COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY - STANFORD, CA 943054055

A Survey of Concurrent Architectures

Victor W. K. Mak

Technical Report: CSL-TR-86-307

September 1986

The work described herein was supported by’ NASA Ames Research Center under
contracts NAG 2-248 and NAGW 419.

A Survey of Concurrent Architectures

by
Victor W. K. Mak
Technical Report: CSL-TR-86-307
September 1986

Computer Systems Laboratory
Department of Electrical Engineering
Stanford University
Stanford, California 94305

Abstract

A survey of 18 different concurrent architectures is presented in this report. Although
this is by no means complete, it does cover a wide spectrum of both commercial and
research architectures. A scheme is proposed to describe concurrent architectures using
different dimensions: models of computation, interconnection network, processing element,
memory system, and application areas.

Key Words and Phrases: Concurrent Architecture, Interconnection Network, Model
of Computation, Parallel Processing, Survey, Taxonomy.

Copyright (© 1986
by
Victor W. K. Mak

Contents
1 Introduction
2 Taxonomy of Concurrent Architectures

3 Architectures Studied
3.1 Systolic Array
3.2 STARAN . . e
3.3 Tlliac IV . . . e
3.4 BSP ..o s
3.5 MPP . . e
3.6 CHIP e
3.7 NON-VON . . . e
3.8 DDSP . . . e
3.9 SERFRE e
3.10 Cedar e
3.11 FMP . .
312 S-1 . e
313 CmM* L
3.14 HEP e
3.15 Empresso
316 MP/C
3.17 Ultra. e
3.18 TRAC

4 Different Dimensions of Concurrent Architectures
4.1 Models of Computation
4.2 Interconnection Network L
4.3 Processing Element
4.4 Memory System e e e
4.5 Application Areas e

5 Conclusions

© © © N B b W

I I e e e ol e
B O 00 O~ U1 Ul W W N B

22
22
22
24
24
25

25

List of Figures

© 0 N O O B W N -

S I o Tl e s Y TG SR GEN
SCowwWuOE®N RS

Hex-connected systolic array
The STARAN System Architecture
A 64-PE Illiac IV Array
Functional Structure of BSP
Block Diagram of the MPP
CHiP lattice. PEs shown as squares, switches as circles.
NON-VON Primary Processing Subsystem.
DDSP Processor Block Diagram
DDSP Interconnection Network

Flow Model Processor Conceptual Design
The S-1 Multiprocessor
An Example Cm* System
A Typical HEP System
Hardware of Empress.
The Linear MP/C e
Block Diagram of the NYU Ultracomputer
TRAC’s Banyan Network

1ii

© © N o ovw

List of Tables

gl B W N -

Models of Computation, 23
Interconnection Network 23
Processing Element 24
Memory System 25
Application Areas 26

1 Introduction

In the search for faster computers, two directions have been followed: technology and
architecture. Advances in semiconductor technology have been very successful in reducing
the size of computers, and at the same time, increasing their speed. However, as the
physical limits of semiconducting devices are approaching, people starts to turn to other
ways. Current supercomputers make extensive use of pipeline and vector architectures.
They are effective ways to improve the speed in problems that can be easily vectorized, but
not for problems that involve a lot of data dependent computations like particle tracking.
For general class of problems, concurrent architecture seems to be the most promising
candidate.

Concurrent architecture is still in its infancy. A lot of problems related to its use are
not fully understood yet. Design of such architecture is still in an ad hoc basis. One of the
projects in the Center for Concurrency Studies at Stanford University is trying to design
a testbed to project the performance of new concurrent architectures. The use of this
testbed will certainly enhance our understanding of new architectures. Before the actual
design of the testbed, we would like to know the range of architectures that the testbed
will be designed for.

In this report, a survey of different concurrent architectures will be presented. Although
not complete, care has been taken to include architectures of different flavors so as to cover
the widest spectrum possible. A scheme is also used to describe architectures using different
dimensions: models of computation, interconnection network, processing element, memory
system, and application areas. Using this scheme, we can easily specify a new architecture
and check to see if it is in the range of architectures designed for our testbed.

2 Taxonomy of Concurrent Architectures

There are literally hundreds of concurrent architectures proposed and designed in the last
decade. These architectures are so different that the usual classifications as SIMD and
MIMD [Fly 72] are not sufficient. New taxonomy schemes are developed by many re-
searchers in order to categorize these different architectures into different classes. One
particular taxonomy as reported by Haynes and others in [HLS 82| divided the wide spec-
trum of concurrent architectures into six classes:

1. Multiple special-purpose functional units.
2. Associative processors.
3. Array processors.

4. Data flow processors.

5. Functional programming language processors.

6. Multiple processors.

Architectures with multiple special-purpose functional units are usually designed to
perform some specific tasks efficiently. One example is the systolic arrays which will be
described in more detail in the next section. Computation intensive problems, in which the
kernels are based on a number of basic mathematical operations, have found great success
in these structures. Matrix multiplication, solution of linear systems, and FFT are some
examples.

Associative processors are those architectures which utilize an associative memory. In
associative memory, one bit of any memory word is available on one access, thus it is
possible to search the whole memory simultaneously for specified contents by iteration on
bit slices. This organization also allows memory words to be addressed by their contents
instead of their addresses. One example of associative processors, STARAN, designed and
built by Goodyear Aerospace Corporation, will be described in the next section.

Array processors are architectures with multiple arithmetic units operating in lockstep
“and performing the same operation on different data. This is the most common and popular
type of concurrent machines available on the market. They are particularly suitable to
problems that involve a large proportion of array data types. Five examples will be studied
in the next section: Illiac IV, BSP, MPP, CHiP, and NON-VON.

Data flow computers are very different from the conventional von Neumann architec-
tures in which a program counter is used to schedule the next instruction to be executed.
An instruction in a data flow computer is ready for execution when its operands arrive.
As a consequence of this data-activated property, a very high level of concurrency can be
exploited. The Data Driven Signal Processor (DDSP) will be given as an example of this
type of concurrent architecture.

Functional programming (FP) language processor or reduction machine has gained
considerable interest recently. The main advantage of FP is that when algorithms are
described in such applicative languages, much parallelism can occur automatically — with
no analysis of program structure and without explicit programmer involvement with par-
allelism. SERFRE will be studied as an example in the next section.

Multiple processors belong to the class normally called MIMD. They are more flexible
than the classes described above; however, their control is much more complex. The
interconnection network, which connects the processors, usually forms a crucial part both
in the design and operation of each architecture. Since the architectures in this class are
so diverse that nine different machines in the next section will be studied: Cedar, FMP,
S-1, Cm*, HEP, Empress, MP/C, Ultra, and TRAC.

I

e \
A
>~ A S T S -
S~ i t ' -
434 ‘\\‘ e /" bay
\\\] I : : : : ' /,,’
1 ! 1
a3 I N R S Rl * B ¢
e
t ! [1
ap a2 | A\ L 0/ b | b2z b
42 ! Y t h | Doy
: I 1 I -
N 1

1 J 1
+
' o
| b
| N
i \ !
! /,’ €3 €22 kAN !
y N
I’ AY
/
{car ¢3z €23 C1e
|
I
|
{ i
! Ca2 €13 €4 H
I .
I t
4 652 ¢ tu x|

Figure 1: Hex-connected systolic array

3 Architectures Studied

In this section, 18 different architectures will be described. This is by no means a complete
survey of all concurrent architectures, but an attempt to try to cover as wide a spectrum as
possible. Using the taxonomy described in the previous section as a guideline, architectures
that belong to these six different classes were chosen. Since array processors (SIMD) and
multiple processors (MIMD) have received most attention, most architectures that were
chosen belong to these two classes. In each subsection that follows, the most significant
parts of each architecture will be described.

3.1 Systolic Array

The systolic architectural concept [Kun 82} was developed by Kung and associates at
Carnegie-Melon University, and is a general methodology for mapping high-level compu-
tations into hardware structure. A systolic system consists of a set of interconnected cells,

each capable of performing some simple operation. Information in a systolic system flows
between cells in a pipelined fashion, and communication with the outside world occurs
only at the boundary cells.

In Fig. 1, the hex-connected systolic array can be used to multiply two N . N band
matrices of bandwidths W; and W,, each of which performs the inner product operation
C «+ C + A « B. The entire multiplication requires only 3N + min(W,, W;) time units.
As the matrices shift into the array, they always move in exactly the same direction and
requires no control. Each cell performs one computation at each step, and input and output
are overlapped with computation. For each 1/0 access, there are multiple computations
performed on the data item, thus execution of compute-bound problems can be speeded up,
without increasing the 1/0 requirements. This is a very significant improvement over the
classical von Neumann architecture in which the memory access time is associated with
each operation of the data item.

For specialized algorithms that can be implemented by the systolic array, they are fast,
hardware efficient, and require no software control in communication and synchronization.
The major problem with a systolic array is still in its I/0 barrier. Implementation of the
systolic array on a VLSI chip is limited by the number of pins, or I/0 terminal, available

on a single chip.

3.2 STARAN

STARAN [Bat 74| is the first bit-serial parallel processing system developed by Goodyear
Aerospace Corporation in 1972. It consists of up to 32 associative array modules, each con-
tains 256 processing elements, a 256-word 256-bit multidimensional access (MDA) memory,
a flip network, and a selector. Each processing element operates serially bit by bit on the
data in all MDA memory words. The MDA memory can be addressed in either bit-slice
(one bit of all 256 words) or word-slice (all bits of one word). Thus, data can be input and
output in the usual word by word fashion while processing can be done in bit-serial fash-
ion. The flip network is used for data shifting or manipulation to enable parallel search,
arithmetic or logical operations among words of the MDA memory.

STARAN has high-speed input-output capabilities and the ability to interface easily
with conventional computers which handle the tasks that must be processed in a single
sequential data stream. The main application areas of STARAN are in signal processing
and database.

3.3 Illiac IV

Illiac 1V [BDM 72] was developed at the University of lllinois in the 1960s and fabri-
cated by the Burroughs Corporation in 1972. The original design had 4 quadrants of 64
mesh-connected processing elements under the supervision of 4 control units. Due to cost
escalation and schedule delays, only 1 quadrant was ever built. The speed of the 64-PE

[

¢ PIC

Typical |,
user N
equipment

2 e (Computers
! ePeripherals :

sDisplays
eSensors
. EXF
BIO
|l
e\

[Associative

P10
arcay
modulc 0
Custom Up 1o 31 o
interface additional M
unit modules
PIO Associative
array
module n
EXF)]
External function logic

BIO

A

l

]

Control
signals

Sequential

control
logic

Program
pager
logic

Associative | |
control
logic

DMA

Memory port
logic

Associative processor
control memory

Figure 2: The STARAN System Architecture

Cont rolunit

ADB Accumulators
0 ACARO
| ACAR!
ACAR2
. ACAR3 _ Control unit bus
o
63
Mode Common | Instruction
but data i control
line bus ¥ path
1 L LN)
4 }]r
y 4 Y
PE, PE, PE,,
To PE, R : To PE
N 4 A outing E
B 8 network B8 j
R ~ - R > 00wt R
A 5 57 S
| X | X, | X
D
4 4
4 Y
{ 0 0 0
[I]]
P ope M, PEM, PEM,,
2047 2047 2047
l] |
LN N] -

Figure 3: A 64-PE Illiac IV Array

(PPs) Paralle) pracessors

16 __ (50 megaflops)
arithmetic
elements
(AEs)
A
H TR BSP
Parallel
: processor :
: contro! :
" Conlrolj processor;
' Conlrol Scalar
Output : maintenance processor | ¢ Input
alignment unit J: alignment
4

Y

Control memory
(256K words)

.
e~

A""w\,_“ 4 N
Control BRSSO -
communications

75 Mbytes/sec

17

Peripherals System manager parallel File memory

and ~e— B 7700/ B 7800 memory [(PMs) system

terminals modules (FM)
(STOEM 1

I words)

Data and program file transfers
(15 Mbytes/sec)

Figure 4. Functional Structure of BSP

guadrant is approximately 200 million operations per second. The control unit controls
and decodes the instruction stream and broadcasts instructions and common data to all
PEs. It is also a scalar processor by itself besides having the ability to control the PE-
array. Each PE is a powerful computing unit, and has a 64-bit wide routing path to its four
neighbors. The main application area is in scientific applications like numerical weather
forecasting and nuclear engineering research.

3.4 BSP

The Burroughs Scientific Processor (BSP) [KS 82] was an attempt by Burroughs Corpo-
ration to improve on the Illiac IV design. It has 16 arithmetic elements and 17 (prime
number) memory modules interconnected by two alignment networks: full crossbar switch
with broadcasting and conflict resolving ability. This permits general-purpose interconnec-
tivity between the arithmetic array and the memory-storage modules. It is the combined

STACING

P —— G
1 ntmory A—)

o !

ARRAY C

unit
128 (any)

}

J U

B

ARRAY
PROGRAN & OATA . contaoy — oSt
nARAGERERT YN (T uRit comeuTee

(romy) (au)

Figure 5. Block Diagram of the MPP

function of the memory-storage scheme and the alignment networks that supports the
conflict-free capabilities of the parallel memory. The parallel processors perform vector
computation with a clock period of 160 ns. The control processor provides the supervisory
- interface to the system manager in addition to controlling the parallel processor. The
scalar processor processes all operating system and user-program instructions which are
stored in the control memory. It executes some serial or scalar portions of user programs
with a clock rate of 12 MHz and is able to perform up to 1.5 megaflops. The BSP is
capable of executing up to 50 megaflops and is used mainly for scientific applications.

3.5 MPP

Like STARAN, Massively Parallel Processor (MPP) [Bat 82] was also designed and built
by Goodyear Aerospace Corporation starting from 1979 to be a high speed satellite image
processing system. The processor has 16,896 bit-serial processing elements (PE’s) arranged
in a 128-row by 132-row (4 redundant rows for fault tolerance) rectangular array with
strictly nearest-neighbor connections. The edge connection is programmable so that the
array may look like a plane, a cylinder, a torus, a spiral, or a linear string. On 32-bit
floating-point data, addition occurs at 430 MOPS and multiplication at 216 MOPS. The
staging memory in the input-output path of the array unit acts both as a buffer between
the array unit and the outside world, and also to reformat data so both the array unit (bit-
serial) and the outside world (word-serial) can transfer data in the optimum format. MPP
is a SIMD machine and all PE’s perform the same instruction on every machine clock cycle.
Although built for satellite imagery processing, preliminary application studies indicate
that MPP can also support general image processing, weather simulation, aerodynamic
studies, radar processing, reactor diffusion analysis, and computer image generation.

Figure 6: CHiP lattice. PEs shown as squares, switches as circles.

3.6 CHiP

The CHiP computer [Sny 82] is a family of architectures each constructed from three com-
ponents: a collection of homogeneous microprocessors (28 to 216), a switch lattice, and
a controller. The microprocessors are not directly connected to each other, but rather
are connected at regular intervals to the switch lattice. Each switch in the lattice con-
tains local memory capable of storing several configuration settings and thus be changed
dynamically during program execution: mesh for dynamic programming; hexagonally con-
nected mesh for LU decomposition; torus for transitive closure; tree for sorting; double
tree for searching; etc.. The perimeter switches are connected to external storage devices.
The controller is responsible for loading the switch memory. CHiP processing begins with
the controller broadcasting a command to all switches to invoke a particular configuration
setting. Individual microprocessors then synchronously execute the instructions stored in
their local memory.

By integrating programmable switches with the processing elements, the CHiP com-
puter achieves a polymorphism of interconnection structure that also preserves locality,
thus allowing algorithms that exploit different interconnection patterns to be used in the
same program. CHiP can be viewed as a configurable systolic array: it has all the advan-
tages of the systolic array while it is still general enough to embed different interconnection

patterns in its lattice.

3.7 NON-VON

The NON-VON architecture consists of two parts: primary processing subsystem and
secondary processing subsystem. The primary processing subsystem is organized as a
binary tree of small processing elements (SPE’s) which have no stored program and can
only execute instructions sent by its ancestor nodes. The SPE’s in the first few levels of

To Host

'

Control
Processor

Figure 7. NON-VON Primary Processing Subsystem

10

A TCoona
ot tassOCiative 1 s
Cmeny
l——V/1 for " i LEmg -

;

)

]

L
-

COL Ve 908 ICa VS

Figure 8: DDSP Processor Block Diagram

=~

couss II o
(]

Figure 9: DDSP Interconnection Network

the tree are each connected to a large processing element (LPE) which has locally stored
program and may operate independently. Thus, NON-VON can act as a single SIMD
machine with the node at the root being the ancestor of all the nodes below it, or as a
multiple SIMD machine with each subtree controlled by a node connected to an LPE. The
LPE connected to the root is called the control processor and is also connected to the host
processor.

The secondary processing subsystem consists of 64 to 256 disk-drives each connected
via an intelligent head unit to an LPE. These intelligent head units perform certain com-
putationally simple operations (e.g. selection) on the fly, thus added to the processing
power of the whole system.

NON-VON is designed to be used mainly in the areas of relational database, sorting

and vision.

3.8 DDSP

The Data Driven Signal Processor (DDSP) [HNI 82] is being developed by ESL Incorpo-
rated to be a programmable, modular, high-speed data flow computer primarily for signal
processing applications. Its configuration ranges from one to 32 processors with a maxi-
mum performance of 71 MFLOPS. DDSP is designed with a high order language (Data

11

| 1/0 = Proces |

Secondary

Storage /

wemory line

Module N

Figure 10: Architecture of the SERFRE

Driven Programming Language, or DDPL) capable of generating efficient machine code,
- and follows the single assignment rule. It implements a dynamic tagged data flow model
where tokens are tagged with a label field determined at run-time. The processors in a
DDSP system are closely coupled through an interconnection network. A processor consists
of an input queue for temporarily saving tokens, a matching store (associative memory)
for associating pairs of tokens, and a processing element for performing high speed integer
and floating point computations (2.2 MFLOPS). Because of the nature of signal processing
computations, the interconnection network is essentially a linear arrangement of processors
with wrap-around from the last pair of processors to the first pair, and augmented by a
three level tree used for long distance communication. Besides signal processing, DDSP
can also be used in fields of sonar and image processing.

3.9 SERFRE

SERFRE [Vil 82] is a multi-processor command-driven (string reduction) machine and
can directly execute a FP language, trying to have subprograms executed on different
processors. It is a dynamic loosely-coupled system using direct communication with storage
of messages. Fig. 10 describes the architecture of a possible, single-user implementation
of SERFRE, and Fig. 11 the structure of a module. The I/0 processor controls the
memory system as well as the initiation of a program evaluation and returning of the
result to the user. The C-processors have their own local memory to store data and
function definitions. A C-processor consists of a register for the return address, a stack
for the program, registers for the data, and a reduction engine. When asked to evaluate

12

I message Ilines

memory C-Processor

| ‘ \ Communication
Device

O

.

memory line

Figure 11: Structure of a Module in SERFRE

a function involving concurrency, it will try to call for other non-busy C-processors to
execute the subprograms, if none is available, it will evaluate them sequentially.

3.10 Cedar

The objective of the Cedar project [GKL 83] at University of Illinois is to investigate
ways to accommodate several thousands of high performance processors to deliver several
gigaflops. It will make use of the VLSI technology to build powerful VLSI processors, for
instance, 32-bit, 2.5 MFLOPS. The uniqueness of this architecture is the concept of Macro
Dataflow which combines the control mechanisms of data flow architecture and storage
management of the von Neumenn architecture. A program is viewed as a flow graph of
nodes. Each node is either computational (CPF) or control (CTF). The Global Control
Unit executes CTF while the processor clusters execute CPF. A processor cluster consists
of a number of processors and local memory modules working cooperatively to execute a
CPF. When a CPF is finished, the cluster control unit will signal the Global Control Unit
so that other nodes depending on this CPF can be scheduled to be executed. Besides local
memory, processor clusters can also access the global memory through the global network,
an Omega network.

3.11 FMP

The Flow Model Processor (FMP) [Lun 85] was the result of a series of design studies
conducted from 1975 through 1982, sponsored both by Burroughs Corporation and by

13

GLOBAL MEMORY (CM) |

J

L1 _ . L

[GLOBAL WETWORK (CN)

N <
: <
o strew

. . L

e g

. !

H - M (cov)
""""" L. mm———r_
[3
R e R b {
- COu= =~ (/YA (oM yeet
- - - reoceiIOn
o --- 1O~ aOC(350%
OC ~- - O COnTmOL{e
- - rem

Figure 12: Structure of Cedar

TOHOST PROCESSOR
P - Processor .
LM - Local Memory
EMM - Extended Memory
Module
PAOCESSOR CONTROL AND
MAINTENANCE NETWORK
GLOBAL CODE
MEMORY
. (¥} P (L}
DATA BASE
MEMORY
CONNECTION NETWORK
TO 1¥O AND
DATA STORAGE . EXTENDED
MEMORY
EMM EMM

Figure 13: Flow Model Processor Conceptual Design

14

the NASA Ames Research Center. Its objective was to sustain throughput in excess of 1
GFLOP, and was intended to support large scientific problems especially modeling prob-
lems in computational aerodynamics. It was designed to support standard FORTRAN,
with extended feature like DOALL, in which codes within the body of this construct is
executed once for each value specified in the definition of the DOALL domain.

The conceptual design consists of 128 processor connected through a Connection Net-
work (CN) to the Extended Memory. The Global Code Memory and the Data Base
Memory can also be accessed through the CN. The CN, a form of Omega Network, is a
circuit-switching network with decentralized control. The Processor Control and Main-
tainance Network acts as a tree of AND gates to be used to assist in the high speed
synchronization at the end of the DOALL. Each processor in the FMP is a powerful com-
puting unit. A scheme similar to that of the IBM 360/91 [Tom 67] was used to allow
multiple functional units to be used efficiently.

3.12 S-I

The S-I project [WC 79] has as its general goal the development of advanced digital
processing technology for potential application throughout the U.S. Navy. The S-1 mul-
tiprocessor is designed to be at least 10 times the computing power of the Cray-1. Its
. architecture consists of 16 independent, identical uniprocessors sharing a main memory
of 16 modules, each of 1 billion bytes of semiconductor memory. Each uniprocessor is a
powerful computing unit with performance comparable to the Cray-1, and can execute
instructions independent of others. A full Crossbar Switch is used as the interconnection
network between the processors and the main memory. A maximum peak bandwidth of
more than 10 billion bits per second can be achieved when all 16 channels of the Crossbar
Switch are transferring data simultaneously. To further reduce the main memory access
time, each member uniprocessor contains private cache memories (data and instructions).
As many as eight peripheral processors can be attached to each uniprocessor to handle 1/0.
The synchronization box is a shared bus connected to each member uniprocessor; one of
its major functions is to transmit interrupts and small data packets from one uniprocessor
to any subset of other uniprocessors in order to coordinate processing streams.

3.13 Cm*

Cm* [SFS 77] is an experimental computer system designed and built at Carnegie-Mellon
University. It is intended to be a testbed for exploring a number of research questions
concerning multiprocessor systems. Cm* is a hierarchical and modular system, the basic
building block is a processor memory pair called a computer module or Cm. Up to 14
Cm* are connected into a cluster. Each cluster has a shared address mapping and routing
processor, Kmap, which allows communication with other clusters through the intercluster
buses. Communication along the intercluster buses is done in packet switching mode to

15

Memory 1-14 Memory
0o f*+--——-—"—"—""“"="="="==-= - 16
Controlter Dragnostic Disgnostic Controller
[} Processor processor 16

Crossbar Diagnostic
switch processor
Uriprocessor 0 Uniprocessor 15
Dawa Instruction Dats {nstruction
cache cache cache ache
M 1-14 il
[3 - - F
[P
| |
I A t A
Diag- vo I -6| wo Diag- wo |1-6| wo
wstic | |store 0 > store 7 nostic store O — ’] store 7
proc. : ; 4 proc i
leat- 0 Mass | 1/0 | Real- 170 Mass | 1/0
ime 0roC. e gocage | Proc.] time <o proc storage | proc.
1o 0 unity 7 170 0 units 7
1-6 1-6

Peripheral equipment

Peripheral equipment

Synctwonzation box

Figure 14: The S-I Multiprocessor

Intercluster buses

*T

Kmap Kma | Kmap
Cm][Cm @' Cml-
Cluster Cluster Cluster

Figure 15: An Example Cm* System

16

s

Kma

Cmyj--

Cluster

Processor Processor Processor Processor

Y\
Packet
Switched
Network
Data Dala Data Data
memory memory memory memory

170 cache
Yrrrrryrrryrrrryrrryvryryvrrvy

170 channels

Other
170
devices

170
control

AAAAAA

Mass storage devices
Figure 16: A Typical HEP System

avoid deadlock over bus allocation. The processor is a DEC LSI-11. All processors share
a single segmented virtual memory address space of 228 byte. Each processor has a local
memory of 64 Kbyte and is also part of the shared memory in the system. Efficient use of
the system depends on ensuring that most of the code and the data references made by a
processor are held locally to that processor. Inter-process communication is by message-
passing and can be easily built on top of the Cm* architecture.

3.14 HEP

The HEP computer system [Smi 78] is an MIMD machine of the shared resource type.
In this type of organization, skeleton processors compete for execution resources in either
space or time. Two queues are used to time-multiplex the process states. One of these
provides input to a pipelined instruction execution unit, which will decode and execute the
instruction. For data memory access, the process state enters a second queue. This queue
provides input to a pipelined switch which interconnects several data memory modules with

17

several processors. Each processor of HEP can support up to 128 processes. Maximum
throughput of 107 instructions per second per processor occurs when there are at least
eight totally independent processes in each processor.

HEP instructions and data words are 64 bits wide. A domain of protection in HEP is
called a task, and consists of a set of processes which are allowed to communicate with each
other. Processes in different tasks or processors may only communicate via data memory
if they have an overlapping allocation there. Any register or data memory location can
be used to synchronize two processes in a producer-consumer fashion. Three states are
provided: reserved, full, and empty. The execution of an instruction tests the states of
locations and modifies them in an indivisible manner.

The interconnection switch consists of a humber of nodes connected via ports. Messages
are sent in packets and routed by the nodes according to their priorities.

3.15 Empress

The ETH-Multiprocessor Empress [BBB 82] was built in order to study the performance
of MIMD architectures in general, and particularly in the field of simulation problems.
Its architecture consists of a supervisor processor and a number of execute processors,
all communicating through an Intercommunication System, Intercom. The supervisor
" computer is used to partition a problem into executable jobs which will be dispatched by
the job control unit to the execute processors. If an execute processor (master) finds its job
exhibit inherent parallelism, it can dynamically request more (slave) processors from the
job control unit to form a cooperative group. All 1/0, precompilation, optimization and
code generation as well as the integration step control are done in the supervisor processor.

The Intercom consists of a quadratic organized memory-matrix in which each processor
writes to all blocks in its row and can read blocks from its column. Data duplication within
the intercom is only executed into the matrix elements of processors working on the same
job. In this way, a result provided by any of the processor is made immediately available
to all other cooperating processors. Different logical addressing methods are allowed in the
Intercom so that cooperating processors may appear to be neighbors although they may
be physically apart.

3.16 MP/C

The Multiprocessor/computer (MP/C) [AG 82], a dynamically partitioned system, has the
shared memory aspect of tightly coupled multiprocessor systems and also the connection
simplicity associated with message-connected, loosely-coupled multicomputer systems. It
is proposed as a candidate for the effective execution of process-structured algorithms.
Its architecture consists of a number of processor and memory modules, all connected to

18

*0 *1 *2 *n

Superviser
RK 14 .8— Crecute Crocute Cuecute Erocute
Processer Procosser Processer Processer Processer
(F”I\I‘O\ st sin®) stu*) (LSt}

=t D e Wiy T [o
Aty [—x-u‘:] InT uvl e ml

. .] ! Sorral Limt
Job done”Lunes t ya
€F - Stetws Lunes
a.---\u—u /7
A A Wester Roquewt
TH I Ty Jwte cig] pute evq] [wie 'll‘f_1 iy fleg l::.' -
IS PR B B L T S S
Vlnl.vtoﬂ
2 2
< [

Job Centrot Unet

Stert Inte Bue

U g J
.) product of Dagital Cquipment Ceorpareation MR . Mester Raguest
RTU ! Mot Treaster Unit U D Jeb Mangement Unit
INT : reeccom Wrertece €PS : Caecute Svacovesr Stect
SL 1 Senet Lt latertecn @t erive Waes
SR Swwermrer Request 0 reed hmen
) I 1024 werse /¥ bas

€PM : Ceocuts Prececror Moartening

Figure 17: Hardware of Empress

oIa, 'I" / —— .I.,

SYSTEM BUS

:

Figure 18: The Linear MP/C

19

00000O0O

O

(3

’ CONNECTION NETHKORK

00000O0O

MM..

=
o~

Figure 19: Block Diagram of the NYU Ultracomputer

a system bus. Process fork and join operations are implemented by bus switching as a
means of partitioning and recombination of the address space. The bus can be opened
- between any two adjacent processor-memory pairs. Only the leftmost processor in each
connected bus segment or partition is active, and can access all memory modules in that
partition. All other processors in that partition are inactive. An active processor can
activate an inactive processor by splitting the bus segment. Conversely, an active processor
may deactivate itself by reconnecting its partition to the one on the left. This ability to
partition and reconnect dynamically is best suited to execute tree algorithms, divide-and-
conquer algorithms, and database functions. Multi-dimensional MP/C machines in which
each row or column is a switchable bus, are also proposed.

3.17 Ultra

The NYU Ultracomputer [GGK 83] is a shared-memory MIMD parallel machine composed
of thousands of autonomous processing elements (PE’s). By the use of an enhanced mes-
sage switching network with the geometry of an Omega-network, it can approximate the
ideal behavior of Schwartz% paracomputer model of computation which permits every PE
to read or write a shared memory cell in one cycle. The Omega-network also implements
the fetch-and-add operation used as the synchronization primitive.

Its architecture consists of thousands of PE’s connected through a connection network
to thousands of memory modules. Each PE is a high-speed VLSI floating point processor.
It can also support the fetch-and-add operation: a PE will continue execution of the
instruction stream immediately after issuing a request to fetch a value from central memory,
the target register would be marked locked until the requested value is returned from

20

s - Doto Subtree connectira Pl with
M- “2' My, My

2NN
o\

s e e g e o

/
07/ - Instruction Broodcast Tree
connectino Py wi th Pg

o

X Also Shared Memory Tree

;;1 allowing P| and Pg to share Mg
i

Figure 20: TRAC’s Banyan Network

memory; an attempt to use a locked register would suspend execution. The connection
network is an enhanced message switching Omega-network. Each switch in the network
has a queue and an internal adder to support the fetch-and-add operation. Simultaneous
accesses to a common memory cell can be detected in the switch and are combined to a
single fetch-and-add instruction. The memory unit also has an adder to implement the

fetch-and-add instruction.

3.18 TRAC

The Texas Reconfigurable Array Computer (TRAC) [SUK 80] is an experimental computer
system currently being built at the University of Texas at Austin. The uniqueness and
the potential capabilities of TRAC arise from its interconnection network; a dynamically
reconfigurable banyan network. The banyan network serves to partition and to config-
ure the processor, memory and 1/0 resources of the system into different architectural
organizations under software control. Within a partition, TRAC is varistructured in that
regardless of the data structure requirements for the task, any data width or architecture
may be used. Independent or interacting tasks can all be running simultaneously on the
same computer. The architecture is also virtual in that user programs can be oblivious of
the specific set of memory and processor modules used.

21

Inside the SW-banyan network, the nodes can be configured to form three types of
subtree: data trees, instruction trees, and shared memory trees. Besides shared mem-
ory, another means of processor-processor communication is packet switching. The packet
transmission occur as a background activity so that they do not interfere with other ac-
tivity.

TRAC subsystems can be architectured to implement multiple models of computation:
process forking and joining, task pipelining, data-flow, vector parallelism, and synchronous
parallelism.

4 Different Dimensions of Concurrent Architectures

In the last section, 18 different concurrent architectures were described. They are so
different in structure that it is hard to classify them in any single way. Different models
of computation used by Haynes et. al. have already been described in section 2.0, there
are four other dimensions that can be identified to describe these architectures. They are
interconnection network, processing element, memory system, and application areas. In
this section, these five dimensions will be used to classify the 18 architectures described in
the previous section.

4.1 Models of Computation

The six different models of computation described by Haynes et. al. are multiple
special-purpose functional units (or pipeline), associative processors, array processors, data
flow computers, functional programming language processors, and multiple processors.

4.2 Interconnection Network

In the architectures that have been discussed, there are many types of interconnection
network. Systolic arrays are connected in a pipelined fashion. STARAN has its own
FLIP network. MPP and Illiac IV and MPP are mesh-connected. BSP and S-l use
full crossbar. CHiP uses the switch lattice. NON-VON is tree structured. Cm* and
MP/C are bus oriented. Cedar, FMP, and Ultra use the Omega network. HEP uses a
pipelined switch. Empress has a quadratic memory matrix. TRAC has a 2-3 SW Banyan
Network. Some of these interconnection networks can again be divided into either central
or distributed control. Reconfigurability is a feature of some of the networks, which allow
them to reconfigure the system resources dynamically to match the need of the problem.
For multi-stage networks, three types of switching modes are possible: circuit, message,
and packet. The purpose of the interconnection network is for the communication among
processors (P-P), or processor to memory (P-M), or both.

22

Table 1: Models of Computation

Pipeline Associative SIMD | Dataflow P Multiple
Memory Language Processor
Systolic X
STARAN X
lliac 1V x
BSP x
MPP x
CHiP x
NON-VON x
DDSP
SERFRE X
Cedar x
FMP x
s-1 X
Cm* x
HEP X
Empress X
MP/C x
Ultra x
TRAC X X X
Table 2: Interconnection N twork
Type Control Reconfig. Switching Communication
Systolic Pipeline N P-P
STARAN FLIP N P-P
lliac IV Mesh N P-P
BSP Cross bar Central N Circuit P-M
MPP Mesh N P-P
CHiP Sw. lattice Central Y P-P
NON-VON Tree Y P-P
DDSP Bus Distributed N P-P
SERFRE Bus N P-P
Cedar Omega Distributed N Circuit P-M
FMP Omega Distributed N Circuit P-M
S Cross bar Central N Circuit P-M
Cm* Bus Distributed N Packet P-M
HEP Pipe. Switch Distributed N Packet P-M
Empress Quad. Matrix Central Y P-P
MP/C Bus Distributed Y P-M
Ultra Omega Distributed N Message P-M
TRAC 2-3 Banyan Central & Y Packet & P-P, P-M
Distributed Circuit

23

Table 3: Processing Element

Number Power Size (bits)
Systolic variable
STARAN 32 x 256 simple 1
lliac IV 64 3-5 MFLOPS 64
BSP 16 1-4 MFLOPS 48
MPP 16384 simple 1
CHiP 256 - 64K | microprocessor
NON-VON > 16K simple 8
DDSP 1-32 2.2 MFLOPS
SERFRE variable
Cedar 128 x 16 2.5 MFLOPS 32
FMP 128 10 MFLOPS 64
s-1 16 3 MFLOPS 64
Cm* variable LSI-11 16
HEP variable 10 MIPS 64
Empress variable LSI-11 16
MP/C variable
Ultra 4096 VLSI, fast FP
TRAC 16 microprocessor 8

4.3 Processing Element

The number of processing elements used in each architecture varies from 1 for the DDSP
to 64K for the CHiP. Most architectures allow variable number of processing elements. Re-
quirements on the processing elements also vary. STARAN, MPP, and NON-VON use very
simple processors. CHiP, Cm* Empress, and TRAC use off-the-shelf microprocessors or
LSI-11. Others use powerful custom made processors. The word length of the architectures
ranges from 1 bit for STARAN and MPP, to 64 bits for llliac IV, Cedar, FMP, S-l, and

HEP.

4.4 Memory System

Memory system can be either shared or local. In shared memory, different processors
can access the same memory cell for communication and synchronization. Data stored
in local memory can only be accessed by the processor attached to it. Some local mem-
ory are also used as instruction cache to reduce the traffic in the interconnection net-
work. STARAN and DDSP have associative memory for content-addressable memory and
matching store, respectively. Ultra has adders in the memory system to support the fetch-
and-add operation. TRAC has index registers residing in the memory modules so that a
shorter 8-bit macro-instruction can be sent by the processor instead of a longer 16-bit full
address. References to locations in memory modules are made by specifying one of the

24

Table 4; Memory System
Shared | Local |Associative [Extended Function

Systolic
STARAN
Illiac 1V
BSP
MPP
CHiP
NON-V QN
DDSP
SERFRE
Cedar
FMP
S-1
Cm*
HEP
Empress
MP/C
Ultra
TRAC X

X X X X X x X

X X X X X

X

X
X X X X X X X X X X X

index registers.

4.5 Application Areas

These 18 architectures are designed for different applications. In this section, a few
important and representative areas are listed: general purpose, scientific, data base, image
or signal processing, simulation, testbed, and divide-and-conquer.

5 Conclusions

In this report, a survey of concurrent architectures is presented. Although the survey is not
complete, it does cover a wide spectrum of both commercial and research architectures. It
is not the purpose of this report to give a detail summary of each architecture, but to give
the reader a general idea of the current status of the research in concurrent architecture.
Different architectures are specified using five dimensions: models of computation, inter-
connection network, processing element, memory system, and application areas. Other
dimensions, especially software aspects, can also be used, for instance, languages, operat-
ing system, scheduling method, communication and synchronization method.

25

Table 5. Application Areas

General Scientific | Database Imagelslgnal Simulation | Testbed Divide &
Purpose Processing Conquer
Systolic X
STARAN X x
Illiac 1V X
BSP X
MPP X
CHiP X
NON-VON x X x X X
DDSP X
SERFRE X
Cedar x
FMP X X
s1 b. < X X
Cm* x x
HEP X X
Empress X x
MP/C x X
Ultra x
TRAC X x x X

26

References

[AG 82] B.W. Arden, and R. Ginosar, “MP/C: A Multiprocessor/Computer Architec-
ture,” IEEE Trans. on Computers, Vol. C-31, No. 5, May 1982, pp. 455-473.

[Bat 74] K.E. Batcher, “STARAN Parallel Processor System Hardware,” AFIPS Conf.
Proc., Vol. 43, 1974 NCC, pp. 405-410.

[Bat 82] K.E. Batcher, “MPP: a supersystem for satellite image processing,” AFIPS
Conf. Proc., Vol. 51, 1982 NCC, pp. 185-191.

[BBB 82] R.E. Buehrer, H.J. Brundiers, H. Benz, B. Bron, H. Friess, W. Haelg, H.J.
Halin, A. Isacson, and M. Tadian, “The ETH-Multiprocessor EMPRESS: A
Dynamically Configurable MIMD System,” Trans. on Computers, Vol. C-31,
No. 11, Nov 1982, pp. 1035-1044.

[BDM 72] W .J. Bouknight, S.A. Denenberg, D.E. Mcintyre, J.M. Randall, A.H. Sameh,
and D.L. Slotnick, “The Illiac IV System,” Proc. IEEE, Vol. 60, NO. 4, Apr.
1972, pp. 369-379.

[Fly 72] M.J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE
Trans. on Computer, Vol. C-21, No. 9, Sept. 1972, pp. 948-960.

[GGK 83] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and M.
Snir, “The NYU Ultracomputer — Designing an MIMD Shared Memory Parallel

Computer,” IEEE Trans. on Computers, Vol. C-32, No. 2, Feb. 1983, pp. 175-
189.

[GKL 83] D.Gajski, D. Kuck, D. Lawrie, and A. Sameh, “Cedar - A Large Scale Mul-

tiprocessor,” Proc. of the 1988 International Conf. on Parallel Processing, pp.
524-529.

[HLS 82] L.S. Haynes, R.L. Lau, D.P. Siewiorek, and D.W. Mizell, “A Survey of Highly
Parallel Computing,” Computer, Jan. 1982, pp. 9-24.

[HNI 82] E.B. Hogenauer, R.F. Newbold, and Y.J. Inn, “DDSP-A Data Flow Computer
for Signal Processing,” Proc. of the 1982 International Conf. on Parallel Pro-
cessing, pp. 126 -133.

[KS 82] D.J. Kuck, and R.A. Stokes, “The Burroughs Scientific Processor (BSP),” IEEE
Trans. on Computers, Vol. C-31, No. 5, May 1982, pp. 363-376.

[Kun 82] H.T. Kung, “Why Systolic Architectures?”” Computer, Jan 1982, pp. 37-46.

27

[Lun 85| S.F. Lundstrom, “A Decentralized Control, Highly Concurrent Multiprocessor,”
IEEE Proceedings of the 12th Annual International Symposium on Computer
Architecture, June 17-19, 1985, pp. 145-151.

[SFS 77] F.J. Swan, S.H. Fuller, and D.P. Siewiorek, “Cm*- A modular, multi-
microprocessor,” AFIPS Conf. Proc., Vol. 46, 1977 NCC, pp. 637-644.

[Smi 78] B.J. Smith, “A Pipelined, Shared Resource MIMD Computer,” Proc. of the
1978 International Conf. on Parallel Processing, 1978, pp. 6-8.

[Sny 82] L. Snyder, “Introduction to the Configurable Highly Parallel Computer,” Com-
puter, Jan. 1982, pp. 47-56.

[SUK 80] M.C. Sejnowski, E.T. Upchurch, R.N. Kapur, D.P.S. Charlu, and G.. Lipovski,
“An Overview of the Texas Reconfigurable Array Computer,” AFIPS Conf.
Proc., Vol. 49, 1980 NCC, pp. 631-641.

[Tom 67] R.M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic
Units,” IBM Journal, Vol. 11, Jan. 1967.

[Vil 82] F.Y. Villemin, “SERFRE : A General-Purpose Multi-processor Reduction Ma-
chine,” Proc. of the 1982 International Conf. on Parallel Processing, pp. 140

-141.

[WC 79] L.C. Widdoes, Jr., and S. Correll, “The S-1 Project: Developing High-
Performance Digital Computers,” Energy and Technology Review, Sept.8 1979.

28

