
MIPS-X: The External Interface
Arturo Salz, Anant Agarwal, and Paul Chow

Technical Report No. CSL-TR-87-339

Computer Systems Laboratory
Department of Electrical Engineering

Stanfoxl University
Stanford, CA 94305

Abstract

MIPS-X is a 20-MIPS-peak VLSI
describes the external interface oP

rocessor &signed
MIPS-X and the

system, including the external cache and coprocessors..- -

at Stanford Universi . This document
organization of the SIPS-X processor
The external interface has been designed

to opurmze tne paths between the
signals used by the rocessor and
during exceptions anB

t/i
rocessor, the external cache and the coprocessors. The
eir timing are documented here. Signal use and timings

cache misses are also shown.

Kev Words and Phrases: MIPS-X processor, RISC, external interface, ccache, coprocessor.

Copyright 01987

bY

Arturo Salz, Anant Agarwal, and Paul Chow

i

Table of Contents
1. Introduction 1
2. The MIPS-X System - 1
3. Slgnal Descrlptlon 3

3.1. Slgnal Tlmlngs 6
3.2. MIPS-X Clocks 7
3.3. Pad Loading 7

4. Memory References 7
4.1. Miss 8
4.2. Late Miss 9
4.3. Memory Read 9
4.4. Memory Write 10
4.5. Bus Locking 11

5. lcache Misses 12
6. Coprocessors 15

6.1. Write-Back Enable 17
7. Floating-Point Unit 19
8. Exceptions 21
9. Reset 23
10. lnstructlon Cache Testing 25
11. Data Path Testlng 26

Appendix I. MIPS-X Revision 1 and 2 Pin Numbers 27
1.1. Pin Mapping for Probe Card and Funslm 28
1.2. Pln Map for 144 Pin PGA 31

Appendix II. Revision 1 and Revision 2 Differences 33

. . .
ill

List of Fjqures
Flgure 1: MIPS-X and coprocessors.

-

Figure 2: MIPS-X sysbms on a bus
Flgure 3: Functional slgnal diagram for MIPS-X
Flgure 4: Ecache Interface
Figure 5: Tlmlng dlagram for a load Instruction
Figure 6: Tlmlng diagram for Ecache miss during consecutive loads
Figure 7: Tlmlng dlagram for a store lnstructlon
Flgure 8: Timing dlagram for sequence of memory Instructions
Figure 9: lcache mlss tlmlng
Figure 10: Tlmlng dlagram for an lcache mlss
Figure 11: Tlmlng diagram for coprocessor Instructions
Figure 12: Tlmlng dlagram of the WBEnable slgnal for coprocessors
Flgure 13: Tlmlng dlagram for floating-point operations
Flgure 14: Interrupt tlmlng
Figure 15: Exception tlmlng durlng page fault

3
4
5
8

10
11
12
13
14
16
18
20
22
23
24

V

List of Tables
Table 1: Mlss rates In the external cache 3
Table 2: Slgnal timing - 6
Table 3: MIPS-X actions for varlous Instruction types when an exception occurs during 25

thelr ALU, MEM and WB plpestages.

1

1. Introduction
MIPS-X is a single-chip RISC microprocessor designed at Stanford University. The processor

is pipelined and executes an instruction every cycle. MIPS-X has a peak bandwidth to the
external memory system of 160 MBytes/set for instructions and data. The instruction bandwidth
is reduced by about a factor of six because of an on-chip instruction cache! The on-chip cache _
can be tested or disabled using some pins in the external interface. In addition, MIPS-X needs to
communicate with multiple coprocessors. The external interface allows the transfer of
instructions and data between the processor and the coprocessors. MIPS-X can also operate in a i
demand-paged memory system environment and support maskable and unmaskable interrupts.

To relax the constraints on some of the critical paths in the memory system a late miss detect
and a delayed write-back are used. To speed up floating-point load and store operations, a
special floating-point coprocessor interface allows direct transfer of data between the floating-
point coprocessor and the external cache. All coprocessor instructions are transmitted over the
address bus instead of using an extra set of pins.

A basic system configuration of MIPS-X is described fmt. Section 3 then provides a
specification of the external pins. Section 4 deals with external cache accesses for load and store
instructions, and Section 5 details external cache accesses during instruction cache misses.
Section 6 deals with coprocessors in general and Section 7 describes the special floating-point
coprocessor interface. Exception handling is discussed in Section 8 and the last few sections
discuss processor reset and the testing features.

This document covers two versions of the chip. The main description is for Revision 2 of the
chip. Appendix II states the differences between Revision 1 and Revision 2.

2. The MIPS-X System
The MIPS-X system is a high performance, RISC multiprocessor. The major components of

the MIPS-X system are a MIPS-X processor, an external cache containing both instructions and
data (Ecache), and possibly several coprocessors.

The MIPS-X processor [2,3] provides the following resources: an on-chip instruction cache
with 512 words (2K bytes) of storage, virtual memory support, 32 general purpose registers, a 4
gigabyte addressing space, a coprocessor interface, and floating point support via a floating-point
coprocessor. There are five pipeline stages. The stages are instruction fetch (IF), register fetch
(RF), compute (ALU), memory access (MEM), and writeback (MB). The instruction is fetched

‘The miss rate of the on-chip cache is about 10%. During a miss two instructions are fetched during the two
cycles when the processor is stalled. This leads to an average instruction fetch rate of one instruction every six
cycles, or one-sixth of the original requirements.

2

in IF, the instruction is decoded and registers fetched in RF, and result or address computation
performed in ALU. During the MEM cycle, a possible memory access takes place, and during
the WB cycle, the result (either from an ALU computation or data from a memory operation) is
written into the registers or into memory.

The on-chip instruction cache (Icache) significantly reduces the bandwidth requirements of the
processor and acts as a second port to memory. The presence of the Icache is crucial to
achieving single cycle execution, without severely impacting the cycle time of the machine or
using a large number of pins. The Icache has four sets, associativity equal to eight, and block
size of 16 words. The replacement scheme is pseudo-random and is implemented using a ring
counter. Simulations against several MIPS-X instruction traces show that the instruction cache
will have a miss rate in the neighborhood of 10%. Details of the MIPS-X instruction cache
design are described elsewhere [11.

Each MIPS-X processor may have several coprocessors. The number of coprocessors is not
limited by the hardware, but by the number of bits in the coprocessor instruction that are used to
specify the coprocessor number. The Programmer’s Manual [2] shows three bits for up to eight
coprocessors. Figure 1 shows the MIPS-X and coprocessor interconnection. It includes a MIPS-
X main processor and three coprocessors. One coprocessor is special because load and store
operations to its registers can take place without going through the MIPS-X registers. This
coprocessor is intended to be the floating-point unit.

Accessing the Ecache is one of the critical paths of the system. To reduce the Ecache access
time a direct-mapped virtual cache is proposed. A direct-mapped cache does not have the delay
of an associative compare and using a virtual cache means that a large cache that does not
require time for address translation can be built. Given current static RAM technology, a 16K-
word to 64K-word direct-mapped cache is feasible. The proposed cache has a 4-word block size,
and the entire block is fetched from main memory on a cache miss. The cache uses a write-back
scheme to reduce traffic on the main memory bus. Table 1 presents some performance figures
for the Ecache using simulations against realistic operating system and multiprogramming
workloads.

Figure 2 shows three MIPS-X processors, their associated caches and how they could be
connected into a shared-memory multiprocessor system with a single bus. The memory requests
that are not satisfied by the external cache go to main memory. Important issues such as keeping
the caches consistent in the shared-memory environment, I/O, and virtual to physical address
translation are not discussed here.

To Ecache

Address Bus

1
Data Bus

,

Coprocessor

1

Figure 1: MIPS-X and coprocessors.

Cache Size Miss Rate
16 KWords 2.94%
32 KWords 2.25%
64 KWords 1.66%

Table 1: Miss rates in the external cache

3. Signal Description
This section describes the functions of the pins on MIPS-X. A functional diagram of the pins

is shown in Figure 3. A high signal represents a logic “1” level or active signal Logic “0” is
represented by a low signal. An active low signal name has ‘l-b” appended to it. Appendix I
gives the pin numbers for the 144 pin PGA for the Revision 1 and Revision 2 parts. Appendix II
describes the differences between the Revision 1 part and the Revision 2 part.

Power & Clock Signals

Vdd
Gtld

$1
$2

5 volt power supply (12 pins).
Ground (12 pins).
Input. Phase 1 of a non-overlapping clock.
Input. Phase 2 of a non-overlapping clock.

Address & control Bus >

I I
Data Bus

I I

I Ecache
I I

Ecache
I

0.0
I

Ecache I

MIPS-X
&

Coprocessors

Figure 2: MIPS-X systems on a bus

System Buses

Address~-Address31 Three-state outputs. 32-bit Address bus with byte addressing. The two

Data*-DataJ1

Memory Control

MemCycle

Readf Write-b

BypassCache

AddressTristate

LSBs of the address (AddressJo and Addres.Q are ignored by the
memory system since the memory system access is word aligned.
However, these two bits are needed for coprocessor instructions.
Input/Output. 32-bit Data bus.

Output. Indicates that the current cycle is a valid memory cycle. If this
signal is not active, the memory subsystem should ignore the address
and data lines during the cycle.
Output. Defines the direction of a data bus transfer. A high signal
means that a data bus read is occurring.
Output. The memory transaction should not use the external cache.
This pin is active during the execution of the kit (load-through) and stt
(store-through) instructions.
Input. Tristate the address bus. This signal connects directly to the
pads and is independent of the clocks.

Vdd Gnd

Reset
Exception

Interrupt

ICacheDisable
ICacheTest

Address[O-3 11

Data[O-3 l]

MIPS-X

MemCycle
BypassCache
Read/Write-b

CopCycle 4
WBEnable 4

FPReg[l-4]

Miss
AddressTristate

Phil Phi2

Figure 3: Functional signal diagram for MIPS-X

Miss Input. This signal is used to stall the processor. See Section 4.1.

Exception Control

Reset Input. Resets the processor. See Section 9 for more details.
Interrupt Input. Maskable interrupt.
Exception Input. Non-ma&able interrupt.

Coprocessor Control

CopCycle Output. Indicates that the cunt MEM cycle is a coprocessor cycle.
If A4emCycfe is active then this is an FP load or store, otherwise it is
one of the other coprocessor instructions.

WBEnable Output. Write Back Enable indicates to the wprocessors that a write-
back (or change in coprocessor internal state) of the last coprocessor
instruction issued may be perfornxxi. See Section 6.1 for more details.

FPRegl-FPReg4 Outputs. 4-bit floating-point register number. Indicates which FPU
register is to be used for data transfers between FPU registers and
memory during k# and stf instructions. An FPU load or store cycle

occurs when both CopCycle and MemCycle are active.

Other

ICacheDisable

ICacheTest

Vbh

Input. Disable the on-chip Icache causing the processor to execute
cache-miss cycles.
Input. Used to read and write the instruction cache directly. See
Section 10 for more details.
Input. This should normally be left open. There is an internal Vbias
generator that connects to all of the latches to make them static. When
this pin is grounded, the weak feedback is turned off and the latches
become dynamic. This pin can also be driven to set a different bias
level than the value generated internally.

3.1. Signal Timings
Table 2 gives the timing of the signals on each of the pins. In Table 2, a stable signal means

that it is at the correct value for the entire phase. A valid signal means that the signal may
change during the phase but it can be latched at the end of the phase.
OUTGOING SIGNALS:

Ad&es% - Addressgl
Data, - Data31

MemCycle
Read/Write-b
BypassCache
CopCycle
WBEnable
FPReg@Preg3

INCOMING SIGNALS
Da% - Datajl
AddressTristate
Miss
Reset
Exception
Interrupt
ICacheDisable
ICacheTest

valid e2 of ALU, stable @I of MEM
valid $1 of WI3 for st and MEM for movtoc,

valid e2 of ALU, stable +I of MEM
valid $z of ALU, stable Q1 of MEM
valid ez of ALU, stable $1 of MEM
valid ez of ALU, stable 91 of MEM
valid h of MEM, stable 91 of WI3
valid & of ALU, stable @I of MEM

valid +2 of MEM
asynchronous
See Section 4.1.
stable @*
stable h (can monotonically rise with $$
stable $I
stable 4~
stable 91

Table 2: Signal timing

When an interrupt is acknowledged, further interrupts are masked by the processor. The
Interrupt pin must be released before the processor unmasks interrupts in the PSW or the
processor will begin another interrupt sequence. This pin is latched by the processor whenever
$1 falls. When Miss is high, the Internrpt pin must be kept high until after both Miss and @I fall.

7

The Exception pin must be high for a single Q2 or it can rise monotonically with $2. In the
processor, it will discharge a precharged line. The signal is not latched internally, otherwise it
would take one extra cycle before the exception sequence could begin. Miss prevents state
changes so Exception will only be recognized if it is high for the e2 preceding Miss falling.

3.2. MIPS-X Clocks
MIPS-X uses a 2-phase, non-overlapping clock. These two phases are called @I and Qz. The

Revision 1 parts have been tested up to 16 MHz and the Revision 2 parts should run between 16 I
and 20 MHz but at the time of this printing the Revision 2 parts are not available for testing.

3.3. Pad Loading
The pads have been designed to drive a 50 pf load.

4. Memory References
This section describes the MIPS-X memory interface. It is intended that an external cache

@cache) be used to give the processor fast access to data and instructions. For multiprocessor
systems, the Ecache is also needed to reduce the traffic on the main bus. Details of the Ecache
will not be discussed here but it is assumed that some of the signals are generated by the Ecache.
It is also assumed that the Ecache is a write-back cache.

The organization of the Ecache and its interface is shown in Figure 4. The Ecache supplies
both instructions and data to the processor and handles them in the same way. The processor
does not indicate whether it is doing an instruction or data reference. Instructions that miss in
the on-chip Icache are retrieved from the Ecache. The controller for the Ecache is a coprocessor.
It supplies the process-id (PID) on an Ecache access.

MIPS-X achieves a fast external cache interface by employing two key features that will be
discussed in this section:

l a late miss signal (called Miss).
l delayed writes into the Ecache.

These features provide the Ecache with some extra time for the time critical operations of
detecting misses and writing data back into the cache.

For load and store operations, the address is valid h of the ALU cycle. The address is latched
in an external latch by the falling edge of h, and presented to the memory subsystem (the
Ecache, and in its absence, memory) during the MEM cycle. This should provide the memory
system with enough set-up time for the address lines. The memory control signals (MemCycZe,
ReadYWrite-b, Bypass Cache and CopCycle) ~IIT sent out at the same time as the address.

hit
valid
dirty

1index\r
V
a

Tags 1.
A

ToMainBus

Figure 4: Ecache interface

4.1. Miss
The Miss signal is used to stall the processor, particularly during memory or cache accesses.

Internally, the processor does state changes on (+ when the Miss signal goes low. When the
Miss signal is high during +I the processor is stalled. Miss can be lowered up to 10 ns before +I
falls and still allow the processor to successfully complete the $I clock phase.

9

4.2. Late Miss
Typically, for correct operation, the processor should save the data from a load only if it has

been determined that the data resulted from a hit in the cache. It is known that the critical path in
the Ecache is not getting the data to and from the processor pins; it is determining whether the
reference hit in the cache. The data fi=om the cache is written into the processor registers during
@I of the WB cycle but to allow more time for the hit detection, MIPS-X allows the Miss signal
to fall after @I of WB rises. This means that if Miss does not fall, the processor has written
invalid data into its register. In this case, the processor continues to re-execute the load cycle
while the Ecache fetches the wrrect data. When the correct data is being presented to the
processor, the Miss line is released, and the processor continues with the correct data in the
register.

To make this scheme work, the compiler must ensure that a load instruction does not use the
same register for both the address calculation and the destination. This will insure that all loads
are idempotent (can be repeated indefinitely and give the same result).

4.3. Memory Read
Figure 5 shows the basic timing for a load instruction. A normal read begins with the

processor presenting the new address to the cache by the end of Q2 of ALU of the load
instruction. This address is latched in the external address register, and driven to the memory
array. MemCycZe and Read/Write-b will be high for this cycle. The memory system must
present valid data to the processor before the falling edge of MEM e2. The Miss signal should
be raised before @I rising and lowered during $I if the data is valid. If the memory system is not
fast enough to keep up with the processor, then it must stall the processor by keeping the Miss
signal high.

While the data is latched by the processor, the Ecache controller is performing the tag
compare . The Miss line is pulled low during the $I of WB if the reference hits in the cache. If
the read generates an Ecache miss, then Miss is kept high and the data has to be retrieved from
main memory. While the processor is stalled, the Ecache presents the address to main memory
which will return the requested data to the Ecache. When the data is fmally received from
memory, the Ecache lowers Miss and the processor continues as usual.

Some complications arise in the Ecache control because of the late miss detection and the
Ecache system having a two-stage pipeline. Every cycle, an address is latched externally during
h falling and supplied to the Ecache. When there is an Ecache miss during the first load of a
back-to-back load operation, the address of the second load will displace the address of the load
that missed. To handle this event, the Ecache controller must keep the address of the first load in
an internal register and then reload it in the address register. This is done by first t&stating the
processor address pins and then driving the address bus with the address that missed. Figure 6

10

PhilPhil

Phi2Phi2

ReaciWrite~bReaciWrite~b

MemCydeMemCyde

AddreSSAddreSS

AdrhtchAdrhtch

DataData

MissMiss

Figure 5: Timing diagram for a load instruction

shows this sequence.

4.4. Memory Write
To reduce the main memory bus traffic in a multiprocessor configuration MIPS-X assumes

that a write-back scheme is used for the Ecache. Under this scheme, writes are only updated in
.memory when either the Ecache is flushed or a block that needs to be replaced is found dirty.
Therefore, before writing data into the Ecache, the miss and dirty conditions must be determined.
If a miss-and-dirty condition is encountered, the current cache entry must first be updated in
memory and only then can the data be written into the cache. This means that a store instruction
needs two memory cycles: one to probe the cache to check if the block exists and one to write
the data. The instruction following the store instruction should not use its MEM cycle (the WB
of the store instruction) so the Ecache can use this cycle to write the data without stalling the
processor. The architecture disallows stores followed by another memory or coprocessor
instruction but there is no hardware interlock to prevent this. The compiler reorganizer is
responsible for scheduling the right instruction here2.

%‘here is a hardware interlock that prevents an Icache miss f?om occurring during the second cycle of a store
instruction. Section 5 explains this in more detail.

hstnrdlon
0: bad
1: bad

Phil

Reac#Wtite~b

Data

1 q I q 1 g I I$ J
I I I I

I I
-1 rn -1 . . .adrl

/
adfo a&l ad

I I

11

Figure 6: Timing diagram for Ecache miss during consecutive loads

Figure 7 shows the timing for a store instruction. The write operation begins like a read,
except that the Real/Write-b signal is low. Data is driven out of the processor when Miss falls
during $1 of WB and remains on the bus until $I rising of the next cycle. The Ecache writes the
data during WB (the MEM slot of the next instruction). This scheme is known as the dehyed
write. Note that raising Miss before WB will not stall the write; the data will be on the bus for
exactly one cycle, independent of Miss.

A sequence of memory instructions is shown in Figure 8.

4.5. Bus Locking
There is no provision in the MIPS-X processor for implementing synchronization primitives

such as a read-modify-write instruction. Two schemes have been proposed to accomplish
synchronization. One is to use strictly software synchronization such as Dijkstra’s or Dekker’s
algorithm. The other is to implement coprocessor instructions in the Ecache controller. A
possible coprocessor instruction is one that locks the bus on a read and unlocks it on the next

12

Phil

Phi2

ReacWrite-b

MemCyde

Data

Miss

MEM ,

Figure 7: Timing diagram for a store instruction

store instruction. This is effectively a read-modify-write instruction.

5. lcache Misses
The timing for an Icache miss cycle looks exactly like a load instruction to the Ecache.

During an Icache miss, two instructions are fetched during two cache miss cycles. Exceptions
during an Icache miss are handled in the same way as those during normal operation. Figure 9
describes an Icache miss sequence for each of the pipeline stages. Figure 10 shows the timing of
the external pins for a typical instruction sequence.

In Figure 9, assume that instruction 5 misses in the instruction cache. The following
enumeration numbers correspond to the superscripts in Figure 9.

1. Instruction 5 misses in the Icache. The miss sequence starts from the next cycle.
2. Instruction 2 is closest to completion at this point. An instruction can commit only

in its WB phase (stores are an exception) and special care needs to be taken to see
that the instruction does not change processor state before the miss is handled.

l If instruction 2 is an ALU operation then the WB is postponed until after the
miss sequence.

l If instruction 2 is a load, then the data from memory is latched into the input
memory data register, the register that latches input data before it is written

13

Figure 8: Timing diagram for sequence of memory instructions

14

Instruction
1: IF RF ALU
2: IF RF
3: IF
4 :
5 :
6 :
7 :

MEM WB
A L U MEM2
RF ALU4 7 MEM WB
IF RF ALU MEM

Fl.3 CM15 an6 RF ALU
IF8 RF

n;9

Figure 9: Icache miss timing

into the register file. If the memory operation corresponding to instruction 2
fails (Miss is active) then the sequence of events that follow at the Ecache is
the same as an Ecache miss during the first load of a load-load sequence.
The timing for this squence was shown in Figure 6. The Ecache controller
loads the address register with the load address of instruction 2 (note that this
address was displaced from the address register by the address that came
from the processor) and completes the load. The Miss signal stays high
causing the processor to stall throughout the load miss sequence.

l If instruction 2 is a store then the only hardware interlock in the processor
takes effect. Recall that store instructions require two cycles to complete and
the software ensures that the instruction after the store does not use memory.
However, there is no way to predict an Icache miss, which also needs to
access memory, so a hardware interlock is implemented that inserts an extra
cycle to complete the store before the Icache miss begins. After the Icache
miss cycles are completed, instruction 2 will execute a null WB cycle.
If an exception occurs during the Icache miss cycles, the store instruction
should be re-executed but the store has actually completed. Before returning
from an interrupt, the interrupt handler must convert the fEst instruction to a
mp if it is a store instruction. This is done by than ’
for that instruction to Address 0 where there is a napF

g the restart address
. This action need not

be done if it is hewn that all store instructions are idempotent. Writes to
shared memory or device registers may have side effects that render them
non-idempotent.

3. The address of instruction 5 is sent out.
4. The address of instruction 5 overrides a possible data address due to instruction 3.

Essentially, the internal Icache miss signal causes the PC value to be selected
instead of the address for the memory access.

5. Instruction 5 returns from the Ecache. The address of instruction 6 is sent out.
6. Instruction 5 is copied into the Icache. Instruction 6 comes back from the Ecache.

7. The address corresponding to a possible memory-reference by instruction 3 is

?he architecture specifies that a mp instruction be found at Address 0 in both system and user space. This
allows instructions to be squashed on restart by setting their PC address to zero.

15

placed on the address bus by MIPS-X and latched into the address latch at the
Ecache.

8. Instruction 5 is decoded to begin its RF phase. Instruction 6 is copied into the
Icache. It is “fetched” at the same time.

9. The RF of instruction 6 is started. Instruction 7 is fetched from the Icache (unless
another Icache miss occurs).

6. Coprocessors
Coprocessor instructions are cached in the main processor and hence have to be sent to the

appropriate coprocessor for execution. Ideally, the coprocessor instructions should be sent over
a separate bus, but because this requires a large number of pins a scheme that sends coprocessor
instructions over the address bus is used. The coprocessor instructions are really memory type
instructions with the offset field containing the instruction for the coprocessor. All loads and
stores of coprocessor registers must go through the MIPS-X registers except for one special
coprocessor which would usually be a floating-point unit.

There are three instructions that deal with the general coprocessor interface. They are move-
to-coprocessor (mvtoc), move-from-coprocessor (movfrc) and coprocessor-alu (aluc). The first
two are used to transfer data between the coprocessor registers and MIPS-X and the last one is to
initiate coprocessor operations. The afuc instruction is actually a movfrc instruction with the
destination register set to register 04.

The floating-point load and store instructions are described later in Section 7. Detailed
descriptions of these instructions are given in the Programmer’s Manual [2].

The timing of the coprocessor instructions is similar to the timing for load and store
instructions. During the ALU cycle, the coprocessor instruction is driven on the address bus as if
it were an address. This is latched by the coprocessor latch on ALU & falling. The CopCycle
signal is asserted at the same time, notifying the coprocessors that the address bus contains a
coprocessor instruction; the MemCycfe signal is inactive, so the memory subsystem will ignore
the address bus during this cycle. The addressed coprocessor will then execute the instruction as
follows:

l movtoc - The MIPS-X source register is placed on the data bus at MEM @I rising or
when Miss falls. If necessary, the coprocessor can stall MIPS-X until it has decoded
the instruction by using the Miss line. The data stays driven until Miss is released
during WB el. The data is latched by the coprocessor on MEM h falling. The
coprocessor should only write the destination register if the WBEnubZe signal is

?he current software system generates mo@c instructions but movtoc instructions could also be used if the
coprocessor ignores the data on the data bus during this cycle. The timing diagmms in this document assume that
movtoc instructions are used.

in
st

ru
ct

io
n

0:
st

or
e

1:
ad

d

2:
lo

ad

3:
st

or
e

4:
na

p

5: 6:

Ph
il

Ph
i2

M
em

C
yd

e

R
ea

d/
W

rit
e-

b

Ad
rL

at
ch

D
at

a

RF
AL

U
M

EM

IF
RF

A
LU

IF
RF

W
B

IF
CM

1
1

A
LU

’
f

M
E

M

1
W

B

-p
-H

in
s

r
7

&lrt3
40

I
i

I
da

ta
in

s
1

da
ta

I
I

I
l
c
l
i

17

activated by MIPS-X as explained later in Section 6.1. Note that this instruction is
like a store instruction except that only one memory cycle is needed because a cache
probe is not necessary.

l movfrc - The coprocessor places the contents of the appropriate register on the data
bus before MEM h falling. If necessary, MIPS-X can be stalled if this cannot be
done in time since the coprocessor only has one cycle to do this? MIPS-X will
latch the contents of the data bus on MEM e2 falling.

l aluc - The coprocessor decodes the instruction and starts executing the instruction.
If movfrc instructions are used, then the data on the data bus is read by MIPS-X and
dumped into register 0. If movtoc instructions are used, then MIPS-X places register
0 on the data bus. This should be ignored by the coprocessor.

Coprocessors should stall the main processor by keeping Miss high if they require more time
to finish an operation .

6.1. Write-Back Enable
The external interface of MIPS-X provides for restartability of coprocessor instructions. This

is necessary if the processor has to operate in a system where interrupts or other exceptions may
occur. An instruction should not change processor state until it has reached the WB stage on the
main processor. To tell a coprocessor that an instruction can complete, a signal called WBEnabZe
is asserted by MIPS-X on the WB cycle of the coprocessor instruction. Before this signal is
received, the coprocessor must retain the result of the operation internally until WBEnabZe is
activated (if at all). If the coprocessor implements idempotent operations then it may ignore the
WBEnable signal and commit as soon as it has finished execution.

Figure 11 shows the timing for the execution of four consecutive coprocessor instructions:
movtoc, movfrc, aluc and ah. Instruction 4 stalls MIPS-X; this is to show what happens when
an instruction is sent to a coprocessor that can execute only one instruction at a time, and has not
fmished executing the previous instruction sent to it. Also, note that when the coprocessor stalls
MIPS-X, the Ecache must also stall. Otherwise, it would read the incorrect data from the data
bus. This shows that all devices must look at the Miss signal.

If the MEM cycle of a coprocessor instruction coincides with an interrupt or page fault, the
WBEnubZe signal will not be generated and the instruction will be re-executed after the interrupt
has been scrviccd. When a coprocessor is waiting for WBEnable to complete its current
instruction and another coprocessor instruction is issued before WBEnabZe, the current

?his will probably be the case since a 5Ons clock cycle will not be enough time for the coprocessortoreadthe
instruction, decode it, decode the register number, index into its register file, and place the contents on the data bus.
An alternative solution that would have provided the coprocessor more time to decode the register number would
have been to send out the register number in the RF phase on the register number lines provided for the floating-
point unit, but this meant a non-trivial change in the MIPS-X p-r implementation and was discarded.

ifl
st

rlJ
ct

io
n

0:

m
w

to
cR

m

1:
m

ov
frc

Rc

2:
al

uc
 o

pl

3:
a

&
 o

p2

4:
at

om Ph
il

Ph
i2

Da
ta

IF
RF

AL
U

M
EM

W
B

IF
RF IF

AL
U

RF IF

M
EM AL

U

RF IF

W
B

M
EM AL

U

RF

PW W
EM

)

W
B

M
EM

W
B

Ia&
4

no
ie

:R
m

-~
m

ip
xr

eg
is

te
r

Rc

=>
 a

zp
oc

m
m

 re
gi

st
er

r0
 -

a
m

ip
6x

 re
gi

st
er

 0
op

l ,
op

2
*>

 o
o

p
r
-

m
m

an
d

!
!

19

instruction is squashed. The coprocessor should start the new instruction if it was the
coprocessor addressed. If a coprocessor sees a WBEnubZe before or concurrent with any other
coprocessor instructions issued, then it should complete its current instruction.

If an Icache miss occurs during the MEM cycle of a coprocessor instruction, activation of the _
WBEnabZe signal is delayed until after the CM1 and CM2 cycles because the WB cycle is
delayed. If no exception occurs during these two cycles then WBEnubZe will be activated. When
an exception occurs during the CM cycles, WBEnable will not be generated and the instruction
will be restarted later. Figure 12 shows the delaying of the WBEmzbfe during an Icache miss
followed by a coprocessor instruction that gets squashed due to an interrupt.

There are at least two ways the coprocessor can behave if it is sent back-to-back instructions:
l The coprocessor can be pipelined at least two stages: One for executing and one for

performing the write-back. This allows the main processor to send data and
instructions to the coprocessors one immediately after another as shown in Figure
12. It may be necessary to bypass the coprocessor Result register because the next
instruction may need to use it before it has been written back.

l The coprocessor first performs the write-back and then starts executing the new
instruction. In this case, the main processor is stalled until the pending write-back is
performed and the coprocessor has had time to decode the new instruction.

A better option would be to resolve these interlocks by software, but this may not be possible
for all coprocessors, because coprocessor instruction execution times will vary from coprocessor
to coprocessor, from system to system, and even from instruction to instruction on the same
coprocessor. Nevertheless, it is still worthwhile to try to schedule useful operations between
coprocessor instructions when the execution time can be estimated.

The need to look at the WBEnable signal before completing the execution of instructions on
coprocessors can complicate the coprocessor control. An alternative solution that obviates the
WBEnabZe signal is to guarantee that non-idempotent instructions are not restarted on the
coprocessors. Then the coprocessor instruction that is in its MEM phase when an exception
occurs can be allowed to complete in the coprocessor. Such a feature can be implemented in the
software interrupt handler. During the return from interrupt, the handler should check to see if
the first instruction to be restarted is a non-idempotent coprocessor instruction and convert it to
be the wp instruction at Address 0. This is similar to the scheme used to prevent stores from
re-executiIlg after an interrupt.

7. Floating-Point Unit
The special interface for the floating-point unit tries to optimize floating-point loads and

stores. The fact that all loads and stores of coprocessor registers must go through the general
purpose registers of the main processor was considered unsatisfactory far the floating-point unit

20

-

f
P

Figure 12: Timing diagram of the WBEnable signal for coprocessors

21

(FPU) since it could be used heavily. The coprocessor interface was extended to allow loads and
stores directly between memory and the FPU by including two more instructions for the floating-
point coprocessor. Load float (Z@ loads a floating-point register from memory and store float
(szj) stores the contents of a floating-point register into memory.

The two instructions require four pins dedicated to the FPU: FPRegZ - FPReg4. The timing of
these two instructions is identical to memory loads and stores. For a s#, MIPS-X performs a
store cycle by generating the memory address and signaling the FPU to provide the data word.
For a Idf, MIPS-X performs a load cycle by generating the memory address and signaling the
FPU to get the data from the data bus. The FPU source or destination register for a w or se
operation is sent to the FPU by means of the FPRegl - FPReg4 signals, whose timing is identical
to the address lines.

Figure 13 shows the timing of the various signals required for a stream of floating-point
instructions: two l@‘s to load the operands followed by an afuc (the floating-point operation) to
be performed on the two operands and a movtoc to move the result into a MIPS-X register,
followed by a stfto store the result into memory.

It is important to note that when a ldf or stf is being performed, it may be necessary for either
the FPU or the Ecache to wait for one another. The solution adopted is to require each of these
to remain in the same state until +2 has fallen; the required synchronization is accomplished by
having the FPU and the Ecache stall MIPS-X using the Miss signal until they have both finished.
The data should then be latched on the falling edge of h.

8. Exceptions
Exceptions such as interrupts and page-faults are asynchronous events. The interrupt line is

maskable and latched by the processor during ql. The Exception line is not maskable and not
latched. Figures 14 and 15 give the timing for the Interrupt and the Exception lines respectively.
Exceptions and Interrupts can occur while the processor is being stalled by the Miss signal.
When the Miss signal is released, execution will begin at the start of the exception handling
routine. Section 3.1 explains the timing for these signals in more detail.

When MIPS-X recognizes an interrupt or exception, execution jumps to location 0 in system
space. At this point, the exception routine should save the state of the processor and any
coprocessors that are to be used before the interrupt returns. Details of this are explained in the
Programmer’s Manual [23.

Table 3 shows the action taken by MIPS-X for various instructions when an interrupt or
exception occurs during the ALU, MEM and WB stages. If an interrupt occurs before the WB
stage of a coprocessor instruction, the processor does not activate the WBEnable line. The
coprocessor remains in a suspended state until it receives the next coprocessor cycle request,

im
m

0:
ld

ff
o

1:
ld

f
fl

2:
du

e
fp

up

3:
m

cw
frc

fp

f

4:
st

f
f4

5:
no

9

Re
ad

/V
/ti

le
-b

IF
RF

AL
U

M
EM

W
B

IF
RF

AL
U

M
EM

W
B

IF
RF

AL
U

M
EM

W
B

IF
RF

AL
U

M
EM

W
B

IF
RF

AL
U

M
EM

W
B

IF
RF

M
U

M
EM

I
I

I
I

,

.
I

I
I

I i
.

I
.

.

!

V
ad

f0
a&

l
fP@

w
fp

r
a&

4
h

l
l

*
!

Y

no
te

:
fO

,f
1
,a

n
d

f4
->

fp
lJ

re
g

h
r~

fp
op

=>
fp

op
er

al
io

n
fO

=>
m

ip
sx

re
gi

st
er

O
-0

fp
r -

>
fp

u
re

gi
st

er
[q

 c
on

te
nt

 o
f f

pu
 re

gi
st

er
 l

23

instruction
0: st
1: add
2: sub
3: x
4: x
5: x

Phil
.w

Phi2

MemCyde
.

Read/Write-b
.

Address
.

AddAch
.

hAi88

Data-

Interrupt
.

note: tell

IF

--Lr

I . ww- itore finirhed

ALU
RF
IF

-L

A-

A-

-7

I

MEM

ALU
RF
IF

-L

-r

-7

-r

dro
I

-r

r

. ,
(MEM)
ww
(RF)

-Lr

ult(dd)

ro

+ Interrupt Ha

WE

t
t
t

IFint

-I

1
r

I-

ller

RF
IFmt+l

rl-r

Figure 14: Interrupt timing

signaling a new instruction. In this case it starts off on’ the new instruction, neglecting to do the
writeback of the previous one. This effectively squashes the interrupted instruction. Interrupts
which arrive after the WBEnable signal has been asserted have no effect on the coprocessor.

9. Reset
To reset the processor, this pin should be held high for at least 4 cycles and should only be

released when *I is active or during the rising edge of $I. Internally, Reset is expected to be a
stable & signal.

During reset, the address Ox7fffff806 is forced onto the address pins and the processor will
begin executing at this location when Reset is released. This location should be the start of the

%his is the byte address that appears on the pins of the chip. Intexnally, the PC Unit is word addressed and it uses
Ox7fffffeO as its starting address. This is reflected in the simulators and the assemblers.

in
s
-

0:
Id

1:
ld

2:
Id

3:
Id

4:
Id

5:
Id

Da
ta

IF
RF IF

AL
U

RF IF

M
EM AL

U

RF IF

W
B

M
EM AL

U

RF IF

(W
B)

WE
M)

W-
U) (RF
)

(W
B

)

N
W

W
-W

(R
F

)

-)
 E

xc
ep

tio
n

t t t t
IF

ex
ce

pt

I
I

I
I

no
te

:
t

->
 R

.I.
P.

25

ALU MBM
Compute instruction Squashed Squashed Completes
Load instruction Squashed Squashed Completes

(never leaves chip)
Store instruction Squashed Completes next cycle Completes

(never leaves chip)
COP instruction Squashed WBEnable Completes if

(never leaves chip) not generated WBEnable seen
Table 3: MIPS-X actions for various instruction types when an exception occurs

during their ALU, MEM and WB pipestages.

reset sequence.

10. Instruction Cache Testing
The instruction cache can be read and written to test whether the bits in the instruction cache

are working. The sequence is:
1. Reset the processor by holding the Reset pin high for at least 4 cycles to clear the

tags. Before releasing Reset, set ICacheTest high and do 4 more cycles. Then
release Reset as described in Section 9.

2. While ZCacheTest is high the PC Unit is forced to increment starting from the
Reset vector. Since the Icache is empty, the processor will now do Icache miss
cycles to fill the Icache with the data presented at the data pins. The data should be
available at the pins while the MemCycZe pin is high but can be left driven on the
pins during this part of the test if only one pattern is to be loaded in all locations.
With the PC Unit forced to be in increment mode, all locations in the cache wiII be
filled with the data at the data pins after 1024 clock cycles. This number is not 512
cycles (the Icache can hold 512 instructions) because the processor is executing
Icache miss cycles. You will see a pattern of 2 Icache miss cycles and 2 execute
cycles on the address bus.

3. During ICacheTest mode the datapath of the processor is still interpreting the data
at the data pins as instructions. This means that some care must be taken if the top
two bits of the data (corresponding to the TY field of an instruction) are I 0
meaning that the instruction is a memory instruction. If the data can be interpreted
as a store instruction, the data loaded into the Icache will be corrupted because the
datapath will be driving the internal data bus. If the data can be interpreted as a
load instruction, then the MemC’ycZe pin cannot be used to determine when to put
the next data pattern on the pins unless you know when it is for an Icache miss and
when it is for the load instruction.

4. After filling the Icache, Reset the processor while keeping ICacheTest high. This
wiIl farce the PC Unit back to the Reset vector but it will not invalidate the
contents of the tags. When Reset is released, the processor will sequence through
the 512 Icache locations in 512 cycles. The data on the data pins will be data from
the Icache.

5. If none of the patterns loaded into the instruction cache correspond to memory
instructions, then the PadMem pin should always stay low because all instructions
should be in the Icache and no data will be accessed. If PadMem does go high it is

26

an indication of data coming from the Icache being interpreted as a memory
instruction or a failure in the tags causing an Icache miss cycle.

11. Data Path Testing
A useful feature for testing the data path is to observe the contents of the address bus.

Internally, the address bus is the output of either the Result Bus or the PC Bus. During Icache
miss cycles, the address bus will have the contents of the PC Bus. Otherwise, it will show the
value of the Result Bus which usually has the output of the ALU or the shifter, depending on the
instruction being executed.

27

Appendix I
MIPS-X Revision 1 and 2 Pin Numbers

The pin assignments for both Revision 1 and Revision 2 are the same except that the
Revision 2 part does not have a Test pin. This pin is not connected (NC) on the Revision 2 part.

Two lists are given. The first one gives the correspondence between the pin numbers and
names for the medium tester jumpers, the probe card, the layout and the functional simulator
(Funsim). The names given are the names that are used in the layout and may not be exactly the
same as the names used elsewhere in this document. The second list maps the pin number of the
144 pin PGA and the signal names to the medium tester jumpers and 64-pin connectors. A map
of the pads is shown below. The numbers on the pins are the bonding pad numbers for the
144-pin ceramic PGA from Kyoto Ceramic Co., Ltd. (Kyocera).

MIPS-X

28

1.1. Pin Mapping for Probe Card and Funsim
This is the list of the pad names and their corresponding pin numbers for the tester, probe card

and the layout. For the layout the numbering of the pads starts with Pin 1 in the top left comer of
the chip and going counter-clockwise. For each pin, the name used in the layout and the name in
the functional simulator are given.

The ClockTri pin is used to switch the state of the multiplexer that selects between using the
tester to stimulate the clock pins and using an external clock for speed testing. This is only a
connection between the tester and the probe card pins. A low value on this pin selects the tester
as the clock source.
Tester Probe
Jumper# Card #
-------- ------

120 B 56
56 A 56

119 B 55
55 A 55

118 B 54
54 A 54

117 B 53
53 A 53

116 B 52
52 A 52

115 B 51
51 A 51

114 B 50
50 A 50

113 B 49
49 A 49

112 B 48
48 A 48

111 B 47
47 A 47

110 B 46
46 A 46

109 B 45
45 A 45

108 B 44
44 A 44

107 B 43
43 A 43

106 B 42
42 A 42

105 B 41
41 A 41

104 B 40
40 A 40

103 B 39
39 A 39

102 B 38
38 A 38

101 B 37
37 A 37

100 B 36
36 A 36

Layout
Pin #
---mm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Pad Name Funsim Name
-------- -----------

Vdd - Pad
PadMiss PadMiss-vl
PadInterrupt-vl PadInterrupt-vl
PadReset PadReset
PadException-v2 PadException-v2
PadMem PadMem
PadRead PadReadWrite
PadBypass PadBypass
PadCop PadCop
PadWBen PadWBen
PadFPReg.1 PadFPReg
PadFPReg.2 "
PadFPReg.3 88
PadFPReg.4 w
PadTest(NC in Rev.2) not in funsim
Gnd - Pad
Vdd - Pad
PadDataBus.31 PadDataBus-sl
PadDataBus.30 "
PadDataBus.29 88
Gnd - Reg Array,Pad
PadDataBus.28 "
PadDataBus.27 n
PadDataBus.26 88
PadDataBus.25 88
PadDataBus.24 88
PadDataBus.23 n

PadDataBus.22 88
PadDataBus.21 88
PadDataBus.20 88
PadDataBus.19 n
Vdd - Pad
Gnd - Pad
Vdd - Reg Array
PadDataBus.18
PadDataBus.17
PadDataBus.16
PadDataBus.15
PadDataBus.14
PadDataBus.13
PadDataBus.12
PadDataBus.11

29

Tester
JumperC
---w--w-

99
35
98
34
97
33
96
32
95
31
94
30
93
29
92
28
91
27
90
26
89
25
88
24
87
23
86
22
85
21
84
20
83

;2'
18
81

ii
16
79
15
78
14
77
13
76
12
75
11
74
10
9

Probe
Card #
-w-w--
B 35
A 35
B 34
A 34
B 33
A 33
B 32
A 32
B 31
A 31
B 30
A 30
B 29
A 29
B 28
A 28
B 27
A 27
B 26
A 26
B 25
A 25
B 24
A 24
B 23
A 23
B 22
A 22
B 21
A 21
B 20
A 20
B 19
A 19
B 18
A 18
B 17
A 17
B 16
A 16
B 15
A 15
B 14
A 14
B 13
A 13
B 12
A 12
B 11
A 11
B 10
A 10
A 9

Layout
Pin #
--w-w
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

ii"4
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

E
94
95

Pad Name

PadDataBus.10
PadDataBus.9
PadDataBus.8
PadDataBus.7
PadDataBus.6
Gnd - Pad
Vdd - Pad
PadDataBus.5
PadDataBus.4
PadDataBus.3
PadDataBus.2
PadDataBus.1
PadDataBus.0
PadAddressBus.0
PadAddressBus.1
PadAddressBus.2
PadAddressBus.3
PadAddressBus.4
PadAddressBus.5
PadAddressBus.6
Gnd - Tags,Pad
Gnd - Pad
Vdd - Pad
PadAddressBus.7
PadAddressBus.8
PadAddressBus.9
PadAddressBus.10
PadAddressBus.11
PadAddressBus.12
PadAddressBus.13
PadAddressBus.14
PadAddressBus.15
PadAddressBus.16
PadAddressBus.17
Vdd - Tags
PadICacheDisable

Funsim Name
--w-w------

"
88
88
”

88

88
88
88
88
88
88

AddressBusn
88
88
n
”

”

88
88
n
88
88
”
n
88
88
”
88

PadCacheDisable
PadAddressTristate PadTriState
Vdd - Pad
Gnd - Pad
PadAddressBus.18 AddressBus
PadAddressBus.19 88
PadAddressBus.20 88
PadAddressBus.21 88
PadAddressBus.22 n

PadAddressBus.23 n

PadAddressBus.24 88
PadAddressBus-25 88
PadAddressBus.26 88
PadAddressBus.27 88
PadAddressBus.28 88
PadAddressBus.29 88
PadAddresaBus.30 88
PadAddressBus.31 88

30

Tester Probe
Jumper # Card #
-0-0---- ww--0-

8 A 8
7 A 7

69 B 5
68 B 4
65 B 1

128 B 64
127 B 63
126 B 62
125 B 61
60 A 60
59 A 59
58 A 58
57 A 57
3 A 3

Layout
Pin #
---w-
96
97
98
99

100
101
102
103
104
105
106
107
108

Funsim Name

Pad Name
w----w--

Vdd - Pad
Gnd - Pad
Gnd - ICache
Vdd - ICache
Gnd - ICache Sense Amp
Vdd - ICache
Vdd - ICache
Gnd - ICache
Vbias
PadICacheTest-sl PadTest
PadPhi
PadPhil
Gnd - Pad
ClockTri

31

1.2. Pin Map for 144 Pin PGA
The mapping in the MIPS-X column is between the signal names and the pin number on the

144 pin PGA. The numbers in the TESTER column is for the M-pin test adaptor that plugs into
the medium tester and gives the tester jumper number and the number on the @-pin connectors.

MIPS-X
-0-0-0

Bonding
Pad No.

1
3
4
5
6
7
8
9

10
11
12
13
14
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
37
39
44
45
54
55
61
62
66
67

ii"9
71
73
75
76
77
78
79
80

Pin No.
-0ww--0
D 3
Bl
D 2
E 3
C l
E 2
Dl
F 3
F 2
E l
G 2
G 3
Fl
H 2
Hl
H 3
J 3
Jl
Kl
J 2
K 2
K 3
Ll
L 2
M l
Nl
M 2
L 3
N 2
Pl
M 3
N 4
Q 2
Q 4
N 6
N 8
N 9
Q 11
P 11
N 11
P 13
Q 14
N 12
P 14
M 13
P 15
M 14
L 13
N 15
L 14
M 15

Signal Name
-ww---w-w-w
Vdd
Address.7
Address.8
Address.9
Address.10
Address.11
Address.12
Address.13
Address.14
Address.15
Address.16
Address.17
Vdd
ICacheDisable

TESTER

Jumper 640pin corm. Notes
w-w--- w-w--w------ -0-0-

8 A 8
24 A 24
87 B 23
23 A 23
86 B 22
22 A 22
85 B 21
21 A 21

ii
B 20
A 20

83 B 19
19 A 19
17 A 17
18 A 18

AddressTristate 81
Vdd 40
Gnd 7
Address.18 16
Address.19 79
Address.20 15
Address.21 78
Address.22 14
Address.23 77
Address.24 13
Address.25 76
Address.26 12
Address.27 75
Address.28 11
Address.29 74
Address.30 10
Address.31 9
Vdd 41
Gnd 25
Gnd 33
Vdd 68
Gnd 49
Vdd 82
Vdd 88
Gnd 57
Vbias 125
ICacheTest 60
Phi2 59
Phil 58
Gnd 65
Vdd 96
Mi.33 56
Interrupt 119
Reset 55
Exception 118
MemCycle 54
Read/Write-b 117

B 17
A 40
A 7
A 16
B 15
A 15
B 14
A 14
B 13
A 13
B 12
A 12
B 11
A 11
B 10
A 10
A 9
A 41
A 25
A 33
B 4
A 49
B 18
B 24
A 57
B 61
A 60
A 59 (clock line)
A 58 (clock line)
Bl
B 32
A 56
B 55
A 55
B 54
A 54
B 53

32

Bonding
Pad No.

81
82
83
84
85
86
87
88
90

xi
93
94
95
97
98
99

100
101
102
103
104
105
106
108
109
111
113
114
115
116
117
118
119
120
121
122
123
124

. 125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
143

Pin No.
-0-0-00
K 13
K 14
L 15
J 14
J 13
K 15
J 15
H 14
H 13
G 13
G 15
F 15
G 14
F 14
E 15
E 14
D 15
c 15
D 14
E 13
c 14
B 15
D 13
c 13
A 15
c 12
A 14
c 11
A 13
B 11
A 12
c 10
B 10
A 11
B 9
c 9
A 10
A 9
B 8
A 8
C 8
c 7
A 7
A 6
B 7
B 6
C 6
A 5
B 5
A 4
A 3
B 4
c 5
B 3
A 2
c 4
B 2

I
Signal Name I Jumper 640pin corm. Notes

BypassCache
CopCycle
WBEnable
FPReg.1
FPReg.2
FPReg.3
FPReg.4
Test
Gnd
Vdd
Data.31
Data.30
Data.29
Gnd
Data.28
Data.27
Data.26
Data.25
Data.24
Data.23
Data.22
Data.21
Data.20
Data.19
Vdd
Gnd
Vdd
Data.18
Data.17
Data.16
Data.15
Data.14
Data.13
Data.12
Data.11
Data.10
Data.9
Data.8
Data.7
Data.6
Gnd
Vdd
Data.5
Data.4
Data.3
Data.2
Data.1
Data.0
Address.0
Address.1
Address.2
Address.3
Address.4
Address.5
Address.6
Gnd
Gnd

-0-0-0 -0

53
116
52

115
51

114
50

113
69

112
48

111

i;:
46

109
45

108
44

107
43

106
42

105
120
89

127
103
39

102
38

101
37

100
36
99
35
98
34
97

104
128
32
95
31

f ii
93
29
92 ,
28
91
27

2906
110
126

-w-------- -w-w-
A 53
B 52
A 52
B 51
A 51
B 50
A 50
B 49 (NC on Rev.2)
B 5
B 48
A 48
B 47
A 47
B 16
A 46
B 45
A 45
B 44
A 44
B 43
A 43
B 42
A 42
B 41
B 56
B 25
B 63
B 39
A 39
B 38
A 38
B 37
A 37
B 36
A 36
B 35
A 35
B 34
A 34
B 33
B 40
B 64
A 32
B 31
A 31
B 30
A 30
B 29
A 29
B 28
A 28
B 27
A 27
B 26
A 26
B 46
B 62

33

Appendix II
Revision 1 and Revision 2 Differences

There are a few differences between the Revision 1 and Revision 2 MIPS-X parts. Most have
to do with making the external interface easier to use. Some are internal changes that do not
affect the external interface logic but are mentioned here for archival purposes.

1.

2.

3.

4.

On the Revision 1 parts, the instruction fetched from the Ecache during an Icache
miss must be valid until +1 falling of the “WB” cycle of the Icache miss cycle. For
example, the first instruction fetched back must be stable until +1 falling of CM2.
For Revision 2, the timing is the same as a normal load sequence; the data must be
valid until QL fails during the “MEM” cycle of an Icache miss cycle. For example,
the first instruction fetched back must be valid until CM1 h falls.
The address pins of the Revision 1 parts are set to zero on every el, reflecting the
precharging of the internal Result Bus. These pins are valid h, stable Q1 on the
Revision 2 parts.
The Miss pin cannot be used to stall the processor on the Revision 1 parts. The
processor must be stalled by stretching &. The Miss pin stalls the processor
correctly on the Revision 2 parts.

When an Icache miss occurs between the probe in the Ecache for a store instruction
and the actual store, the store must be allowed to complete before the Icache miss
sequence can begin. On the Revision 1 parts this interlock must be done by
asserting Miss on the processor. For Revision 2 parts, the processor does the
interlock and stalls itself until the store completes.

5. Because of the change to the store interlock described in the previous point, the
timing of when data appears on the data pins has changed. For Revision 1 parts,
data is asserted on the pins during MEM &. The Revision 2 parts do different
actions for stores and movtoc instructions. For store instructions, the data is driven
off the chip when Miss falls during WI3 +I and stays valid until Q1 rises. Data for a
movtoc instruction is driven off chip when Miss fails during MEM $I and stays
valid until Miss falls during WB ql. If Miss is not high when $1 goes high, then all
actions will occur on the rising edge of el.

6. There is only one difference in the pinouts of the two versions. The Revision 1
part has a Test pin that is used to enable observation of control lines in the data
path. This feature was never used so the pin is not connected in the Revision 2
Part,

The following changes are internal changes only and do not affect the external interface.
1. The testing multiplexers have been removed on the Revision 2 parts. This is why

the Test pin has gone away.
2. The PLA in the PC Unit has been replaced by standard cell logic. This is to speed

up the critical paths for branches and exceptions.
3. The branch path logic has been sped up.
4. The Tag section has been changed to speed up the valid-bit store access.

34

References

VI Anant Agarwal, Paul Chow, Mark Horowitz, John Acken, Arturo Salz and John
Hennessy.
On-Chip Instruction Caches for High-Petiormance Processors.
In 1987 Stanford Conference on Advanced Research in VLSI, pages l-24. Stanford,

California, March, 1987.

PI Paul Chow.
MIPS-X Instruction Set and Programmer’s Manual.
Technical Report CSL-86-289, Stanford University, May, 1986.

PI Mark Horowitz, Paul Chow, Don Stark, Richard Simoni, Arturo Salz, Steven Przybylski,
John Hennessy, Glenn Gulak, Anant Agamal and John Acken.
MIPS-X: A 20 MIPS Peak, 32.Bit Microprocessor with On-Chip Cache.
IEEE Journal of Solid-State Circuits SC-22(5):790-799, October, 1987.

