgabytcs of memory,
local disks, and network and graphics capabilities. A great many of the characteristics of the resulting
architecture and subscquent organization and implementation are based on the requirements of the high end
of this spectrum. The key theme is to make the systems-Icvcl architecture match the high performance
instruction sct architccturc. A consistent cffort is made to minimize the complexity of the interfaces so the
architcctirrc is uscful in simpler systems.  Whcrever possible, flexibility for the non-CPU components is
retained. Besides lessening the implementation task and processor support requircments, simplifying the

external interfaces leads to higher performance.



Oncration__Operands

Comments

Arithmeticand logical operations

Add srel, sre2, dst
And srcl, src2, dst
ic srel, sre2, dst
or*’ srel, src2, dst
Ric srel, src2, sre3, dst
Rol srel |, sre2, dst
Sil srcl, src2, dst
Sra srel, sre2, dst
Sl srel, sre2, dst
Sub src 1, sre2, dst
Subr srel, sre2, dst
XC srel, sre2, dst
Xor src 1, sre2, dst

Transport operations

I.d Alsrc], dst
Ld [srcl + src2], dst
I.d [srcI>>src2], dst
Ld . A, d¢t

- Ld [, dst
Mov sre, dst
St srcl, Alsrc]
St srcl, [src2 + src3]
St srcl, [src2>>src3)
St sc, A
Control transfer operations
Bra dst
Bra Cond, srcl, src2, dst
Jmp dst
Jmp Alsrc]
Jmp @A[src]
Trap Cond, srcl, src2
O1hieroperatiotrs
SavePC A
set Cond, src, dst

dst: = src2 + srcl

dst: = src2 & srcl

dst: = byte srcl of dst isreplaced by src2
dst: = src2 | srcl

dst: = src2]|src3 rotated by srcl positions
dst: = src2 rotated by srcl positions

dst: = src2 shifted left by srcl positions

dst: = src2 shifted right by srcl positions
dst: = src2 shifted right by srcl positions

dst: = sre2 - srcl

dst: = srcl - src2

dst: = byte srcl of src2
dst: = src2 @ sl

dst: = M[A + src]
dst: = M[srcl+src2)
dst: = M[srcl shifted by src2]

dst: = M[A]
dst: = |
dst: = src

MIA + sic]: = srcl

M[src2+ src3): = sl

M[src2 shifted by sre3]: = srcl
M[A]: = src

PC: =dst + PC

PC: = dst + PC if Cond(srcl,src2)
PC: = dst

PC:= A+sic

PC: = M[A + sr(]

PC: = 0if Cond(srcl, sic2)

MI[A]: = PC-,

dst: =-1if Cond(src,dst)
dst: = 0 if not Cond(src,dst)

Table 1: MIPS assembly instructions

Integer addition

| .ogical and

Inscrt byte

Logica or

Rotate combined
Rotate

Shift left logical

Shift right arithmetic
Shiftright logica
Intcger subtraction
Reverse integer subtraction
Extract bytc

Logica xor

Load based

Load based-indexed
Load based-shi ftcd
Load dircct

Load immediate

Move (byte or rcgistcr)
Storc based

Store bascd-indexed
Store based-shifted
Storce direct

Unconditiona relative jJump
Conditional jump
Unconditional jump direct
Unconditiona jump bascd
Unconditional jump indirect
Trap instruction

Save multi-stage PC after
trap or intcrrup t
Set conditional

‘The primary implications of supporting a sophisticated multiprocessing cnvironment arc that virtual

memory and demand paging are nceessary.  Some sort of privilege support and a non-trivial ieniory

hicrarchy are also nceded.



2.2.1 Exceptions in a pipelined machine

One of our primary goals in MIPS is to attain higher performance levels through the use of pipelining.
Though this is typicaly an organizational or implcmentation issuc, it strongly affects the way in which
exceptional conditions arc handled in the architecture. The interactions bectween these diffcren t conceptual

levels are much stronger in VILSI than in TT'L-like implcmcentation media.

-t

Onc of the lessons of some of the morc heavily pipclined complex architectures [, 15} is that the handling
of cxceptions can become very complicated and irregular.  Onc of the major problems is that some
instructions change visible or hidden statc before that instruction can bc guaranteed to complete without
interruption. Pipelining complicates this because one instruction may change the machinc state, and at some
later tine an instruction carlier in the pipeline (and hence carlier in a control-flow sense) may cause an
exception.  This mcans that the machine may have to undo changes it has madc in the state, so that the
instruction that faulted can be correctly restarted; this approach is often used to implement the
auto- increment/decrement addressing modes on architectures such as the VAX [16]. Altcrnatively, the
current state can be saved as of the instant of the fault without retracting any changes. This introduces an

added comnplexity in that it necessitates restarting the machine in the middle of an instruction, as in the
.Motorola63010[18].

Further problems arc introduced by instructions with very long execution times. TO maintain a reasonable
maximum interrupt latency, a very long instruction will need to bc interrupted and restarted. Many
architectures with such instructions usc the genera register set for intcrmediatc computations; this helps
minimize the amount of special support needed for interrupting long instructions. Multiple micmory
rcferences per instruction arc a root cause of many of thesc problems. When combined with demand paging

support, architectures with multiplec memory refcrences per instruction will constantly be faced with the
problem of partial complction of an instruction.

The reduccd-instruction-set philosophy counters many of these problems. First, al the instructions are
simplc, and thus short. Instructions that alter state before previous instructions finish are not a natural part of
the architectural style. Load/store architectures do not have the problems associated with multiple memory
rcfcrences or the maximum in terrup t latency.  Eliminating a few complex addressing modes, such as auto
increment, removes the majority of the remaining cases that require the processor to be intcrruyted after the

excculing instruction has changed the visible processor state.



2.3 Support for virtual memory

The primary requirement of the memory systein was support for virtual memory management and demand
paging. Other desirable attributes are a large, uniform address space for cach process, and support for
multiprocessing.  Onc mechanism for facilitating multiprocessing is the incorporation of a process
identification number into the virtual memory address. This helps achieve fast context switches by allowing
thé Cache and memory address tranglation units to avoid the cold start penalties. These penaltics appear in
systems that require caches and Trandlation [Lookaside Buffers (T1.Bs) to bc flushed becausc processcs share
the same virtual address space. The classical solution of fixed sized segmented address schemes (at least with
small scgments) inevitably runs into problems when a large application is run. The penalty for using
scgmented addressing is often quite high, both on the implementation and on compiled programs that must

maintain and utilize the segmented addresses.

2.3.1 Memory Mapping

The primary motivation and constraint in the design of the memory management mechanism that was
included in the MIPS architecture was the desire to retain flexibility in the implcmentation of the proccssos
and any future systems. The realities of the initial implcmentation technology (a 4jum channcl Iength nMOS)
meant that- it was not feasible to include al of the virtual to physica trandation on the same chip as the

jprocessor.

Conscquently, a novel memory segmentation scheme was added to the architecture. Each process has a
process address space of 2*% words. The first step of the translation is to remove the top # bits of the address
and replace them by an 11 bit process identifier (P1D). Figure 1 shows this to bc the virtual address generated
by the CPU. Thus, the accessible portion of the process address space is split into the low 23" words and the
high 2317 words, An attempt to access any of the non-visible words will causc an cxception. ‘The operating
system can then remap the process identifier in such a way as to give the faulting process a smaller PID
number and thus a larger visible portion of its process address spacc. This will only happen if the program
used more hcap or stack space then it was initially allocated.

The constraining factor in this scheme is that the total size of all the visible process address spaces must be
less than the size of the implementation’s virtua address space. This restricts the number of proccsscs that can
actively use the memory map; should this number of processes become very large, the operating system will
need to periodically reuse a PID. Whencvcr a process with a shared PID is made active, a process and cache
sweep will be needed. This should not happen frequently, since the number of small processes that can be

created isvery large.

An additional lcvel of translation maps the processor’s virtual address to a physical address. A simple
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Figure 1. Address trandation

system might usc a small direct map or even no external memory mapping, while a more sophisticated
workstation might include a TLB and disk-rcsident page tables. The important point is that this mechanism
allows portability across different implementations of the processor. The only cffect of changing the size of
the virtual address space is to change the total amount of the visible process address space. Figurc 2 shows
two processes running on an implementation in which the virtual address space is smaller than the per precess
address space. The first process currently has 64K words visible while the second has 8M words accessible.
Since the process addresses are 8 bits wider then the virtua addresses, n, the number of masked bits must be
greater than 8, and the high order 8 bits of the process identifiers are insignificant.

2.3.2 The processor/memory interface

Since onc of the goals of the design was to retain as much flexibility in the design of the memory hicrarchy
as possible, the processor architecture specified only a portion of the aspects of the processor/memory
intcrfacc. As the primary intended implementation was a single intcgrated circuit, @ major concern was a

limitation in the speed and number of busses necessary to match the performance of the processor.

MIPS differentiates between instruction and data memory accesses. This helps supply adequate memory
bandwidth by simplifying the task of creating an instruction cache. Sincc instruction caches arc rcad only, and
the instruction locality is quite good for well structurced programs, a small, simple cache can yicld good hit
ratios [23]. With current RAM acccsc times, it is possible to run the current MIPS implementation with a
cachce only for instruction access and doing data access dircctly to main memory. Depending on the speed of

the mapping hardware, thiswill incur a performance penalty from 0-10%.
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Figure 2:  Address space mapping for two processes

2.4 Support for operating systems

A key concept in simplified instruction scts is transfcring complexity from the hardware to the softwarc
when the cxpected benefits of a hardware impleimentation do not warrant their cost. However, there arc
situations in which some minimum level of hardware support is necessary to make the resulting system
manageable. Onc such situation is that of privilcgc. The MIPS architecture provides for two levels of
privilege: supervisor and user. The set of privileged instructions consists only of those that change either the
process status register or any of the on-chip mapping rcgisters. To alow the rest of the system to enforce

protection, the current privilegelevel isincluded as part of the virtual address.

A software trap instruction with an Il-bit trap codc field is used for system calls. This trap cede field, along

with exceptions on illegal instructions alows extensibility of the instruction set and variation among
im plcmen ta tions.

The shift of the burden of complexity from the hardware to software yiclded an unusual method for

handling the in frequent case of trap on overflow. It is typically quite hard, without slowing down the
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machine, to detect that an overflow has occurred early enough to prevent the bad result from overwriting a
destination rcgistcr. However, given one operand, the operation performed (for example, addition,
subtraction, and single steps of multiplication or division) and 32 bits of the result, one can invert the
opcration to rctricve the second operand. Thus, the decision on how to proceed can be made by the
programming language run-time system. It can cither replace the bad result with some known value, or fix an
oﬁ’c”:‘?and and restart, or halt the running process. Although this undoing of an opcration may cost afew dozen
instructions, it is done S0 infrequently that system performance increases by putting this function in software
rather than lengthening the clock cycle to prevent the ovctwriting in the hardware. While the recovery from
infrequent overflow events can bc done effectively in software, the dctection of overflow after every integer
operation would bc far too costly a burden for the software Thus. the architecture supports user-maskablc
overflaw dctection and trapping on integer operations. This two-part approach typifies the MIPS philosophy:

usc a hardwarc implementation only where the perfonnance gained, justifics the hardware cost.

3 Organization and implementation

In the MIPS processor, a close integration cxists between the organization of the implcmcentation and the
archilcagr_c. This section discusses four related arcas in the processor organization and its implcmentation.
" The first part presents the gencral processor organization and pipeline structure, including details of the
machinc-level instruction set and the mapping from the assembly level instructions. The organization and
implcmentation of the control portions of the processor that run the pipclinc. handle cxceptions, and decode
instructions are explained in the second portion of this section. The third arca details the key features of the
datapath implcmentation. Finally, wC give some interesting design metrics for the VI.SI implementation,

claborate on performance bottlcnecks, and discuss techniques WC have used to increase the speed of the chip.

3.1 Instruction set interpretation

The machine-level instruction sct of MIPS is closaly tied to the pipclinc structure. The five pipcstages and
their functions are summarized in Table 2. All pipestages take the same time to execute, and each instruction
makcs a single pass through the stages in the order shown in Table 2. A ncw instruction is fetched on every

other pipestage; that is, the machine cycle is exactly two pipestages in length.

The main machinc resources that arc used during the execution of an instruction arc the instruction
memory, the ALU (or the barrel shifter), and the data memory. Figure 3 iliustrates the concurrent exccution
of pipestages and the allocation of the major resources to the individual pipcstages. The alocation of
resources to pipestages is static. The instruction memory is always 100% busy; the usage of the ALU and the
data memory depends on the instruction mix exccutcd. Many combinations of active instructions will result in

100% utilization of the machine resources.
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Staqe Mnemonic_Task(s)

Instruct ion Fetch If Send out Llhe PC, increment it

Instruction Decode ID Decode instruction

Operand Decode oD Compute effective address and send to memory if load or store

Compute new program counter if branch
Use ALU for register-register operation otherwise

Opesand Store/ SX Write operand if store
Execution Use ALU for comparison if compare-and-branch
Use ALU for register-register operation otherwise

Operand fetch OF Read operand if load

Tablc2: Magjor pipestages and their functions

mst.t IF ID OD SX |OF Time
Instr. 1 +1: IF ID [OD} SX] OF
Instr. | + 2: IE ID oD SX OF
I ID OD SX
_ =TT~
= — ~—
- | ~
Ingtruction Data
ALU emory Memory
Instr. I: OF
Instr. | +1: OD| SX S X

Instr. 1 +2; IF| ID

Denotes ALU reserved
for use of OD and SX of

instruction | +1

Figure3: Static resource allocation of the MIPS pipeline

®

The cxceu tion of instructions in the pipclinc can bc easily understood by considering one cxample from

cach of the three major classcs of instructions shown in Table 1:

1. an add instruction rcpresenting the arithmetic and logical instructions,
2. acompare-and-branch instruction rcprescnting the control transfer instructions,

3. aload instruction rcpresenting the transport instructions

1*he add instruction nceds only the ALU and can be completely exccuted during the SX cycle of the pipelinc.
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Since MIPS is aload/store architccturc, the arithmetic and logical instructions do not require usc of the ALU
during OD, nor do they usc the data memory. A compare-and-branch instruction has to exccute two basic
operations: test whether the specified condition holds bctween the two arguments (registers), and modify the
program counter if the condition is met. Both opcrations require the ALU: the condition evaluation is an
ALU operation, as is the addition of the relative offset to thc program counter to obtain the branch
destination address. Thus, the compare-and-branch needs to make usc of the Al.U during both the OD and
SX cycles; it does not utilize the data memory. The exccution of a load instruction requires the usc of the
ALU only once to compute the cffcctive address of the item that is to be reuicved from memory, leaving the
ALU idle during SX. All memory reference instruction accesses the data memory during the OF and SX

stagcs.

The static allocation of resources to pipcstages and the synchronous pipclinc with fixed length instructions
would typically mean that the add instruction and the load instruction would undcrutilize the machinc
resources. However, the machine-level instruction sct of M 1 PS allows mui tiplc assembly language
instructions to bc packed into a machine instruction when the pipclinc rcsource alocation and the available
instruction encoding space both pennit this packing.The structure of the add instruction, which docs not use
_the data fhemory or the ALU during OD, and the structurc of the load instruction, which docs not usc the
ALU during SX, means that these two picces can be cxccuted in onc machine language instruction.

Figure 4 shows the actua rcsourcc utilization for a sample instruction scquencc. Assume that instruction |
rctricves a nonzero value into register RO. That is, the branch is not taken. Instruction 7 + 2 of the scquence
is an example of a packed instruction. Two indcpendent assembly-level instructions arc bound together into

onc machine-level instruction.

The second Ievel of the MIPS processor architccturc is closely linked to the machinc organization; it allows
two operator instructions (e.g., instruction | + 2 in Figure 4) and includes pipclinc scheduling constraints.
The actual hardware executes the machine-level instruction set; trandation bctween assembly language (the
architectural level) and the hardware instructions (organizational level) is done by the reorganizer [7]. The
pipclinc scheduling constraints arisc in two forms: the absence of hardware interlocks on registei access and
the dclayed branches.

3.1.1 Inst ruction reordering

One of the unique features of MIPS (and the source of its namc, “Microprocessor without Interlocked Pipe
Stages™) is that the access for registers is not interlocked. Thus, the compiler is responsible for generating
instructions that will correctly cxccutc given the structure of the MIPS pipclinc and the register accessing

performed by the instructions.  Figurce 2 shows that a data word rcad from memory by instruction | arrives
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instruction. If the branch instruction rcferences memory, as in an indirect jump, two succeeding instructions
are fetched and cxccuted. This concept of a delayed branch is common in microprogramming and has also
been used in the RISC [21] and IBM 801 architectures [22]. The compilers and code generators are unaware
of this behavior of branch instructions; the reorganizer finds a suitable instruction to be the successor of a
branch. The algorithms employed arc described in detail in [6).

-

3.2 Exceptions

The MIPS organization has a numbcer of features that simplify the implementation of cxccptions. First, the
pipcline can bc designed to guarantee that instructions do not alter any state out of order. As discussed in
dcrail in Section 3.4, the memory subsystem must indicate whether or not a refcrence will complete by the
end of SX. Thus, each mcmory refcrence is committed before any subsequent instruction does any potential
harm. The synchronous nature of the pipeline also means that the list of combinations of possible cxccptions
and pipcstagces is quite short (sce Figure 3). Furthermore, if an instruction encounters a fault in a particular

pipestagc, the state of the other instructions in the CPU is precisely known.

Overflow
lllegal Instruction Software Trap
Privilege Viol. Page Fault
Mapping Error Overtlow Mapping Error
I— - - — ] . - -
IF cMm I ID oD s x wT OF
Instr. Fetch Cac he Miss Instr. Decode | Operand Dec. | Store/Execute Wait Operand Fetch
Page Fault lllegal Instruction Reset
Hard Bus Error Privilege Viotation Hard Bus Error
Reset Interupt
Hard Bus Error Reset
| Reset Hard Bus Error

Figure 5: All possible exceptions

Although it appears that handling the cxceptions should be trivial, the reality is complicated by the fact that
several exceptions can happen at once. ‘The system can choose to handle all the exceptions simultancously, or
onc at atime. Handling the cxceptions one at atime is casicr to implement and is sufficient provided that no

irrcproduciblc infonnation is lost. ‘I"hc general strategy is to report the exception that is associated with the
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Instructions in _the pipel ine

I: Ld 1[R14], RO i+ No-op
I+1: Bra Equal #0, RO, _next
+2: St R15, 3[R14] ;; Add #1, RO
| Nemory: ALU Mets
Instr. Instr. Instr.
. I+ I+2
1= Fetch
ID Dccodc
oD IF Fctch Compute address
I~ ID Decode —— D] | e— Retrieve data
OF OD 1= Fetch Compute new PC Retricve data
SX ID Decode Compare opcrands === [[)[ | ——
OF oD Computc address = [DLE v
SX Reg-Reg operation Send data
OF Send data

Figure4: Dynamic resourcc utilization of the MIPS pipcline

.du‘ring the OF cycle of that instruction. This cycle is cxceuted concurrently with the OD cycle of the next
instruction (Figure 3). Thus, instruction / + 1 cannot rcad or write the register that is the target of the ioad
during OD cycle of instruction 7 + 1. The reorganizer reorders the instructions for each basic block to satisfy
thesc constraints; this rcorganization establishes at compile time the schedule of instruction cxceution.
Scheduling instructions in software has two benefits: it enhances perforiance by eliminating instances of

pipclinc interlocking, and it simplifies the pipclinc control hardwarc allowing a shorter time per pipestage [6).

During this instruction scheduling process, the rcorganizer also attempts to pack assembly language
instructions into machine-level instructions. When the rcorganizer finds that it has two assembly instructions
. that can bc scheduled next, it chooses the ingtruction that can bc packed together with the previous
instruction. This packing process means that the final code density is usually greater than one asscmbly
language instruction per machine instruction.

3.1.2 Delayed branches

Figure 4 aso illustratcs another property of the MIPS hardware architecture that is invisible at the
assembly-language level. A compare-and-branch iustruction modifies the program counter at the end of the
SX cycle. At this timc, the next instruction has already been fetched and decoded. Rather than complicating
the processor contral to flush the pipe if the branch is taken, we define the semantics of the branch instruction

to include a delay in the cxccution of the branch. Each branch instruction aways cxecutes one succeeding
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earliest instruction. If severa simultancous exceptions happcen to the same instruction, then the most serious
cxception is reported. For instance, if one instruction incurs an overflow in SX while its successor is faulting
with anillegal instruction in ID, then the overflow will be the exception reported. If this instruction stream is
resumed, then theillegal instruction cxccption will occur again.

Hfan instruction is subject to an cxception carly on in the pipcling, then the instructions that are ahead of it
should bc complcted. Othcrwisc, the instruction stream will not bc directly restartable (unless those
instructions have not affected the state of the processor). This “running out” of the pipeline is not particularly
difficult; however, complications arisc when a sccond or third cxccption happens during the flushing.
Consider the case when the last instruction of a rcsident page gencrates an arithmetic overflow in SX, and in
the previous pipestage the succeeding instruction (on the next page) causes a page fault on instruction fetch.
As the pipclinc is being run out. the overflow will occur. The cxccption to be reported must be changed from

page fault to overflow so that it indicates the failed cxecution of the carlier instruction in the pipcline.

Further confusion erupts with respect to the split instruction and data memory streams. If in the previous
example, the first instruction genceratcs a data rcference fault rather than an overflow, a different problem
arises. ‘The instruction cache will report a miss in the attempt to fetch the sccond instruction. While the
processor idles in cache miss states, the instruction cache tries to fcrch the word from main memory causing a
page fault. During the consequent cmptying of the pipclinc, a seccond main memory rcfcrence will be
attempted for the data refcrences of the first instruction. This rcference will also fail with a page fault, and the
system must report the page fault of the first instruction’ s data rcfercnce.

3.3 Operating System support in a hardwi red machine

Architects of microcoded machines often use the microcode to add support for operating systems [S]. A
- great deal of the exception stack maintenance, TILB and page table maintenance, and general exception
handling and dispatch is donc by the processor’s microcode. This is not possible in MIPS for the smple
reason that it is not a microcodcd machine.

However, there isanecd for these functions to be always accessible with a minimum of dclay. ‘ The solution
in the MIPS implementation is to have a body of code permanently resident at location zero of physica
memory. Whcnevcr an exception occurs, the processor jumps to this location, and while executing the jump
turns off address trandation and disablesintcrrupts. Thisis the target regardless of the exception type. At this
location code cxists to save a small amount of the more transient processor state, and to do the primary
dispatch bascd on the details of the event. The cerresponding return-from-exception scquence permanently

resides in memory.
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raised during: the second stage of either cycle, it indicates a bus error or other serious fault. In this case, the

pipelinc is also flushed, though perhaps in not a dircctly restartable way.
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Onc of the basic premises of the MIPS architecture is that exposing the microenginc in the architecture
eliminates alevel of interpretation and thus obtains more cfficient utilization of the hardware. Onc could then
reasonably expect these non-microcoded routines to cxecute nearly as fast as the equivalent microcoded
routines of other machines. The non-microcodcd maching' s clock cycle is limited by cache access time and hit
ratg, while the microcoded machine’s clock cycle depends on the the micromemory access time. The non-
microcoded cxecution rate, coupled with the flexibility of user specified interrupt dispatching and state

saving, allows tailoring of this lowest Icvel of system software to any particular application.

As described in Section 3.1.2, the synchronous pipcline and fixed instruction execution time combine to
imply a branch delay. The maximum branch delay of two implies that three return addresscs must be saved
on an cxception to casure proper restarting of the instruction stream in the worst case. FFigure 6 shows a
situation in which the instruction following a branch incurs an cxception. The branch cannot bc repeated
since it successfully completed: it may have other effects. Thus the addresscs of the instructions to be

returned to are i+ /,i+ 2, and m.

To save these three return addresses, the program counter includes a shift register structure that saves the
. address of the last three instructions fetched. After an cxception and its subscquent jump to physical location.
zero, these three values arc accessible via a specia instruction:  SavePC. Returning from an cxccption
requires threc successive indirect jumps to the addresses saved. In the process of doing thesc jumps, the

privilege and interrupt levels must be restored to reflect the change from system state back to uscr state.

3.4 The memory interface

Scction 2.3.2 described the architectural aspects of the interface between main memory and the CPU. The
split instruction and data strcams provide a basic mechanism for making more effective use of main memory
bandwidth. These two streams arc intcrleaved to even out the bandwidth requirements across the chip's
boundaries. Over the course of two pipcstages, two addresses are sent out and two words arc returned. As
there is a single mapping unit that operates on both instruction and data addresses. the natural decomposition
isto have separate data and address busscs. Combining them onto a single bus would increase the complexity

ofthc internal and external bus multiplexing circuitry as well as doubling the requircd bandwidth of the bus.

Figure 7 shows the timing of the transfers on the address and data bus and their relation to cach other.
Although the access time of the instruction cache is less than that of the data memory, both access types span
two Cycles. The external unit must signal, within the first cycle, if it nceds more time to complete the request
viathe Air or ready lincs. These causc the insertion of cache miss or wait states rcspectively. Also within the
first cycle of cither type of reference, the page fault line can be raised to indicate that the reference cannot be

satisfied. In this casc, the pipcline is flushed in a manner that allows it to be rcstarted. If the error signal is
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Figure 7:  Bus timing diagram

Another consequence of the synchronous pipclinc and fixed resource alocation is that one can determine at
instruction decode time whether any particular instruction is going to usc its data memory reference. The free
‘memory a}cl% of instructions that do not usc this particular resource would normally go unused. However,
with MIPS the rest of the system is warned of these upcoming free cycles, so that memory can be kept busy
doing cache prcfctches, write-backs, 170 or other DMA activity. Thus the sysicm can make the most of the
pcak memory bandwidth provided. This fcaturc is signiﬁéant: when running optimized code, over fifty
percent of the data memory cycles are typically unused by the proccssor, due to the high percentage of
rcgistcr-register opcrations.

3.5 The decomposition of control and decode

Most microcodcd machines and hardwircd CPUs use a collection of logic and microcode that
simultancously decodes the instructions, interacts with other components of the system, and deals with the
exception handling. In MIPS however, the instruction set and pipclinc framework allow for the very clean
decomposition of these functions into two distinct functiona units: the Instruction IDecode Unit (IDU) and
the Master Pipclinc Control (MPC). ‘The main fcaturc of the machine that alows this decomposition is the
uniform nature of the instructions. Because al the instructions arc cssentially intcrchangeable with respect to
their size, execution time, and possible USC of rcsourccs, the specifics of the currently cxceuting instructions
arc largdly irrelevant to the handling of exceptions. The communication bctween the MPC and IDU is
limited to status signals and information regarding memory use by the cxccuting instruction, used by the
MPC to drive thc memory interface.  This clean decomposition allows separatc implerentation and

optimization of the two control components of the processor.
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Busses in MOS circuits provide a specia challenge for the circuit designer because

Bus Delay = k X (Capacitance X Voltage Swing)iDrivcr Size.

For busses with many drivers, the bus loading is dominated by the drivers themselves, so

Bus Capacitance = k X Driver Size X Number of Drivers.
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Asaresult,
Bus Dclay = k X Number of Drivers X Voltage Swing

The delay could be improved by either reducing the number of drivers (smaller register file) or by reducing
the voltage swing. The voltage swing may be reduced by using sensc amplifiers, asis typically donc in RAM
designs. An alternative version of MIPS has been fabricated using a clamped bus structure that is similar to a
sense amplifier with a limited swing bus. "T'his alternative bus design reduces the effective voltage swing by

about a factor of four, decreasing the bus delay to around 10nS and eliminating the prechargce clock phases.

3.6.2 Data path components

Arithmetic operations in the critical path require carcful logic and circuit design. The arithmetic and logical
function blocks are separated to ensure minimal loading on the adder. ‘The adder has a full carry-lookahead
trec, with propagatec signals and gencratc signals produced for each pair of bits, yielding atotal ALU delay of
80ns. Adcquatc support for integer multiplication and division arc an important MIPS objcctivc.  Special
"H" (High) and "L" (Low) rcgistcrs integrated into the ALU permit modified Booth's algorithm
multiplication at a rate of two bits per ALU operation (four bits per instruction with packing) and non-
restoring division at a rate of one bit per ALU operation (two bits per instruction with packing). The ALU
"has been extended to 34 bits to accoinmodate overflow detection for this two-bit-shift-and-add operation.

The barrel shifter is used for arithmetic and logical shifts, rotates and character insertion and extraction.
This variety of functions is controiled by an input multiplexcr that sclects the data for cach word of a
two-word combined rotator. The shift amount dctcrmincs which 32 bit scction from this 64 bit combined
quantity goesto the output. The combined rotator isimplcmented as a pair of cascaded shifters: the first shifts
by the shift amount divided by 4, the sccond by the shift amount modulo 4. Scverc pitch constraints dictated
this specia shifter organization. The barrel shifter lies between the registers and the ALU. During ALU
operations, both operands must be transferred through the shifter on phase one, and the result must return on
phase two. The tight 33A pitch prohibits two bidirectional busses. One operand and the result travel on one

bidircctional bus. The other source operand bypasses the ban-cl shifter in a special null operation.

‘I'hc high resource utilization of the MIPS pipeline places scverc demands on the register file, Any cell may
be read onto cither bus on cithcr phase, and may bc written from cithcr bus on phase two as shown in IFigure
9. Register refresh occurs whenever the cell is not written.  This permits faster register write timing but
complicates register decoding and expands the arca ncceded for control line drivers. The register array
contains both the sixteen general purpose registers and that portion of the process status register that holds the

trap code.
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Figure 9: Register ccll design

The variety of program counter opcrations and the requircment for instruction restart complicate the logical
design and layout of the program counter block. The program counter must hold the current value, three
previous values for pipeline restart and onc possible future value for branching. On every cycle, onc of six
possible sources must be selected for the new value: increment, self-refresh, zero (to start interrupt rcsponsc),

. the branch value, or values of cither of the data busses. Simultaneoudly, the old value must be shifted into the
FIFO buffer containing old values. The PC-incrementer could casily become the major perfonnance

bottlencck, but a simple carry-lookahead incrementcr overcomes this problem.

The address masking primitives are integrated into the program counter structure along with the Memory
Address Register.  This masking alows a machine addrcess to bc converted to a process virtual address. The
size of the process virtua address space is defined by a bit mask in a spccial register. When masking is
enabled for normal operations, the high order bits of the machinc address arc replaced by a Process I[dentifier
- from another specia register. These two specia registers are accessible only t0 processes running in
supervisor state. The Address Masking Unit also hctccts attempts to access outside the legal scgment and
raises an exception to the master pipcline control.

3.6.3 Control bus design

The control bus encodes the register transfer source and destination for each typc of operation, as well as a
code for the operation itself. It includes a set of true/complement pairs for the two ALU sources, the ALU
destination and the memory transfer source/destination. It also includes a collection of special signals

including pipcstage, brainch condition results, and various exceptional conditions.

Each datapath control driver taps this bus with onc or more NOR decoders and latches the decoded signals

into the driver in the phase irnmediatcly preceding its active usc in the datapath. Thesc signals arc driven via
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bootstrap drivers by the appropriate clock as shown in Figure 10. The bootstrap drivers put a considerable
load on the clocks, but much care has becn taken to minimize skew by conservative routing in metal. In afew
cases bootstrap drivers cannot bc used because the control signal may need to be active on both clock phases,

asin register reads. These drivers arc implemented as large static supcrbuffcrs.

CLOCK

= -

]—— DATA OUT

DATA IN

Figure 10: Dynamic bootstrap driver design

3.6.4 The package constraint

MIPS is housed in an eighty-four pin chip carrier. This package imposes two constraints on our VLS|
implcmentation: a carcful alocation of pins in the cxternal interface and a power budget of roughly two
Watts. Scparate address and data pins arc crucial to achicving a high memory bandwidth. A full assortment
of control and status pins are nccessary to support our realistic view of the computing environment as a world
of faults and exceptions. The breakdown of pad usage is as follows:

Address 24 pins
Data 32 pins
Status out 8 pins

Statusin 7 pins
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Regularity is the number of instantiated rectangles per drawn rectangle, which we computed using cifstat
{4]. The register file has the highest regularity because it is the only part of the chip replicated in two
dimensions except for the program counter stack. The control bus with decoders and the MPC have the
lowest regularity for two reasons. First, they arc the most random parts of the chip. But more importantly,
they and the periphery were faid out by SH1.1. asilicon assecmbly language. Although at the SULT level much

structure exists, the structurce 18 largely lost in compiling to CIF.
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Clocks, power, substrate 9 pins
LSSD 4 pins
Total 84 pins

The eighty-four pin chip carrier also imposes a power limit of about two watts. The fabricated processor
draws less than 350mA (1.75W). Using a conservative estimate of power for each square of pullup, the device

power requirements may be decomposed as shown in Figure 11.

PADS (115mA)

CONTROL
BUS (4SmA)

ALU

BARREL (39mA)

SHIFTER:
(11mA)

Figure 11: MIPS current distribution

Figure 12 shows the floor-plan and a photomicrograph of the MIPS chip. The chip is implemented in
standard, one-level metal nMOS using Mead-Conway design rules with buried contacts. The total
dimensions are 3750\ by 4220h.

3.7 Design metrics and timing characteristics

Table 3 presents several design metrics for MIPS. The datapath and periphery of the chip each occupy
about 40% of the total chip are. Thc remaining 20% is dcvoted to control. Considering the functionality of
the control structure (pipclining, exception handling, and instruction decoding), 20% of the chip area is a
small price. The transistor density (i.c., ratio of percent of total transistors to percent of total areq) is greater
than two to one for all units in the data path except the bar-r-cl shifter and the data path control. Thesc two
units arc limited by communication, not by transistor sites. The MPC has the lowest transistor to area ratio of
any part except for the pads. The control section as a whole (including the decoders for the data path) have

an average transistor density of about one.
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The rolc of the Master Pipeline Control is to scquence the machine, interface with the outside world, and to
deal with al the exceptions. For the most part it is entirely unaware of the characteristics and current
operations of the data path. It consists primarily of asixtcen state finite-stntc machine that incorporates the
responses to the nine basic exceptions as well as the normal sequential operation of the machine. This state
machine dcals with cache misscs, extended memory cycles, and DMA cycles; it also arbitrates among multiple
faults and ensures that flushing of the pipeline isdonc properly.

Once the instruction decode unit is pruncd of these subsidiary tasks, the IDU can concern itsclf solely with
mapping instructions into control for the data path. In MIPS, the instruction sct is encoded in such away that
the decoding of instructions is primarily just multiplexirs the appropriate nibbles of the instructions onto the
control word ficlds. This multiplexing is essentially a parallel operation with a small number of gate delays
from the input register to the data path control drivers. The careful sclection of the location of the various
fields within the diffcrent instruction classes cnables the multiplexing hardware to be shared. This further
reduces the amount of logic required to perform the decoding,

3.6 Datapath implementation

_ The MIP S datapath consists of five principal functional blocks: the arithmetic logic unit, the barrel shifter, .
the register file, the program counter and the address mask unit.  "These resources arc interconnected through
a pair of thirty-two bit global buses and nuincrous local paths, as shown in Figure 8. The datapath

communicatcs with the remainder of the MIPS system through the address and data ports and the datapath
" control bus.

3.6.1 Data bus design

The machine cycle time is closely linked to the time nceded to move data from one resource to another in
the datapath. This delay consists of the control propagation on the polysilicon control wires and the data
propagation on the metal busscs. The control dclay is reduced by strict adherence to a 33X pitch in the
datapath and by the usc of bootstrappcd control drivers. This combination holds the control delay to 10ns,
which islimited primarily by the parasitic RC time constant.

Two diffcrent bus structures were cxamined. The first was a precharged bus that preset to the high state by
a separate precharge clock during the period between each principa clock phase. To prevent spurious bus
discharge, data must be valid as soon as the precharge clock fals. This precharge clock may overlap dightly
with the beginning of the following clock phase. This clock overlap introduces momentary contention over
the bus, but obviates a clock skew dclay between the precharge and principal clock. The precharged bus

mcthod introduces adelay of about 40ns, in addition to the precharge time.
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Given two circuits having the same number of Icvcls of logic and similar power dissipation, the faster one
will bc the one with the smaller arca. Parts of the design forced to have larger area due to communication
topologies can have this disadvantage removed by increasing power consumption. Thus, we might expect to
see power consumption per arca to bc roughly constant throughout the chip. Table 3 shows that power
dissipation varics by a factor of about three around the chip. However, the most ¢xtreme figures for power
péi‘arca arc mainly determined by number of levels of logic. The ALU has many Icvels of logic, and hence
was designed to dissipate a larger share of power to overcome this. On the other hand, the operation of the
barrd shifter.involves only asmall number of Ievels of logic, so its power dissipation is low. The power ratio
(or microamperes consumed per transistor) confirms that power is uscd to overcome multilevel gate delays
and communication delays; this ratio is highest in the control bus (which docs chip wide communication), the
ALU carry generation logic, and the pads (which do inter-chip communication).

Part % Area % Trans % Power pA/Trans Regularity _Power Trans
Area Area

Data Path: 39.2 73.5 49.2 8.6 14.6 13 19
ALU 6.3 13.7 12.3 11.5 20.7 2.0 2.2
Shifteg. 5.8 8.6 3.5 5.2 18.3 0.6 1.5
-Registers 8.3 21.3 a.2 4.8 76.8 1.0 2.7
PC 6.1 14.7 7.9 6.9 25.0 1.3 2.4
Disp&Buf 1.7 3.6 1.9 6.2 12.7 1.1 2.1
Decode 11.0 11.1 15.5 17.8 4.6 1.4 1.0
Control: 18.2 21.7 14.5 8.5 11.2 0.8 1.2
MPC 9.9 9.2 6.6 9.2 4.9 0.7 0.9
10U 8.3 12.6 7.9 8.0 20.1 1.0 1.5
Periphery: 42.6 4.8 36.3 98.0 92 09 0.1

Total 14.8M1 24661 1.6W 12.8 12.0 1 1

Table 3: MIPS design metrics

Figures 13 and 14 arc plots of the five most critical paths on clock phases one and two. These plots are
similarly oriented to the floorplan and photograph of the chip (Figure 12). Each jog in the plot denotes a
level of logic: ends of paths arc capped with a bar signifying a latch.  Timing results for conservative, worst
casc 3pm SPICE paramncters indicate a clock cycle time of 250ns. giving a machine cycle of 500 nS. Typical
SPICE paramcters yicld clock cycle times on the order of 166ns. In subscquent discussions, all timing results

will be for the worst case parameters.

Noticcably absent from the critical paths is the entire data path.  Without the reduced voltage swing bus,
the data path busscs become part of the critica path. The improved bus design yields a total spcedup of
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Figure 13; Critical paths on phase one

about 150ns, which removes the busses from the critical timing path. The regular structure of the data path
also made it easier to quantify its delays and minimize them during design.

The bulk of the critical paths heavily involve the control component of the chip, MOSt Of the delays occur

inthe MPC and the control decoders. There arc several reasons for this:

1. Properly handling ten different exceptional conditionsin atruly pipelined machine(i.c., a
pipeline with more than instruction prefctch) is costly.

2. The complexity of the control prevented easy understanding of delays and potential critical paths
at designtime [8].

3. Scvcral logic structures used (e.g., PLAs and large fan-in NOR gates in the control bus) have
inherently Slow performance.
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Figure 14: Critical paths on phase two

Not much can be done to alleviate the first cause. It is aprice one must pay for the increased performance
derived from pipelining and building a processor that handles the conditions arising in the system’s
environment. The second cause could be eliminated to a large extent by timing analysis on a schematics level
before layout. The last causc isdifficult but notimpossible to avoid. Our control synthesis tool, SLIM, ISvery
uscful but currently only gencratcs PLAs, which for some structures can be inefficient. Finally, large fan-in
NOR gates areinherent in many functions, and only better circuit design techniques can help reduce their
delay. Although power dissipation per areais the lowest in the MPC, it is difficult to power up structures
such asPLAs, since most of the delay comes from pull-down capacitance on the large fan-in NOR gates.
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3.8 Timing methodology

Some of the advanced circuit structures used in MIPS represent a deviation from standard Mcad-Conway
design styles {17]. Another important deviation is the use of a timing-dcpendent clocking methodoiogy
instead of atiming-independent approach. Like the high performance circuit structures, this metl:odology can

yicld higher clock speeds.

Figure 15 is atypical circuit from MIPS which relies on verification through a timing-dcpendent clocking
methodology, When phasc onc falls, the datais latched on the storage node and the pull-up raises node N. If
the pull-down iS disabled long cnough before the latch is closed for node N to rise to a logic 1 {(c.g. duc to
clock skew), the circuit will malfunction. A timing dcpendent verifier was built into TV [13, 12] to ensure
correct design of such circuits.

Phase 1

._.’ gualified

N[ |

Phase 1
= qualified

D

Figure 15: Timing-dcpendent clocking

Although not spccifically prohibited in Mead-Conway designs, other stricter two-phase timing disciplinics
_[19] allow signals to pass through only one pass transistor qualified by a clock during cach clock phase. In
MIPS, most paths pass through scvcral transistors gated by the active clock phase. Without the ability to pass
through scvera clock-qualified pass transistors during cach clock phase, our design would become much
more complicated and significantly slower. Since wc did not design with this mcthodology, accurate estimates
arc no! available, but wc suspect that such a methodology could negatively impact performance by asmuch as

afactor of two.

A significant difference between nMOS and bipolar circuits that can be exploited is the type of latches used
In pipelar circuits and MOS circuits using master-dave, cdge-triggerect flip-flops, signals must be stabie at
input to the latch at a single point in time. At this point they arc transferred to the output of the flip-flop. In
MOS technologies using simple pass transistor latches, the signal may propagate through the latch during the
interval when the clock is high. If a critical path only drives non-critical paths, and is driven only by
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non-critical paths, time may be “borrowed” from adjacent phases to reduce the cffective time of the critica
path.

Figure 16 illustrates this principle. The thin lines represent paths consisting of an arbitrary amount of logic;
the thick vertical lines represent latches. The time to the left of each latch isthe arrival time of the signal after
the-fise of the other clock. Notc that one path travels through two latches on phase 2. Without borrowing,
the cycletime issimply:

T = longest phase 1 time + longest phase 2 time

150 nS + 120 nS
= 270 nS

However, with borrowing the cycle time is actually 220ns, phasc 1 being 120 nS and phase 2 being 100 nS.

cycle

Thisis the longest time required for two paths active on opposite clock phasesin scries. Borrowing may only
occur whilc aclock is high; for chips that require clocks of small duty cycle, borrowing may be limited by the
high timc of the clocks.

In MIPS, wherc one clock or another is high for about 90% of the cycle, possibilitics for borrowing abound
Restrictions on borrowing arc imposed by the possibility of destroying charge or bootstrap cffccts. For
example, borrowing is not possible for the signals that sclect a write destination in the register file, or for the
pull-downs discharging a prcchat-ged bus. These signals must be stable at the risc of aclock phasce or clse data
will be lost. Similarly, data must be present at bootstrap drivers at the rise of the clock phase or else the
bootstrap cffect may be lost. Since the current MIPS implementation does not Usc precharging, and bootstrap
drivers arc only uscd to gate storage nodes, significant benefits can be attained from borrowing. TV
incorporates a borrowing agorithm in its analysis and shows that borrowing saves about 35% of the current
clock cycle.

4 Architectural Performance Measurement

The MIPS processor derives its high performance from a combination of fast hardwarce and an efficient
match between the processor architecture and software. The MIPS architecture exploits advances in software
technology more successfully than most other processors. The small set of simple instructions aids cfficient
code generation, and the orthogonal register file permits globa register alocation to reduce memory traffic.

‘I"hc exposed pipceline alowsthe software code reorganizer to achieve high hardware resource utilization.

The Pascal and Fortran compilers are built on top of the UICcde system, which contains the standard phases
of parsing, intcrmediatc code gencration, global optimization, recgister alocation and code gencration. The
optimizations, pcrformed by UOPT [3], include common subcxpression climination, code motion, induction

variable climination, constant folding, dcad codc climination, and redundant storc removal.  Register
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Figure 16: Borrowing time from less critical phases

allocation is done by a priority-based, graph coloring algorithm [2] that moves most local scalar variables into
the register file and requires minimal spill code. The code generator produces a strcam of simple operations,
' iﬁdcpcndcnt of al resource interaction, branch delays and instruction combinations. ‘The code reorganizer
performs three crucial functions. It assembles and packs one or two indcpendent operations into each 32-bit
instruction word. It moves appropriate instructions into the words following cach delayed branch, and it
rcorders instructions within each basic block to diminate resource conflicts [6]. Compared to simple no-op
inscrtion to climinate rcsource interaction, the reorder operation cuts exccution time by 5%. Reordering
combined with instruction packing saves 10%. The complete machine level optimization done by the
reorganizer (reordering, packing and branch optimization) saves a total of 30% of the execution time. In
addition. shifting the burden for these features to the software yields a simplification of the pipeline hardware
and allows it to run faster. We cstimate that a 20% improvement in the clock cycle has been achieved due to

these simplifications.

4.1 Software Simulation

The MIPS software system includes compilers for Pascal, C, and FORTRAN. MIPS has been extensively
characterized using Pascal benchmark programs. These benchmarks include a variety of short compute-
bound programs cxcrcising al! aspects of the MIPS instruction set. The magjority involve non-numeric
manipulation of arrays, lists and scalars. Many are recursive and contain numecrous procedure cals. The

Pascal benchmarks include:

o Puzzle: Solves 3D cube packing preblem
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o Qucen: Solves cight queens chess problem
e Perm; Computes all permutations of one through seven
o Towers: Solves Towers of Hanoi problem for 14 discs

o Intmm: Multiplics two 40x40 matrices

——ay

¢ Bubble: Bubble sort of 500 integers
o Quick: QuickSort of5000 integers

o Tree Treeinsertion sort of 5000 integers

All benchmarks were assembled with the Stanford UCode Pascal compiler with giobal optimization and
checking turncd off. Because the compilers usc the same front-end and code optimizer, the compiler
technology docs not bias the performance data.  All MIPS benchmarks were processed through the code
reorganizer/assembler and then passed to the instruction set simulator to gather pcrformance data  This
simulator detects any crroncous instruction interaction and reports detailed statistics on instruction profiles. It
makes no allowance for events outside the CPU chip, such as cache misses or page faults; both of these effects

- should ‘og émall because of the size of the benchmarks.

The results of the Pascal benchimarks are shown in Table 4 for MIPS (4MHz), the Motorola 68000 (SMHz)
and the Digital DEC20/60.

MIPS 68000 DEC20/60

Puzzle 2.40 6.1 2.6
Queen .44 1.9 5

Perm .66 3.0 .6
Towers .64 2.9 .7
Intmm .80 5.0 5
Bubble .58 3.7 7
Quick .41 2.6 .4

Tree 1.01 9.9 1.0

Ayg. (rclative to MIPS): 1.00 51 1.0

Table 4: Pascal benchmark performance (in seconds)

It is intcresting to cxamine wheic the factor of six in improvement over the Motorola 68000 comcs from.

Our examination of the data hasicd to the estimates shown in Table 5.
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Concept Benefits Imorovement
Streamlined instruction lower overhead/instruction 1.5

set single cycle decode

MIPS Organization Longer pipeline 1.5

Higher memory bandwidth

Low level Machine level optimization 2.0
instruction set Streamlined pipeline

Good compiler Better utilization 1.2 - 1.5
architecture match of hardware resources

Total High performance 5.2 - 6.6

Table5: Breakdown of performance improvement

5 Conclusions

The MIPS design attempts to climinate the artificia barriers betwcen the processor architecturc its
organization, and its implcmentation. This synergistic approach results in hardware simplifications and in
Jincreased™ performance. We have tried to consistently evaluate the needs for a particular architectural
capability and to dctcrminc wherc and how it is best implcmented. For cxamplc, by including the pipcline

organization of the processor as part of the architccturc, we gain two important benefits:

1. The compiler is able to see and optimize effects that arc usualy hidden but that can have
substantial performance impact.

2. Because this function can bc performed predominantly in softwarc without incurring any
significant penalty, the hardware can bc made simpler and hence faster.

Reducing the instruction sct to the point where it can be exocutcd without microcode removes a level of
interpretation and thus speeds up execution. Additional bencfits come from the ability to decode instructions

in asingle cycle and to keep the pipeline full most of the time.

Although the MIPS performance improvements come largely from its architccturc and processor
organization, a wcll designed implementation is nccessary to achicve a high performance nMOS chip.
Without careful circuit design and a tight timing strategy we could lose a factor of three to four in
pcrformance. The VLS| implcmentation medium stresses the need for simplicity in designs and has a
fundamental impact on the metrics used to compare alternative organizations. Because the processor design
balances implecmentation cost (in dollars and performance) against functionality. the architect must clearly

understand the interaction between the architecture, the organization, and the implcmentation.
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