
A Model and Temporal Proof
System for Networks of Processes

Van Nguyen
David Gries
Susan Owicki

Technical Report No. 85-270

February 1885

This work was supported by the NSF under grants MCS81-03605
and DCR-8320274 and by NASA under contract NAGW419.

.

A Model and Temporal Proof
System for Networks of Processes

Van Nguyen
David Gries

Susan Owicki

Technical Report No. 85-270

February 1985

Computer Systems Laboratory
Stanford University

Stanford, California 94305

Abstract
A model and a sound and complete proof system for networks of processes in which

component processes communicate exclusively through messages is given. The model, an

extension of the trace model, can describe both synchronous and asynchronous networks.
The proof system uses temporal-logic assertions on sequences of observations - a

generalization of traces. The use of observations (traces) makes the proof system simple,

conpositional and modular, since internal details can be hidden. The expressive power of

temporal logic makes it possible to prove temporal properties (safety, liveness,
precedence, etc.) in the system. The proof system is language-independent and works for

both synchronous and asynchronous networks.

.

A Model and Temporal Proof System
for Networks of w

Van Nguyen’, David Gri& and Susan Owicki2

Abstract
A model and a sound and complete proof system

for networks of processes in which component
processes communicate exclusively through mes-
sages is given. The model, an extension of the
trace model, can describe both synchronous and
asynchronous networks. The proof system uses
temporal-logic assertions on sequences of observa-
tions -a generalization of traces. The use of obser-
vations (traces) makes the proof system simple,
compositional and modular, since internal details
can be hidden. The expressive power of temporal
logic makes it possible to prove temporal properties
(safety, liveness, precedence, etc.) in the system.
The proof system is language-independent and
works for both synchronous and asynchronous net-
works.

1. Introduction
A number of trace models exist for networks of

processes [3, 4, 18, 221 (none of which handles both
synchronous and asynchronous networks). The
advantage of a trace model is that a network is
specified solely by its input-output behavior. This
makes it possible to hide irrelevant information,
e.g. the internal structure of the network. Our

&nplter sci ence, Cornell University, Ithaca, NY 14853.
Gmputer Systems Lab., Stanford University, Stanfard, CA

94305 *
This research is supported by the NSF under grants MCSSl-
03605 and DCR-8320274 and by NASA under axxraa
NAGW419.

model uses a generalization of trace, which allows
the specification of more liveruss properties, ape-
cially for synchronous networks.

Our model uses the notions of observation (the
generalization of trace) and behavior. An observu-
rionrecordsthedatareadandwrittenonallportsof
a network (or single process) up to some point in an
execution of the network and also records on which
ports the network is ready to mu&ate at that
point. A behavior of a network is the squence of
observations recorded during one execution of the
network.

Ezecerltly, tanporal logic has been widely used for
verifying programs, especially cxmalrrent pg-9
due to its cqrcssive powex. Also, a numbex of
proof systems for networks of ptoctsses that use
assertions on traas, rather than on program codes,
have been proposed [4, 5, 8, 18, 191. The main
advantages of sud3 proof systems are modularity,
simplicity and generality. Modularity aXnes from
hiding of information. One reason for simplicity is
that proofs of non-interference, as defined in [13],
are not needed in these systems. By not dealing
with program codes, these proof systems are
language-independent.

our proof system uses temporal-logic assertions
on behaviors. The system is sound and complete.
Unlike most other temporal proof systems, it is
compositional, i.e. a specification of a network is
formed from specifications of its amqxment
processes. Two other proof systems on traces [5,
181 are special cases of our system. That is, the set
of spe%ifications (assertions) allowed in their sys-
tems are proper subelassc3 of those allowed in ours.
In fact, by using extended temporal logic, as defined
by Wolper [U], instead of temporal logic, a more
expressive proof system can be obtained.

A further interesting point is that the model and
the proof system work for both synchronous and

asynchronous networks.
This paper is organized as follows. Section 2

discusses the model of networks, including defti-
tions of observations and behaviors. Section 3
introduces temporal logic and defines what it means
for a behavior to satisfy a temporal assertion. Sec-
tion 4 defines a specification of a process or net-
work.

Section 5 outlines the various parts of the proof
system and discusses two of them in detail: axioms
that define properties of behaviors (section 5.1) and
the actual proof rules for deriving a specification of
a network from specifications of its components
(section 5.2). Section 5.3 gives some examples of
deriving a specification of a network, including the
Brock-Ackerman example [3].

Section 6 proves soundness and relative complete+
ness and section 7 contains a concluding discussion.

2. A model of networks of proc-
A process, as depicted in Fig. 1, has a finite

number of distinctly named input porn and oulput
ports associated with it.

\ \

k-,

* . .
R

iP- . . i h

Figure 1. A (primitive) process

Networks of processes are formed by linking some
input ports of some processes to some output ports
of other passes in a one-to-one manner. This is
done by making the names of the linked input- and
output-ports identical. The following rule governs
names of ports (see Fig. 2):
(2.1) The set of names of ports of a process or net-

work are distinct, except that any pair of
linked ports have the same name. A primitive
process can not be linked to itself.

A network can also be thought of as a process
whose input (output) ports are the unlinked input
(output) ports of its component processes.

Figure 2. A network

We now give deftitions of event, trace, observa-
tion and behavior.

(2.2) An event cm port i is a pair (x, i) where x is a
datum;(x,i)issaidtooccxlrcmi. Atraccon
a set of ports is a ftite quena2 of events on
those ports.

There is a rather subtle point here amceming the
input events:

If the message tralsmhsion i s sychronow,
i.e. a process Cabot send anything until the
receiving process is ready to accept it as input,
then the input events of a trace describe the
datathathavetxenreadbytheproax3.
If the message traIlsmi&on is asynchronou3,
i.e. a process can send an output as soon as it
is ready without having to wait far the receiv-
ing process, then the input events describe the
data that have appeared at the input ports of
the process.

(2.3) An observation on a set S of ports (port
names) is a tuple (t, In, Out), where t is a
traceonS,functionZnmapsthelinkedports
and the input ports of S to {T, F), and func-
tion Out maps the linked ports and the output
ports of S to {T, F).

Intuitively, In(k) (Out(k)) means “the process is
ready to receive (produce) data on port k”. For
this reasan, In (Out) is called an input (ou@ut) com-
municationjinction.

(2.4) A behavior on a set of ports is an infinite
sequence s , s1 . . .

91
of obsexvations on the ports

satisfying e following properties:
l hetraccofs,isempty.
l For Osk, the trace of s~+~ is the trace of sI,
followed optionally by one event (c, /I) (say).
Suppose the extra event (e ,h) is present.
Then if h is an output or linked port, then
Our&h) must be T, where Our, is the output

.

communication function of sL. If h is an input
or linked port and the message transmission is
synchronous then In,(h) must be T; if the
message transmission is asynchronous, there is
no condition on In,(h).

(2.5) A process is characterized by its set of
behaviors. We require that if a behavior is in
the set then any behavior obtained from it by
repeating a (possibly infiite) number of
observations, each some finite number of
times, is also in the set, and vice versa.

We require the above repetition of observations
because it allows our compositional system to have
the important non-interference property (6.2) and
facilitates information hiding. Lamport [12] also
introduced the notion of repetition of state, which
he called “stuttering”, but for a different reason.
He felt it should be impossible to express “how
long” or “how many steps” an operation should
take -this was a property of the implementation
and not the operation- and stuttering was one way
of preventing it. He also felt that introducing “the
nexl operator would destroy the entire logical foun-
dation for [the] use [of temporal logic] in hierarchi-
cal methods” [12]. In contrast, the next operator
plays an important part in our proof system;
without it, we would not be able to characterize
behaviors completely .

To summarize, a behavior of a process is the
sequence of observations produced by some execu-
tion of the process, as time progresses. The trace in
an observation records the events that have hap
pened at the ports of the process up to some point;
the communication functions indicate on which ports
the process is ready to communicate at that point.
Intuitively, a process is specified by the set of all
observable behaviors under all environments, where
an environment is a set of processes to which the
process is connected.
(2.6) The restriction of a trace to a set of ports is the

subsequence of the trace containing exactly the
events occurring on ports in the set. The
restriction of a c0mmu.n icatim function In (Out)
to a set of ports S is the function obtained
from In (Out) by restricting its domain to the
linked ports and the input (output) ports of S.
The restrictions of observation and behavior are
defmed similarly.

(2.7) The set of behaviors of a network is the set of
behaviors on its ports whose restrictions to the
ports of any component process are behaviors

Of that pOCZS!3. An cxtmral behavior of the
network is the restriction of a network’s
behavior to the input and output ports of the
network.

Anetworkcanbeviewedasaproccqinwhich
case it is also draracterized by its set of external
behaviors. !3u& abstraction makes it possible to
hide the internal structure of a network.

The above model can specify all liveness and
safety properties expressible in temporal logic.
However, in order to be able to prove livens pro-
perties we need a liveness assumption:

(2.8) Associated with a synchronous network is a
liveness a.ssfunption (e.g. justice, fairness). If
Yistheliveness8ssumptionthenaprocessis
specified by the set of !P-behaviors (e.g. fair
behaviors), i.e. behaviors that satisfy V. We
require, of course, that V be invariant under
repetition of observations in a behavior,
because (2.5) must hold -i.e. a should satisfy
Y iff any T obtained from 0 by repeating a
(possibly infinite) number of observations,
e8d1 a finite number of times, satisfies Y. All
our definitions given above hold if behaviors
are restricted to V-behaviors.

3. Temporal logic and behaviors
We assume familiarity with temporal logic -see

e.g. [15]- and make only the following comments.
The temporal operators are: 0 (next), q (ahvays), 0
(eventually), U (until), N (unless), etc. Following
(151, we assume that the set of basic symbols in the
language (individual constants and variables, propo-
sition, predicate and function symbols) is partitioned
into two subsets: global symbols and local symbols.
The global symbols have a uniform interpretation
and maintain their values or meanings from one
state to another. The locrrl symbols may assume
different meanings and values in different states of
the sequence. Quantification is not allowed over
local symbols. Unlike [15], we allow local function
and predicate symbols in the assertion language.

An example may help to indicate the difference
between local and global symbols. Let i and j (port
names) be local and n is global; n has one value
throughout, while i (and j) has (possibly) different
values from state to state. The example has the
interpretation: if port i’s trzice eventually has length
n,thensOd0eSportj’stracx.

(0 lit = n -P 0 bl = n)

A &f (I, a, u) for our language consists of a
(global) interpretation I, a (global) assignment a
and a sequence of states CL The interpretation Z
specifies a nonempty domain D and assigns concrete
elements, functions and predicates to the global
individual constants, function and predicate sym-
bols. The assignment a assigns a value to each glo-
bal free variable. The sequence a = sc, sl, . . . is
an infinite sequence of states. Each state is an
assignment of values to the local free individual
variat&s, and the function and predicate symbols.
Let o denote sic, s~+~ . . . , i.e. the k-truncated suf-
fix of 0. The truth value of a temporal formula or
term w (terms are defined just as in first order
logic), denoted by WI:, I beii implicitly assumed,
is defined as follows:

(1) If w is a term or a classical forn$a (contain-
ing no modal operator) then wlb is the value
of w in sO, under the assignment a.

(2) (WI v ,wz)l; = rn@
iff wllo = tn&? or wzl; = true.
Similarly for A, 1, etc...

(3) 0 WI,” = d(I).0
w can be a term or a formula.

(4) awl; = me iff for all k 2 0, w lItl, = mu,

i.e. 0 w means w is always true.

(5) o&= rme iff there exists k 2 0 such that
WIp =rm?,
i.e. 0 w means w will be true eventually.

(6) (wl U wJl1 = true iff there exists k 2 0 su&

that w21qk, = true and for all i, 0 5 i < k,
a

Wf(,) = frue9
i.e.” w1 U wz means w1 holds true continu-
ously until wz becomes true, and wz does
indeed become true.

(7) (WI Ji w,,l: = true
iff cl wllE = rrue or (WI u WJZ = rrue.

(8) Vx.wlz = true iff for all d C D, WI: = rrru,
where p-ao[x-d] is the assignment
obtained from a by assigning d to x. (x is a
global variable.)

(9) &.wl; =
wlP -

tnrciffforsomed C D,
-trzfe,wherefGmubove. (xisaglo-

baf variable.)

Whcnexrwistrueinamodel,wesaythatthe
model satisfws w. For a set of axioms and
theorems of temporal logic, see [15, 11.

We now define what it means for a behavior -a
sequence of observations- to satisfy a temporal
assertion. This is done by showing how an observa-
tion is to be considered as a state:

(1)

(2)

(3)

Assign to each local variable k the sequence
[aa, . ..) a,,], where I(ao, k), ..- 9 (a,, k)l in the
restriction of the trace of the observation to
port k*
Assign to the local function symbols In and
Our the comsponding communication func-
tions of the observation. (Note that, to be
rigorous, we should write 11n(“k”) instead of
In(k), where “k” is some denotation of the
portnamekinthedomainD. ‘Thereasonis
that In is a function on the link itself, not on
its value. The same thing applies to Our.)
Assign to the local predicate symbol <C the
“precedes’* relation on the trace of the obseri
vation: (“ h ” , m) << (“k”, n) if$, t h e m
eventonpor thoaxrsbefore then eventon
port k in the trace. Thus << is a total order-
ing.

4. Specifications of prowsses
A specification of a process (network) P has the

form
(4.1) <P> R

where R is a temporal assertion in which: the only
local free variables are names of P’s ports, the only
local function symbols are In and Our, and the only
local predicate symbol is << (<< is needed to
axiomatize behaviors completely). Furthermore, R
contains no occurrence of In(k) (Our(k)) if k is an
output (input) port of P.
(4.2) The interpretation of the specification <P> R

is:
Every behavior of P satisfies R.

A nice consequence of interpretation (4.2) is that
if P is a network and the only free variables of R
are the names of P’s input and output ports (and
not of linked ports), then interpretation (4.2) is
equivalent to:

(4.3) Every external behavior of P satisfies R.

‘This will be proved in later sections. <P> R is
called an external SpeCifiCatiOrl.

If Y is the liveness assumption, then interpreta-
tion (4.2) becomes:
(4.4) Every V-behavior of P satisfies R.

Finally, we will be dealing with precise specifica-
tions of processes, where
(4.5) Specification <P> R is preciw if: every

behavior on P’s ports is a behavior of P iff it
satisfies R.

4.1. Examples
For each process below we give two specifica-

tions: one under the assumption that the axnmuni-
cation is asynchronous, the other that it is synchro-
nous. We assume there is no particular liveness
assumption V. Throughout, bI denotes the lenp
of x and j 2 i means j is a prefix of i. Also, 0 is
the set of all sequences consisting of a finite number
of zeros and O*l is similarly defined.
Example 1. Process BUFF1 iteratively reads input
on port i and reproduces it on port j.

The asynchronous specification of BUFF1 is
<BUFF1 >

0 (j C i A (bl = Ii1 * (In(i) A 702&(j))))
A Vn(0 Ii1 =n*obl=n)

The synchronous specification of BUFF1 is
<BUFF1 >

0 (j C i A h(i) = TOM(~) = (bl = Iii))

Example 2. Process BUFF2 reads no input on port i
and produces an arbitrary, finite number of O’s fol-
lowedbyalonportj.

The asynchronous specification of BUFF2 is
<BUFF2> 3x(0 (-In(i) A j C x A x(0*)

A o 0’ = X A -out(j)))

The synchronous specification of BUFF2 is
<BUFF2>

•I (dn(i) A (0’ C 0* A Out(j))
V 0’ c 0’ 1 A TOM(~))))

Note that the specification for BUFF2 is invari-
ant, but, in mn~ction with appropriate specifica-
tions for a receiving process and the liveness axioms
(5.4), it can be used to prove the liveness condition
0 jCO’1.

5. The proof system
Our proof system amsists of the following six

parts:

Axioms and inference rules that describe the
domain of values that can appear in events.
Axioms and inference rules for temporal logic.
Axioms that define the properties of behaviors
--see (2.4) and section 5.1.
hhn.s that dtxribe the liveness assumptions.
These axioms restrict the set of behaviors of a
process to those satisfying the liveness
assumptions; changhg these axioms give3 a
different model of ~putation. For example,
if there are no such axioms, then all behaviors
are considered; if the axioms describe fairness,
then only fair behaviors are considered.
A set of primitive processes with precise
specifications (see (4.5)).

Proof rules to derive specifications of net-
works.

Parts 5.1 and 5.2 are standard and need no
further comment. Part 5.3, which captures the
notion of a behavior (see (2.4)), is discussed in sec-
tion 5.1. Part 5.4 describes the properties of V-
behaviors, thus capturing the liveness assumptions.
We don’t deal with any particular liveness assump
tions here, but see (2.8). Part 5.5 defmes the basic
building blocks of networks of processes. Part 5.6
is given in section 5.2.

5.1. Axioms for behavior3
The properties that a behavior (T = sO, fl, . . .

must satisfy are given in (2.4). Here we grve a
complete set of axioms for them. Let k,, kz, . . . be
the list of local (port) variables.

(5.1.1) k = [1, where k is a port variable,
i.e. the initial trace is empty.

W2) q (lOk,l - IkJ +.a.+ IO k,,l - lk,l) 5 1,
for n = 1, 2,..., i.e. the next trace extends
the current trace by at most one element.

(5.1.3) •I (k C 0 k A
((k 0 k A inp(k)) =D In(k)) A

((k Z 0 k A outp(k)) * Out(k)) A
((k Z 0 k A l+(k)) * (In(k) A Our(k))))

where in&k), outp(k) and h@(k) mean k is
an input, output and linked port, respec-
tively. That is, an event can occur only on a

port that is ready to communicate. (This is
for synchronous message transmission; the
axiom for the asynchronous case is sim.i.lar.)

(5.1.4) VnzVn 0 ((m 5 lkl A n > 111)
* 0 (n 52 IfI

=D (“k”, m) <SC (“f”, n)))
i.e. the event that extends a trace oaxrs
after all the existing ones in that trace (see
the end of section 3 for notation).

(5.1.5) VmVn q ((“k”, m) << (“l”, n)
-a 0 ((“k”, m) << (“l”, n))),

i.e. the ordering among the elements of
trace is preserved as the trace is extended.

a

It is clear that any behavior satisfies these axioms.
Now let a = so, sl, . . . be a sequence of states that
satisfies these axioms. Bach state can be interpreted
as an observation by letting CC be the ordering on
the trace, In and Our be the communication func-
tions, and the values of the port variables be the
events of the trace. By induction on k, it is easy to
show that each sir is a legitimate observation and
that u satisfies the properties of behaviors. Axiom
(5.1.1) implies that the trace of sO is empty. Axiom
(5.1.2) states that a trace is extended by at most
one event at a time. Axioms (5.1.4) and (5.1.5)
ensure that << is a total ordering and is the “pre-
cedes” relation. Axiom (5.1.3) implies that an
event can oaxr only on a port that is ready to com-
municate.

5.2. Proof rule3
There are 3 proof rules in the system:

<P> R
(5.1) Renaming rule:

<P’> R’

where P’ is obtained from P by changing some port
names (without violating conventions (2.1) on port
names) and R’ is the result of replacing all free
occurrences of the old port names in R by the new
ones.
(5.2) Network formation rule:

<P,> R,, k = 1, n

<H> A&

where H is the network composed of the P,, k = 1,
. . . . n (assuming none of the conventions (2.1) on
port names are violated).

<P> R,R*S
(5.3) con3equcna rule:

<P> s

where “R * S” can be proved using the first four
components (5.1.1)-(5.1.4) of the proof system.

5.3. Examples
Example 1. Consider the network in Fig. 3. Process
PI reads nothing on k, and produces a 1 on k,.
Proms P2 reads an input from k2 and produces a 1
on k,. This network behaves differently according
to whether message transmission is asynchronous or
synchronous: in the asynchronous case, a 1 is even-
tually produced on k,; in the syndmnous case,
nothing is ever produced on k,.

wP=
we have

<PI>

<P2>

where [al,

Figure 3. A network

that the network is asynchronous. Then

0 &(k,) A o k, = [l]
0 ((lk I = 0 * In(kJ) A

(Ik,f ’ 0 =D 0 (+k2) A k, = [ll)))
. . . . an] denotes the sequence consisting

of al, aII in that order.

By the network formation rule, the network satis-
fies the conjunction of the above assextions. By the
consequence rule, it follows that

<NETWORK> o (k2 = [l] A k, = [l])

Now suppose the network is synchronous and
assume the Iiveness assumption is that of fairness:

0 ((lkl = n A 0 o (In(k) A Out(k))) * o lkl > n)

We have
<PI> (Out(kJ N (kz = [l] A -Out(kJ))

A q Im(kJ

<P2> lOut(k,)
A (m(kJ N (IkJ ’ 0 A Wk,N)
A 0 (Out(k,) *

.

(Ou@,) N (k, = 111~ -t@,))))
By the fairness assumption and by the fact that
In(k,) and Out(k,) are continuously enabled (i.e. =
T) as long as lk21 = 0, eventually k, = [l] in the
network. Since In(k,) is continuously disabled (i.e.
= F’), no output is ever produced on k,. Therefore

<NETWORK> ok,=[l]/Wk,=[]

Example 2. In [3], Brock and Ackerman give an
example to show that specifying processes only by
input-output relations gives rise to inconsistencies:
two asynchronous networks whose component
processes have the same input-output relations can
have different input-output relations. We show how
the processes can be specified in our system and for-
mally derive the differences in the behaviors of the
two networks.

Figure 4. The Brock-Ackerman Example

We use the following notation. If n > Is], where
s is a sequence, then s(n) appearing in a sequence is
by convention empty, e.g. if 1~1 = 0, then
[a, s(l), b] = [a, b]. Also, 1 B 1 denotes the
sequence calculated by adding 1 to each element of
1. In the specifications, a proposition like b] =
min(u, l), where j is a sequence, simply means that
j always has length either 0 or 1, no matter how
large u gets.

All the specifications contain a safety specification
and a liveness specification.

Consider the network given in Fig. 4. The pre
cise specifications for the component processes are:

DI reads one value on i and writes it twice on j:
<DI> 0 j C [i(l), i(l)]

A (o Ii1 = u * o bl = 2 * min(u, 1))

D2 reads one value on m and writes it twice on n:

<D2> 0 n E [m(l), m(l)]
A (0 Iml = u * o InI = 2 * m.in(u, 1))

MERGE reads values from j and n and nondeter-
ministidy merges them on k:

<MERGE>
0 preshuffle(j, n, k)
A (0 (bl = u A InI = v) * o lkl = u + v)

where preshuffle (j, n, k) means that k is a prefix of
an element of shuffIe(j, n). Using “.” to denote
catenation, shuffle is defined as

shuf@O’, [I> = WYW I, i) = ti)
shuffk(a.j, b.n) = (a.k I k C shuffk(j, b-n)}

U {b.k I k C shuffle(a.j, n)}

PI reads a value on k, reproduces it on h and I,
reads another value on k, reprodwzs it on h and I,
then stops:

<PI> •I 1 E [k(l), k(2)]
A (o lkl = u * o IfI = min(u, 2))
A •I h C [k(l), k(2)]
A (o lkl = u * o lhl = min(u, 2))

PLUSI reads values on 1, adds 1 to each of them
and writes the resulting values on m:

<PLUSI> mm& kel
A (o 111 = U * o In21 = U)

Applying the network formation rule, we obtain
<NETwoRKI > R

where R is the amjunction of assertions in the
above five specifications. !Since

0 0’ C [i(l), i(l)] A n !Z b(l), m(l)1
Am& I@ 1)

it follows that

R 4B 0 u c [k(l)9 WI)
A 0 (preshuffle([i(l), WI,

P(l) + 1, w + W))
Hence, k(1) can only be i(1) or 1(l) + 1. But it
cannot be 1(l) + 1 because 1(l) can only be k(l)!
So k(1) is i(1). >From this, we have

R 10 0 (k C [i(l), i(l)] v k c [i(l), i(l) + 11)
R * •I (I E [i(l), i(l)] v 1 c[i(l), i(1) + 11)

Similarly, we have
R * •I (h C [i(l), i(l)] v h g [i(l), i(1) + 11)-

Now consider the relationship between the lengths
of the ports. To simplify it, one would naturally
think of solving the set of recursive equations

I Ii =u

ljl = 2 * min(lil, 1)
InI = 2 * min((ml, 1)
lkl = IA + InI
Ill = k(lkl, 2)
lhi = h(kl, 2)
Id = I4

The first equation assigns a constant to the length
of the input port of the network and the last six
express the length relations in the five given process
specifications. We can solve this set of recursive
equations on the complete partially-ordered set of
nonnegative integers U {m} with < as the partial
order -by the usual least fixed point method (e.g.
[lo]) - to yield the following least solution:

I Ii =U
bl = 2 * nzin(1, u)
InI = 2 * min(1, u)
Ikl = 4 * min(l, u)
Ill = 2 * min(1, u)
Ihl = 2 * min(1, u)
ImJ = 2 * min(1, u)

>From this, we get the following specification for
NETWORKI:

<NETWORK1 >
0 (h c [i(l), i(l)] v h c [i(l), i(1) + 11)
r\ (o Fl = u 3 o lhl = 2 * min(1, u))

Now consider the same network with PI replaced
by P2, where P2 has the following specification:
P2 reads 2 values from k and then writes them on h
and I:

cP2> •I 1 & [k(l), k(2)]
A q Ill I 2 * tin(1, lkl- 1)
A (o lk[= u * o Ii1 = 2*min(1, u -L 1))
A •I h C [k(l), k(2)]
A 0 lhl 5 2 * min(1, lkl 2 1)
A (o lkl = u * o Ih 1 = 2*min(l,u -I- 1))

where a -L b is a -bifa>bandOotherwise.

PI produces an output as soon as it reads the first
input, whereas P2 doe-s not produce any output until
it receives the second input.

Applying the network formation rule and arguing
as before yields the specification

<NETWORK2>
0 h C [i(l), i(l)]
A (o Ii1 = u * o lhl = 2 * ti(1, u))

The behavior whose final trace is

[6i), 68, (Xj), (58, (W, (5J), (km),
(0) 9 (W, (O), (5,k), @A), (f&h), (6J),

(WI
satisfies R -which means that it is a behavior of the
first network, by preciseness of the specifications-
but does not satisfy the external specification for the
second network. Thus the two networks have dif-
f erent behaviors.

6. Soundness and completeness

6.1. Pre-
Let L be a temporal assertion language whose

only local function symbols are In and Our and
whose only local predicate symbol is <<. Let I be
an interpretation whose domain D contains a set of
elements (e.g. integers) and a set of sequences of
these elements (e.g. sequences of integers). The
global variables range over elements or sequences,
the local variables over sequences. Let {Pi) be a set
of primitive processes, from which networks of
processes are to be formed.

With L, I, {Pi} a~ above, define L to be expressive
relative to I and {P,) if for every primitive process P,
there exists an assertion R, such that <P,> R, is a
precise qxcification (see (4.5)). We denote this by
1 c EL P,H*

The proof system is defmed to be so& if, for
& Z C E(L , {Pi}), every SpecifiCabOIl <P> R that
is provable (with the <Pi> Ri as axioms and proof
rules (5.1), (5.2) and (5.3) as inference rules) is
true -i.e. every behavior of P satisfies R under 1.

The proof system is relatively complete if, for
every I C E(L, {P,)), every specification that is true
is provable. (Actually, we assume that parts
(5.1.1), (5.1.2) and (5.1.4) of the proof system are
given and prove the relative completeness of parts
(5.1.3), (5.1.5) and (5.1.6) taken together.)

All the definitions and results still hold if
“behavior” is replaced by ‘W-behavior”. This
definition of soundness and relative completeness
follows closely that for sequential programs (as in
PI) .

6.2. Non-interference
We now establish a result that explains why

proofs of non-interference are not needed in our
proof system.
(6.2) Nonlinterference property: LetRbeanasser-

tion whose only free variables are local (port)
variables and among k,, . . . , kn and that has no
occurrence of In(k) (Out(k)) for k an output

.

(input) port. A behavior u on k,, . . . , k,, satis-
fies R iff any behavior T whose restriction to
k k is u satisfies R.1’ “‘9 ”

Proof. The proof is by induction on the structure of
R. The induction hypothesis is:

Let R be an assertion whose free variables are
either global variables or local variables from
among kl, kn and that has no occurrence of
In(k) (Out(k))fkjwhere k is an c@tput (input)
port. Then u satisfies R iff T satisfies R,
for all k.

Note that the induction hypothesis implies the
theorem.

Consider the structure of R.

(1) R!,is an atomic formula. Let sk vd fk be the
k elements of u and T. Then a satisfies R
iff R is true in sic. But sir and rr(assign the
same values to all,, e terms and
symbolsinR. S o u rsatisfies R iff T Rf

edicate
does.

(2) R is composed using classical logical operators,
temporal operators, or quantification over glo-
bal variables. It is easy to see from the defti-
tion of the truth values of the formulas that
the induction hypothesis is preserved in each
of these cases. Q.E.D.

Note that if we do not have the condition that
quantification over port variables is not allowed,
interference may occur. For example, if R is the
assertion “for all ports k different from i and j, k is
empty at all times”, then clearly R does not satisfy
the non-interference property. This in turns implies
that the network formation rule is unsound. This
condition is also needed -but is unmentioned- in
the proof systems of [5, 8, 18, 191.

Now, it is easy to see why the remark concerning
interpretations (4.2) and (4.3) of <P> R is true.
An external behavior of a network is just the res-
triction of a behavior of the network to its input and
output ports. So every external behavior of a net-
work satisfies an assertion on its input and output
ports iff every behavior of the network satisfies the
assertion.

6.3. Soundness
It is clear that the renaming rule and the conse-

quence rule are sound. Consider the network for-
mation rule. Let u = so, sl, . . . be a behavior of
H. E3y our model of behaviors, u(P,), the sequence
with element Us equal to the restriction of sm to
the ports of P,, for all m, is a behavior of P,, k =

1 9 “‘9 n. Hence u(P,J satisfies R, for A = 1, n.
By the non-interference property, u satisfies R,, for
k = 1, n. This is true for all k. Therefore u
satisfies Ak R,. So the network formation rule is
sound. It follows that the proof system is sound.

6.4. Relative comp&dewsa
Fmt of all, we prove that the network formation

rule presemes preciseness. That is, if <P,> R, is
precise for all k = 1, nthen<H>AJZkisaho
precise. Let u = so, sl, . . . be a behavior on H’s
ports that satisfies A& For each k, u satisfies R,.
So a(P,), as defined above, must satisfy R,,
k = 1, ..,, n, by the non-interference property. By
preciseness of <P,> R,, u(P,) is a behavior of P,.
Hence u must be a behavior of H. Conversely, if u
is a behavior of H, then u must satisfy A,& by the
soundness of the network formation rule.

Now, let <H> R be a qxcification that is true,
and let H be formed from primitive processes P,,
where <P,> R, is precise, for k = 1, n. Then,
<H> AIRY is a precise spedfication of H. It fol-
bvs that A,& =+ R is satisfied by every behavh
on the ports of H. By the non-interference pro-
perty, every behavior must satisfy I\$~ * R. By
the consequence rule, we can infer <H> R, i.e.
<H> R is provable.

Hence, the proof system is relatively complete.

7. Discussion

7.1. Exprtssiveness
The proof system we just described is quite gen-

eral and expressive. As an illustration, we look at
two other proof systems.

In Chen and Hoare’s system [Sl, a specification of
processPhastheformPsatR,whereRisafirst-
order logic assertion. The interpretation is that, at
alMmes,thetraceprodu.azdbyPsatisfiesR. ‘This
is equivalent to stating <P> •I R in our system.

In Misra and Chandy’s system [18], a specification
OfaproazssHhastheformR IHIS,whereRand
S are first-order logic assertions. The interpretation
is as follows:

S holds for the empty trace.
If R holds up to point k in any trace of H,
then S holds up to point (k+l) in that trace,
for all k 2 0. (An assertion R holds up to
point k in a trace t means that R holds for all
prefixes of t of length at most k.)

This is equivalent to stating <H> S A -(R U 4)
in our system. According to the interpretation of
temporal formulas, R U 4 is true iff gk 2 0 such
that 4 is true in So and for all i, 0 5 i < k, R is
true in si (for R and S are classical formulas). So
S A T(R U 4) is true iff S is true in s0 and for all
k~O,ifRistrueinsiforalliCkthenSistrue
in sk. This is again equivalent to: S is true in s0 and
for all k 2 0, if R is true in si for all i < k, then S
is true in s for all j 5 k. This is not difficult to
see, since * R is true in si then S is true in s,+~ (letd
k be i + 1). But this is exactly the interpretation of
R I H I S in Misra and Chandy’s system.

However, temporal logic is by no means the most
expressive language there is. certain properties
cannot be expressed in temporal logic, e.g. “for-
mula p is true in every even state”. As shown in
[U], temporal logic can be extended by right-linear
grammars. That is, for every right-linear grammar,
an appropriately defined temporal operator can be
added to the language. The resulting logic is called
extended temporal logic.

We can enhance the expressive power of our
proof system in the same way by using extended
temporal logic, instead of temporal logic, as the
assertion language. The proof rules remain the
same, and the resulting proof system is still sound
and complete. In fact, any language in which the
assertions satisfy the non-interference property
would serve our purpose.

At first glance, it looks as if extended temporal
logic is of no use for our proof system because res-
triction (2.5), whi& destroys regularity, is required.
However, we can save the situation by introducing
the notion of normal form. A behavior is in
normal form if no state -except the last one, if
there is one- is repeated. A process is completely
specified by its set of normal-form behaviors. Non
normal-form behaviors are needed to make process
linking easier to discuss. So we can have spaifica-
tions of the form

<P> normalform 3 R ,

where R is a formula in extended temporal logic
and normdform means “behavior is in normal
form”, which can be easily expressed in temporal
logic. To obtain more complete specifications, we
can introduce a new temporal operator R (repeat).
A sequence u satisfies R(p) iff u is obtained from
some sequence T by repeating some states of 7 a
Cnite number of times, where 7 satisfies p. Then
we can have specifications of the form

7.2. Extension of model and proof q&em

<P> (normalfonn * R)
A (+ormdfonn * R(nmaLfonn A R))

The model we described here can specify liven=
properties that involve progress of inputs and out-
puts but not liveness properties that involve internal
states, e.g. &adZock and teminatiun. Recursive net-
works and sequential program constructs such as
assignment, if-then-else, while, etc. are not defined,
either. Fortunately, the model and proof system
canbeextendedinasimplewaytodealwiththese
matters. Theseissueswillbeaddressedinaforth-
aming paper by the fust author and Alan Demers.

Admowledgemmt The first author wishes to thank
Zohar Manna for giving him a chance to read a
draft of his book on temporal logic. We are grate
ful to Alan Demers for many valuable discussions
and to Fred !jchneider for useful remarks on earlier
drafts of this paper.

RefereIlcu.!

(1)

(2)

(3)

(4)

(5)

(6)

(?I

Apt, K.R Ten years of Hoare’s logic: a sur-
vey - Part 1. ACM TOPLAS 3, 4 (0ct 1981),
431-483.
Ben-Ari, M., Manna, Z., and Pnueli, A The
logic of next time. 8th Annual ACM Symp.
Principles of Programming Languages, Jan
1981, 164- 176.
Brock, J.D., and Ackerman, W.B. Scenarios:
a model of non-determinate computation.
Intemational Colloquium on FormaCzation of
Programming Cmcepts, April 1981.
Brookes, S.D. A semantia and proof system
for communicating processes. Lecture Notes in
Computer Science 164,1984,68-85.

Chen, Z . C . , a n d Hoare, CAR P a r t i a l
correctness of axnmunicating processes and
protocols. Technical monograph PRG-20,
Propmming Research Group, Oxford
University Computing Laboratory, May 1981.
Emerson, E.A., and Halpem, J.Y. “Some
times” and “not never” revisited; on branch-
ing versus linear time. 10th Annual ACM
ww* on Principles of Programming
Languages, Jan 1983,127-140.
Hoare, CAR Communicating sequential
processes. Corm. ACM 21, 8 (Aug 19781,
666- 677.

(8) -. A calculus of total correctness for com- (22) Pratt, V. On the composition of processes.
municating processes. Technical Monograph 9th Annual ACM Symp. Principles of P~(F
PRG-23, Programming Research Group, @amming Languages, Jan 1982,213-223.
Oxford University Computing Laboratory,
May 1981.

(23) Wolper, P.L. Synthesis of Wmnlunicating
processes from temporal logic specifications.

(9) Hughes, G.E., and Cresswell, M.J. An intro- Ph.D. thesis, Stanford University, Aug 1982.
duction to modal logic. Menthuen & Co., Len-
don, 1968.

(10) Kahn, G. The semantics of a simple language
for parallel programming. hf. Process. Letters
74 (19741, 471-475.

(11) Lamport, L. “Sometimes” is sometimes “not
never”. 7th Annual ACM Symp. Principles of
Programming Languages, Jan 1980,174-N.

(12) -’What good is temporal logic? Proceed-
ings IFIP 1983, 657-668.

(13) Levin, GM., and Gries, D. A proof tech-
nique for communicating sequential processes.
Acta Informatica 15 (1981), 281-302.

(14) Lipton, R.J. A necessary and sufficient amdi-
tion for the existence of Hoare logics. 18th
Annual Symp. on Foundations of Computer
Science, 1977,1-6.

(15) Manna, Z., and PnueIi, A Verification of
concurrent programs, Part 1: The temporal
framework. Tech. rep. STAN- CS- 81- 836,
Stanford University, June 1981.

(16) - and -. Verification of concurrent pro-
grams, Part 2: Temporal proof principles.
Tech. rep. SIAN-CS-81-843, Stanford
University, Sept 1981.

0 -a&-. How to cook a temporal proof
system for your pet language. 10th Annual
ACM Symp. Principles of Programming
Languages, Jan 1983, 141-154.

(18) Misra, J., and Chandy, KM. Proofs of net-
works of processes. IEEE Trans. SopvarC
Eng. SE-7, 4 (July 1981).

(19) Misra, J., Chandy, KM., and Smith, T.
Proving safety and liveness of communicating
processes with examples. SIGACI-SIGOPS
Symp. Principles of Distributed Computing,
Aug 1982,201-208.

(20) Owicki, S., and Lamport, L. Proving Iiveness
properties of concurrent programs. ACM
TOPLAS 4, 3 (July 1982), 455-495.

(21) Pnueli, A The temporal logic of programs,.
18th Annual Symp. Foundations of Computer
Science, 1977, 46-57.

