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Abstract
This paper describes the syntax, semantics, and usage of BDL - a Behavior Description Language
for concurrent programs. BDL program models can be used to describe and abstract the behavior
of real programs formulated in various computation paradigms (such as CSP, remote procedures,
data-flow, actors etc.). BDL models are constructed from abstract computing entities known as
“players”. The model can behave as closely as possible to the actual program in terms of message
passing, player creation and cpu usage. Although behavior abstraction using BDL only involves
identifying the “redundant part” of the computation and replacing them with simple “NO-OP”
statements, proper application of this technique remains difficult and requires a thorough
understanding of how the program is architectured. Simulating BDL models is much more
economical than instruction level emulation while program behavior is realistically preserved.
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1. Introduction
Many difficult questions remain to be addressed in the field of parallel computing. For example:

“Consider two distributed/parallel formulations of the same problem, which one will execute
faster on a given multiprocessor?”

“Consider a loosely-coupled multiprocessor l, how important is the speed of the
communication links (relative to other factors such as cache sizes or memory sizes) for
programs with a lot of communication?”

“Which routing algorithm works best for a grid-connected machine executing data-flow
computations?’

Most of the approaches proposed to solve these problems involve building models to represent the
computation (and sometimes, the machine as well). In many cases, graph models were used:

i) Each node represents a task2 and the edges represent precedence relationships between tasks
Nohan 841;

ii) Each node represents a process and edges join processes which communicate with one
another [Bokhari 8 11;

iii) Each node represents a functional-unit and the edges represent paths of flow for data
tokens [Catto 811;

iv) Each node represents a procedure block, the edges represent entering (calling) and exiting
(returning from) the procedure.

v) A program graph consisting of task-nodes and a machine graph made up of site-nodes
represents the execution environment. The weight on an edge between a task-node and a
site-node indicates the afJinity  of particular tasks to sites [Stone 771;

Other efforts involve queuing models [Chow 791, Bayesian analysis [Stankovic 811 and applying
the solution of problems in other domains if an analogy can be drawn [Hanan 70, Lawler 631.
These models enable analytical methods to be applied (e.g. [Shen 851) and simulations (of the
model) to be carried out (e.g. simulated annealing [Steele 851). Solutions have, in fact, emerged
with some claims of “optimality” for a subset of these problems. However, none of these efforts
are completely satisfactory. Their results cannot be directly applied to real programs on real
machines because these approaches are based on program models that do not adeauatelv represent
the actual behavior of commitations:

lA loosely-coupled multiprocessor consists of a number of processing elements (called sites) connected together via

some communication links. Each site possesses a processor and some memory. There are no globally shared

memory modules.

21n this context, a task can be regarded simply as a “code body”.
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i> Dynamic creationltermination of computing entities - When using graph models, nodes and

edges associated with them may be created (and destroyed) during execution since
processes3 can be dynamically created/destroyed. Iterative solutions that assume static
graph topologies are therefore rendered useless.

ii) Data-dependent program behavior - Only a very small number of programs do not contain
“branches”. In a sequential program, these “branches” determine how the “flow of
control” changes in respond to different input data sets. In the realm of parallel processing,
activities such as message passing and process creation may be affected. This is
particularly true for symbolic computations which represent some of the most compute-
intensive and dynamic programs in the world [Nii 861. Unfortunately, a model that
“mimicks” these characteristics exactly probably involves writing the program in another
programming language ! The dependencies of program behavior on data characteristics
have not been properly captured in any of the models proposed.

Although abstract models do aid the evaluation of new computer structures and operating system
algorithms, detailed studies on distributed problem formulation, resource management and
software architecture still depend on the study of real applications. Unfortunately, the development
of complete language and compiler tools together with run-time environments is impractical for
short term experimental use. Compounded with the fast pace of changes in concurrent
programming languages, programming environment and hardware architectures, research efforts in
the past were forced to depend on these abstract models. This paper proposes an approach that
allows detailed description of program behavior yet at the same time, permitting potentially fast
turn-around simulation.

The BDL model of concurrent programming is stated explicitly in section 2, followed by its syntax
and semantics. The “player computation paradigm” is then compared with other existing
paradigms in section 4. Section 5 describes how BDL can be used for program behavior
description and abstraction. A few examples of BDL models is presented next. The paper then
concludes with a summary.

2. The BDL Model for Concurrent Programming
Behavior Description Language (or BDL) defines a set of constructs that describes the behavior of
a parallel computation. Like other programming languages, BDL enables (but also constrains) a
programmer to express a computation within a specific computation paradigm. This concurrency
model is detailed in the following sub-sections.

3or any abstract computing agents defined by the programming paradigm



2.1 Overview
A parallel computation is defined as a collection of computing agents known as players4.
There are no shared data structures. Players can be dynamically created. Players may execute
concurrently with one another. They communicate via message passing.

2.2 A Plaver
A player’s attributes is described in terms of its internal states. An internal state may contain
either a numerical value or a <mail-address>5 of some player (called acquaintance). Each
player is an instantiation of a specific “player type” - which defines a player’s internal states

and how it responds to messages.

2.3 A Message
Players interact via message passing. A <message> consists of two major part&

i) a header indicating the <message-type>; and
ii) the contents which consists of a variable number of “values”. These values are either

internal states of the sender player or constants.

2.4 Message Passing: Semantics
Messages are sent and received asynchronously. In other words, the sender player does not
have to suspend computation to wait until its message is received. Each player has an implied
(infinite) message buffer. Messages are processed on a first-come-first-serve basis. A player
has the option to wait for the first arrival of a message of a specific type.A  p l a y e r  m a y  a l s o
query whether messages of a specific type are already in its message buffer.

2.5 Behavior Smcification
A player is activated when a message is received. Each player selects the appropriate handling
procedure according to the message type. These handling procedures (called “behavior”) are
defined as part of the player type specification,

4The name “players” was chosen not only to avoid saying “BDL objects” every time but also because of its

similarity to the actor programming paradigm.

5A <mail-address> may be viewed as a “pointer to” or the “name of’ a player. For anyone to communicate with a

player, its <mail-address> must be known. A global <mail-address> may be refered to by any player.

60nly the two fields that can be manipulated explicitely by the programmer are listed here.
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2.6 Computation
Simple computations can be carried out in BDL7. In response to messages received and values

associated with them, a player may:
i) create other players
ii) modify its internal states
iii) send messages; or
iv) check and wait for messages of a particular type.

3. BDL Syntax and Semantics
The syntax and semantics of the language is informally introduced here so that it can be used to
illustrate the process of program behavior description/abstraction in the section afterwards. The
BNF notations of BDL grammar are presented in the Appendix. BDL follows a LISP-like
syntax*. A BDL description consists of two types of statements:

i) structure specification - defines the internal states of a player type and its behavior in
response to different messages;

ii) player declaration - instantiates a “global” player?

3.1 The Dining Philosophers - An Example
The “dining philosophers” problem Peterson 831 should be familiar to readers with a distributed
computing background. This problem is commonly used to illustrate dead-lock situations. The
situation involves a few (say four) “philosophers” sitting around a (virtual) table. A fork is placed
between each philosopher. Each philosopher must grab the fork on both sides before he can start
eating. After the philosopher finishes, he releases both forks. Figure 1 on the next page illustrates
how a “simple philosopher” may be specified as a player:

71n fact, BDL is “not interested” in the exact nature of the user computation since it is designed for behavior

abstraction.

*c.f. “flavors” in [Weinreb 811

gThis notion of a globally known player is necessary for two purposes:

i) Initialization - For a computation to take place, at least one player must be declared. It may then proceed to

create and set up other players to carry out the actual computation.

ii) “System facilities” - Players with special abilities (such as I/O servers or error handlers) may only reside in

certain sites with the appropriate hardware component or system software but need to be assessed by ti parts of

the system.



(DefPlayer Philospher Structure specification
(init start-eat aW , message names
(Left-fork Right-fork) acquaintances
0 ; no numerical states
(init ; initialization

(record Left-fork Right-fork)) ; get neighbors’ addresses
(start-eat ; execution begins

(post Left-fork pick self) ; try to get left fork
(wait ack) ; wait for acknowledgment
(post Right-fork pick self) ; try the other fork
(wait ack) ; wait for acknowledgment
(hold 23) ; he eats!
(post Left fork release)
(post Rig&fork  release)))

; releases left fork
; releases right fork

(Global Joe Philosopher) ; Player declaraton

Figure 1. BDL Specification of a “philosopher” at the dining table

Joe, a philosopher, has two acquaintances (“Left-fork” and “Right~fork”). When the INIT message
is received (at initialization time), Joe records which forks are positioned next to him. When given
the START-EAT message, Joe attempts to grab the left fork by sending it a PICK message (which a
Fork will understand). On receiving the acknowledgement, he proceeds to get the other fork. If
successful, he will begin eating. Eating takes 23 time units (at least for Joe!). Afterwards, he
releases both forks and waits for the next message.

3.2 Structure Specification
The structure specification statement consists of four parts:

l <header> - consists of the keyword Def’Player  and an identifier indicating the player type.
l <message list> - indicates the message types that it understands.
. <internal states> - acquaintances and numeric states are declared separately to facilitate run-

time type checking and statistic gathering purposes which will be explained in a forth-
coming paper.

l <behavior list> - the last portion of the specification consists of a list of clauses which specify
how the player responds to different message types. Each clause begins with the message
type followed by executable statements.

Three types of executable statements are responsible for message manipulation, resource utilization
and user computation. “Meta” statements which implement special control structures such as loops
or conditional branches are also included.
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3.3 Message Manipulation
Message passing is the only means by which players interact with one another. The basic
operations offered include message sending and receiving, value transmission and queries on
buffer contents:

l (post <receiver> <message-type> <argl> <arg2> . ..) - for message sending. The

<receiver> may be any acquaintance or self - i.e. the sender player itself. There is no limit
on the number of arguments to be passed. They can be used to transmit values necessary
for computation or <mail-addresses> to introduce players to one another. For example
(post Right fork pick self) is used to send the (acquaintance) “right fork” a PICK message.-
The keyword self is passed with the message to indicate from whom this request comes
from.

l (wait <message-type>) - blocks the caller (player) until a message of the specified type has
arrived. When a philosopher executes (wait ack), it “goes to sleep” until an ACK message
arrives (from the fork).

l (arrived? <message-type>) - returns a (numerical) value indicating the number of messages
found with the specified <message-type>. This statement allows the message buffer to be
inspected before processing. By suitably combining wait and arrived?, messages buf -
fered can be processed in any way the programmer so desires.

l (record <statel> <state2> . ..) - store the arguments associated with the last message

received into the corresponding states. If the receiver executes record with fewer
arguments than the sender does with send, these extra values will be dropped. On the
contrary, if record is called with too many arguments, the extra states will be filled with
zeros.

l self - a keyword indicating the (<mail-address> of) the player currently executing.
l sender - a keyword indicating the (<mail-address> of) the sender of the last message

received.
l exception handling - Assume message <m> of type <mt> is received by player cP> of

type <Pt>:
If <mt> is not declared in the message list of <Pt>, <m> is dropped.
If <mt> is declared in the message list of <Pt> but its behavior is not specified, <m>

remains in the message buffer until the execution of a “wait” statement: (wait <mt>).

3.4 User Computation
These statements always return a value. This value may be:

i) stored in an internal state of an player;
ii) transmitted to other players using a message; or



iii) used to select conditional branches.
The forms currently implemented includes:
l (setq <state> <value>) - the basic assignment statement follows the LISP convention. It

returns <value>.
l (<comparator>  <valuel> <valuez>) - this statement returns a ” 1” if the comparison is a

success and “0” otherwise. “=” and ‘Y’ may be used to compare numbers as well as two
<mail-addresses> whereas Y, “9, “I”, and “2” only defined for numerical comparisons

only.
l (<math-operator> <value1 > . ..) - the current BDL language includes only the following

mathematical operators ” +“, ” -“, ” *“, “/“, ” l+“(increment),  “1-” (decrement).

3.5 Resource Utilization
BDL is designed to be executed in a simulation environment (at least for now). There are two
executable statements which affect how resources are utilized during the computation:
l (make <state> <player-type> [<directive>]) - creates a player - which “occupies memory

space” at the site in which it is placed. This is the only means by which a player may be
created dynamically. The <mail-address> of the creatd player is stored in the specifed
<state> of the creata player. The third parameter, <directive>, is optional and
implementation dependent. It directs the operating system to place the creatd player at
certain site. In the current implementation, allowed directives include:

* LOCAL - at the same site as the creator;
* REMOTE - at any other site;
* RANDOM - randomly at any site.
* <site address> - at a specific site10-

l (run <no-of-time-units>) - requests of use the processor of the site in which the player
resides for a certain time. Although the player may request a certain amount of processing,
the actual response time still depends on how crowded the site is and what local scheduling
policy the local operating system employs. It should also be noted that these “time units”
are meaningful only when discussed in conjunction with the characteristics of the hardware
(such as communication link bandwidth, context-switch overhead etc.)

3.6 Meta-Statements
Four simple constructs are provided:

loIn the current implementation, a <site address> is simply an integer identifying the actual site.
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l (if <condition> <statementl> <statementz>)  - If the <condition> evaluates to non-zero,
<statement1 > is executed. Otherwise, <statementz>  will be executed.

l (repeat <no of times> cstatementl> . ..) - a simple loop construct.- -
l (branch (<pl> cstatementpl> . ..) (<p2> <statementp2>  . ..> . ..> - the branch statement

contains a list of clauses, each of which has a defined probability of occuringll.  For
example:

(branch (40 (...) (...) . ..)
(50 (...) (...) . ..)

(10 0))
states that the first branch is taken with a probability of 40%, the next one 50%, and there
is a 10% probability that nothing will happen. It is the programmer’s responsibility to
ensure that all probabilities (pi) add up to 100%12.

l (progn <statementl>  . ..) - groups a number of statements to be parsed as a single statement.

3.7 Plaver Instantiation
Finally, a player may be declared “at compile time” using the following statement:
l (global <mail-address> <player-type> <site-address>) - instantiates an instance of a

particular player type - assigning to at a global <mail-address> at the same time.

4. Comparing BDL with other Concurrent Paradigms
BDL was designed to build models for parallel computations. This section demonstrates that the
BDL paradigm can in fact represent computations expressed in a number of proposed concurrent
paradigms. The differences between BDL and these established paradigms are also described. It
must be emphasized that the issue here is not one of efficiency but expressibility. In other words,
BDL implementations may not be eficient  but it is certainly capable of expressing a lot of other
parallel processing models.

4.1 Parallel “Code-bodies”
One simple way to “parallelize” a sequential program is to introduce constructs which explicitly
initiate and terminate parallel execution into an existing language. The constructs proposed

1 lIn the current implementation, these probabilities cannot be changed during run-time.

12The current BDL compiler [Yan 861 makes sure that these probabilities do add up to lOO%, otherwise, an error

message is generated.



include “fork/join” [Conway 63, Dennis 661, “parBegin/parEnd” [Dijkstra 681, “ForAll/
DoAll” etc. BDL differs in two aspects:

i) players are more than code-bodies because they possess “states”; and
ii) there are no implied shared data-structures in BDL.

If BDL were used to represent such parallelism, it could be achieved as follows:

Figure 2a. “code bodies” vs. Players

i) represent code-blocks and data-structures as players;
ii) use messages to synchronize code-bodies (figure 2a);
iii) use messages to access and update data-structures (figure 2b)

(Def Player Simple Data-
(read wriie)
0
(content)
(read (reply content))
(write (record content)))

; no acquaintances

; “read’%
; “write?

Figure 2b. “Data” implemented as Players

messages

4.2 Concurrent Processes
Concurrent Pascal [Hansen 751 and CSP [Hoare 78-J were among the first programming
languages that introduced the notion of “processes” explicitly as “code-bodies plus state”.
These processes do not share any common variables. Processes in Concurrent Pascal
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communicate via two abstract data-types - classes and monitors [Hoare 741. CSP processes,
on the other hand, communicate via synchronous message passing. In both cases, the number
of processes is statically declared (i.e. fixed at compile time). Players can, in fact, be modeled
by sequential processes executing the following loop:

(1) receive any message
(2) select message handler depending on message type
(3) process message
(4) go back to (1).

However, CSP and Concurrent Pascal processes only perform a subset of operations
permissible in BDL. They do not allow:

i) dynamic process creation;
ii) asynchronous message sending/receiving; and
iii) message type screening;

Constructs for synchronous message sending can be defined in terms of the send/wait
primitives :

syn-send = (progn (post...) (wait ackl3))
syn-recv  = (progn (wait . ..) (reply ack))

The processing of implementing monitors (and signaling) as player (and messages) is left to the
reader as an exercise!

4.3 Functional-units and Data-tokens
In data-flow [Davis 821 and systolic [Kung 821 paradigms, the program text defines an
“abstract machine” that is made up of functional-units connected in some topology. A
functional-unit possesses one or more input ports and (usually) one output-port. When all
necessary data-tokens arrive at the input-ports, the functional-unit is activated. The result(s)
is(are) then passed out of the output-port(s). Dynamic creation of functional units is necessary
to handle certain programming constructs such as recursion. Players may be programmed to
behave as functional-units and messages can be used to transmit data-tokens. Pure data-flow
paradigms need to use “feed-back” connections to implement “memory” (or state) for
functional-units.

13Since everybody is doing synchronous message sending, there cannot be more than one outstanding message.

Therefore there is no need to check for message id in the acknowledgment.
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4.4 Remote Procedures
Remote procedures [Nelson 8 l] simply involve invoking a procedure located at a “remote” (i.e.
non-local) site. The passing of arguments and returning of values can be implemented as
message passing. Procedure calls can be easily implemented as follows:

- a “procedure player” receives the “call” message with the appropriate arguments;
- player computes result;
- result is replied to the caller by a “return” message.

Since players can be dynamically created, they can comfortably model the dynamic nature of
procedure calls and retumsl?

4.5 “Futures” and “Streams”
The concepts of ‘Ifutures” [Baker 771 and “streams” [Weng 751 stem from two completely
opposite ideas: eager and lazy evaluations respectively. A <future> can be thought of as a mail
box (or data-structure) to which a computation will deliver a value. This computation was
started as a result of the creation of the <future>. The <future> is in fact a promise that a value
will arrive “some time in the future”. A <stream> on the other hand, represents a producer
from whom a value can be obtained on demand. Implementation of these concepts using
players is outlined as follows:

<future> creation - creates a player of the appropriate type and starts computation by
sending it the appropriate values; player will deliver result as soon as it is available

requesting value from <future>  - use the arrived? primitive to check if the value has
returned, if not call wait;

<stream> creation - creates a player of the appropriate type; computation does not begin
until a”value needed’ message is received-

requesting value from <stream> - send the <stream> player a “value needed’ message and-
wait for the reply

4.6 Actors
Players can be thought of as a subset of Actor [Agha 851 types. The Actor programming
paradigm may be summarized as follows:
i) Actors (c.f. players) are defined in terms of their behavior. “Behavior” in actor terminology

is equivalent to “player type”l?
ii) Actors interact via communicatior

14Players can even implement co-routine calls [

15i.e. state plus handling procedures

2s (c.f. <messages>).

Conway 631 with suitable arrangement of message passing
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iii) Actors can only send communications to actors that it knows about (i.e. acquaintances) or
actors it created.

iv) Actors may be unserialized or serialized. Unserialized actors do not change their behavior
(c.f. a player with no state). They can arbitrarily duplicate themselves to handle incoming
communications. Serialized actors (serializers) can change their “behavior”. They handle
communications in a first-come-first-serve manner%

v) Actors respond to communications just like players. They can
- create other actors
- make simple decisions
- send more communications
- become different actors

In fact, BDL was designed to express a subset of the actor paradigm. This subset was chosen
as a mid-ground between implementation efficiency and expressibility:

- a large number of concurrent computations can be expressed while
- a compiler/simulator for players can be built quickly!

5. Program Behavior Description/Abstraction
“Program behavior” may be described in terms of abstract computing agents/operations or the
utilization of actual computing resources. Either way, it must involve “observable actions” - i.e.
requests posed to the machine by the program such as storage and processing demands. A good
program model behaves similar to the program itself17  - e.g. the model poses similar requests to
the multiprocessor when the real data set is fed into the program model.

5.1 Sequential Proprams
In sequential computing, the process of computing follows a somewhat “simple cycle”. Assuming
a typical von-Neuman architecture?

(1) instructions and data are fetched from some storage device and
supplied to the central processing unit (CPU)

16The behavior of serializers  can be modified in a more versatile manner than that allowed for players. Not only

may the internal states be modified - an actor can change its into another actor-type with a completely different

structure and behavior!

17Similarly, a good machine model produces the same responses as a real one when the same requests are made to

the real machine.

l*a processor making references to a memory module



13

(2) the CPU processes the input data and produces output data
(3) This new data is transfered back to the storage device
(4) The next instruction to be fetched is determined depending on

the result obtained in step (2).
(5) Goto step (1).

Sequential program behavior can therefore be described in terms of the basic activities of
“processing” and “data reference”:

i) Access locality is associated with the “reference pattern” of the program. A program
with high locality make references frequently to data/code that reside in close proximity.

ii) A sequential program may be CPU or I/O bound depending on whether it spends most of
its time occupying the CPU or waiting for the response of the (slower) storage device
doing data transfer.

iii) Any non-trivial program consists of branches. They are either used to implement control
structures (e.g. loops) or to perform data-dependent operations (e.g. conditional branches).
Branch probabilities may or may not be dependent on different input data sets.

A good sequential program model resembles the real program in terms of reference loccality, cpu/io
utilization as well as branch probabilities.

5.2 Concurrent Programs
Similar considerations may be applied to parallel computing in BDL. The basic computing cycle in
BDL involves:

(1) Players are created.
(2) Messages are sent from one player to another.
(3) In response to messages received, a player may “compute”,

send more messages, block to wait for other messages, or create
other players

(4) Replies may be sent back to the sender after the message is

processed

BDL provides the necessary constructs to describe parallel program behavior in terms of the basic
operations: “player creation”, ”communication” and “processing”.

i) Degree of parallelism - The amount of parallelism available in a particular formulation
depends on the total number of players present. This in turn depends on how players are
created during the computation. Although the degree of parallelism is limited by the total
number of players declared, the communication and synchronization requirements remain
the key factors that govern the maximal available speed up for a given program.
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ii) Communication amount/pattern/protocol - To obtain speed-up by exploiting
concurrent hardware, a single computation is broken into a number of parts l? These parts
must communicate to facilitate cooperation between them. The amount of communication,
size of messages, frequency of communication between any pair of players, and the syn -
chronization protocol for delivering messages characterizes the computation.

iii) Computation amount/pattern - Since players that reside in the same site will compete
for one CPU, the amount of computation each player requires is therefore important.

iv) Data-dependency - The three “observables” in BDL computing are “player creation”,
“computation” and “message delivery”. The amount of these activities may vary for
different input data-sets for the program.

v) Parallelism “grain size” - The trade-off between potential parallelism and
communication overhead varies with the “grain size” of a parallel program. The more
modules one breaks an application into, the more potential parallelism is expected.
However, more communication is also expected between these modules

In summary, BDL provides the capability to describe the three basic operations in a parallel
program: player creation, message passing and “computing”. The next section will demonstrate
how the “run” statement can be used to build realistic program models.

6. Building Program Models with BDL - Three Examples
6.1 Example 1: The N-body Problem
The N-body problem may be defined as follows:

N heavy bodies are initially suspended in space at some initial coordinates. They
are subsequently released simultaneously. They interact via gravitational forces and
move along some trajectories. Plot these trajectories.

A possible2. distributed formulation involves creating n players, each representing one “body”.
The structure of a “body player” is shown “schematically” in figure 3 on the next page. The corn -
putation begins by having a “release” message sent to each player21. Each player responds by
sending its coordinates to the other (n-l) players. Whenever a (new) coordinate is received, the

19Multiprogramming  on multiprocessors is a related but separate issue because the programs of different users are

independent.

2oThis asynchronous formulation is only one of the many possible. Each “body” does not have to wait for all the

other (n-l) new coordinates to arrive before computing its new coordinates. For iterative solutions to this class of

differential equations, the accuracy of the solution is acceptable if the iteration step size is small enough.
aa
“‘presumably from some “god” player sitting out there watching these bodies
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internal state of the receiver is updated. Its coordinates and velocity after a certain time At is

calculated. This new coordinate is recorded locally and then transmitted back to the sender.

(DefPlayer  Body
(init release update)
(bl b2 .-- bn-1)
(my-coord my-velocity crdl crd2 . . . crdn-1)
(init

(record bl b2 . . . bn-1
crdl crd2  . . . crdn-1 ))

(release
(post bl update my coord)-
. . .
(post bn-1 update my-coord))

(update
(if (= sender bl) (record crdl)
. . .
(if (= sender bn-1) (record crdn-1)
(setq my-coord (find-new-ones,))
(setq my-velocity (find-new-ones,))

; Structure specification
; message names
; acquaintances
; numerical statesz2
; initialization
; get neighbors’ addresses
; & initial coordinates

; begin execution
; tell everybody where
; I am and wait for
; their responses
; new coordinates arrived!
; find the sender and
; update its
; coordinates
; compute my coord.
; and new velocity

(post output device*3  update my-coord) ; send it to the output device
(reply update my-coord)))

-
; and reply the sender

Figure 3. Actual Program Text of a “Body”

Two important observations are made here are:
a) The most time consuming lines in the program text are the ones which compute the new

coordinates and velocity.
b) The time spent computing here is indenendent of the actual values of the coordinates of all

the other players.
If the lines in question were replaced with a NO-OP statement that “simply consumes time” - (run
<some-time>24),  program behavior does not change. In other words, the number, sequence and
pattern of messages delivered and the demand posed on the processor by each player remains
identical to that of the actual program. This program “model” is shown in figure 4. As far as

22Although  coordinates and velocities are actually vectors (as opposed to scalars), they are declared as single state
variables (e.g. in stead of vx, vy, vz) in order to simplify presentation.

23The output device is formulated as a “globally known” player. Its definition is not presented here.

24The actual time spent can be calculated from the actual machine cycles required by the instructions or from

measurements of actual program execution.
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simulation is concerned, emulating the actual instructions that solve the differential equations is
much more expensive than simply “advancing the clock” using the “run” statement.

(DefPlayer Body
(init release update)
(bl b:! ..a bn-1)
0
(init

(record bl b2 . . . bn-1 ))
(release

(post bl update)
. . .
(post bn-1 update))

(update
(run 2)

UP (run 40)
UP (run 50)

(post output-device update)
(reply update my-coord)))

; no numerical states
; initialization
; record neighbors’ addresses
; begin execution
; tell everybody where
-I I am and wait for
I their responses
; new coordinates arrived!
; time spent recording coord.s
; time spent computing my co0rd.s
9 and new velocity
; send coord.s to o/d
; and reply the sender

Figure 4. Program Model for a “Body”

(DefPlayer File
(init read write reserve . ..)
(owner writer)
(content)
(init (record owner))
(read (reply data content))
(reserve

(if writer (reply NIL)
(progn (setq writer sender) (reply T))))

(write

w
(if (= writer sender)

(progn (record content) (reply T))
(reply NIL)))...)

Figure 5. A “File Player”

; file content
; initialization
; anyone can read
; writer needs reservation
; already reserved
; reservation granted
. “write” request,
; is file reserved?
; yes...
; no!

6.2 Files - An Example of Data-denendent  Message Sending
Although the process of replacing parts of the program with NO-OPs may seems to be very straight-
forward, that is, in fact, not true. The distinction between computations that “matter” and corn -
putations that do not is very difficult to make. Consider the following example shown in figure 5
where a file is implemented as a player. Although a straight-forward option is to replace the line
which actually updates the content of the file with a NO-OP, an alternative is illustrated in figure 6.
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This model is constructed based on two observations for a particular computer system over a long
period of time:

i) when a “reserve” message was sent, it was granted 70% of the time; and
ii) only 5% of user processes send ” write”s without making the reservation first.

This model performs “statically correct”. However, the message pattern that it generates may be
completely different from that of a real program because a “write” request is not honored by
“reservation” but by mere chance ! It may still be sufficient if , for example, it is only used to drive
experiments in routing algorithms on a particular connection topology. In general, the data-
dependent portion of the computation cannot be simply “abstracted away”!

(DefPlayer File
(init  read write reserve . ..)
(owner writer)
0
(init (run 1))
(read (reply data ))
(reserve mn 1)

(branch (30 (reply NIL))
(70 (reply J-N)

(write m 1)
(branch (5 (reply NIL))

(95 (reply J-W)

; no content needed
; initialization
; anyone can read
; writer needs reservation
; already reserved
; reservation granted
; writer needs reservation
; write without reservation!
; “write” successful

Figure 6. Model for a “File Player”

6.3 Servers - An Example of Data-Dependent Plaver Creation
Consider another example in which the computation is organized as a collection of players with
“special skills” serving different request types. When “simple” requests are presented to a server
(player), they are processed immediately. If a request turns out to be “too difficult” for the receiver
to handle25, it may be forced to create an “expert” to help deal with the situation. Figure 7 il-
lustrates such a “server” player. The computation which determines whether a player is needed to
be created or not may be very time consuming but, it CANNOT be easily abstracted away. Although
a probabilistic approach is always possible, the researcher must examine the overall structure of the
computation and before making his/her decision.

25For  example, an inspection of the data and request type reveals that this request can be better served by servers of

another kind or that an error handler needs to be created to handle erroneous requests.
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(DefPlayer Server

(.. a-request a-reply...)
(...  expert1 client1 . ..)

(...  result . ..)

. . .

(a-request
(record client1 req-type the-request)

(if (expert_needed? req-type the-request)
(progn (make expert1 An-Expert) (post expert1 req-type the-request))

(progn (setq result (compute-result ) ) (reply done result))))

. . .
(a-reply (record result client 1) (post client 1 done result))

. ..I

Figure 7. A “Server” Player Processing Requests

6.4 Summarv
1. Building program models in BDL involves the following steps:

a. study and understand the actual program text;
b. specify (or rewrite) the program using BDL syntax;
c. select the computation that does not affect program behavior:

- either abstract it away using the “run” statement; or
- reformulate it using probabilistic branches;

d. simulate26 the model and compare its behavior with the actual program:
- find out the limitations of the model
- make modificatons  if necessary

2. The data-dependent behavior of programs remains the biggest challenge for model builders.
Although the use of probabilistic branches may solve some simple cases, it is, in general, very

Z6The “Axe” simulation facilities [Yan 861 (built on top of CSIM [Schwetman 861) was specifically designed to

model the execution of concurrent programs on multiprocessors using discrete-time simulation. An integrated

environment is provided to facilitate specification of software (using BDL) and hardware models, simulation and

automatic data collection. The current version of “Axe” models a specific class of multiprocessors known as

ensemble architectures [Lutz 84, Seitz 821. This class consists of a collection of homogeneous autonomous

processing elements (or sites) - each of which is connected to its nearest neighbors in a regular fashion (e.g. the

Cosmic Cube [Su 851). A collection of pre-defined abstract machines is provided in “Axe”. Their hardware

parameters, connection topology and routing algorithms may be tailored further by the user.



19

difficult model the variation of communications, player creation, and usage of computing
resources in response to changes in input data-sets.

3. It is up to the researcher to decide, recognize and remember what level of abstraction his/her
model was constructed for. A model should not be pushed beyond its limitations.

7. Conclusions
BDL expresses parallel programs in terms of abstract computing agents known as “players”.
Players send messages to one another, create players dynamically and “compute” - expanding cpu
time at the sites in which they reside. This paradigm encompasses a lot of proposed models for
concurrent computing. It offers the potential for constructing accurate program models which are
also efficient for simulation.

Building program models using BDL is not as straight-forward as it seems. It involves replacing
part of the actual computaton with a NO-OP statement “(run <time-interval>)“. Program models
may be constructed at different “levels of abstraction”. Some may be statistically correct while
others may emulate an exact sequence of events over a range of input data. Although replacement
of the program text with NO-OPS is the key to building good program models27 and facilitate its
efficient simulation, proper application of this technique still demands a thorough understanding of
the architecture of the computation.

27 which behave exactly like the program in terms of message passing, player creation and cpu usage
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Appendix - BDL Syntax
This appendix follows BNF notations. Included are some keys to help interpret these grammatic
rules:

- All non-terminal symbols are enclosed in ” ~9’
- All reserved symbols are printed in bold
- <term>* means that the <term> occurs 0 or more times
-<term>+ means that the <term> occurs 1 or more times
- Identifier means a string of any ascii literals

<Declarations>:: <Structure-Declaration> 1 <Identity-Declaration>

&tructure-Declaration>:: ( DefPlayer <Type-ID> <MessageList>  <AcquaintanceList>  <StateList>

<Behavior>* )

<Type-l D> : : Identifier

<MessageList>::  ( <MessageID>* )

<MessageID>:: ldenfifier

<AcquaintanceList>::  ( <Reference>* )

<Reference>:: ldenfifier

<StateList>::  ( <State>* )

<State>:: Identifier

<Behavior>:: ( <MessageID> <St>* )

<SW:  <Empty> 1 <Meta-%  1 <Rsrc-St>  1 <Message-St> 1 <Value-St>

<Empty>:: ( )

<Meta-%::  <Branch-St> I <Conditional-St> I <Loop-St>

<Branch-St>:: ( Branch <Clause>+ )

<Clause>:: ( <Probability> <St>+ )

<Probability>:: <I-value>

<I-value>:: <State>  I lnfeger

<Conditional-St>:: ( If <Condition> <Success> <Failure>* )

<Condition>:: <I-value> I <Value-St>

<Success>:: <St>
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<Failure>:: <St>

<Sequence-St>:: ( Progn <St>+ )

<Loop-St>:: ( Repeat <LoopCount>  <St>+ )

<LoopCount>::  cl-value>

<Rsrc-St>::  ( Run <Duration> ) I ( Make <State> <Type-ID> <Directive>)

<Directive>:: local I remote I random

<Message-St>:: ( Record <Local>+ ) I

(Wait <MessageID> ) I

( Reply <MessageID> <Value>+ ) I

( Post <Receiver> <MessageID> <Value>+ ) <Receiver>:: <A-value>

<A-value>:: <PlayerReference> I <Player-ID> I Self I Sender

<Value>:: CA-value> I <I-value>

<Local>:: <Reference> I <State>

<Value-St>:: ( Dee <State>)  I ( Inc <State>) I

( Setq <State> <I-value> ) I ( Setq <PlayerReference>  <A-value> ) I

( q  <Value> <Value>) I ( f <Value> <Value>) I ( < <I-value> <I-value>) I

( > cl-value> Cl-value>)  I ( 5 cl-value> cl-value>) I ( 2 cl-value> Cl-value>)

<Identity-Declaration>:: ( Global <Player-ID> <Type-ID> <Site-ID> )

<Player-ID>:: ldenfifier

<Site-ID>:: ( Sitelnteger )


