
SRT Division Diagrams and Their Usage
in Designing Custom Integrated
Circuits for Division

T. E. WILLIAMS and M. HOROWITZ

TECHNICAL REPORT: CSL-TR-87-328

NOVEMBER 1986

This paper has been supported by :L National Science Foundation Fellowship.

SRT Division Diagrams and their Usage in Designing Custom
Integrated Circuits for Division
T.E. Williams and M. Horowitz

Technical Report No. 87-326

November 1986

Computer Systems Laboratory
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

Abstract

This paper describes the construction and analysis of several diagrams which depict SRT
division al orithms. These diagrams yield insight into the operation of the algorithms and the
many imp ementation tradeoffs available in custom circuit desi n.B
radix diagrams are shown, as well as tables for higher radices. Ig

Examples of simple low
he tables were enerated by a

program which can create and verify the diagrams for different division SC emes.5 A!so
discussed is a custom CMOS integrated circuit designed which ~~rforms SRT drvrsron using
self-timed circuit techniques. This chip implements an intermedrate approach between a full
combinationc.l array and a fully iterative in time method in order to get both speed and smarl
silicon area.

Key Words and Phrases: division, SRT, self-timed, floating-point, VLSI

Copyright 0 1986

bY

T.E. Williams and M. Horowitz

Contents

1 Introduction 3

2 SRT division 3

3 SRT Constraint Diagrams 6
3.1 Robertson Diagram. 5
3.2 Taylor Diagram. 6
3.3 Colored Taylor Diagram . 6

4 SRT Diagram Examples 8

6 Modified SRT algorithms 12

6 Hardware Implementation 16
6.1 Implementation Options . 16
6.2 Our Implementation . 17

7 Conclusions 19

List of Figures

1 SRT diagrams for Radix 2 with quotient digit set {-l,O,l} 9
9 SRT diagrams for Radix 4 with quotient digit set t-3,-2,-1,0,1,2,3} 10
ii SRT diagrams for Radix 4 with quotient digit set t-2,-1,0,1,2} 11
4 Block diagram of Self-Timed Radix 2 division chip 17

List of Tables

1 Grid and Brush sizes determined by Taylor diagrams 13
2 Grid and Brush sizes determined by Taylor diagrams for borrow-save operations . . 14
3 Grid and Brush sizes determined by Taylor diagrams for a Divisor pre-normalized

tobeintherange[$,2) . 15

1 INTRODUCTION

1 Introduction

There has been much emphasis placed on providing hardware support for floating-point addition,
subtraction, and multiplication because these operations have seemed easier to enhance than divi-
sion. Accordingly, for high performance, division has been avoided in algorithms whenever possible.
Whereas hardware circuits have been designed using multi-stage carry look ahead and Wallace trees
to do addition, subtraction and multiplication in O[log(n)] time where n is the word length in bits,
the direct algorithms for doing division require a full addition or subtraction operation for every
output bit requiring O[n log(n)] time and hence are undesirable for modern computers.

There are many approaches beyond the direct ones for building computer arithmetic hardware
dedicated to division. Since high-speed multipliers are part of all floating-point designs, many of
the methods for division are really algorithms using multiplication iteratively to perform division.
The very popular Newton/Raphson iteration technique, and the Divisor reciprocal technique are
examples of this approach[3]. In circuits which are designed specifically for division, there exist
iterative division algorithms which, although requiring quotient digit selection between arithmetic
operations, can base this selection on approximations of the true operands. These algorithms,
which are a form of the SRT algorithms[5][9], allow the intermediate results to be calculated in
carry-save form. By avoiding complete carry propagation, they can achieve intermediate results in
a time independent of word length, and hence the overall division can be computed in O[n] time.

In parallel with the design of a radix 2 chip, we examined the tradeoffs of SRT division in
general. The algorithms are characterized by a series of diagrams which show graphically the
required constraints and help provide an intuitive understanding of the design tradeoffs involved,
such as those affecting the precision of the approximations. We developed a set of tools to generate
and analyze these diagrams which enabled us to evaluate the choices within higher radix division
schemes and possible modifications such as using prescaling.

The next section gives a brief review of SRT division, and then section 3 describes the construc-
tion and use of the Robertson, Taylor, and colored Taylor diagrams. On the basis of these diagrams,
some different division schemes are examined in sections 4 and 5, and hardware implementations
are discussed in section 6. A summary of our findings is given in section 7.

2 SRT division

Performing division requires making a choice of quotient digits starting with the most significant,
and progressing to the least significant digits. The quotient digit decision is made as a part of each
iteration which recomputes the partial remainder based on the last partial remainder and quotient
digit. The complete quotient is accumulated from the equation:

n - l

Q = c q;t-i
i=O

(1)

where

r is the radix
n is the number of quotient digits calculated
Q is the accumulated quotient result with a precision of r-(n-l)

2 SRT Dl-VISION 4

Qi is the quotient digit determined from stage i

Since in binary hardware the full quotient result is easiest to form if it is merely the concatenation
of the bits of the individual digits, we set the radix r = 2” where m is the number of quotient bits
determined at each stage.

In irredundant division, the quotient digits are in the set (0, T - l}, and the full quotient has
only a single valid representation since each digit position in the quotient has only a single correct
possibility. Unfortunately, determining the correct digit at each position requires comparison of the
entire partial remainder, and this means that the entire partial remainder must be computed before
making each quotient digit selection. This computation requires a complete carry propagation along
the length of the partial remainder before each quotient digit may be selected. These irredundant
division schemes are much slower than multiplication because multiplication does not require such
a carry propagation in order to compute partial results.

A complete carry propagation in each iteration can be avoided by making the set of valid
quotient digits redundant by including both positive and negative integers. In this method, the
divisor and dividend must be normalized to the same binary range, and the valid quotient digits for
a maximum quotient digit p are in the set {-p, 0, p} w ic is sh h ymmetric about, and includes,
zero. The quotient digit chosen at each stage in the division determines the operation computing
the next partial remainder according to the equation:

where

R; is the partial remainder output from s’;age i
D is the Divisor

and the sequence is initialized with

rR& = the Dividend

With redundant quotient digit sets, the final quotient result can be represented in several differ-
ent ways giving a choice of quotient digits for each position. Any valid representation can always,
of course, be converted to the original irredundant representation containing no negative digits by
subtracting the positionally weighted negative quotient digits from the positionally weighted posi-
tive digits. This subtraction requires a carry propagation, but it is a single operation which needs
only to be performed once for the whole division operation rather than once per stage. Further,
in a floating-point chip, this full-length carry-propagate operation could be performed by shipping
the quotient results to the part of the chip used for other floating-point additions.

With the redundancy in the quotient digits of SRT division, the quotient selection for a given
position need only use an approximation of the divisor and partial remainder, because small errors
may be corrected with less significant quotient bits of the opposite sign. Since only an approximation
of the divisor and partial remainder is required at each stage for the selection of quotient digits, only
a small number of the most significant bits need to be examined. The number of bits not examined
determines the maximum error in assessing the values of the divisor and partial remainder. The

3 SRT CONSTRAINT DIAGRAMS 5

unexamined bits of lower significance in the partial remainder may be kept in carry-save form, thus
avoiding a full word carry propagation.

The radix r bounds the maximum digit p in the set of quotient digits which is representable in
m bits in the range: [l]

Quotient digit sets where p = 5 have minimal redundancy, whereas quotient digit sets at the
other end of the range where p = r - 1 have maximal redundancy. More redundancy lessens the
complexity of the quotient selection logic and allows fewer partial remainder bits to be examined,
but also means that more multiples of the divisor must be formed. These multiples of the divisor
must be either precomputed and shipped around the chip, sacrificing wiring area, or computed at
each stage, costing time. Thus, choosing the value of p trades quotient selection logic complexity
with divisor multiple formation complexity.

3 SRT Constraint Diagrams

SRT division chooses valid quotient digits based upon approximations obtained by examining only
the top few bits of the divisor and partial remainder at each stage. In order to determine how many
bits of divisor and partial remainder need to be examined to determine the correct quotient digit,
one can graphically depict the required constraints with a series of diagrams. These diagrams, called
the Robertson, Taylor, and colored Taylor diagrams yield insight helpful in making implementation
tradeoffs setting the quotient digit set and the precision of the approximations. The diagrams for
the three simplest cases of SRT division are shown as figures 1, 2, and 3. Figure 1 examines the
case of radix 2 division where the quotient digit set is { - 1, 0, l}, figure 2 examines the case of
maximally redundant radix 4 division where the quotient digit set is (-3, -2, -l,O, 1,2,3), and
figure 3 examines the case of minimally redundant radix 4 division where the quotient digit set is
(-2, -l,O, 1,2}.

3.1 Robertson Diagram
In each set of figures, the Robertson diagram[l][3], hs own in part a, is a plot of the next partial
remainder scaled by the divisor, Ri+l/D, versus the radix times the current partial remainder
scaled by the divisor, TRi/D. The diagonal lines correspond to the different possible choices of
quotient digits in equation (2). The bold horizontal lines on the diagram at I$+I = 3 restrict
the choice of quotient digits so that

R.s+lI I P
D ‘r-1 (4)

This is required to keep IrPwi 5 r$$ since r _5 is the maximum remainder which can be correctly
reduced by subsequent quotient digits. For values on the abscissa where there is only one diagonal
line between the bold horizontal bounds, the quotient digit corresponding to this line is the one
which must be selected. For values where there is more than one diagonal line, the quotient digits
corresponding to either of the lines may be selected. It is apparent that the bounds for choosing

3 SRT CONSTRAINT DIAGRAMS 6

quotient digits are looser for quotient digit sets with more redundancy, and tighter for those with
less redundancy.

3.2 Taylor Diagram
The second useful type of diagram, which we will name the Taylor diagram based upon the work
in [7], graphs the shifted partial remainder rRi versus the divisor D, and is shown in part b of
figures 1, 2, and 3. These graphs are drawn for divisors and dividends normalized to the range
[1,2) to conform with the IEEE floating-point standard. The graphs are shaded to show the range
of partial remainder and dividend for which each quotient digit is valid. When the restriction of
equation (4) is applied to equation (2), it is clear that qi must be selected so that:

Ri
Qi-+<r)

P
r- -A+~

Each stipple pattern on the Taylor diagram indicates the valid region for a quotient digit according
to equation (5). The unshaded regions on the extreme right and left of the inverted trapezoid
correspond to the values of partial remainder outside of the range generated by a correct SRT
algorithm, and hence can be considered “don’t care” regions. For those ranges of partial remainder
for which the Robertson diagram indicates that there is more than one valid quotient digit, the
Taylor diagram will contain more than one stipple pattern. Hence, singly shaded regions in the
Taylor diagram are regions where there is only a single valid quotient digit, and overlapping shading
indicates regions where there is a choice of valid quotient digits.

3.3 Colored Taylor Diagram
At each stage in a division sequence the quotient selection logic must choose the quotient digit that
will be used to form the partial remainder in the next stage. This selection of a valid quotient
digit must be performed by choosing one of the valid stipple patterns covering the corresponding
point in the Taylor diagram. A third type of diagram, which we call the colored Taylor diagram,
can be drawn to show which stipple pattern will be chosen for every point in the Taylor diagram.
The colored Taylor diagram is constructed by painting every region of the Taylor diagram with
a color which corresponds to one of the valid stipple patterns for that region. The painting task
is made difficult because the divisor and partial remainder are only known to a limited precision.
Graphically, this corresponds to painting with a rectangular paint brush which has a vertical size
corresponding to the maximum value of the unexamined bits of the divisor, and a horizontal size
corresponding to the sum of the maximum value of the unexamined sum bits and the unexamined
or unpropagated carry bits of the partial remainder. The grid spacing on which the paint brush
can be positioned corresponds to the tolerances to which the divisor and partial remainder are
examined. The brush and grid sizes for each case are then determined:

grid height = 2(-DivisorBits)

brush height = 2(-DivisorBits)

LeftBits = 2-t [hh (yq

grid width = 2(LeftBits-RBits)

3 SRT CONSTRAINT DIAGRAMS 7

brush width = z(LeftBits-RBits) + z(LeftBits-CBits)

where

f is the radix
p is the maximum quotient digit in the quotient digit set {-p, 0, p}

LeftBits is the number of partial remainder bits to the left of the binary point
DivisorBits is the number of divisor bits examined

RBits
CBits

iS

is
the number of partial remainder sum bits examined
the number of partial remainder carry bits examined

Observe that the vertical spacing of the grid is always the same as the vertical size of the brush,
but the horizontal sizes will differ because the brush size shows the additional uncertainty of the
unpropagated carry bits in the partial remainder. In order to achieve the simplest and fastest
quotient selection logic, the goal of coloring is to find the largest valid brush and grid sizes possible
in order to use the lowest precision approximations of the divisor and partial remainder.

Each splotch of paint laid by the paint brush in the colored Taylor diagram selects a particular
quotient digit for the grid point of divisor and partial remainder value on which it is aligned.
Because the unexamined sum and carry bits can only make the actual value of the divisor and
partial remainder greater than the examined value, the brush lays a splotch of’ paint aligned to
the grid on its lower left corner. When a splotch is laid, the paint brush must fit wholly inside
the region on the Taylor diagram for which the particular quotient digit is valid (the region which
has the same color as the brush); the paint brush must stay within the lines of the original Taylor
diagram. Since the paint brush size is larger than the grid spacing, there will be some overlap of
the splotches. Where there is an overlap of different color paint, this denotes that the points within
the overlap region could be represented, due to redundancy, by two different combinations of most
significant bits. The quotient digit chosen will be the one corresponding to the actual combination
of most significant partial remainder bits which occurs at the particular stage in the division.

The size of the smallest splotch required to meet the constraints of the stipple patterns deter-
mines the maximum paint brush size, and this determines the required number of bits of divisor
and partial remainder that must be examined. For a typical case in which the sum and carry
components of the partial remainder are examined to the same precision, and the carry is only
propagated up the examined bits, the horizontal paint brush size will be twice the horizontal grid
spacing.

A reason why it is significant to consider exactly how many bits of divisor and partial remainder
are necessary is because the number of bits will directly affect the critical path and silicon area
taken by a hardware implementation. In implementing arithmetic circuits with standard packaged
components, there was strong motivation in keeping data path widths a multiple of the bit slice
widths available; however, in custom VLSI integrated circuit design, the number of bits in adders
and other data paths can be freely chosen to equal precisely the required amounts.

There is actually much choice in coloring the Taylor diagrams for higher radices with the more
redundant quotient digit sets. The desired result of the coloring task is a diagram which can be
encoded in a PLA with a minimal number of terms. The number of inputs to the PLA is determined
by the grid and brush sizes used to color the Taylor diagram, and the number of outputs by the

4 SRT DIAGRAM EXAMPLES 8

quotient digit set. In making first-order comparisons, one can assume that the complexity of the
PLA is related to the number of inputs and outputs. Finding the true minimal PLA is actually
an interesting logic minimization problem. Not only can the equations which generate a particular
quotient digit be minimized, but there is the global minimization of choosing which quotient digit
color to use at the points where there is choice. Although there is a set of heuristics for choosing the
colors which works well, further work still remains in performing this minimization with standard
truth table minimization packages such as ESPRESSO[G].

4 SRT Diagram Examples

For radix 2, as shown in part c of figure 1, the graph can be colored correctly with a paint brush
of length 2 horizontally placed on a grid of spacing 1 horizontally. There is no restriction on the
brush or grid vertically. This says that the divisor need not be examined at all to determine a valid
qu0tien.t digit, and that the partial remainder need be examined only to the unity weighted bit of
rR;.. Thus, the bits of the partial remainder to the left of the binary point are all that need to be
examined by the quotient selection logic. Since the maximum value taken by the partial remainder
is 4, and since a sign bit is required, there are three bits to the left of the binary point, and these
three bits are the only ones required by the quotient selection logic.

For radix 4 with the maximum quotient digit p = 3, the graph can be colored correctly in the
worst case regions only if the divisor is known with a tolerance of f, so that two bits to the right
of the normalized (unity) bit must be used in the selection logic. The horizontal brush size must
be 1, and so with the horizontal grid size 5, the uncertainty in the partial remainder due to the
carry bits must also be f, and so the sum and carry bits of the partial remainder can be examined
to the same precision. Since fr corresponds to using 1 bit to the right of the binary point, and 4
bits to the left are also required, the quotient selection logic must examine a total of 5 bits of the
partial remainder and 2 of the divisor. The colored Taylor diagram is shown in part c of figure 2.

For radix 4 with the maximum quotient digit p = 2, the graph can be colored correctly in two
different ways. If the divisor is examined to within a precision of i, then the partial remainder must
be known to within a tolerance of f. Another choice is to approximate the divisor with a precision
of &, in which case the remainder need only be determined with a precision of &. Hence, one can
tradeoff bits of the divisor with bits of the remainder. One choice is to use 3 bits to the right of
the normalized bit of the divisor, and 3 bits to the right of the binary point of the remainder when
the carry is propagated up from the same precision of 3 bits. This first coloring choice has been
given in tabular form in [7]. The other choice is to use 4 bits of the divisor, and 2 bits to the right
of the binary point of the remainder approximation which has had the carry propagated up from
a position 4 bits to the right of the binary point. There are two reasons why the latter choice,
illustrated in the colored Taylor diagram shown in part c of figure 2, is more desirable than the
former for a hardware implementation. The first is that, in general, propagating a small additional
number of carry bits is preferable if it simplifies the quotient selection complexity, because the
time required to propagate the carry a few extra bits is likely to be less than the additional time
required for a larger PLA to operate. An additional reason the second choice is better is because
using divisor bits is preferable over using remainder bits since divisor bits do not change during the
iterations of a division and there need be no propagation or setup time allowed for those inputs to
the PLA; so, the critical path could be shortened.

4 SRT DIAGRAM EXAMPLES 9

Figure la: Robertson Diagram for Radix 2 with quotient digit set {-l,O,l}

Legend:

N Qi = +1

UII q; = 0

El q;=-1

Figure lb: Taylor Diagram for Radix 2 with quotient digit set {-l,O,l}

r---------,I II II II I
I I
I I
I I

/ B r u s h i
I
I Size ;
I I
I I
I I
I I
I I
I I

&------l

Legend:

R
q; = +I

5l
qi = 0

El
q ; = - 1

J.

4 1 I t I 1 1 I I
I 1 I I

I 1 I I I b
-4 -3 -2 -1 1 2 3 4

2R;

Figure lc: Colored Taylor Diagram for Radix 2 with quotient digit set {-l,O,l}

Figure 1: SRT diagrams for Radix 2 with quotient digit set {-l,O,l}

I 4 SRT DIAGRAM EXAMPLES 10

4-

4

f

Figure 2a: Robertson Diagram for Radix 4 with quotient digit set {-3,-2,-1,0,1,2,3}

Legend:

Figure 2b: Taylor Diagram for Radix 4 with quotient digit set {-3,-2,-1,0,1,2,3}

Figure 2c: Colored Taylor Diagram for Radix 4 with quotient digit set {-3,-2,-1,0,1,2,3}
Grid Size = (>ix:, Brush Size = 1 x i(>

4 SRT DIAGRAM EXAMPLES 11

2--
3

-1

Figure 3a: Robertson Diagram for Radix 4 with quotient digit set {-2,-1,0,1,2}

Legend:

Figure 3b: Taylor Diagram for Radix 4 with quotient digit set {-2,-1,0,1,2}

To

(:: .-;::.:: : : : : ! : ; : ; :. : : ; 1 : ! :1 . ;
-7 -6 -5 -t -5 - - -I 0 I 2 5 t s 6 7

,y-R;

Figure 3c: Colored Taylor Diagram for Radix 4 with quotient digit set {-2,-1,0,1,2}
Grid Size = (t x 9 Brush Size = (k x 9

5 MODIFIED SRT ALGORITHMS 12

Since at radix 8 and radix 16 there is even more choice in coloring the Taylor diagrams, it was
useful to write a computer program to output tables of appropriate colorings. The program verifies
a coloring by checking that for its grid and brush size, there is at least one valid color for the brush
when it is aligned at every grid point. The program determines the horizontal brush size required
for a range of vertical brush sizes, and attempts to compose each horizontal brush size by using as
large a grid as possible which is strictly smaller than brush. The grid is not allowed to be equal
to the brush size, because this would require complete carry propagation in resolving the partial
remainder approximation.

A table output by the program is included as table 1 which shows the matrix of possible colorings
for the different radix and quotient digit set choices. The results of the table are seen to agree with
the examples already discussed. For r = 4 and p = 2, one can see the two valid choices which were
illustrated in figures 2 and 3. For example, figure 3 corresponds to the case where DivisorBits= 4,
RBits= 6, CBits= 8, LeftBits= 4, grid height= &, brush height= &, grid width= i, and brush
width= f+&=&.

5 Modified SRT algorithms

Having developed the tools to analyze SRT division, it is easy to evaluate the feasibility and
possible advantages of several modifications to the basic SRT division scheme. One idea is to try
quotient digit sets which affect more than m bits of the final quotient, when the partial remainder
is shifted between stages by the radix r = 2m. This relaxes the upper restriction in equation (3)
and also allows non-integral quotient digits. Because the individual quotient digits are resolved into
the final quotient in a path independent of the critical path of the iteration, such a modification
requiring the addition of bits from different quotient digits to form the final quotient would not
slow the speed of the main iterations. Examples of this idea would be to use the quotient digit
set (-1, - $, 0, $, 1) with radix 2, or the sets (-4, -2,-1,0,1,2,4} o r { - 4 , - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 , 4 }
with radix 4. However, it turns out that the half-integers for radix 2 do not lower the precision
required in examining the partial remainder because it is already so low, and the extra digits when
p 2 r in higher radices have the disadvantage that they increase the number of bits required to store
the partial remainder since its allowable magnitude is increased. So although such sets are feasible,
and can generate correct resulting colorings, it turns out they have no performance advantage in
quotient digit selection complexity over the more standard quotient digit sets consisting of successive
integers, and have the disadvantage of increased complexity in final quotient bit resolution.

Another idea we explored is to use borrow-save subtractors rather than carry-save adders as
the basic arithmetic element in the columns. Graphically, this corresponds to coloring the Taylor
diagram with a brush aligned to the grid by a point other than its lower left corner. The brush
would extend to the right from its alignment point an amount determined by the une::amined
bits of the sum component of the partial remainder, and to the left from its alignment point by
an amount given by the maximum value of the unexamined or unpropagated borrow bits of the
partial remainder. Such a change in coloring does affect the size of the brush required to color the
Taylor diagrams, and the results of a few cases are presented in table 2. In most cases, there is no
advantage obtained over just using the standard two’s complement carry-save adders, but there are
some attractive possibilities where borrow-save does perform better. For example, for radix 8, with
p = 6 and using 3 divisor bits, using borrow-save allows the partial remainder to be approximated

5 MODIFIED SRT ALGORITHMS 13

Radix

r
2

Radix

r
4

Radix

r
8

.
Max digit DivisorBits

0

Max digit
1 I

DivisorBits
2 I 3 I 4

I I

P R B i t s C B i t s R B i t s C B i t s R B i t s C B i t s RBits CBits
2 7 7 6 8

II I I I I I I I

4 II 7 1 7 1 5 1 71 5 1 ill 51 Sl

Max digit DivisorBits
3 4 5 6 7

P R B i t s C B i t s R B i t s C B i t s R B i t s C B i t s R B i t s C B i t s R B i t s CBit,s
4 10 12 9 10 8 14
5 8 9 7 9 7 8 7 8
6 9 11 6 10 6 8 6 8 6 8
7 7 7 6 7 6 7 6 6 6 6
8 7 9 6 9 6 9 6 9 6 8

Radix

r
16

Max digit

-3-i
DivisorB its

4 5 6
RBits I CBits RBits I CBits RBits 1 CBits

Table 1: Grid and Brush sizes determined by Taylor diagrams

145 MODIFIED SRT ALGORITHMS

Radix Max digit DivisorBits
0

r P RBi ts CBi t s
2 1 3 3

Radix Max digit DivisorBits
1 2 3 4

r P R B i t s C B i t s R B i t s C B i t s R B i t s C B i t s R B i t s C B i t s
4 2 7 7 7 7

3 5 5 5 5 4 7
4 7 7 5 7 5 6 5 6

Radix Max digit DivisorBits
3 4 5 6 7

r P R B i t s C B i t s R B i t s C B i t s R B i t s C B i t s R B i t s C B i t s R B i t s CBits
8 4 10 11 10 9 10 9

5 7 10 7 9 7 8 7 8
6 8 10 7 8 7 7 7 7 7 7
7 7 7 6 7 6 7 5 9 5 9
8 7 10 7 7 7 7 7 7 7 7.

Table 2: Grid and Brush sizes determined by Taylor diagrams for borrow-save operations

with one fewer bit, and one less bit of carry to be propagated.
One way of making the quotient selection easier is to restrict the range of the divisor using

pre-normalization. Previously published work has examined normalization extensively as a means
of doing division[2], but it is also possible to just perform a very simple pre-normalization before
using SRT division for the main algorithm. For example, if the divisor is less than g, then both
the divisor and dividend can be multiplied by $ with a single shift and add, and then the divisor
will always be in the range [$, 2). Further, the dividend multiplication can be performed for free
by initializing both the sum and carry portions of the first partial remainder adder, using the sum
input for the original dividend and the carry input for the shifted dividend. Normalizing the divisor
corresponds graphically to moving up the lower horizontal bound of the Taylor diagram, and since
the tightest cases for coloring always occur at the bottom, this will allow a bigger brush size to be
used and simplify the quotient selection logic. The results for a divisor restricted to the range [i, 2)
are shown in table 3. The results yield some interesting feasible possibilities for division schemes.
For example, by using 4 bits of the divisor, and 6 of the partial remainder into which 8 carry bits
have been propagated, radix 8 division may be performed with the quotient digit set (-6, 6).
These are the same number of bits required for the quotient selection logic of radix 4 division
with quotient set (-2, 2). So, with the addition of a single adder to form the extra divisor
multiples, direct radix 8 division, achieving a 3 factor speed improvement, may be performed for
approximately the same quotient selection logic complexity as radix 4 division.

5 MODIFIED SRT ALGORITHMS 15

Radix Max digit DivisorBits
1 2 3 4

r P R B i t s C B i t s R B i t s C B i t s R B i t s C B i t s R B i t s C B i t s
4 2 8 8 6 8 6 7

3 6 6 5 5 4 6 4 6
4 5 7 5 5 5 5 4 8

Radix Max digit DivisorBits
3 4 5 6 7

8’
P R B i t s C B i t s R B i t s C B i t s R B i t s CBi t s RBi t s CBi t s RBi t s 1 C B i t s
4 9 11 8 11 8 10
5 7 9 7 8 6 12 6 10
6 7 9 6 8 6 7 6 7 6 7
7 6 7 5 8 5 8 5 8 5 7
8 7 8 6 8 6 8 6 7 6 7

Table 3: Grid and Brush sizes det,ermined by Taylor diagrams for a Divisor pre-normalized to be
in the range [;,2)

6 HARDWARE lMPLEMENTAT.lON 16

6 Hardware Implementation

6.1 Implementation Options
The “best” choice of radix and quotient digit set depends strongly on the implementation method
taken. There are several overall approaches to implementing SRT division in hardware. The
inherent iteration can either be done in time by looping repeatedly through the same hardware
elements, or in space by replicating the hardware elements to form an array of the division stages.
The most common approach, and the one requiring the fewest transistors, uses only one instance
of each hardware element (full carry-save adder, short carry-propagate adder, quotient selection
logic) and clocks these elements iteratively to compute a new quotient digit each cycle. Much
previous work using the iterative approach has been done using ECL gate arrays[8]. The time
iterative approach requires that the clock have a period greater than the worst case propagation
delay through the arithmetic elements in the critical path around the loop from a register’s outputs
back to its inputs, plus the setup time for the register and an additional allowance for clock skew.
The worst case times must allow for both the worst case arithmetic operations and the worst case
fabrication possibilities. The total division time will be fixed at the worst case single iteration
cycle time multiplied by the number of quotient digits. Higher radix schemes reduce the number
of iterations but will increase the cycle time because of increased complexity. But since the cycle
time will probably not double to go from radix 2 to radix 4 or from radix 4 to radix 16, such moves
do increase performance. Since the generation and distribution of high speed clocks is difficult, a
higher radix scheme is preferable even for the same nominal performance, since it will have a slower
clock. Another benefit of using a higher radix is that the complexity and silicon area of the quotient
selection logic becomes more balanced with that of the carry-save adder in each array stage.

A second hardware implementation approach is to make a fully combinational array of the
arithmetic elements. This approach has only recently become feasible due to the high density
available in small geometry MOS fabrication technologies. An example of this approach is the nMOS
division chip designed at Hewlett-Packard[4]. A fully combinational array of the partial remainder
adders and quotient selection logic has the advantage that the internal logic will propagate at the
fastest possible speed, since the
without waiting for clock cycles

propagation of results can proceed from one
to occur. However, only a small proportion

stage to the next
of the transistors

are active at any instant, and the area required for the whole array is certainly large. The HP
implementation used a whole die of size 6.7x7.lmm to produce a 64 bit result, and it would be
difficult to combine such a design with the other parts of a general floating-point chip while keeping
within a reasonable die size. The fully combinational array implementation is also harder to extend
to higher radix division schemes because the array must contain as many copies of the quotient
selection logic as there are stages in the array. Since at a radix higher than 2, the quotient selection
logic becomes lerge compared to the adders in each stage, the full array approach would expand
greatly in area for higher radix division implementations.

An intermediate approach between the fully iterative and fully combinational approach is one
which has a small array of several copies of the arithmetic elements required for each stage, with
the results looped around so that the array iterates several times in order to calculate the quotient
to the desired precision. If the array contains enough stages then there need not be any registers in
the loop since the outputs of the last stage can be valid long enough to feed back around to the first
stage in the array because of the finite propagation time through the loop. If the loop is self-timed

6 HARDWARE IMPLEMENTATION
Quotient Output

b b

Quotient Shift Register

Dividend

Divisor

I , Quotient Shift Register

p/ Quotient Shift Register /

I Self-Timmg Control Logic

17

Figure 4: Block diagram of Self-Timed Radix 2 division chip

and iterates without synchronization to external clocks, a useful way to think of this approach is
that the division stages form a ring oscillator which has a side effect of spinning off quotient bits
as each stage evaluates. Thus, this approach has the speed advantage of the fully combinational
array, since it contains no clocked registers, but the silicon area and yield economies of the iterative
approach, since only a few copies of the elements for a stage are necessary.

6.2 Our Implementation
We have chosen to implement a radix 2 division chip using this approach of iterating around a
small combinational array[lO]. We chose the radix 2 scheme because we wanted to demonstrate the
feasibility of self-timing the array when the arithmetic operations were the primary component in
the critical path rather than the quotient selection logic. To control the propagation times around
the array, each stage within the array uses precharged function block logic where the precharge
control signals are derived from the logic of the array itself. The result is a self-timed array because
the signals which control the propagation, and hence speed, of the array are derived internally.

The main array of the division circuit consists of a series of columns connected cyclically. A
block diagram of the structure is shown in figure 4. Each column computes one stage of the
division by performing a computation of the next partial remainder, and performing the quotient
selection logic for the next stage. The columns operate sequentially as the wavefront of evaluation
progresses around the columns. The evaluation will continue in the cyclic pattern until stopped by
a completion signal coming from outside of the main array. This completion signal is generated by
the on-chip shift registers collecting the quotient digits as they are produced, and the completion
signal is also an output of the chip to signal when the final quotient is valid.

Each column of the main array contains a carry-save adder to compute the next partial re-
mainder and quotient selection logic to select the quotient digit determined by that remainder.
This quotient digit multiplexes the appropriate multiple of the divisor for the carry-save adder of

6 HARDWARE IMPLEMENTATION 18

the next column. Because a carry-save adder is used to compute the full partial remainder, the
carrys need not be propagated up the whole width of the array and hence the speed of the circuit
is independent of the word width. The critical path of the circuit lies only in the quotient selection
logic and the most significant bits of the adder.

The carry-save addition produces a partial remainder from which the top three bits are used
to determine the next quotient digit. A 3 bit carry-propagate addition is performed to combine
the sum and carry components of these bits produced by the carry-save adder. This option makes
the quotient selection logic very simple, since then the partial remainder bits input to the quotient
select logic are irredundant. Another option would have been to use the sum and carry bits of the
redundant remainder in carry-save form as inputs, and to not use a carry-propagate adder at all,
but this would make even the radix 2 quotient selection logic complex enough to require a PLA
with 23 product terms.

Since the quotient selection logic cannot evaluate until the outputs of the carry-propagate
adder are valid, it was also chosen to use the results of the carry-propagate adder rather than the
carry-save adder as the input for the top bits of the partial remainder input to the next stage. This
decision reduced the number of wires that need to be shipped from one stage to the next for the top
bits. Due to the possibility that rR; < -3 can occur by an amount equal to the maximum value
of the unpropagated carry, an additional bit to the left of the binary point might have otherwise
been necessary, but an additional advantage of using the results of the carry-propagate adder as
the remainder input to the next stage is that the maximum value of the unpropagated carry is
reduced to a value where this special case can be detected. When rR; < -3 is detected, the
quotient selection logic of the current stage and the next stage can both be forced to select the
most negative quotient digit so that the correct result is always produced.

Because the output of the carry-propagate adder is used as the output for the partial remainder
computation as well as the input to the quotient selection logic in each stage, the carry-propagate
adder has been implemented in the layout by interleaving the carry-save logic blocks with the carry-
propagate adder. The latter comprises blocks to provide propagate, generate, and kill signals to a
carry chain. The carry chain is a dual-rail Manchester precharged design, and snakes up through
the top three bit slices to produce the correct sum bits of the partial remainder by gating out the
appropriate rail in each bit slice.

Since the design is self-timed, the speed at which it performs a given division will be dependent
on the values of the operands. The variance would even be greater with a higher radix implementa-
tion using this self-timed method. The self-timing provides a performance increase over a clocked
methodology for most numbers, but for a system to truly take advantage of the self-timing, it must
sense and synchronize on the completion signal output from the chip.

A test chip containing 5430 transistors and measuring 3.39x4.59mm (active area =
2.18x3.46mm) was fabricated on a MOSIS 3c(CMOS run to test the top bits, quotient select
logic and the self-timing. A full version of the array containing 14,000 transistors to compute quo
tients for a floating-point double precision operand length of 48 bits has been fabricated in MOSIS
2~ CMOS technology. Since the active portion fits in an area of 6.0x1.6mm, it is suitable to be
used as the division portion of a complete floating-point chip. Testing has verified that the chips
function with a measured average speed of 13nS per quotient bit, allowing the computation of a 48
bit quotient in 625nS.

7 CONCL usI0I1’s 19

7 Conclusions

We have shown how the drawing of a series of two-dimensional diagrams illustrates the arithmetic
constraints required to implement SRT division. The diagrams allow comparison of different radix
and quotient digit sets, and illustrate the tradeoffs in determining the number of bits to use in
approximating the divisor and partial remainder. In modern VLSI implementations, these tradeoffs
directly affect the time and space required since custom designs use only the required number of bits.
We examined several modifications to the typical SRT division algorithms, and found, in particular,
that simple pre-normalization will allow radix 8 division to be performed with approximately the
same quotient selection complexity as radix 4 division, and also that some of the higher radix cases
can be implemented with fewer bits in the quotient selection logic by using a borrow-save rather
than a carry-save format for the remainder arithmetic. ’

We have successfully designed, fabricated and tested a CMOS chip implementing a self-timed
algorithm for performing SRT division on normalized floating-point mantissas. The intermediate
implementation strategy between a fully iterative and fully combinational approach allows the
design to have nearly the speed of a full combinational array, but with a reduced area. The self-
timing of the array frees the chip of requiring carefully distributed high speed clocks, and allows it
to run as fast as the operand values, technology, and temperature allow.

References

[l] DE. Atkins, “Higher-Radix Division Using Estimates of the Divisor and Partial Remainders,”
IEEE Transactions on Computers, vol. C-17, pp. 925-934, October 1968.

[2] M.D. Ercegovac, “A Higher-Radix Division with Simple Selection of Quotient Digits,” Pro-
ceedings of the Sixth IEEE Symposium on Computer Arithmetic, pp. 94-98, May 1983.

[3] K. Hwang, Computer Arithmetic: Principles, Awhitecture, and Design, John Wiley & Sons,
1979.

[4] W.M. McAllister and D. Zuras, Hewlett-Packard, “An nMOS 64b Floating-Point Chip Set,”
IEEE International Solid-State Circuits Conference, February 1986.

[5] J.E. Robertson, “A New Class of Digital Division Methods,” IRE Tmns. Electronic Computers,
vol. EC-7, pp. 218-222, September 1958.

[6] A.L. Sangiovanni-Vincentelli, R.K. Brayton, et. al., Logic Minimization Algorithms for VLSI
Synthesis, Kluwer Academic, 1984.

[7] G.S. Taylor, “Compatible Hardware for Division and Square Root,” Proceedings of the Fifth
IEEE Symposium on Computer Arithmetic, pp. 127-134, May 1981.

[8] G.S. Taylor, “Radix 16 SRT Dividers With Overlapped Quotient Selection Stages,” Proceedings
of the Seventh IEEE Symposium on Computer Arithmetic, pp. 64-71, May 1985.

[9] T.D. Tochner, “Techniques of Multiplication and Division for Automatic Binary Computers,”
Quarter J. Mech App. Math., vol. 2, pt. 3, pp. 364-384, 1958.

REFERENCES 20

[lo] T.E. Williams, M. Horowitz, et. al., “A Self-Timed Chip for Division,” Advanced Reseamh in
VLSI, Proceedings of the 1987 Stanford Conference, pp. 75-95, March 1987.

