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Abstract

In concurrent systems, a major responsibility of the resource manage-
ment system is to decide how the application program is to be mapped onto
the multi-processor. Instead of using abstract program and machine models,
a generate-and-test framework known as “post-game analysis” that based
on data gathered during program execution is proposed. Each iteration
consists of (i) ( a simulation of) an execution of the program; (ii) analysis
of the data gathered; and (iii) the proposal of a new mapping that would
have a smaller execution time. These heuristics are applied to predict execu-
tion time changes in response to small perturbations applied to the current
mapping. An initial experiment was carried out using simple strategies on
“pipeline-like” applications. The results obtained from four simple strate-
gies demonstrated that for this kind of application, even simple strategies
can produce acceptable speed-up with a small number of iterations.
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1. Introduction
Many factors contribute to the effective utilization of a multiprocessor. These factors include

problem formulation techniques, programming language/paradigm, implementation methodology,
resource management strategies, and hardware characteristics. Needless to say, many schools of
thought exist - each with its pros and cons, depending on the kind of application and hardware it is
applied to. The research reported here does not involve yet another new programming paradigm
nor any new processor structure. The problem of finding the best way to map a given application
to a given multiprocessor is addressed instead. This problem must be solved properly so that
computer architectures exhibiting massive parallelism can be effectively used. It is formulated as a
mapping problem defined as follows:

GIVENAPARALLELAPPLICATIONANDAMULTIPROCESSOR,~W%Y'HE
APPLICATIONOVERTHEMACHINESUCH THAT EXECUTIONTIMEISMINIMIZED.

Two assumptions are made:
l The application is already expressed in a programming paradigm where “natural” partition

boundaries exists. Examples include communicating sequential processes [Brookes 831,
Actors [Agha 851, remote procedures [Nelson 811 and data flow paradigms.

l The multiprocessor consists of a set of homoceneous  processing elements (or sites)
connected in some topology.

Unfortunately, this problem is NP-complete even for well-structured programs (see [Mayr 8 11).
A closer look at real programs reveals further complications. The mapping problem can be divided
into 2 categories according to the “nature” of the application:

1. All actors* are declared at compile-time.
2. Actors may be dynamically created or destroyed.

Each of these categories may be further divided into two sub-categories
a The total number of actors, their precedence relationships and communication requirements

do not depend on the characteristics of the data.
b Program behavior is data-dependent.

This paper reports the results when simple heuristic-based strategies are applied parallel
application programs that falls into class la - i.e. program behavior is relatively steady over a
wide range of input data and all actors are declared at compile-time.

1.1.e. to assign placement locations for various parts of the application

2 Actors are chosen to be the generic type of computing agents to represent processes, modules etc.

1



The second section presents an overview of the Actor computation paradigm in which the
concurrent application (to be mounted on the multiprocessor) is formulated. The heuristic
approach is explained in detail followed by a description of the four simple strategies. The
experimentation environment (known as “Axe”) is then outlined. The experiments are described
with their results and interpretations. The paper concludes with a summary and a projection for
future research.

2. The Actor Programming Paradigm
Realistic evaluation of mapping strategies depends on the study of real applications. In the

current context however, the development of complete language and compiler tools, together with
run-time environments is impractical for short term experimental use in research. Simulation at the
“process level” was therefore chosen as a “middle-ground” between lengthy instruction-by-
instruction emulation and general stochastic modeling. This simulation is based on “program
models” [Yan 86a]. The program is represented by a behavior description language (or BDL )
designed to model a subset of the Actor paradigm [,4tkinson 771:

1. 44 parallel computation is expressed as a collection of autonomous modules called actors.
2. Actors interact with one another only via message passing - to facilitate data transport and

the compliance of precedence relationships.
3. When an actor receives a message, it may

l perform user-programmed computations involving its internal state variables and the values
transmitted in the message;

l send or wait for specific messages to/from other actors; or
l create other new actors.

This BDL model preserves the message pattern between actors as well as the relative processing
and storage requirements of each actor. An example-of a computation expressed in BDL will be
given at a later section.

3. Applying Heuristics to Resource Management
An “optimal” solution to the mapping problem exhibits the shortest execution time. The optimal

solution cannot be guaranteed because:
1. The number of possible solutions is infinite. Different programs have different resource

utilization requirements. The behavior of a single program may be a complex function of the
input data sets and the stage of the computation.
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2. Even if the search space were finite (say, for one particular program) exhaustive search is
often the only means to verify the optimal@ of the solution because the dependencies
between actors is non-trivial. Exhaustive search is also not feasible since the number of
possible solutions increases exponentially.

3. In fact, attaining the optimal solution does not only require complete knowledge of the
system at all time, program behavior in the future has to be correctly predicted as well!

Since an exact solution to the mapping problem cannot be guaranteed in general for any program
on any machine, a heuristic approach is suggested. The “mapping strategy” - expressed as a set
of heuristics - attempts to find an approximate solution to the mapping problem for a given
program on a given machine. A complete mapping strategy consists of two parts - placement and
migration heuristics. Placement heuristics suggest a site for placing an actor when it is created
whereas migration heuristics suggest when and where to move an actor (to another processing site)
after it has been assigned to a site for a certain time. The proposed strategy must be adaptive -
incorporating run-time observations (past and present) when deciding where to place or move
actors. This ability to respond to program behavior variations which in turn, are dependent on
changes in input data characteristics is critical to the success of the strategy.

F \
Static Placement Program

Recommendations b Execution/Simulation r Data Collection
1 Run-Time Policy

Changes I

Figure 1. Heuristic-based Post-Game Analysis -
The application of heuristicsto incrementally improve the mapping of actors to sites

Heuristics may be put to use in three phases: pre-game, mid-game and post-game:
1. Pre-game application - Before the program is loaded and executed, the program text can be

analyzed (with or without directives from the programmer). Heuristics can help decide
where to place actors that have already been declared.

2. Mid-game adjustments - After execution commences, the decisions made at the first phase
may have to be revised (i.e. migration may have to take place) in response to unexpected
changes in input data characteristics. Placement decisions also have to be made for actors
created at run-time.
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3. Post-game evahjation - After execution terminates, the data collected during the run may be
analyzed to:
l revise the decisions made in phase 1 and
l improve the decisions made in phase 2.

when the nrocram is executed again!

The initial experiment reported here applied heuristics in the “post-game” fashion. In order to
evaluate the feasibility of this approach and compare relative merits among individual heuristics,
each of the four strategies proposed in the next section consist of a single heuristic.

4. Four Simple Mapping Strategies
Four simple mapping strategies are proposed to be candidates for “post-game analysis”. The

relative merits of these strategies were evaluated by simulations. They suggest modifications for a
given mapping of actors to site that may (hopefully) result in a reduction of execution time. Data
gathered during simulation is used for this analysis. All strategies contains only one heuristic in
the form of a “rule”:

“IF <SOME-CONDITION> THEN <MOVE AN ACTOR TO SOME PLACE>“.

When the predicate is satisfied, the consequence proposes is carried out. The four strategies tried
are listed as follows:

1. IF (and (most_crowded  <SITE-A>) (most_unhappy  <ACTOR-X>  <SITE-A>)

(most-vacant <SITE-B>))

THEN (move-obj <ACTOR-X>  <SITE-B@

2. IF (and (most_crowded  <SITE-A>) (mostJx?ppy <ACTOR-X> <SITE-A>)

(most-vacant <SITE-B>))

THEN (move-o@’ <ACTOR-X> <SITE-B>)4

3. IF (and’(most_crowded <SITE-A>) (most_unhappy  <ACTOR-X> <SITE-A>)

(highest_reward_if_moved  <ACTOR-X> <SITE-B>)

THEN (move-obj <ACTOR-X> <SITE-B@

3 It reads “If <SITE-A> is most crowded and <OBJECT-X> is most unhappy in <SITE-A>, then move

<OBJECT X> to <SITE B> which is most vacant.”

4 The rationale for moving an actor away from the site in which it is already “happy” with will be explained later.

5 It reads “If <SITE A> is most crowded and <OBJECT X> is most unhappy in < SITE-A>, moving <OBJECT-X>

to <SITE-A> will probably reduce the execution time a lot.“.
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4. IF (and (most_crowded <SITE-A>) (most-happy <ACTOR-X> <SITE-A>)

(highesfyeward if moved <ACTOR  X> <SITE- - - -B>)

THEN (move-o@’ <ACTOR-X>  <SITE-B>)

The predicates that describes sites and actors are detailed as follows:
l The “happiness” of an actor describes whether the actor’s request for resource utilization is

being met without contention with other actors that reside in the same site. It is measured by
a weighted sum of two terms:

i) the response ratio: t,/t, ; and
tw = time spent waiting for cpu

4l = actual cpu time used
ii) the remote-local ratio (trc/tlc).

tic = time spent in communicating with actors reside in the same site
trc = time spent communicating with actors reside in different sites

l The “crowdedness” of a site describes how the resources are being utilized at a particular
site. The “most vacant” site is the “least crowded one”. It is measured by a weighted sum of
these terms:

i) the response time of the CPU;
ii) the average length of its ready queue (for execution);
iii) the total no. of actors resident; and
iv) % idle time of the CPU.

l The “reward” (e.g. of moving <ACTOR-X> from <SITE-A> to <SITE-B>) measures the
“potential reduction in cpu usage” when a certain action takes place:

reward = Acpu-loadSite a - Acpu-loadSire b
Acpu-load = At,, + Atcpu + Atlc
AtrC = change in time spent in remote communication
Atic = change in time spent in local communication

4p = change in time spent in using the cpu for computation

5. ” Axe” - The Experimentation Environment
The “Axe” simulation environment [Yan 86b] was specifically designed to facilitate such

investigations using discrete-time simulation. The current version of “Axe” consists of a set of
software tools that allows ‘the following tasks to be performed in an integrated environment:

1. Computation model specification using BDL (behavior description language) - A
compiler/translator converts the application program models from BDL into forms
understood by other modules of the simulation environment;
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2. Execution environment specification - This includes various parameters that describe the
multiprocessor and operating system algorithms;

3. Simulation - a simulator projects the execution time of the program model on multiprocessor
structures with various machine parameters and mapping strategies;

4. Instrumentation - a built-in monitor system gathers run-time statistics during simulation to
enable evaluation of mapping strategies, as well as software and hardware architecture; and

5. Experimentation - Although specifically built for investigations in mapping strategies, a
flexible user interface enables the researcher to study issues in parallel processing such as:
problem formulation, hardware architectural issues, matching machines and programs, and
operating system level algorithms. He/she may inspect (and over-ride) decisions
recommended by mapping heuristics sets during simulation.

Currently, “Axe” models a class of multiprocessors known as ensemble architectures [Lutz 84,
Seitz 821. This class consists of a collection of homogeneous processing elements - each of which
is connected to its nearest neighbors in a regular fashion (e .g. the Cosmic Cube [Su 851). Each
site is autonomous - it contains its own storage, processor and a distributed operating system
kernel governing local activities such as message forwarding, task scheduling, and memory
management. A collection of pre-defined abstract machines (or sites) is provided in “Axe”. They
may be tailored further parametrically by the user:

1. Values of hardware parameters which can be specified include:
l message sending/receiving overhead;
l relative speeds of communication links to the processors; and
l number of processors and memory size at each site

2. A number of built-in topologies and routing algorithms can be selected by modifying a
single variable or by writing one simple function in C6;

3. A number of built-in mapping and scheduling algorithms7 are also offered.

Figure 2. A “Pipe-line” Computation

6 “Axe” is built on top of CSIM - a simulation utility written in C [Schwetman S6].

7 A partition strategy is concerned with placing actors into sites where as a scheduling strategy determines how

the cpu at a site is to be shared among the actors residing in the same site.
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6. Pipelined Applications
The idea of obtaining speed-up through pipelining has been exploited in hardware for a long

time. “Software pipelining” was recently proposed again as a method of managing concurrent
software. A pipeline application consists of a number of actors organized into stages. The number
of actors at each stage need not be identical. Figure 2 illustrates the general scheme of the pipeline
operation. Depending on how saturated the pipeline is, the maximum speed-up obtained in such an
arrangement is (w x s) where s = number of stages and w = number of actors in each stage. It
should be noted that such an optimal speed-up could only be obtained when:

i) the pipeline is always full;
ii) each stage has equal service time;
iii) actors do not have to compete for cpu at any time

The BDL specification of a typical actor in this stage is illustrated below in Figure 3. Basically,
when a message is received by an actor, certain amount of processing is initiated. After some time,
a result is obtained and is passed to an actor in the next stage. Different data sets were used to
create different message patterns and cpu demands for each actor.

(DefActot Pipe-stage
(init commute) ; messages it understands
(nxt-1 nxt-2 nxt-3 nxt-4 tmp) ; pointers to other actors
(value) ; internal states
(init ; behavior 1 - “initialization”

(record nxt-1 nxt-2 nxt-3 nxt-4 ; record pointers to next stage &
basic-duration)) ; . ..default residence time

(comnute ; behavior 2 - “computation”
(record value) l “value” from previous stagev
(run (some-time value)) ; residence time is data dependent
(setq tmp (target-select value)) ; target selection is data dependent

(post tmp cmgute value))) ; pass data to next stage

Figure 3. BDL Description of a pipe-stage

7. The Experiment - Results and Interpretations
The simulations were carried out with the following parameters:

Machine model:
l number of sites: 4, 9, 16, 25
l connection topology: two-dimensional square-grid with “no wrap around”
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l thop8: 4, 16, 28, 40, 52, 64, 88 msec.
l number of CPU/site: 1

fieratinz system:
l scheduling policy:

- operating system preempts any “user-processes“9 when delivering/routing messages
- “user-processes” - are served until completion on a first-come-first-serve basis

l overhead:
- context-switch: 10 msec.
- message receiving: I context-switch
- message delivery: remote = thop; local = 0
- actor creation: 1 context-switch
- “user-process” creation: 1 context-switch

Application:
l number of actors: 48 actors arranged in 6 stages (each stage is 8 wide)
l number of requests through the pipeline: ranges from 20 to 200 on various simulations
l message pattern: four patterns were simulated by re-programming the functions

‘Select target” & “next-value” and modifying the input-data:
- Random uniform: whenever a message is received, there is an equal probability for each

actor in the following stage to be sent the next value.
- Deterministic uniform: the message pattern is pre-determined so that each actor will

receive an equal number of messages.
- Random biased: certain actors have higher probabilities of receiving messages
- Deterministic biased: “preferred paths” are programmed so that certain actors receive more

messages than others.
l cpu-demand: the average time required by each actor to serve a message is 100 ms. Various

ranges were used in the simulations
Absolute maximum speed UD: 14.510
Initial Placement: All actors were placed on one site at the beginning.

Although many simulations have been carried out, the results shown here only comes from one
particular data-set. All simulations produced similar results.

8 time spent routing each packet across a communication link connecting two sites

9 Loosely speaking, every time an actor computes, it becomes an active “user process”.

lo The “absolute maximum speed up” is obtained by simulating the application on an “ideal machine” with an

infinite number of sites and “instantaneous” communication between any two sites.
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7.1 Prorzress Charts - General Features
The performance of various heuristics is represented in the form of a “progress chart”. Figure 4.

illustrates the improvement made to the solution of the mapping problem as the heuristics are
applied one at a time:

l Y-axis: “speed up” is used as a principle criteria to evaluate the mapping suggested by
mapping heuristics. It is defined as the ratio: (tl/tactud) where

t1 = execution time when only one site is used

tactua.l = actual time used when all sites are used.

l X-axis: Each “iteration” involves the application of a heuristic - resulting in the migration of
one actor to an alternate site.
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Figure 4. “Progress Chart” for 25 Sites and low communication costs

Each progress chart may be divided into three phases:
l initia l p ha se: firstly, no significant performance improvement is usually observed
l ascending phase: then, a dramatic improvement is observed which usually attains the

“maximum achievable speed-up” for the heuristic.
+zaZphase:  In stead of further improvement, the progress charts merely “oscillate” around the

“maximum achievable speed-up”
It should also be noted that the curve obtained is non-monotonic.
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7.2 Prorrress Charts - Interpretation
1. The length of the initial phase - No substantial improvements are made initially since more

than half of the actors are still crowded on one site!
2. A rapid ascending phase: Since over half of the actors are (more or less equally) distributed

over (nsite - 1) sites, each additional evacuation of actors from the “start up” site alleviates the
one remaining bottle-neck of the system in relatively larger steps - thus resulting in a dramatic
improvement

3. After a (more or less) optimal point is found, not much improvement is observed - All the
heuristics are designed to alleviate a relatively crowded site. At the end of the ascending
phase, all the sites are more or less equally loaded, thus rendering these heuristics useless.

4. Heuristics #2 and #4 have a longer initial phase than #l and #3 respectively - These two
heuristic sets works very differently. Heuristics #2 & #4 first distributes the actors with less
demands around and then alleviate the “start up” site until it does not stand out as a “very”
crowded site. Heuristics #I & #3 greedily alleviates the “start up” site right from the
beginning - thus resulting in a shorter initial phase.

5. The curves are not monotonic - This does not necessary mean that the heuristic had made an
error. The alleviation of one bottle-neck may result in the creation of a bigger one elsewhere
in the system. This decrease in performance is always compensated for in the next move. In
the initial stage, the compensation usually results in a solution with an even shorter execution
time!

I - heur is t ic  #l - h e u r i s t i c  #2 + h e u r i s t i c  #3

81
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Figure 5, “Progress Chart” for 25 Sites and high communication costs
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7.3 Vat-vine Communication Cost and Number of Sites
Figure 4 illustrates a typical situation with lots of sites and low communication cost (4 msec)-

all heuristics reached within 95% of the absolute achievable maximum speed-up.H e u r i s t i c  #3
attained the highest speed-up with the fewest number of iterations, closely followed by heuristic
#2, #l and #4. Figure 5 shows the same application mounted on an identical multiprocessor with
very high communication cost (88 msec) - all heuristics reached within 95% of one another with
the exception of heuristic #2. Other experiments also show similar results.

16 1
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Figure 6. “Maximum Achievable Speed-Up” for 25 sites over a range of communication costs 1 1

Figure 6 and 7 further illustrates that:
1. Heuristics #3 and #4 performs consistently better than #I and #2 over a range of number of

sites and communication costs. This is probably due to the fact that “gain projection” is
predicts fairly correctly what happens when an actor to move to a new site. Heuristic #l and
#2 does not consider increased cpu demand at the new site at all.

2. Heuristic #3 performs consistently better than #4 over a range of sites.
These experiments demonstrated two important findings:

I1 The X-axis labels corresponds to a linear increase in communication cost:

1 = 4 msec, 2 = 16 msec . . . n = ((n-1)*12 + 4) msec etc.
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1. An heuristic based on the concept of “alleviation of the worst bottle-neck in the system”
works.

2. “Gain prediction” proved to be successful - but only marginally for a simple computation
like the one illustrated here.

3
S

“, 2.5

d” 2

” 1.5

p 1

q  heur istic  # 1

q  heuristic # 2

.*- heuristic # 3

*o- heuristic # 4

1 2 3 4 5 6 7 a
Communication cost

Figure 7. “Maximum Achievable Speed-Up” for 4 Sites over a range of communication costs

8. Summary and Further Research
The use of heuristics is proposed as a means for resource management with multiprocessors.

Initial results when comparing four simple heuristics have been reported. Models of applications
formulated as a pipeline were simulated in the “Axe” simulation environment. All four strategies
attempts to alleviate the relative crowded site(s). Two of the heuristics (#3 & #4) incorporate “gain
prediction” when making the mapping decision (by guessing the increased cpu load this move will
cause in the target site). These experiments have demonstrated that:

1. By gathering run-time statistics, program behavior can be exploited to aid resource
management.

2. Simple heuristics based on “alleviation of bottle-necks” works.
3. Gain prediction provides a marginal improvement.
4. The “Axe” experimentation environment was easy to use. Automatic data collection and

analysis enabled easy implementation of heurisitics. All experiments were carried out with
minimal re-compilation of the system. The turn-around time is small because:
l simulation at the process-level is relatively fast
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l application specification in BDL is simple and automatically integrated into the rest of the
environment

l machine parameters are easily modified between simulations

Further research involves:
1. experimenting with real applications
2. modeling different processor structures
3. incorporate processor structure into the heuris tics
4. combining these heuristics to form a complete heuristic set -

l arrive at the maximum achievable speed-up faster,
l with less oscillation, and
l hopefully result in an even shorter execution time.

5. These heuristics will be use as the basis for developing the heuristics to be used in the “pre-
game” and “mid-game” activities.
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