
The Semantics of Timing Constructs
in Hardware Description Languages

David C. Luckham
Youm Huh
Alec G. Stanculescu

Technical Report No. CSETR-M-303

Program Analysis and Verification Group Report No. 32

August 1986

The work was supported by the Advanced Research Projects Agency,
Department of Defense, under Contract NOOO39-84-C-0211.

The Semantics of Timing Constructs
in Hardware Description Languages

CSL-TR-86-303

David Luckham
Youm Huh

Alec G. Stanculescu

Program Analysis and Verification Group
Computer Systems Laboratory

Stanford University
Stanford, California 94305

Abstract
Three different, approaches to the representation of time in high level
hardware design Languages are described and compared. The first is the
timed assignment statement of ADLIB/SABLE which anticipates future
events. The second is the timed assignment, of VHDL which predicts future
events and allows predictions to be preempted by other predictions. The third
is a new proposed method of expressing time dependency by qualifying
expressions so that. their values are required to be constant over a specified
time interval. Examples comparing these three approaches are given. It is
shown how time-qualified expressions could be introduced into a hardware
description language. The possiblility of proving correctness of hardware
models in this language is illustrated.

Keywords: Hardware description languages, timing construct, timed
assignment, anticipatory semantics, preemptive semantics, timing qualifier,
qualified expression, guarded assignment.

.

Computer Systems Laboratory
Stanford University

Copyright @ 1986

i

Table of Contents

1. Introduction
2. Problem with Anticipatory Semantibs
3. Using Virtual Hardware
4. Preemptive Semantics
5. Stability of Expressions over Time Intervals

5.1 Stability of Expressions Using “Waitfor”
5.2 Stability of Expressions Using Timing Qualifiers
5.3 Timed Assignment with Qualified Expressions
5.4 Guarded Assignments in Hardware Description
5.5 Specification of a Traffic Controller

6. Concluding Remarks
Acknowledgment
References

1
4
6
8

12

12
14
15
16
18
23
24
25

II

Figure 2-l :
Figure 2-2:
Figure 3-l:
Figure 4-l:
Figure 4-2:
Figure 4-3:
Figure 5-l:
Figure 5-2:
Figure 5-3:

List of Figures

lnverter with different fall and rise propagation delays
Behavior model of inverter in ADLIB
Correct behavior model of inverter using virtual hardware
Behavior model of inverter in VHDL
Pulse shaper behavior
Behavior model for the pulse shaper
Behavior model of inverter using a “waitfor” statement
Behavior model of inverter using a qualified conditional assignment
Entity specification of the traffic controller

4
5
6
9

10
11
f3
17
20

1. introduction

In conventional hardware description languages such as ADLIB [I], HHDL [3], VHDL [5] [6], DABL

[23, and TEGAS [4], timing behavior is expressed using assignment statements with a timing delay.

The delay can be associated with the assignment statement such as in ADLIB and HHDL, or it can be

specified in an input-output delay table such as in DABL. An assignment statement with timing delay

is called a timed assignment statement.

A timed assignment statement in ADLIB is, in general, given by

I assign X to Y delay t:

where “X” denotes either a value or an expression, “Y” denotes the net, and ‘7” denotes the time

period. The net, which is also called a port, corresponds to a connecting point of a hardware module

with the outside world. It can be of an arbitrary data type and contains the contribution of the

hardware module to the value of the connection, The type of the value of “X” or the evaluation result .

of the expression “X” has to be compatible with the type of the net “Y”. The time “t” can be either an

expression or a value in the simulated time units.

The semantics of a timed assignment statement of ADLIB is that the net “Y” will have the value “X”

after *‘t” simulated time units from the current simulated time. If “X” is given as an expression, it is

evaluated at the current simulated time. This semantics is called anticipatory because execution of an

assignment statement anticipates the value of the net “Y” in ‘7” time units in the future, and cannot

be overridden prior to “t” becoming the current simulated time.

The semantics of a hardware description language is usually implemented by an event driven

simulator. In order to help understand different approaches to the timing description, we briefly

review the mechanism of the event driven simulator. * ’

The event-driven simulation of a hardware description is carried out by iterating the following three

steps. Step 1 is the execution of behavior descriptions of components constituting the hardware

being simulated. Execution of each component description generates some projected events, which

are actually generated by executing assignment statements in the component description. Projected

events represent predictions of component contributions to the outside world. In step 2, projected

events are placed in the event list. Although the placement can be implemented in various ways, this

paper assumes a unique event list where events are ordered according to the simulated time at which

events are intended to affect the environment. Step 3 consists of scheduling the earliest event (with

2

respect to the simulated time) from the event list to become an actual event which means to actually

influence the environment. The environment takes into account the contribution represented by the

event.

After taking into account all events associated with a given simulated time, step 1 is repeated, for all

descriptions which qualify. A description qualifies for step 1 if it is not suspended* and if any of its

inputs were affected by step 3. At each unit of simulated time, all active (i.e., not suspended)

descriptions with new input values are executed. The execution takes into account the “latest”

contributions of all other descriptions.

Execution of a component description can trigger the execution of other component descriptions at

the same simulated time. This is because predictions can be made with zero delay. Also, global and

local activation conditions can change due to contributions made by component descriptions in step

two. In order to deal with this problem, an infinitesimal time delay called delta delay is assumed for

zero delay in the actual simulation. All events which are evaluated during the same step two, are said

to belong to the same delta simulated rime. There are events predicted to happen at the same

simulated time but at different delta simulated time.

One of the main difficulties in describing the timing characteristics of hardware is the fact that the

description should generate an event only when it possesses enough information. Present hardware

description languages do not enable a designer to write descriptions which wait for enough

information (on input ports) before generating an event on an output port.

Anticipatory semantics, as embodied in the ADLIB timed assignment, permits description of timing

delays. It is, however, inadequate for expressing timing behavior based on the time duration of an

input signal. Preemptive semantics of timed assignment (defined in Chapter 4) was introduced to

express such behavior. However, the effect of a timed assignment under preemptive semantics is not _

I
known when the assignment is executed-it may be preempted later. Consequently semantics of

behavior descriptions depend on assignment statements which will be executed in the future. As the

possibility ot more event preemptions increases, it gets more difficult to read and understand the

behavior. In fact, preemptive semantics violates two fundamental principles of language design-

I . programming languages or simulation languages-namely: (1) the effect of a statement should be a

function of entities mentioned explicitly ‘in the statement, and (2) the effect of a statement should be

*A description can be suspended by means of various mechanisms, for example, global activation conditions such as the
“upon” construct or local activation conditions such as the “waitfor” construct in the case of ADLIB and HHDL. HHDL is the
successor of ADLIB.

3

known upon termination of its execution. These principles are important in understanding models,

and in laying any future foundation for mathematically proving their correctness. When these

principles are violated, such as in the case of shared pointer structures, aliasing, variables shared

between concurrent processes, etc, there are serious problems regarding readability and proof of

correctness issues. Similarly, the effect of a preemptive assignment is often misunderstood and its

use frequently results in incorrect modeling of designs.

In this paper, we review the current approaches to timing description by timed assignment with

anticipatory or preemptive semantics. We will show how correct descriptions can be written, with

difficulty,

qualifiers,

using these semantics. Finally, we will discuss a new language construct, cal1.d timing

!or expressing timing behavior.

4 .

2. Problem with Anticipatory Semantics .

This chapter will show the prdblem associated with the anticipatory semantics for timing constructs

in conventional hardware description languages such as ADLIB and HHDL by using the inverter

example in Figure 2-1. This inverter example will be used throughout this paper to compare different

approaches to timing description.

TPLH = Ions

Correct Output

4

I
0

time

Figure 2- 1: lnverter with different fall and rise propagation delays

The relevant characteristic of this inverter is that its propagation time for the output transition from

high to low, T,,, (= 14 ns), is longer than the propagation time for the low to high transition, T,, (=

10 ns). Their difference, 4 ns, represents an inertial delay for a positive pulse. One of the important

requirements for this inverter is that a positive pulse applied to the input whose duration is shorter

than 4 ns should not affect the output.

The description in pidgin ADLIB of the inverter in Figure 2-1 is not completely straightforward. The

most obvious use of the ADLIB timed assignment would lead to the representation given in Figure 2-2.

The body of the above inverter description is executed whenever there is a change at the input

“inport”. Suppose the input changes from low to high at time t = 0 as shown in Figure 2-1. The

statement labeled Ll will be executed, and consequently the output of the inverter will be scheduled

5

nettype two-va lue-net = (h igh, low) ;
comptype inverter:

inward inport: two-va lue-net ;
outward outport: two-value-net;

begin
i f inport = high then

Ll: assign 1 ow to outport delay 14
else

L2 : assign high to outport delay 10:
e n d : { i nve r t e r }

Figure 2-2: Behavior model of inverter in ADLIB

to receive the value low at time t = 14. For the input change from high to low at t = 3, the statement at

label L2 will be executed. As a result, the output is scheduled to receive the value high at time t = 13. -

Note that t = 13 is obtained by adding the delay 10 to the current simulated time t = 3. At this point,

the scheduler has two events, El at t = 14 and E2 at t’= 13. In this case, E2 is first executed at t = 13

.

followed by El at t = 14. Consequently, the simulation ‘result will give the low as the value of the .

output at t = 14 although the correct output should be high. Therefore, the model in Figure 2-2 is

inaccurate.

Four techniques to enable the correct description of the inverter will be discussed and compared in .

the following chapters. These techniques are use of virtual hardware, use of preemptive assignment

statement, use of “waitfor” statement, and use of timing qualifiefs

6

3. Using Virtual Hardware

This chapter discusses the fiist approach to achieving correct simulations in spite of using

anticipatory assignment statements. This solution relies on the concept of virtual hardware in the

behavior model.

type two-value = (high, low);
nettype two-value-net = .two-value;
with UTLpackage;

{Uti l i ty package containing UTLactivePin to check i f
a net is changed or not}

comptype inverter:
inward inport: two-va lue-net ;
outward outport: two-value-net;’
internal pseudoPort: two-value-net:
var sent: boolean;

begin
if (UTLactivePin(inport) and (inport = low)) then

begin
assign high to outport delay 10;
sent := fa lse :

end
else if UTLactivePin(inport) then

begin
assign low to pseudoPort delay 4;
sent := true: .

end
e l s e i f s e n t t h e n .

begin . .
assign low to outport delay 10;
sent := fal-se;

end
end : { i n v e r t e r }

Figure 3- 1: Correct behavior model of invert?r using virtual hardware

Figure 3-l shows the revised model of the inverter in ADLIB with virtual ports which is a fictitious

port and a part of the virtual hardware. “UTLactivePin” is the boolean function which returns true

only if a given net is changed since the last execution of the inverter description. This function is

included in the utility package called “UTLpackage” which is imported from the library. In Figure 3-1,

a virtual port “pseudoPort” is introduced in addition to “inport” and “outport”. The virtual port

“pseudoPort” is not connected to any external source. The model in Figure 3-l first identifies the

exact transition. When the transition at “inport” is high to low at t = 0, “outpqrt” is scheduled to

receive the value low at t = 10, and the boolean variable “sent” is set to false. For the low to high

7

transition at “inport” at time t = 0, the model sets “sent” to true and forces a new signal value on the

virtual port ‘*pseudoPort” at t = 4, where 4 is the difference between the falling and the rising

propagation delays. The new signal value will arrive at the virtual port “pseudoPort” at t = 4. If there

is no transition at “inport” between t = 0 and t = 4, i.e., the input remains high, the model is

self-activated at t = 4 and a high is scheduled at “outport” at t = 14. Should a transition occur

between t = 0 and t = 4, the boolean variable “sent” will be reset to false and the signal forced on

*‘pseudoPort” will be ignored, and thus the possible incorrect result is prevented.

This approach achieves the non-anticipatory semantics by using virtual ports which enable the

model to schedule its own activation. Until a model has all the necessary inputs to ensure. that an

event scheduled in the future will be actually executed, the value of the virtual port is temporarily

stored. It is used to activate the model at a later time, when the input values are adequate to

determine the status of the event. .

However, the model based on this approach is complicated due to the virtual hardware. Moreover,

there is no separation between the virtual part of the model and the actual part. An architecture

implementing this behavior would probably need to justify deletion (optimization) of the virtual parts,

or else implement them, 1

8

4. Preemptive Semantics

The second approach is to change the semantics of the timed assignment statement from

anticipatory to preemptive. Under preemptive semantics, predictions of future events are allowed to

be preempted by other predictions. Some hardware description languages have adopted preemptive

semantics. For example, the earlier version of VHDL (version 5.0) [5] used anticipatory semantics,

and its disadvantages were discussed in a critique of VHDL (71. The latest version of VHDL (version

7.2) [6] has changed to preemptive semantics. VHDL supports two different delays, transport delay

and inertial delay, both of which have preemptive semantics.

A timed assignment statement is called a signal assignment in VHDL. A signal assignment

statement with a transport time delay has the following syntactic form:

Y C= transport X after t:

The above statement means that the value of the expression “X” is assigned to the port “Y’* afterathe

transport time delay 9”. However, the event projected by the above assignment can preempt other

projected events according to the following semantics. It is assumed that an event E is generated as

the result of executing the above timed assignment to the port “Y”. If there exist events at “Y“ caused

by previously executed assignments and these events are projected to actually occur later than the

event E, then the event E preempts these events. In other words, the preemptive semantics means

that a later decision affecting an earlier future time preempts an earlier decision affecting a later time

in the future.

Some devices are described more easily using preemptive semantics. than anticipatory semantics.

For example, Figure 4- 1 shows a model of the inverter in Figure 2-1, which is described in VHDL _

(version 7.2) using transport delay.

Figure 4-1 consists of three different program units: a package for declaration of types, an entity

interface, and an entity body. The package “type-declaration” provides the type declaration for

two-value-net, which is maintained in the library. The entity interface imports the type declaration from

the library, and uses it in declaring ports. The entity body contains a behavior description of the

inverter.

Consider the previous case in which the anticipatory model (Figure 2-i) was incorrect. Suppose

that a positive pulse as shown in Figure 2-l is apptied to the input of the inverter of Figure 4-l. At time

t = 0, the input changes from low to high and statement Ll is executed. This generates event El,

Q

-- Package declaration
package type-declaration Is

type
two-value-net is (low, high):

end type-decl arat ion :

-- Enfity interface of inverfer
with package type-declaration:
u s e t y p e - d e c l a r a t i o n :
entity inverter

(inport : i n two-value-net;
outport: out two-va lue-net)

is
end inver ter :

- - Entity body of inverter
architecture behavior-view of inverter Is

block
begin

Ll: outport <= transport 1 ow after 14 when inport = high else
L2: high after 10;

end block :
end behavior-view;

.

Figure 4- 1: Behavior model of inverter in VHDL

which sets the output of the inverter to low at time t = 14. At time t = 3, the input changes from high to

low and statement L2 is executed. This generates event E2, which sets the inverter output to high at

time t = 13. However, the projected time of El (t = 14) is later than that of E2 (t = 13). By the preemptive

.

semantics of transport delay, event El is preempted and event E2 takes its place in the event list.

Therefore, the behavior model wilt be correct in this case.

Unfortunately, preemption of events fails to Qe an improvement over anticipatory semantics in all

cases. In fact, some devices are easier described using anticipatory semantics than preemptive’

semantics. As an example of this, consider the pulse shaper presented in Figures 4-2 and Figure 4-3.

The model is described In VHDL.

. .

The pulse shaper in Figure 4-2 has an input called “inport” and an output port called “outport”.

Every low to high transition applied at “inport” produces a positive pulse with the fixed width of a

single time unit at’ “outport” after a certain amount of delay from the high to tow transition at “inport”.

The delay is equal to the time period during which the input signal stays high. To simplify the behavior

description, we assume that overlapping of pulses at “outport” does not occur.

10

Input /I\ n \t i m e

Simulated Output

Correct Output

1 11 time

Figu re 4- 2: Pulse shaper behavior

11

- - Entity interface
withpackage Type-Declaration;
use Type-Declaration;
entity Pulse-Shaper

(inport : in two-value-net;
outport : out two-value-net)

IS
end Pulse-Shaper:

- - Entity body
architecture behavior-view of Pulse-Shaper is

block
constant width: integer := 10 ns;
variable pulseorigin : simulated-time;

- - simulated_time is a predefined fype

- - TIME is a primitive function which returns the current
-- simulated time.

begin
process (inport)
begin

case inport is
when low =>

outport <= transport high after (TIME-pulseorigin),
low after (TIME-pulseOrigin+width):

when high => pulseorigin := TIME:
end case:

end process :
end block ;

end behavior-view;

Figure 4-3: Behavior model for the pulse shaper

When a particular sequence of pulses as shown in Figure 4-2 is applied to “inport” of the pulse

shaper, the behavior model in Figure 4-3 will not provide the correct output. We assume that the first

pulse starts at the time unit 0. For the first input pulse of the width of four time units, the behavior

model will generate the event E, at “outport” after the delay of four time units from the high to low

transition of the first pulse. Thus, E, will be projected at the time unit 8. For the second pulse with the

width of one time unit, the behavior model will project the event E, at the time unit 6 which is obtained

by adding the delay of one time unit to the time point of the high to low transition of the second pulse.

Then, by the preemptive semantics, the event E, will preempt the event E,. Therefore, the actual

simulation will provide a wrong result in this case. If anticipatory semantics is assumed, it is easily

seen that the model is correct.

12

5. Stabilify of Expressions over Time intervals

A third approach to repres’enting time dependency is to use anticipatory timed assignment

statements in conjunction with language features which require the evaluation of expressions over

time intervals. In many instances it is important in constructing a design to have an ability to express

that the value of an expression must remain stable over a given time interval. The stability of

expressions over time intervals can be represented by different language constructs.

In this chapter, we first discuss expressing the stability of expressions over time intervals by us,ing

the “waitfor” construct provided in ADLIB, and discuss the problems with this approach. Second, we

propose a new language construct called timing qualifiers. We give a simple illustration of how timing

qualifiers can be introduced into a hardware design language, and then provide examples showing

the expressive power in comparison with the language without qualifiers. Finally we mention some

issues concerning the semantics and implementation of timing qualifiers.

5.1 Stability of Expressions Using “Waitfor”

The “waitfor” statement-of ADLIB (or HHDL) has the following syntactic form:

<waitfor statement> : := waitfor <boolean expression>;

Upon execution of a “waitfor” statement, the execution of the given model description is suspended

until the associated condition specified, by <booleanexpression> becomes true. l’n order to use the

“waitfor” statement to check the stability of an expression over a time interval, the following steps are

required. First, the origin of the time interval must be stored. Second, the condition of the “waitfor”

statement must be built as a disjunction of two boolean expressions. One is obtained by equating the

current time to the end of the time interval. The other boolean expression is obtained by equating the

expression to be checked for stability to its value evaluated-at the origin of the time interval. Finally, a

third step consists of checking whether the condition of the “waitfor” was met because the time

interval is expired or because the expression was not stable over the time interval.

Figure 5-l shows an ADLIB description of the inverter in Figure 2-2. This description uses the

“waitfor” statement to check the stability of the input after a low to high transition.

The invet-ter description in Figure 5-l is explained as follows. Each time the description is invoked,

the current simulated time is saved in the local variable “origin”. If the invocation is due to a high to

low transition of the input, the description predicts a high value at the output port in 10 units of

13

nettype two-va lue-net = (h igh, low) :
comptype inverter;

inward inport: two-va lue-net ;
outward outport: two-value-net:
var o r i g i n : SimulatedTime;

begin
origin := TIME;
i f inport = low then

Ll: assign high to outport delay 10;
else

L2: begin
waitfor inport = low or T IME = or ig in + 4;
if inport = high then

assign low to outport delay 10:
end

e n d : { i nve r t e r }

Figu re 5 1: Behavior model of inverter using a “waitfor” statement

simulated tim,e after the current time. In this case there is enough information to make such a

prediction. No change in the input can possibly affect this prediction.

If the invocation is due to a low to high transition of the input, there is not enough information to

predict an output transition. The description will wait (statement 12) either for a high to low input

transition or for simulated time to progress four units. If.the condition of the “waitfor” statement is met

due to a change in the input, no transition in the output needs to be predicted because the output will

not change value. In this case, the width of the input pulse was too narrow. If the condition of the

“waitfor” statement was met because simulated time progressed four units without any change in the

input, then a low value needs to be predicted at the output in 10 units from the time at which the

condition is met. At this moment (four simulated time units after the input changed from low to high)

no change in the input can possibly affect the predicted output transition to low.

The “waitfor” construct is not available in some hardware description languages such as VHDL.

Also, the “waitfor” construct was originally intended for purposes other than stable evaluation; for

example, description of synchronization among components. In fact, application of the “waitfor”

construct to checking the stability of expressions over time intervals is prone to programming errors.

The use of the “waitfor” construct requires low-level programming details in the description. For

example, as shown in Figure 5-1, the user has to program low level details such as saving the current

simulated time in origin, building a compound condition to be used in the “waitfor” statement, and

checking which alternative made the “waitfor” condition true (i.e., the branch, “if inport = high

14

then...“). A more promising approach is to design a higher level language construct that requires

only specification of time interval over which stability is to be measured, and does not force the user

to program the actual measurement of the time interval.

5.2 Stability of Expressions Using Timing Qualifiers

For the purpose of specifying the stability of expressions over time intervals, we introduce a new

language construct called a timing qualifier which applies to expressions. An expression with a

timing qualifier is called a qualified expression. A qualified expression has the following syntactic

form:

eI d u r i n g [e2, eJ e l s e e4

In the above, e, and e4 are expressions of any type, and e2 and es are expressions whose values

must be of the type integer or real. None of these expressions contains a qualifier. When control

reaches the statement containing the qualified expression, the expressions e,, e2, e3 and e4, arL.all

evaluated. Then, the value of the qualified expression is e, if the value of e, remains constant during

the simulated time interval from e2 to e,; otherwise, the value is e4. Evaluation ceases whenever e, .
changes value or simulated time reaches the value es.

The bracketed expression [e,, e,] denotes the time interval of the qualification. The time inten/al is .

bounded by the starting time point given by (current-time + e,) and the ending time point given by .

(current_time + es). The value of es is normally larger than that of e2. However, if the value of es is less .

than or equal to the value of e2, the qualified expression becomes a normal expression withou;

qualification, i.e., e,. A negative value of e2 or es indicates the time point in the past from the current

time. When the starting point of a time interval is at the current time, the expression e2 may be

omitted, and then the time interval can be denoted by only the future ending time es.

For example, the qualified expression given by

2+(X during t else 0)

is interpreted as follows. If the value of the variable X is stable for t units from the current time, the

value of the above expression is (2.X); otherwise, the value is 0.

Essentially, the concept of qualified expression is a language design concept. lt can be

incorporated into languages in various ways, some very restricted, some more general. It requires

strict scoping rules to define regions of applicability of timing qualifiers, consistent nesting of qualified

1 5

expressions, etc. Restrictions must also be placed on where qualified expressions may occur in

statements in order for them to make sense. The major advantage is that qualified expressions have a

precise semantics. They require the value of an expression to be checked over a time interval during.
simulation. When their execution is completed, the values of qualified expressions and the

computational effect of the statements in which they occur is known. This should be contrasted to the

semantics of preemptive assignments, where it is not known what will happen when an assignment is

executed.

5.3 Timed Assignment with Qualified Expressions

Below we illustrate a very simple extension to a timed assignment statement, whereby a restricted

form of qualified expressions is used to define a new kind of assignment called a guarded assignment

statement. Qualified expressions are allowed in guards to determine whether or not a timed

assignment should be executed.

For qualified expressions placed in guards, application of timing qualifiers is restricted to only

boolean expressions. We can adopt a simplified form of, qualified expression for the case of boolean

expressions. We require that the starting time of a time interval, e2, is always the currznt simulated

time and the value of the else part, e4,. is always false. The qualified expression is

el dur ing [O, e,] else ‘false.

Since the starting time of the time interval and the else part are actually constants, they can be

omitted, and the above expression is’ simplified to the following form which is called a qualified

boolean expression:

.

e, during e2

Note that e, denotes a boolean expression and e2 denotes-an expression returning a numeric value.

When the ending time of the time interval is given by zero or a negative value, the above expression

becomes a normal boolean expression e,. Thus, the normal boolean expression is a special form of a

qualified boolean expression.

The semantics of a qualified boolean expression can be derived directly from the semantics

discussed in Section 5.2 as follows. Both of expressions e, and e2 are evaluated at the current

simulated time, and the initial boolean value of e, is checked to be stable until the end of the time

interval given by e2. When the initial value of e, is true, if it remains true over the time interval, the

value of the qualified expression is true; otherwise, it is false. Whenever the value of e, is false, the

16

qualified expression evaluates to false immediately. The evaluation of a qualifi& boolean expression

can terminate as soon as the boolean expression e, evaluates to false during the time interval. a

Syntactic restrictions are also required on the occurrences of qualifiers in expressions. The qualifier

during has the least precedence in terms of association in an expression, and a qualified boolean

expression cannot contain another qualified expression, i.e., nesting of qualification is not allowed. A

qualified boolean expression can be negated by prefixing the logical operator not. For example, the

expression “not (e, during t,)” means logical negation of the evaluation result of the expression “(e,

during 1,)“.

In our example of a guarded timed assignment, a qualified boolean expression may appear in the

guard. The guarded assignment statement has the following syntax:

<guarded assignment statement> ::-
when <guard> => <timed assignment statement>

<guard> : : = <qualified’ boolean expression>
{<logical op.erator> <qua1 i f ied boolean expression>}

<quali f ied boolean expression> ::=
[not] <boolean expression> during <expression>

<log ica l operator> : := and 1 or

In the above BNF notation, bold faced words indicate reserved words, “I” denotes alternatives, the

part enclosed by “[” and “J” means optional, and the part enclosed by ‘I{ ‘* and I’}” means zero or

more occurrences.

Execution of a guarded assignment proceeds as follows. The guard is evaluated at each unit of

simulated time specified by the time interval. The assignment is executed immediately after the time

interval has elapsed only if the initial value of the boolean expression is true and its value remains true

over the time interval. If the guard is evaluated to false at any simulated time instance during the time

interval, then the assignment statement is not executed.

5.4 Guarded Assignments in Hardware Description

We now consider a fragment of a hardware description language illustrating the use of anticipatory

semantics in timed assignments and timing qualifiers in the guards of guarded timed assignments. In

this language, we permit several guarded assignment statements in a hardware description by means

of a sequenlial select statement, which has the following form:

select
w h e n g1 => S , :
when g, q > S,;

17

w h e n g, => S , :
end select;

In the above, g,, g*, g,, denote guards consisting of qualified boolean expressions, and each of S,,

s,, “‘, Sn represents a sequence of one or more timed assignment statements.

When the control reaches the select statement during simulation, all the guards are evaluated

simultaneously. As soon as a guard evaluates to true, evaluation of guards stops and only

assignment statements belonging to the guard with the value true will be executed. Assignment

statements belonging to other guards will not be executed. If more than one guard is true at the same

simulated time, one guard is selected arbitrarily and assignment statements belonging to that guard

are all executed. If none of the guards is true, no assignment statement will be executed. (Note that

other forms of select can be defined, for example parallel select, allowing concurrent execution of

timed assignments when several guards are true.)

Figure 5-2 shows the behavior model of the inverter described in the proposed language.

entity inverter is

type two-value-net is (high,’ low):
port

inport : i n two-value-net:
outport: out two-value-net;

end port :

select
Ll: w h e n inport =.low => outport := high after 10:
L2: when inport = h igh dur ing 4 => outport := l o w a f t e r 1 0 ;

end select;

end inverter:

Figure 5-2: Behavior model of inverter using a qualified conditional assignment

In Figure 5-2, the entity description of the inverter consists of four parts: entity declaration of the

inverter, type declaration, port declaration, and actual behavior description using a select statement.

The timed assignment. statement Ll has the conventional meaning of anticipatory semantics. The

guarded statement L2 is interpreted as follows. If the input to “inport” remains at high for a time

78

interval of 4 ns starting at the current time, then low is assigned to the output at the time t =

(current-time t 14). As a result, an assignment to the output, i.e. an event, is generated only when

the model has received adequate input information and determined that the input must yield an

output. The reader will notice that the low level programming details required by the use of “waitfor”

in Figure 5-1 are not presented in Figure 5-2.

Commentary on Figures 4-1 and 5-2:

The model in Figure 5-2 and the VHDL model in Figure 4-1 are similar in syntactic complexity.

However, the most meaningful comparison is the complexity of checking if the models are correct. We

will try this informally for the one input case that has plagued us throughout: the input to “inport”

goes from low to high at t = 0, and from high to low at t = 3.

Consider Figure 5-2. The first input change will result in the guarded assignment at L2 being

evaluated for 4 time units. The second input change results in this guard evaluating to false.

Consequently, the device does not change its output in response to the first input. Consider Figure

4- 1. The first input change results in an assignment of low to “outport” at t = 14. This, we know, is

wrong. Therefore, we must check that this will be preempted. At t = 3, the second input change results

in an assigrment of high to the outport at t = 13, which will preempt the wrong assignment. In other

cases, where the input change goes from high to Iqw, the first assignment to “outport” is correct; but

we must continue to check that it cannot be preempted by an incorrect one.

5.5 Specification of a Traffic Controller .

The example of a traffic controller [8] may be used to illustrate some other important points

concerning the introduction of timing ‘qualifiers into a hardware design language. In addition to the

select statement, we introduce the following features to our language fragment.

The first point is to provide an activation statement to declare the list of elements which cause

activation of an entity specification. This list usually consists of input ports and/or the entity state.

The semantics of activation is that whenever the values of at least one of the elements in the

activation list is changed, the entity specification will be executed.

Second, we provide a language facility to denote the abstract state of an entity, which is one of the

fundamental issues in specifying a hardware entity having history-dependent sequential behavior.

The abstract state of a hardware entity is denoted by the attribute of an entity, entily_name’STATE,

which is provided by the language. This attribute is used to denote the current state of the entity at

19

any time. At the entity specification level, this name may be used to define behavior that depends on

the internal state of the entity without revealing the structure of the state. The type of entity states is

denoted by entity-name’STATE_TYPE,

Third, we provide another predefined attribute that denotes the simulated time. The current

simulated time of an entity is denoted by the attribute, entity-name’iime. Also, the simulated time at

which an input port was previously excited, is denoted by inpur_name’LastChange. These predefined

attributes are useful in constructing time intervals for qualifiers.

Design Requirement:

The traffic controller in [S] (pages 85-88) has the following design requirements:

l The highway light should stay green for at least “LongTimeOut”.

l The highway light stays green if there is no car on the farmroad.

l The highway light stays yellow for “ShortTimeOut”. .

l The farmroad light does not stay green if there is no car on the farmroad.

l The farmroad light stays green for at most “LongTimeOut”..

l The farmroad light stays yellow for “ShortTimeOut”.

l Highway and farmroad lights may not be green at the same time.

The top level specification of the traffic controller is presented in Figure 5-3. This specification is

described in the overall framework of VHDL, but using the additional language features discussed

above.

Commentary on Figure 5-3:

In the top-level entity specification of the traffic controller, constants for the time-out period,.

“LongTimeOut” and “ShortTimeOut”, are declared as generic parameters. Thus, their actual values

are assigned when the specification is instantiated. Declaration of the entity name “TrafficJZontroller”

and the enumerated type “traffic-light-color” is followed by declaration of ports where input and

output ports are declared as typed objects with the directionality of a signal flow.

The abstract entity state of the traffic controller is the predefined attribute of an entity,

“Traffic-Controller’STATE”. The entity state type is declared as an enumeration of four

distinguishable states, “Hw-Green”, “Hw-Yellow”, “Fm-Green”, and “Fm-Yellow”. The activation

20,

generic
LongTimeOut, ShortTimeOut: INTEGER;

entity Traffic-Controller is
l

type traffic-light-color is-(red, green' yellow);

port
car-on-fmrd, reset: in BOOLEAN;
hw-light, fm-light: out traffic-light-color:

end port;

Traffic-ControllerSTATE-TYPE is
(Hw-Green, Hw-Yellow, Fm-Green, Fm-Yellow):

activation car-on-fmrd, reset, Traffic-ControllerSTATE:

rename
STATE is Traffic-ControllerSTATE;
TIME is Traffic-Controller'TIME;

end rename:

select
when reset =>

STATE := Hw-Green;
hw-light := green;
fm-light := red:

when car-onlfmrd and
(STATE=Hw-Green during LongTimeOut-(TIME-STATE’LastChange)) =>

STATE := Hw-Yellow;
hw-light := yel1o.w:

when STATE=Hw-Yellow during ShortTimeOut => '
STATE := Fm-Green;
hw-light := red; '.
fm-light := green:

w.hen (nbt car-on-fmrd and (STATE=Fm-Green)) or
(STATE=Fm-Green during LongTimeOut-(TIME-STATE'LastChange)) =>

STATE := Fm-Yellow:
fm-light := yellow: .

when STATE=Fm-Yellow during ShortTimeOut =>
STATE := Hw-Green;' .
fm-light := red:
hw-light := green:

end select;

end Traffic-Controller;

Figure 5-3: Entity specification of the traffic controller

statement declares that any change occurred at “STATE” and ports “car~on~fmrd” and “reset” will

activate the traffic controller. The rename statement is used to represent a long name by a simplified

- name. In this example, "STATE" represents "Traffic-Controller'STATE" and "TIME" represents

“Traffic~Controller’TlME”.

21

The select statement following the activation list actually defines the behavior. There are five

guards. In the specification, “STATE’LastChange” denotes the predefined attribute “LastChange” of

the entity state, and it keeps the simulated time at which the most recent change of the entity state.
occurred.

Proof of Correctness of Figure 5-3:

In this section, we will show how the correctness of the model in Figure 5-3 can be proved. Although

an informal method is used for proving the correctness, it can be developed as a formal verification

method. As an example, we will prove that the model satisfies the first design requirement on Page 19:
“The highway light should stay green for at least LongtimeOut”.

It follows from the description of the traffic controller that hwjight = green if and only if STATE =

Hw-Green. Therefore, we will only prove that the state of the mode! stays STATE = Hw-Green, for at

least LongTimeOut. To prove this, we will consider an arbitrary state transition from Hw_Green to any

other state. We wilt show that the given transition can occur at a simulated time which is at least

LongTimeOut (in simulated time unit) after the time indicated by STATE’LastChange. .

Let us consider an activation, which results in change of state from Hw-Green to any other state. Let

ta bejhe simulated time at which the activation starts and t, be the simulated time at which the state

changes its value from Hw_Green to another value, during the given activation.

It follows from the description of the traffic controller that the state cannot change value from

Hw_Green, unless the second guard evaluates to true. This is because all the other guards can only be ’ .

true in other states.

Let us consider the timing qualifier of the second guard. Let W, be the width of its time interval

evaluated at time t,.
Wa = LongTimeOut - (ta - STATE’LastChange) (5.1)

From the definition of the timing qualifier, if Wa < 0 then t
C

= ta, and if Wa >_ 0 then tc = ta + Wa. In

both cases,

t, > t, + wa. 62)

By replacing Wa in Equation (5.2) with Equation (5.1),
tc 2 ta + (LongTimeOut - (ta - STATE’LastChange)),

which is equivalent to t, - STATE’LastChange >_ LongTimeOut.

22

The rules of proof embodied in this informal argument involve the normal rules of quantified logic

and rules defining the semantics of during, guarded assignments, and select statements. These

rules can be formally defined, providing a basis for automated analysis of models.

The reader should now be able to check other design requirements of the traffic controller. For

user’s convenience in proving the correctness of the model, we will provide the following corollaries

which are derived from the definition of the timing qualifier.
Corollary 1: If a qualified expression evaluates to true, it is the case that t, - t, 2 W,,

where the notations are same as the above.
Proof: Proof of Corollary 1 was already given in the above proof (see the

derivation to Equation (5.2)).
Corollary 2: If the expression W, representing the width of the time interval of the

qualified expression in a guard, has the form W = K - T, where K is a constant during
evaluation of the qualified expression and T denotes the current simulated time, and if the
qualified expression evaluates to true at time tc, then tc > K.

Proof: Using the same notations as in Corollary 1, W, = K - 1,. From
corollary 1, it follows that tc - t, 2 K - ta, which leads to t, > K.

The reader can see now how Corollary 2 can be used to prove the correctness of the traffic

controller model for given design requirements.

23

6. Concluding Remarks

Timing constructs in modern-hardware description languages are inadequate for various reasons.

Anticipatory timed assignment, as in ADLIB, cannot be used to express common kinds of timing

behavior. Preemptive timed assignment, as in VHDL, is also inadequate in some cases. Moreover, it is

a highly misleading design construct because its effect (or outcome) depends on other preemptive

timed assignments, and is not known when it is executed. Use of preemptive assignment may itself be

a frequent source of modeling errors. It is unlikely that formal axiomatic semantics can be defined for

this construct. This precludes the application of automated proof techniques to correctness of

hardware descriptions.

The time qualified expression has been suggested as an alternative design language concept for

expressing timing behavior. It is argued that expressive power of languages with this construct will be

at least equal to previous languages, that designs will be more clearly expressed, and their

correctness can be analyzed by formal proof methods (in addition to simulation). Language design *

issues, and the methodology of using timing qualifiers remain to be investigated.

24

Acknowledgment

We wish to thank Sumit Ghosh for his involvement and collaboration at the beginning of this study,

Also, our thanks are due to Benoit Gennart for discussions during later stages.

2 5

References

1. 0. D. Hill, ADLIB User’s Manual, Technical Report # 177, Computer Systems Laboratory,
Stanford University, Aug. 1977.

2. DAB L Reference Manual, Daisy System Corp., 1984.

3. NHDL reference Manual, SILVAR-LISCO, 1983.

4. TEGAS Reference Manual, G.E. CALMA.

5. VHDL Language Reference Manual (Version 5.0), Intermetrics, Aug, 1984.

6. VHDL Language Reference Manual (Version 7.2), Intermetrics, Aug, 1985.

7. D. C. Luckham, Y. Huh, S. Ghosh, and A. Stanculescu, Analysis of the VHSIC Hardware
Description language, Technical Report, Computer Systems Laboratory, Stanford
University, (In preparation).

8. C. Mead and L. Conway, Introduction to VLSi Design, Addison-Wesley, 1980.

