
An Qverview of Anna
A Specification Language for Ada

David Luckham & Friedrich W. van Henke

Technical Report No. 84-265
Program Analysis and Verification
Group Report No. 26

September 1984

This work was supporlctl by the Advmccd Rcscmh Projects Agency,
I)cpartmcnt of I>cfcmc. ~dcr ccmtrxt N00039-84-C-021 I.

An Overview of Anna, a Specification Language for Ada1

David C. Luckham
Friedrich W. von Henke

Program Analysis and Verification Group,
Computer Systems Laboratory,

Stanford University,
Stanford, California 94305

Abs t ract

A specification language permits information about various aspects of a program to be expressed in a
precise machine processable form. This information is not normally part of the program itself.

Specification languages are viewed as evolving from modern high level programming languages. The
first step in this evolution is cautious extension of the programming language. Some of the features
of Anna, a specification language extending Ada, are discussed. The extensions include
generalizations of constructs (such as type constraints) that are already in Ada, and new constructs
for specifying subprograms, packages, exceptions, and contexts.

Anna has been designed in collaboration with B. Krieg-Brucckner and 0. Owe, see Anna 84, [2J.

Key Words and Phrases: Specification, Annotation, Formal Rectuirements, Software Methodology,
Verification, Validation, Testing, Ada.

This work was slIpported by the Advanced Research Projects Agency, Department of Dcfcnse, under
coljtract NOO-039-82-C-0250,

1 Ada is a rcgistcxed tradenmrk of 11~ U.S. Department of Dcfensc

1

1. Int reduction

A specification language provides facilities for explaining a program. It permits the programmer to
provide precise machine processable information about various aspects of a program that would not
normally be part of the program itself. This may include, for exarnplc, the functional requirements for
the prograrn - i.e., a mathematical description of what it is required to do - or properties of its
components (variables, subprograms, modules) and how those components interact or depend on
one another. Explanation may also contain background knowledge such as a description of the
domain of values that the program operates on; such knowledge would be fundamental in
constructing the prograrn and in checking or proving its correctness. The activity of explaining by
providing information in some suitable language should normally be part of the process of designing
and constructing programs. Explanations may serve as specification and thus precede
implernentation of the program; other kinds of explanation may document aspects of the completed
program. All kinds of explanation will help in debugging and maintaining programs.

Explanatory information is not, strictly speaking, necessary for computation although it may be
expressed in executable form and it may facilitate compilation or optimization of compiled code.

Explanations must be given in a formalized language which can be mechanically processed and
“understood” by a variety of support tools. There are essentially two approaches to designing
specification languages: (1) the fresh start, and (2) the evolutionary approach, whereby an existing
high-level programming language is extended. Both approaches have advantages. The fresh start
does not have to accommodate the quirks of any given programming language design. The
evolutionary approach is probably rnore likely to yield something that people try to use, and
consequently build up the experience in use of formal specifications that is currently lacking. The
Anna design is a result of the second approach, an extension of Ada to support the activity of
explanation.

Ada itself already includes many constructs that are useful in explanation. For exarnple, in addition to
strong typing, Ada introduces subtypes, derived types, packages, generic units, constraints,
exceptions, and context specifications. These constructs play a dual role in the Ada design. On one
hand they are intended to be useful in making both programs and compilation rnore efficient. On the
other, they are intended to reduce programming errors by making programs rnore readable and by
providing a great deal of error checking, at compile-tirne and at runtime. They improve readability by
enabling the programrner to express programrning decisions explicitly. For example, variables of a
given type whose values will be restricted may be declared with a subtype of that type; data structures
with an intended set of legal operations can. be defined by using the package and private type
constructs; exceptional situations in which a computation should be terminated, and the processing
that is intended to take place when they’ occur, can be expressed using exception declarations and
exception handlers.

However, from the point of view of explaining programs, and designs prior to irnplernentation, there
are certainly some deficiencies. The explanatory role of some Ada constructs has been weakened by
other considerations in the design and impternentation of the language - a simpler or more
restrictive construct often would have been preferable. For example, the rather permissive Ada
visiblity IIIICS allow sharing of global variables between different tasks without any formal declaration
of intent to do so. As a result, althollgh rendczvou s constructs were interlded to express task
co~nrn~~~~ication, the reader of a program cannot tlssurne that tljey do. In other cases the explanatory

2

role of constructs has not been developed as much as it could have been, arid the programmer. must
return once more to the good old informal comment to explain things. The rnost obvious example of
this is the package declaration which provides only syntactic declaration of the facilities exported by
the package; the semantics are left unspecified. In both of these kinds of situation, there are fairly
straightforward extensions of the Ada constructs or additional constructs which wilt improve the
explanatory capability of the language.

Overall, the Ada design seems to have incorporated a sufficiently rich base of explanatory constructs
that specification and explanation of programs may be supported quite well - we do not yet know
how wet1 - within a fairly modest extension of the language. Some evidence in favor of this opinion
can be drawn from the number of current efforts to develop Program Design Languages (PDLs)
based on Ada (e.g., 1161). The question is what extensions would be most useful, and how to make
the extensions so as to encourage their use.

In this paper we outline some of the features of a specification language for Ada called Anna
(ANNotated Ada). Anna is designed as a language extension of Ada providing additional facilities for
format specification and explanation. The extensions fall into three categories: (1) generalizations of
explanatory constructs already in Ada, (2) addition of very obvious new kinds of constructs, mostly
declarative in nature, dealing with exceptions, context clauses, and subprograms, and (3) addition of
new specification constructs based on previous studies of the theory of program specifications,
mainly to specify the semantics of packages and the use of composite types.

Our philosophy in the current Anna design has four main considerations.

1. Anna should be easy for an Ada programmer to learn and use. The syntax and semantics
of Anna therefore remain as close as possible to the relevant Ada constructs. New
predefined Anna concepts are introduced by means of standard Ada mechanisms, e.g.,
as new attributes and predefined operators and relations.

2. Anna should give the programmer the freedom to specify and annotate as much or as
little as he wants and needs. In using Anna, there is no assumption that specifications
have to be in any sense “complete”. The programmer is free to use only certain kinds of
annotation, or to specify only a few features of the program. A wide range of Anna
support tools providing error checking for different kinds of specifications is planned.

3. The current design should be a small extension of Ada that contains sufficient facilities to
enable already established specification techniques to be applied to Ada programs -
e.g., [3, 4, 5,6, 8, 10, 13, 14, 151. As experience with construction of specifications
accumulates, those new concepts that prove to have wide application can be
incorporated into future versions. This approach seems preferable to trying to provide a
vast menu of special features based on several current specification methods. In fact,
special facilities for tasking are not included in the present design since the subject of
specification of concurrent computation is still very much a matter for research.

4. Anna should encourage developing new applications of formal specifications. Towards
this goat, a significant part of the Anna tanguage definition (see Anna84 [2], and also [9])
is devoted to defining a transformation of specifications into runtime checks.
Consequently, an Anna program can be transformed into an Ada program with runtime
checks for consistency with the original annotations and automatic reporting of

3

inconsistencies. This transformation can be implemented. The resulting ability to
execute a prograrn against (or in comparison with) its formal specification provides a
powerful toot for testing and debugging Ada programs. The Anna language definition
also provides axiomatic semantics. This can be applied to verify Ada programs by
mathematical proof of consistency between Ada text and its format Anna specification.
Other possible applications which may influence future versions of Anna include rapid
prototyping, automatic code generation from specifications, and the need for formal
systems design languages.

This approach to specification language design attempts to “evolve” explanatory capabilities starting
frorn a programming language that already contains useful explanatory constructs. The first step is to
strengthen existing constructs and to add further ones where there is an obvious need. The
approach perhaps errs on the side of caution in not introducing too many new concepts and
constructs at once. As experience with program explanations develops, more explanatory features
will probably be added. Simultaneously, we rnay hope that purely computational statements will
disappear - possibly as we gain the ability to compile specifications into executable programs
directly.

In the following sections we discuss some of the features of Anna and the ideas behind their design.
The selection of topics is somewhat arbitrary and is not intended to cover the whole language. Our
purpose is to give the reader an overview of Anna and a feeling for some of the problems and issues
encountered in attempting this kind of extension of Ada. Many details are omitted or glossed over in
order to focus on particular features of Anna; the reader is referred to Anna 84 [2] for the full picture.

2. Extension of Ada for Specification

An Anna program is an Ada program with formal comments. The syntax of forrnat comments is
defined by extensions of the Ada syntactic categories and by sorne new Anna syntactic categories.
There are some new predefined Anna attributes, operations, and logical operators, which may only
appear in formal comments. From the point of view of Ada, formal comments are just comments; in
an Anna program, however, the forrnat comments must obey the syntactic and semantic rules of
Anna.

The decision to treat all annotations as Ada comments was made to ensure that Anna programs wilt
be acceptable by standard Ada compilers and other Ada tools (which essentially ignore comments), in
addition to special Anna toots.

There are two kinds of formal comments in Anna:

l virtual Ada text: each line of virtual Ada text begins with the symbol, -- :

l annotations: each tine of an annotation begins with the symbol, --]

The Ada part of an Anna program is called the uncicrlying Ada /)rogram. This consists of the Ada
program itself - i.e., the part that is not comments. We often refer to parts of the underlying Ada
program as actl~al Ada tc?xl to distinguistr it from the virtual Ada text.

4

2.1 Virtual Ada Text

Virtual text is Ada text that is marked as virtual by the preceding virtual comment indicator.

There are many possible applications of virtual Ada text in specifying or annotating an actual
prograrn. The first intended use is simply to define programming concepts. Often the construction
and explanation of a program will rely on concepts that are not explicitly implemented as part of rhe
program. These “virtual” concepts must be precisely defined if they are to be used in any format
specification. Most concepts can be formulated as mathematical functions or predicates (i.e.,
Boolean-valued functions). Anna therefore permits definition of virtual concepts by means of virtual
Ada subprogram constructs.

Example: A virtual concept, LENGTH, for specifying a STACK package.

- - ITEM and MAX are assumed previously declared in the actual Ada text.
package STACK is

--.. funct ion LENGTH return NATURAL:

p r o c e d u r e PUSH(X : i n I T E M) ;
- - 1 where in S TACK.LENGTH < MAX,
- - I out (STACK. LENGTH = in STACK. LENGTH+l) ;

procedure POP (X : ou t I T EM) ;
. . .

end STACK ;

package body STACK is
type TABLE is array (POSITIVE RANGE <>) of ITEM:
SPACE : T A B L E (l . . M A X) :
INDEX : NATURAL range 0 . . MAX := 0;

--.. funct ion LENGTH return NATURAL
- - I where return INDEX; -- A result annotation defining the value of LENGTH.
is separate:

. . .
end STACK ;

In the example, the function, L.ENGTH, is not a part of the actual STACK package. It may
be viewed as a concept the programmer used in formulating and designing the package.
LFNG7-H is therefore delarcd as a virtual function. As such, it is not visible in the actual
Ada text; it may only appear in virtual Ada text and annotations, e.g., to specify input and
output conditions on PUSH. Notice that LENGTH is also declared with an annotation in the
STACK body. It could bc used for runtime checking of correctness of calls to PUSH.

A virtual concept that has been introduced by an Ada subprogram specification can be defined either
by annotations or by a virtual body. Anna does not require that bodies be supplied for virtual
specifications. I-lowever, if a virtual body is given, the concept can be compiled and executed.
Executable specifications obviousty provide a basis for various kinds of testing and validation of an
actual progranl. It is of course expected that the virtual definitions are easier to write and understand,
and less prone to error, than the actual text.

5

Virtual text may also be used to compute values that are not computed by the’actual program, but are
useful in explaining what it does. A typical example is a history sequence of values of an actual
variable.

Restrictions on Virtual Text.
Virtual text must obey certain restrictions.

o First of all, it must be legal Ada. That is, it must obey the lexical, syntactic, and semantic
rules of Ada if all the virtual text comment symbols, “4’, are deleted, with a few minor
exceptions: it is allowed to contain some additional Anna attributes and operations, and
bodies corresponding to declarations of program units may be omitted. The general
implication of this is that the standard visibility rules etc. are satisfied.

l Secondly, it must not influence the computation of the underlying program by changing
the values of actual objects. If this were allowed, it would not be possible to define the
consistency of an Ada program with its Anna specifications since the specifications
would alter its behavior. Anna therefore places additional restictions on virtual text so
that any reference to an actual object is “read only”. These restrictions can be enforced
by simple syntactic checks.

o Thirdly, virtual declarations may not hide entities declared in the underlying, actual Ada
text. Without this restriction, the same name might have different meanings in the same
context, depending on whether it appears in actual or virtual text.

2.2 Annotations

Annotations are built up from Boolean-valued expressions and reserved words indicating their kind
and meaning. Anna provides different kinds of annotation, each associated with a particular
language construct of Ada. These are annotations of objects, types or subtypes, statements, and
subprograms; in addition there are axiomatic annotations of packages, propagation annotations of
exceptions, and context annotations.

Any entity occurring in an annotation must be visible at that position in the Anna program. These
constituent entities may be declared either in the actual Ada text or in virtual text (see for example the
annotation of PUSH in the STACK package example). In some cases, the Ada visibility rules need
minor extensions in order to ensure visiblity in annotations - e.g., so that formal parameters in
subprogram specifications are visible in the subprogram annotations.

Every annotation has a region of Anna text over which it applies, called its scope. Its scope is
determined by its position in the Anna program according to Ada scope rules. For example, if the
annotation occurs in the position of a declaration, i!s scope extends from its position to the end of
that declarative region. Essentially, most annotations are constraints on the values of program
variables over their scope. The use of scope in defining the meaning of annotations has proved to be
a powerful means of reducing the number of annotations from what would be required by the older
assertional techniques [5, 151.

6
.

An annotation may be generic. This may happen when the annotation is part of a generic unit and
contains formal generic parameters of the unit. In this case it is a template for annotations of
instances of the unit. The Ada rules of instantiation of generic units apply to annotations.

Annotations may contain expressions whose values are not known until runtime. This permits
annotations to have as general a form of parameterization as Ada provides for range constraints. As
a result of permitting this generality, it is necessary for the Ada concept of elaboration to apply also to
annotations. Anna defines the rules for elaboration of each kind of annotation. Elaboration or
evaluation of an annotation is not permitted to have an effect on the Ada program (see restrictions on
virtual text, 2.2). In particular, it is not permitted to change the state of the program, i.e. the value of
any (actual or virtual) object. (Such a state change could happen if a function with side effect is called
in an annotation.) Some other simple restrictions are assumed for expressions in annotations. If such
restrictions are not assumed, the logic of annotations becomes unmanageable.

2.3 New Operations and Attributes

Concepts that prove to have wide application in explaining programs should be given standard
definitions in Anna. This is directly analagous to those concepts that have proved to have wide
application in constructing programs and are therefore predefined in Ada, either as operators,
relations and attributes, or as predefined types. The Ada mechanisms for predefined concepts are
used to provide the new predefined annotation concepts of Anna. We give two examples. (1) Ahna
provides a new membership test, is in, in addition to the Ada membership test (the need for this is
explained in 3.2). (2) The collection of objects designated by values of an access type, T, is an Anna
attribute of the type T. The collection attribute, together with new associated operations of access
types, is intended to facilitate specification of access type manipulations. Other predefined Anna
operations and attributes are described in [2]. We expect that more operations or attributes may be
added to future versions of Anna as the need for them is established.

.

2.4 Quantified Expressions

Anna extends the category of Ada expressions in several ways. The widest departure from Ada is the
addition of the two quantifiers, for all and exist (and their negations) which we outline here. The
meaning of quantifiers in Anna is more general than their meaning in classical first order logic
because Anna expressions may not always have defined values.

The syntax of quantified expressions is as follows:

q u a n t i f i e d - e x p r e s s i o n : : =
q u a n t i f i e r dollla i n (; doiiiain} => boolean-coInpound_expression

dolnain : :=
i d e n t i f i e r - l

q u a n t i f i e r : : =
[no t] fo r a l l

ist : s u b t y p e - i n d i c a t i o n

[n o t] e x i s t

7

The identifiers in the domain of a quantifier are called logical variables. They are declared by the
quantifier, so the scope of a logical variable extends from its occurrence in the domain to the end of
the (boolean) compound expression following the symbol, =>. The meaning of quantified (boolean)
expressions is as follows:

for all X : T => P(X) means “for all values X of (sub)type T if P(X) is defined then P(X) is true”.

exist X : T => P(X) means “there exists a value X of (sub)type T such that P(X) is defined and
true”.

Thus, in Anna a quantified expression will have a defined value even if P(X) is undefined for some
value in T. If P(X) is defined for every value X in T, then the Anna meaning of quantifiers coincides
with their meaning in classical logic. In fact, for all X : T => P(X) is true if and only if there exists
no value X in T for which P(X) is both defined and false. Thus the generalized interpretation of
quantification in Anna preserves the standard relationship between the quantifiers, i.e.,

for all X : T = > P (X) is equivalent to not exis t X : T = > n o t P (X) .

Examples of quantified expressions:

t ype DAY i s (MON, T U E , W E D , THU. FRI, S A T , S U N) :

for all X : DAY => X’LENGTH = 3;
- - This is frue because the boolean expression after = > is true
- - for each of the seven string values in the enumeration type, DAY.

for all X : DAY => exist P : PERSON-RECORD => P.BIRTHDATE.DAY = X;
- - Suppose the type, PERSON~RECORD has a BIRTHDA7-E component which has a
- - DAY component. This quantified expression is true since for any of the seven
- - values of DAY there is a record aggregate of type PERSON-RECORD wilh a
-- BIRTHDATE component having that value as DAY component.

for all N : NATURAL => ex i s t S : NATURAL => S 5 SQUARE-ROOT(N) < S+l:

The introduction of quantifiers provides an annotation language that is as rich as classical first order
logic. Careful use of quantifiers results in concise and readable annotations. However, establishing
consistency of Ada text with annotations involving quantified expressions generally requires
mathematical proof; the alternative of runtime checking (see Section 5) is cornputationally practical
only if the domains of the quantifiers are small. For example, the first annotation, for all X : DAY = >
X’LENGTH = 3, is easily checkable (since it does not contain program variables it can be checked at
compile time). The second annotation could be established by constructing seven aggregate values,
but this would require a very smart “checking method”. The third annotation is best established by
mathenir~tical proof.

8

3. Kinds of Annotations .

In this section we give examples of different kinds of annotations and their meanings.

We note first that an annotation may contain two kinds of variables: logical variables declared in the
annotation (for instance by quantifiers), and program variables declared in Ada text that are visible at
the position of the annotation.

Secondly, the meaning of most kinds of annotation is defined in terms of the sets of observable
program states of computations of their scope. A program state associates a value with each
program variable at a point during a computation. An observable state is one that results from the
execution of a simple statement or the elaboration of a declaration. (Note that this would not include,
for example, states during execution of a subprogram call; they are not observable from the scope
containing the call since the call is a simple statement.) A set of states of a scope consists of the
initial state resulting from elaboration of the scope, the observable states resulting from the initial
state by elaboration of declarations and execution of simple statements within the scope, and the.finaI
state when the computation in the scope terminates normally. An annotation, generally speaking,
constrains all sets of observable states of its scope.

3.1 Object Annotations

An object annotation is a boolean expression occuring in a declarative part and containing one or
more program variables (which must, of course, be visible at that point). Such an annotation is
generally an object constraint; it constrains the values of its program variables within its scope.

Examples of object annotations:

x : I N T E G E R : = E; --I X < B O U N D (E) ;
- - Values of X must be less than the value, BOUND(E) throughout the scope of the annotation,
-- which, in this case, “covers” the scope of X.

M, N : I N T E G E R : = 0 ; --I N < M;

- - The values of M and N are constrained so that N is less than or equal to M in any
- - observable state throughout the scope of the annotation.

Object annotations provide a simple means of specifying the values of objects within declarative
regions. They are a more powerful form of the old-style assertions [5, 15). In fact, an object
annotation is equivalent to a set of assertions, one placed at each position in its scope where one of
its program variables might change value. The annotations of the same object may differ from region
to region.

3.2 Type and Subtype Annotations

A subtype annotation is used to constrain a type or subtype. This kind of annotation is essentially a
straightforward generalization of the Ada range constraint concept. A subtype annotation follows
immediately the type or subtype declaration and is bound to it by the reserved word, where.

9

A subtype annotation restricts the doniain of values of the (sub)type. Thus in,

s u b t y p e S i s T ; --I where X : S => C(X):

where C(X) is a boolean express&, the values in S are restricted to the set of all values X of type T
that satisfy C(X); the expression C(X) is also called the subtype conskaint. Since the domain of the
subtype is restricted, this implies that the values of any object or variable declared of that subtype
must satisfy the constraint - e.g., constants and program variables, parameters, generic parameters
and logical variables in quantified expressions.

We note that where not only serves to bind the annotation to the type declaration but also declares X;
the X in the annotation is a logical variable. Any program variable occurring in a type annotation is a
parameter of the annotation; this means that it designates its value when the annotation is elaborated.

Examples of subtype annotations:

subtype EVEN is INTEGER:
- - I w h e r e X : EVEN => X mod 2 = 0;
- - The constraint on the type EVEN picks out the even values from the set of integers.
- - Since this is not a range, the constraint cannot be expressed as an Ada constraint.

type TABLE is array (NATURAL range <>) of ITEM;
type QUEUE is

record
STORE : TABLE(0 . . S I Z E - l) ;
COUNT : NATURAL range 0 . . SIZE : = 0;
IN-INDEX : NATURAL range 0 . . SIZE-l := 0:
OUT-INDEX : NATURAL range 0 . . SIZE-l := 0;

end record ;
--I where Q : QUEUE =>
- - I Q.IN-INDEX = (Q.OUTJNDEX+Q.COUNT) m o d S I Z E :
- - This constraint on the record type. cannot be expressed in Ada.

Subtype annotations generalize the Ada range constraint and can express more subtle properties
since the Anna constraint can be any Boolean expression. However, this added power has
repercussions on the Anna language design. We discuss two of them briefly here.

The first is the need to introduce a new membership test, is in for use in annotations. The Ada test,
in, is evaluated without regard for Anna type annotations (which are merely comments as far as Ada
is concerned); therefore it may yield the value TRUE in cases where the Anna constraint is FALSE. For
example, within the scope of the subtype EVEN (above), the test, 3 in EVEN, has the value TRUE. In
such cases the Ada test is inconsistent with the annotation (see Section 5). However, if a membership
test is used in an annotation, it should definitely be consistent with any (sub)type annotation, and
therefore has to be different from the Ada test. Therefore Anna introduces a new membership test, is
in, which is evaluated in conjunction with type annotations, e.g., 3 is in EVEN has the value FALSE.

Secondly, there is the problem of updating the value of a composite object consistently with a type
annotation. Normally, the relevant components of the object would be assigned new values
separately; the final value may satisfy the type constraint while the intermediate values do not. For
example, in assigning a new value to an object of type QUEUE (above), the IN-INDEX and COUNT
components may be changed separately while the OUT-INDEX remains unchanged. The only

10

satisfactory solution is to provide for a “hole” in the scope of the type declaration where the
annotation is not required to hold. Fortunately, it is not necessary to provide for “holes” in some
arbitrary manner; the boundary between an Ada package body and the outer scope defines such a
“hole”. A modified type constraint can be placed on a type that is declared in a package
specification. Such a constraint is not required to hold inside the body of the package, but only upon
exit from the body (see [2]). This relaxed form of a type constraint has exactly the semantics of
Hoare’s monitor invariant [7].

3.3 Statement Annotations

Statement annotations are used to specify properties of statements. They are annotations appearing
in a sequence of statements, and they have as scope either the immediately preceding or succeeding
statement depending on their kind (simple or compound annotation). A simple statement annotation
constrains the state after execution of the preceding statement. A compound statement annotation
constrains the execution of the succeeding compound statement.

Examples of simple annotations of statements:

X : = x+1; - - I x = i n X+1;
- - The final value of X must be equal to the initial value incremented by 7.

i f A (X) > A(X+l) t h e n
Y -= A(X+l);
A(X+l) I= A(X):
A(X) := Y;

end if;
- - I A (X) ,< A(X+l);
- - after execution of the preceding compound statement, the components A(X)
- - and A(X + 7) will be in the specified order.

Statement annotations may be used to express simple kinds of program specifications such as
assertions and loop invariants [5, 151. (For examples of compound statement annotations see [2].)

3.4 Subprogram Annotations

Subprogram annotations are annotations associated with Ada subprogram specifications by the
reserved word, where. Subprogram annotations extend the Ada specification part and permit
specification of a subprogram independently of the body that implements it. Such annotations may
include constraints on the formal parameters, results of function calls, and conditions under which
exceptions may be propagated. Subprogram bodies may also be annotated using subprogram
annotations, and in addition may contain other kinds of annotation within the body after the reserved
word, is.

A subprogram annotation must be true of every call to the subprogram (and therefore constrains all
calls) and must be correctly irnplernented by the body (and therefore constrains the declarative region
of the subprogram body).

,
11

Examples of subprogram annotations: .
.

funct ion VW (NUMERATOR, DENOMINATOR : INTEGER) return INTEGER;
- -I where DENOMINATOR f 0 :
- - The actual value of DENOMINATOR has to be different from 0. This places
-- a constraint on all calls to “/‘I.

function COMMON-PRIME(M, N : INTEGER) return NATURAL:
- - I w h e r e r e t u r n P : N A T U R A L =>
- - I IS-PRIME(P) and M mod P = 0 and N mod P = 0;
-- A result annotation defining the value returned; see [Anna 84.1

procedure SWAP(U, V : i n ou t E LEM) ;
--I where out (U = in V and V = in U);
- - The modifiers, in and out refer to initial and final values of the parameters.

3.5 Exception Propagation Annotations

Specification of exceptional behavior requires annotation of exception handlers, raise statements,
and units which may propagate exceptions (see, e.g., [ll, 121). The first two requirements may be
achieved using statement annotations. The last however requires introduction of a new kind of
annotation, called propagation annotations, for specifying the conditions under which an exception
may be propagated.

There are two kinds of propagation annotation, weak and strong: they have syntactic forms as
follows:

w e a k - p r o p a g a t i o n - a n n o t a t i o n : : =
r a i s e e x c e p t i o n - c h o i c e (1 e x c e p t i o n - c h o i c e }

[=> compound-express ion]

s t r o n g - p r o p a g a t i o n - a n n o t a t i o n : : =
compound-expression = > raise exccpfion-name

These annotations may appear as subprogram annotations (i.e., as annotations of the specification
part), as statement annotations, and as annotations over a declarative region. They are mostly used in
specifying subprograms.

A weak propagation annotation of a subprogram specifies exceptions that may be raised as the result
of a call to that subprogram, and a condition that will be satisfied by the state of the calling
environment when the exceptions are propagated. That is, the boolean expression subsequent to = >
will be true of the computation state of the calling environment at the point when the execution of the
subprogram body is abandoned.

A strong propagation annotation on a subprogram specifies a condition on the in values of
parameters (and global variables) of a call under which an exception must be propagated; the
condition need not be true after propagation.

The difference between the two kinds of annotation may be described as follows. A weak annotation
informs the user what to expect if a call propagates an exception, and thus enables construction of an

12

outer handler. A strong annotation specifies to an implementor what input conditions must result in
propagation of an exception. Historically, the inclusion of both kinds of annotation was motivated by
the axiomatic semantics which has been defined only for the weak annotations. However, it turns out
that it is useful to have both kinds available in specifications.

A propagation annotation may also be given without any condition; in this case
subprogram specification that an exception may be propagated from the body.

it documents in the

Examples of propagation annotations:

procedure BINARY-SEARCH(A : i n ARRAY-OF- INTEGER ;
KEY : in INTEGER:
POSITION : out INTEGER):

--I w h e r e O R D E R E D (A) ,
- - I o u t (A(POSITION) = K E Y) ,
- - I ra i se NOT-FOUND => fo r a l l I i n A’RANGE => KEY f A(I) ;
-- A weak propagation annotation: whenever NOT-FOUND is propagated and A is ordered
- - then KEY is not a component of A.

p r o c e d u r e P U S H (E : i n ITEM),;
- - j where in STACK.LENGTH = SIZE => raise OVERFLOW,
- - I raise OVERFLOW => STACK = in STACK;
- - A combination of both weak and strong propagation annotations: whenever the stack
- - length is equal to SIZE, a call to PUSH must propagate OVERFLOW; whenever
- - OVERFLOW is propagated the stack state will be equal to its input value.

x := Y div Z; --I raise NUMERIC-ERROR => Z = 0 and X = in X:

3.6 Context Annotations

Context annotations provide a facility for specifying the use of outside variables within a program unit,
and also the use of variables from an Ada context within a compilation unit. The syntax is:

c o n t e x t - a n n o t a t i o n : : = l i m i t e d [t o name-1 i s t ;]

where the name list is a list of variable names. A context annotation immediately precedes a unit. It
specifies that only the variables (from th’e enclosing scope or compilation context) occurring in the
name list are referenced within the unit; if the name list is empty then no outside variables are
referenced in the unit.

Examples:

- - I l i m i t e d
package body STACK is

- -.
end &ACK ;

No outside variables are referenced in the STACK body.

-- I l imi ted to SIZE; - - No global variables except SIZE may be used in this body.
package body QUEUE is

13

type TABLE is array (NATURAL range <>) of ITEM:

STORE : TABLE(0 . . S I Z E - 1) ;
COUNT : NATURAL range 0 . . SIZE := 0;
IN-INDEX : NATURAL range 0 . . SIZE -1 := 0;
OUT-INDEX : NATURAL range 0 . . SIZE -1 := 0;

-- I l imited to COUNT: - - Of all variables visible at this point, only COUNT may
function EMPTY return BOOLEAN is -- be used.
begin

return COUNT = 0;
end EMPTY;

-- I l imi ted to STORE, COUNT, IN-INDEX:
- - The variables OUT-INDEX and SIZE may not be used in ADD.
procedure ADD(X : ITEM) is separate;
. . .

end QUEUE ;

separate (QUEUE)
-- I l imited to STORE, COUNT, IN-INDEX;
- - The context annotation preceding the body stub is repeated here.

procedure ADD(X : ITEM) i s
begin

. . . -- Only the variables STORE, COUNT, IN-INDEX may be referenced.
end ADD:

It is very likely that context annotations in future revisions of Anna will be extended to permit naming
of not only outside variables, but also subprograms and packages.

4. Package Annotations

In this section we describe some features of Anna intended for specifying packages. We shall deal
mainly with some of the facilities for specifying a package declaration.

The need for formal methods of explaining Ada packages is overwhelming. Packages are intended to
provide a clear separation between information that is available to a user and internal implementation
details that should be hidden from users. This separation should allow one implementation to be
replaced by another without any change to a using program being necessary.

However, Ada package declarations contain only syntactic information about the visible entities of the
package. The only way to describe the behavior of these entities independently of the body is by
comments placed in the specification part. informal comments are highly unsatisfactory both as a
specification to be implemented, and as documentation for the potential user. They do not provide a
basis for any kind of autornated aid, e.g., automated error checking. Furthermore, since they are not
even subject to the visibility rules of the language, they may mention implementation details of the
package body, thus destroying the separation they were intended to maintain.

.
14

4.1 Visible and Hidden Annotations
.

Any kind of formal comment can appear in a package declaration or body including the previously
described kinds of annotations. The meaning of annotations of entities in a package is the same as
before; their region of visibility conforms to the Ada rules for packages. Annotations in the visible part
of a package declaration are called visible annotations; their visibility is the same as an Ada
declaration at the same position. Annotations in the private part and body are called hidden
annotations; the visibility of hidden annotations is restricted to the private part and body.

The purpose of visible annotations is to specify the package data types and subprograms. Such
specification cannot refer to the body of the package (a simple consequence of Ada visibility rules).
Visible specifications should be sufficient to understand how to use a package without inspecting its
implementation in the private part and body. They may also serve as a specification for implementing
the body.

Hidden annotations are used to specify the intended behavior of the implementation of the package.
They may also define the virtual functions declared in the visible part (for use in the visible
annotations) in terms of the local items in the private part and body (see, e.g., the STACK example in
2.1).

Although visible annotations cannot refer explicitly to hidden entities in the package body, they
logically imply constraints on the body which must be satisfied if the body is to be consistent with -
them. The implied constraints can be computed from the visible annotations; the details are given in
Anna 84 [2].

Examples of package declarations with visible annotations.

package COUNTERS is

type COUNTER is limited private ;
- - .. function VALUE (C : COUNTER) return NATURAL;

procedure INITIALIZE(C : COUNTER):
-- I where out (VALUE(C) = 0):

procedure INCREMENT(C : in out COUNTER) :
--I w h e r e o u t (V A L U E (C) = VALUE(in C) + 1) ;

private
. . .

end COUNTERS;

COUNTERS is specified in terms of a virtual mapping, VA LIJE, from values of type
COUNTER into the natural numbers. Any implementation is correct if there is a definition
of VALUE such that the annotations of INITIALIZE and INCl?EMENT are satisfied. Details of
implementations (which could be complex, depending on machine word length, etc.) are
left open except for requiring such a mapping. Note that VALUE is not required to be one
- one. This property can be expressed by axiomatic annotations (below).

15

p a c k a g e R E C O G N I Z E R i s

--: t y p e S T A T E i s (S O , Sl, S2, S 3) ;
--.. S : STATE := SO;

type BIT is INTEGER range 0 . . 1;

procedure INITIALIZE;
- - I w h e r e o u t S q S O :

procedure NEXT-BIT(X : in BIT: Y : out BOOLEAN):
- - 1 w h e r e
- - I out (i f in S=S3 and X=0 then Y=TRUE else Y=FALSE end i f) ,
em I out (if in S = SO then
a- l if X = 0 t h e n S = Sl else S = SO end if
- - I e l s i f i n S = Sl t h e n
- - I if X = 1 then S = S2 else S = Sl end if
- - I e l s i f i n S = S2 then
- - I if X = 1 then S = S3 else S = Sl end if
- - I e l s e
- - I s = so- - I end if) :

end RECOGNIZER;

The package, RECOGNIZER, is specified by a virtual finite state machine with four states.
S is declared as a global variable of the two procedures, and the state transitions are
specified by changes in the value of S. From this specification it is easily seen that
NEXT-BIT will recognize (i.e., return the value TRUE for Y) sequences of values of X of the
form 0, 1, 1, 0. The package body may implement the states in a variety of ways (e.g. as
pairs of binary counters) but the details should not affect the outside user. Obviously, this
specification could be more precise if we had the ability to “talk about” the state of the
package itself. We would then be able to identify the state of the virtual machine with the
states of the package.

It is often not possible to specify the visible part of a package adequately using only the previously
described kinds of annotations for objects, types and subprograms. For example, it is not possible to
state algebraic relationships between package functions. There are many examples of packages
where the most natural and complete description uses algebraic specifications. The need for some
more powerful kinds of visible annotations is therefore clear. Anna introduces two new kinds of
annotation concepts for use in specification of package declarations: package states and axioms.

4.2 Package States

Viewed from the outside, a package is treated conceptually as an object of some new type (not
defined in Ada). The values of this type are called states. For each package the type of its states and
the values of its initial state and current state are attributes of that package. Thus for a package, P,
P * TYPE, P ’ INITIAL and P’ STATE designate the type of its states, the initial state and the current
state respectively. For convenience, the name of a package, P, may be used to denote its current
state in annotations.

16

The concept of state contains the following premises:

o The structure of a package state is not visible from the outside.

o A state may change only as the result of a call to a visible subprogram of the package. (A
state change can occur even if a subprogram call does not terminate normally - e.g.
propagates an exception.)

Thus, viewed from the outside, the only information available to differentiate one state from another is
the sequence of calls to visible subprograms that has been executed. Therefore such sequences
must be expressible in annotations. We note that previous work on the specification of module
constructs has advocated the use of sequences of operations, see e.g. [3, 10, 141. States resulting
from the execution of a sequence of subprogram calls, each of which terminates normally, are called
successor states. Successor states are denoted in Anna by sequences of package operations and
are names in Anna. The notation for successor states has been chosen so that these expressions are
easily distinguished from any other kind of expression:

package-s ta te : : = s tate-name[subprogram-cal l { ; subprogram-Cal 1}]

An example of a successor state:

STACK[PUSH(X); POP(Y)]
- - Designates the state resulting from any state of the STACK package when successive
-- calls, PUSH(X), POP(Y) terrninate normally.

As a consequence of the second premiss, a package state may not depend on values of visible or
global objects. If it did, operations other than calls to package subprograms could change its state.
Anna does not provide the ability to describe the states of such packages explicitly. The state concept
is intended for specification of those packages that are constructed so that all components of the
state are inside the package hidden part - this implies that the context annotation, limited, which
excludes global variables, should be applicable to the package.

Finally, inside the package body, its state has the structure of a record whose components are the
values of objects local to the body; here, “object” is used in a more general sense to include the
states of local packages. Thus, the package state type has a semantics similar to a lirnited private
type declared that the beginning of the package specification, and having a full declaration as a
record in the package body. The equality operator, ” = “, is defined in Anna for state types.

Example: specification for RECOGNIZER using the state type:

package RECOGNIZER is

--: so, Sl, s2, s3 : c o n s t a n t RECOCNIZER’TYVE;

type BIT i s INTEGER range 0 . . 1;

procedure INITIALIZE;
--I where out RECOGNIZER = SO;

p r o c e d u r e NEXTJIT(X : i n B I T ; Y : o u t ROOLEAN);
- - I w h e r e
- - I o u t (i f i n RECOGNIZER=S3 a n d X=0 t h e n Y=TRUE e l s e Y=FALSE e n d i f) ,

.
17

--I out (if in RECOGNIZER = SO then
.

-a I if X = 0 then RECOGNIZER = Sl e l se RECOGNIZER = SO endif
- - I elsif in RECOGNIZER = Sl then
- - I if X = 1 then RECOGNIZER = S2 else RECOGNIZER = Sl endif
- - I elsif in RECOGNIZER = S2 then
- - I if X = 1 then RECOGNIZER = S3 else RECOGNIZER = Sl endif
- - I else
- - I RECOGNIZER = SO
SW I end i f) ;

end RECOGNIZER;

- - In the annotations, RECOGNIZER, designates the current state of the package.
- - This specification relates the package state type directly to the state transitions
- - and is therefore more precise than the previous example.

RECOGNIZER[INITIALIZE; NEXTJIT(A, Y) ; NEXT-BIT@, Y)]
- - IfA = OandB = I this successor state designates the state S2.

4.3 Package Axioms

Axioms are annotations declared within the visible part of a package after the reserved word axiom.
They express properties of the visible entities of a package that are guaranteed by the package body. -
The meaning of package axioms is that (i) they are visible promises that may be assumed wherever
the package specification is visible, and (ii) they are constraints on the hidden part of the package.
As visible promises, package axioms express properties of the visible entities of the package that are
promised to hold in the scope of its declaration. For example, in analyzing the correctness of a
program that uses a package, the package axioms may be assumed. In the package hidden part each
axiom corresponds to an assertion on the local entities. These hidden assertions may be constructed
from the axioms according to rules given in [2]. If the implementation of the body satisfies the
assertions then the axioms in the visible part of the package are consistent with the package body.

Axioms contain only logical variables after elaboration; i.e., all program variables are treated as
parameters and are replaced by their values at elaboration.

Example: A more complete specification of COUNTERS:

package COUNTERS is

type COUNTER is limited private:

-- : function VALUE (C : COUNTER) return NATURAL:
- - I axiom for all C, D : COUNTER; N : NATURAL =>
-a I VALUE{ C) = N and VALUE(D) = N -+ C = D;

- - Remaining specifications as in previous example.
e n d C&NTERS;
- - The mapping, VALUE, is promised to be one - one.

Axiomatic annotations of the package state type can be used to express algebraic relationships
between the package subprograms by methods similar to those advocated for the definition of

18

abstract data types (see e.g. [4, 61). This is usually achieved by axioms relating different successor
states.

Example: An algebraic specificatioh of a symbol tab/e package:

package SYMTAB is

OVERFLOW, NOT-FOUND : exception;

--.. funct ion SIZE return INTEGER range 0 . . N:
--.. f u n c t i o n “=” (S S , Ti : SYMTAB’TYPE) return BOOLEAN:

-- Anna permits redefinition of ” = ” on limited types.

f unc t ion IN-BLOCK(S : STRING) return BOOLEAN:

procedure INSERT(S : STRING: I : TOKEN):
- - I where raise OVERFLOW => in SYMTAB.SIZE = N:

function LOOKUP(S : STRING) return TOKEN:
- - I where raise NOT-FOUND ;

procedure ENTERBLOCK;

procedure LEAVEBLOCK;

-- I-- I- - I-- I-- I-- I-- l-- l-- l-- I- - l- - I

axiom
for all SS : SYMTAB’TYPE; S, T : STRING; I : TOKEN =>
SYMTAB’INITIAL[LEAVEBLOCK] = SYMTAB’INITIAL,
SYMTAB’INITIAL.IN-BLOCK(S) = FALSE,
SSCENTERBLOCK; LEAVEBLOCK] = ss ,
SS[ENTERBLOCK).IN-BLOCK(S) = FALSE,
SS[ENTERBLOCK-j.LOOKUP(S) = SS.LOOKUP(S),
SS[INSERT(S, I) ; LEAVEBLOCK] = SS[LEAVEBLOCK],
SS[INSERT(S, I)].IN-BLOCK(T) =

if S = T t h e n 1RUE e l s e S S . D E F I N E D (T) endif,
SS[INSERT{ S, I)] . L O O K U P (T) =

if S = T then I else SS.LOOKUP(T) end if;

end SYMTAB ;
- - The axioms define the scrnantics of the SYMTAB package algebraically by relating
-- successor states resulting from sequences of package operations. The virtual equality
-- operator, ” = “, is predefined in Anna for package state types, but may be redefined in
-- the package body.

As illustrated in the SYMTAB example, visible annotations are intended to explain the behavior of a
package to an outside user. This explanation must be independent of the implementation in the
package body, simply as a result of the Ada visibility rules. However, additional properties of
imp!ementations may be introduced into the annotations - e.g., by virtual subprogram declarations
- that would not be obvious from the actual Ada visible part. It should also be noted that explanation
by means of formal annotations need not be “complete”. For example, the SYMTAB specification
does not give the user any information about the state of the package after a NOT-FOUND exception
has been propagated.

19

Package axioms also provide a means of specifying the properties of the underlying domain of values
of a program. Thus the background knowledge that forms the basis for the construction of a program
and its correct functioning can be “packaged” into descriptive theories. For example, an axiomatic

. theory of sorting could be given by means of a virtual package as follows:

-- : generic
--.. type ITEM is private:
--.. type ENUM is (< >):
--.. type VECTOR is array (ENUM) of ITEM:
Wm.. package SORTING-THEORY is
-a.. function PERMUTATION(A, B : VECTOR) return BOOLEAN:
se.. function ORDERED(A : VECTOR) return BOOLEAN;

- -. . . Axioms defining mathematical properties of PERMUTATION and ORDERED.
--.. end SORTING-THEORY;

The concepts, PERMUTATION and ORDERED can be used to specify actual sorting packages. It might
be noted that such descriptive theories may also be executable if their packages have bodies;
applications of executable specifications are still to be researched.

5. Semantics and Implementation of Anna

The meaning of each kind of annotation is described in terms of properties that must be satisfied by
computations of the Ada text - or, in the case of a context annotation, by the Ada text itself - in its
scope (Anna84 [2]). If the computations satisfy all these properties, then the Ada text is consistent
with the annotations. This informal description of consistency suffices as a definition of the
semantics of Anna in the same way as the Ada manual [l] provides a definition of Ada. The Anna
programmer should be able to use annotations to explain Ada programs on the basis of the Anna
manual.

In addition to the informal semantics, formal definitions of the meaning of Anna are needed to provide
a basis for automating various possible applications of Anna. Two formal definitions of Anna (or more
accurately, most of Anna) have been developed: an axiomatic definition, and an operational definition
in terms of transformations of annotations into Ada text.

5.1 Axiomatic Semantics of Anna

The axiomatic definition of Anna semantics defines the atomic proof steps in mathematical proofs of
consistency between Ada text and annoiations. Ir can be used as a basis for constructing program
verifiers for Anna. These are systems which mechanize consistency proofs, and in more
sophisticated systems will aid in locating errors if consistency cannot be proved (see 1151, also [17]).
Such verification systems are potentially very useful in analyzing programs (or in the more general
case, program designs in which units have been specified prior to implementation). However,
experience has shown that production quality verifiers are substanti:ll undertakings. They depend on
subsidiary systerns, in particular for support of mechanized reasoning, that still have not achieved the
necessary capabilities and power. We would therefore expect that verifiers for Ada that are based on
Anna or subsets of Anna will take several years to develop.

20

5.2 Transformational Semantics and Runtime Checking

An alternative and complementary definition of Anna semantics is given in form of transformations on
annotations (see [2,9]). Here, the meaning of a more powerful annotation is defined in terms of sets
of simpler annotations that are equivalent to it; for instance, the meaning of a type annotation is
defined by transforming it into object constraints and subprogram annotations. In this way, most
annotations are reduced to the simplest kind, assertions. An assertion is finally translated into Ada
text that checks whether the assertion is satisfied by a program state. This checking code can then
be executed together with the underlying Ada program, thus performing runtime error checking. The
transformations can be implemented as a preprocessor to a standard Ada compiler. The resulting
system enables Ada programs to be tested for consistency with their formal specifications; Anna
exceptions will be raised automatically at points of inconsistency.

5.3 Anna Tools

The transformational semantics of Anna may serve as the basis for a variety of Anna tools.
Debugging tools based on the transformational semantics can be developed quite quickly.
Furthermore, crucial specifications (e.g., security requirements in databases) will be transformed
automatically into correct runtime checks and may remain permanently in the final production version
of a system. Here the optimization of runtime consistency checks presents a challenging problem,
but this already is an issue in construction of Ada compilers. Smart static analysis will make
compilation of many of the runtime checks unnecessary.

Finally, the syntactic and semantic analysis of Anna programs affords opportunity to catch many
errors that may be missed by a standard Ada compiler simply because it ignores the annotations. For
example, checking of propagation annotations and context annotations will catch unspecified use of
exceptions and global variables. This kind of error checking can be applied to incomplete (or
prototype) specifications of programs in Anna. It can be useful at very early stages in program
development and is easy to implement. It may be expected that future versions of Anna will provide
more kinds of declarative annotations (similar to context annotations) for expressing dependency and
dataflow.

21

References

PI The Ada Programming Language Reference Manual
US Department of Defense&S Government Printing Office, 1983.
ANSIIMILSTD 1815A Document.

PI Luckham D.C., von Henke, F.W., Krieg-Brueckner, B., and Owe, 0.
ANNA: A Language for Annotating Ada Programs.
Computer Systems Laboratory Technical Report 84-261, Stanford University, July, 1984.
Program Analysis and Verification Group Report No. 24.

PI Dahl, O.J.
Can Program Proving be Made Practical?.
Institute of Informatics, University of Oslo, May, 1978.

PI Guttag, J.V.
Abstract Data Types and the Development of Data Structures.
Communications of the ACM 6(20):396-404, June, 1977.

Fl Hoare, C.A.R.
An Axiomatic Basis for Computer Programming.
Communications of the ACM 12(10):576-581, October, 1969.

PI Hoare, C.A.R.
Proof of Correctness of Data Representations.
Acta lnformatica (4):271-281, 1972.

VI Hoare, C.A.R.
Monitors: An Operating System Structuring Concept.
Communications of the ACM 17(10):549-557, 1974.

. if31 Hoare, C.A.R. and Wirth, N.
An Axiomatic Definition of the Programming Language Pascal.
Acta Informatica 2:335-355, 1973.

PI Krieg-Brueckner, B.
Consistency Checking in Ada and Anna: A Transformational Approach.
Ada Letters lll(2):46-54, September,October, 1983.

[lo] Luckham, D.C. and Polak, W.
A Practical Method of Documenting and Verifying Ada Programs with Packages.
In Proceedings of the Symposium on tlw Ada Programming Language. ACM, November,

1980.
ACM SIGPLAN Notices 15(11): 113- 122.

[l l] Luckham, D.C. and Polak, W.
Ada Exception Handling: An Axiomatic Approach.
ACM Transactions on Programming Languages and Systems 2(2):225-233, April, 1980.

22

[l2] Luckham, D.C., and Polak, W.
Ada Exceptions: Specification and Proof Techniques.
CSD Report Prograrn Verification Group Report PVG- 16, STAN-E-80-789, Stanford

University, February, 1980.

1131 Luckham, D.C. and Suzuki, N.
Verification of Array, Record and Pointer Operations in Pascal.
ACM Transacations on Programming Languages and Systems 1(2):226-244, October, 1979.

WI Parnas, D., and Bartussek, W.
Using Traces to Write Abstract Specifications for Software Packages.
Technical Report UNC Report TR77-012, University of North Carolina, December, 1977.

[151 Luckham, D.C., German, S.M., vonHenke, F.W., Karp, R.A., Milne, P.W., Oppen, D.C., Polak,
W., and Scherlis, W.L.
Stanford Pascal Verifier User Manual.
Technical Report Program Verification Report PV-11, CSD Report STAN-CS-79-731, Stanford

University, March, 1979.

[16] Process Design Language/Ada ’
IBM, 6600 Rockledge Drive, Bethesda, Maryland 20817, l983.
Federal Systems Division, Ada Coordinating Group.

WI Polak, W.
Lecture Notes in Computer Science. Volume 124: Compiler Specification and Verification.
Springer-Verlag; New York, 1981.

