
THE ILSP BEHAVIORAL DESCRIPTION LANGUAGE
AND ITS GRAPH REPRESENTATION
FOR BEHAVIORAL SYNTHESIS

Masayasu Odani
Sun Young Hwang
Tom Blank
Tom Rokicki

Technical Report: CSL-TR-88-350

March 1988

This work was supported by Defense Advanced Research Projects Agency
under Contract No. MDA 903-83-C-0335, and partly by Toshiba Corporation.

THE ILSP BEHAVIORAL DESCRIPTION LANGUAGE
AND ITS GRAPH REPRESENTATION

FOR BEHAVIORAL SYNTHESIS

Masayasu Odani, Sun Young Hwang, Tom Blank, and Tom Rokicki

Technical Report: CSL-TR-88-350

March 1988

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 943054055

Abstract

This report describes the ILSP behavioral description language and its internal
representation employed in the Hemod behavioral synthesis system. Using combined
control/data flow graph (C/DFG) as an intermediate representation, Hermod generates
hardware modules and their interconnection from behavioral descriptions. Hex-mod is
included in an integrated environment for hardware simulation and synthesis system
under development at Stanford University. The functional models written in ILSP can
be simulated on the THOR logic/functional/behavioral simulator without translation.
After proper verification of its behavior, an ILSP model can be input to the synthesizer
for compilation into an RT-level description.

This report consists of two parts: the specification of the ILSP language and its graph
representation.

Key Words and Phrases: behavioral description language, behavioral synthesis,
structural synthesis, control and data flow graph, register-transfer level description,
functional simulation.

Copyright 0 1988

bY

Masayasu Odani
Sun Young Hwang

Tom Blank
Tom Rokicki

The ILSP Behavioral Description Language

1. Overview
This document provides the features and syntax of the ILSP(Input Language for

Synthesis Program), which is used to describe the behavior of functional modules.
Compared to the ISPS (Instruction Set Processor Specifications) which describes
hardware at register-transfer level, the ILSP description is purely procedural or
behavioral. Her-mod is included in an integrated environment for hardware simulation
and synthesis system under development at Stanford University. The functional models
written in ILSP can be simulated on the THOR logic/functional/behavioral simulator
without translation. After proper verification of its behavior, an ILSP model can be
pipelined to the synthesizer for compilation into an RTL-level description.

Based on the C-language, ILSP has conditional (if-then-else and switch), and loop
(while- and do-loop) control constructs. It also allows explicit specification of the
actual hardware interface to the outside world. Many features of the C language
considered redundant or unnecessary for behavioral representation of a hardware
module are omitted in ILSP. For instance, only integer type variables are supported,
and parameter passing is handled through interface declarations in the ILSP procedure
declaration section.

. .

The overall features of ILSP are presented in the first three*sections, followed by the
ILSP syntax. The differences from the C language are presented in each section.

2. Lexical Conventions
There are five classes of tokens: identifiers, keywords, constants, operations, and

delimiters (like ‘(’ or ’ (‘). Blanks, tabs, newlines, and comments are used to separate
tokens.

2.1 Comments
The characters ‘/*’ introduce a comment, which ends with the characters ‘*/‘.

2.2 Identifiers
An identifier consists of a sequence of letters and digits. The identifier must start

with a letter. The underscore ‘-’ counts as a letter. Upper and lower case letters are
considered different. There are no restrictions on the length of the identifier.

2.3 Keywords - Reserved Words
The following identifiers are reserved for use as keywords. The keyword extern is

not supported for global variables in IMP; instead, they should be explicitly declared in
the interface declaration sections.

int GRP
r?gIsT OUTJ4L!5T
if else
default break
ONE ZERO
MODEL return

2.4 Constants

. .

SIG BUS
STLIST
m&h
do
FLOAT
L.S!O

ENDLJST
case
while
UNDEF
MSBO

There are two types of constants: integer constants and reserved constants. An
integer constant consists of a sequence of digits. Only decimal expressions are allowed.

The reserved constants are ONE, ZERO, FLOAT, and UNDEF. They are irszd to
represent the value of a signal line in the THOR simulation system. The objects
declared as SIG or GRP in the interface declaration sections are allowed to have one of
these values.

3. Attributes of an Object
ILSP supports three fundamental types of objects. The objects declared as integers

(int) are local variables to the procedure in which they are declared. The objects
declared as signals (SIG) are one-bit-signal variables and those declared as groups (GRP
or BUS) are multiple-bit-signal variables. The bit width and bit order are specified for
GRP-type objects (LSBO - lowest indexed bit is the least significant bit or MSBO -
lowest indexed bit is the most significant bit).

The SIG- and GRP-type objects have one of three types of io-attributes: input,
output, and state. The value of the input variable (declared in IN-LIST section) is
taken from the outside of the procedure, and that of the output variable (declared in
OUT-LIST section) is brought to the outside of the procedure. The state variables
(declared in ST LIST section) correspond to the static integers of a C procedure. They-
are local to the procedure, but retain their values upon reentry to the procedure even
after the control leaves from the procedure.

The SIG- and GRP-type objects are the abstract representations of registers in the
hardware representation. An integer object may be realized by a register in the
hardware, or just as a wire for signal flow depending on its usage and lifetime.

4. Behavioral Model
Behavioral models consist of a procedure declaration section and a procedural body.

The constructs are almost the same as in the C language. The differences are:

1. The parameter passing mechanism in a procedure call is handled through
the interface mechanism supported in ILSP. That is, the input and output
parameters are declared in the interface declaration sections (IN-LIST
and OUT-LIST declarations) unlike C procedures.

2. A return statement is allowed only at the end of a procedure. No
expressions are allowed after a return statement. Instead, a procedure can
return values by assigning values to the variables declared in the
OUT-LIST section.

The syntax for a behavioral model or procedure is presented as follows:

model:
procedure-declaration procedure-body

,

procedure-declaration:
procedure-identifier ‘(’ ‘)’

I MODEL ‘(’ procedure-identifier ‘)’
.,

procedure-identifier:
identifier

procedure-body:
’ (’ declaration statement-list return ‘;’ ’) ’

5. Declarations
Identifier declarations specify their attributes including the interface signals to the

outside of the procedure, the state and local variables. For a group of signals, if the bit
order is not specified, the signal with the lowest index is considered as the least
significant bit (LSBO).

declaration:
signal-declaration integer-declaration.9

signal-declaration:
input-declaration output-declaration state-declaration

.

input-declaration:
IN-LIST signal-list ENDLIST ‘;’

output-declaration:
OUT-LIST signal-list ENDLIST ‘;’

state-declaration:
I* empty *I

I ST-LIST signal-list ENDLIST ‘;’

4

i

signal-list:
signal-list signal

I signal

signal:
SIG ‘(’ identifier ‘)’ ‘;’

I GRP ‘(’ group-signal-identifier ‘,’ bit-width bit-order ‘1’ ‘;’

group-signal-identifier:
idenhper

,

bit- width:
constant

bit-order:
I* empty *I

I ‘,’ LSBO
I ‘,’ MSBO

integer-declaration:
P empty *I

I int identifier-list ‘;’
;

* idenh_fier-list: .
identifier

I identifier-list ‘,’ identifier

6. Statements
Most statements in the C language are supported except that

1. ILSP allows procedure calls that return more than one value.
“(receiver-list) = procedure-call-expression;” form is used for procedure
calls that return multiple outputs and distributes the values to the variables
and group signals in the receiver-list.

2. A break statement is allowed only in a switch statement to eliminate
abrupt loop exits.

5

statement-list:
statement -

I statement-list statement

statement:
’ (’ statement-list ’) ’

I assignment ‘;’
I if ‘(’ expression ‘)’ statement
I if ‘(’ expression ‘)’ statement else statement
I while ‘(’ expression ‘)’ statement
I do statement while ‘(’ expression ‘)’ ‘;’
I switch ‘(’ expression ‘)’ ’ (’ case-statement-list default-statement ’) ’

assignment:
increment-expression

I receiver ‘=’ expression
I ‘(’ receiver-list ‘)’ ‘=’ procedure-call-expression

receiver-list: - *
receiver

I receiver-list ‘,’ receiver
.9

receiver:
identifier

I group-signal-identifier ’ [’ range ‘3 ’.9 .

case-statement-list:
case-statement

I case-statement-list case-statement

case-statement:
cze constant ‘:’

I case constant ‘:’ break ‘;’
I case constant ‘1’ statement-list break ‘;’

default-statement:
default ‘:’ break ‘;’

I default ‘:’ statement-list break ‘;’
.9

7. Expressions
Expressions used in ILSP are again based on the C language. General data structures

including pointers and arrays are not allowed. Array structure is allowed only to
represent a group of signals. The differences from the C language in expressions are
summarized as follows:

1. ILSP does not allow integer arrays, structures, or pointers. An exception
is that a pointer is passed to a subprocedure as an argument for a GRP-
type object in a procedure call.

2. ILSP uses the array structures for group signals to specify bit position. A
GRP-type object followed by a range in square brackets specifies a
portion of group signals. The expression x[] implies the entire signal
group of x will be treated as an integer. The expression x[3] represents the
signal value of the third bit of x, and x[7:4] means that the partial signal
group between the seventh bit and fourth bit of x is treated as an integer.

3. ILSP allows increment expressions (++ and --) for integer variables only.

expression:
primary-expression

I mar-y-expression
I increment-expression
1 binary-expression
.9

7.1 Primary Expressions

primary-expression:
identifier

I constant
I reserved-constant
I group-signal-identifier ‘[’ range ‘1’
I ‘(’ expression ‘1’
I procedure-call-expression

procedure-call-expression:
procedure-identifier ‘(’ expression-list ‘1’.9

expression- list:
expression

I expression-list ‘,’ expression

7

range:
/* empty */

I constant
I constant ‘:’ constant

reserved-constant:
ZERO

I ONE
1 UNDEF
I FLOAT

7.2 Unary and Increment Operators

unary-expression:
’ - ’ expression

I ‘!’ expression
1 ‘-’ expression

increment-expression:
‘++’ identifier

1 9- i&n tifier
I identifier 9-4
I identifier ‘--’

7.3 Binary Operators

binary-expression:
expression ’ &&’ expression

I expression ’ II ’ expression
I expression ‘&’ expression
I expression ’ I’ expression
I expression ‘I\’ expression
I expression 59 expression
I expression ‘Cc’ expression
I expression ‘=’ expression
I expression ’ !=’ expression
I expression ’ 4 expression
I expression k=’ expression
I expression ’ 9 expression
1 expression ‘>=’ expression
I expression ‘4 expression
I expression ‘-’ expression
I expression ‘*’ expression
I qression ‘f expression

8

I expression ‘70’ expression

8. Examples
The following ILSP procedure describes the functional module that takes two input

groups of signals, in and enable, and calculates the factorial of the value of in, setting
the signal group out and the signal line valid.

IN-LIST
SIG(enable);
GRP(in, 8);

ENDLIST;

/* declare input ports */

OUT-LIST
SIG(valid);
GRP(out, 16);

ENDLIST;

/* declare output ports */

int r, s; /* declare local variables */

valid = 0;
if (enable) {

r = inn;
s = 0;
while (r >= 0) {

S = s + r ;
r --

1 ’

out[] = s;
valid = 1;

return;

/* set the flag */

The objects declared in the IN-LIST section represent input signals or ports from
external. The object enable represents one signal line, and in represents a group of
signals consisting of 8 signal lines. Likewise the objects in the OUT-LIST section

represent output signals or ports set by the procedure. The statement “r = in,” means
that the signals grouped as in are packed into an integer (I-). The statement “out[] = s”
sets the group of output signals, out, by unpacking the integer (s).

Another example is given below. This procedure describes an ILSP functional model
that takes two integers and produces the greatest common divisor (GCD) of those two
integers. The procedure swap0 swaps two integers.

WK)
1

IN-LIST
SIG(enable);
GRP(a, 16);
GRI’(b, 16);

ENDLIST,

OUT-LIST
SIG(valid);
GRP(out, 16);

ENDLIST;

int aa, bb;

valid=O;
if (enable) {

aa=afl;
bb = b[] ;
while (aa != bb) {

while (bb > aa)
bb=bb-aa;

(aa, bb) = swap{ aa, bb);
1

out[] = aa;
valid = 1;

1
return;

1

10

Graph Representation of ILSP Procedures

1. Overview
In the behavioral synthesis process, a behavioral representation is translated into an

intermediate representation in graph form, which is subsequently transformed and
translated into a structural description 141. In Her-mod, a graph representation is chosen
that reflects both the program sequencing and the data flow in the program (Control and
Data Flow Graph). One of the advantages of combining those two aspects is that data
dependencies that cannot be established in data flow analysis can be inferred by the
control sequencing in the graph 131.

Data and control operations are represented as nodes in the graph. Data and control
transfers between nodes are represented by arcs. This document describes the
specification of the control and data flow graph (C/DFG) which is produced by parsing
the ILSP program. The C/DFG consists of several data flow subgraphs corresponding
to basic blocks of the original ILSP program, each of which consists of straight line
code and control nodes connecting them. The graph shows not only the dependency or
parallelism of each operation but also the global control and data flow. It also provides
a design representation capable of supporting design analyses, design decisions, and
design transformations.

Her-mod supports a menu-driven user interface, displaying the control and data flow
graph on the workstation screen and allowing the user to control state binding and
resource sharing through a graphical interface. The C/DFG also allows hierarchical
design by incorporating a procedure-call node. A procedure-call node representing
some functional module can be specified by another graph.

In this document, wc present the C/DFG as an intermediate representation of the
ILSP program, and describe the C/DFG construction. Examples are provided.

11

2. C/DFG Structure
The C/DFG consists of several types of nodes and edges. A node can represent data,

an abstract operation (a logical or arithmetic operation or a procedure call), and a
control construct. An edge can be a control edge representing control sequencing in the
ILSP procedure, or a data edge representing data usage or data flow, depending on the
type of the nodes connected by it. In this section, types and attributes of the node and
edge are described.

2.1 Nodes of C/DFG
There are five types of nodes: data, constant, operation, control, and temporary

nodes. Each node has one or more input ports and output ports to which in-coming and
out-going edges are connected. Each port is identified by its io-attribute and port-id.
Data, constant, temporary, and operation nodes (together with directed edges into and
out of the nodes) reflect the data flow and data dependency, while control nodes are
used for control sequencing and to mark the boundary of basic blocks.

2.1 .I Data/Constant/Temporary Nodes
A data (or constant) node corresponds to an identifier (or constant) in the ILSP

program. Basically, for each appearance of an identifier in the ILSP program, there is a
data node in the graph corresponding to the identifier. Temporary nodes are used to
represent the data produced by an operation and used by another operation or control
node. Each of these nodes has one input port and one output port Data and constant
nodes are graphically represented by circles with their symbolic names inside.
Temporary nodes are represented by filled circles.

2.1.2 Operation Nodes
An operation node corresponds to an abstract operation in the ILSP program. A

procedure call is considered an operation with multiple inputs and outputs. There are
three types of operation nodes: binary operation, unary operation, and procedure call
nodes. Figure 1 shows the graph representations of the operation nodes of the C/DFG.

1. Binary operation nodes: A binary operation node takes two inputs and
produces one output. Binary operation nodes have two input ports,
RIGHT and LEFT, and one output port. The bit width of each port can be
different. Table 1 shows the binary operations implemented in Her-mod.

2. Unary operation nodes: A unary operation node takes one input and
produces one output (both have port-id of 0). The input and output ports
have the same bit width. Her-mod supports the following unary
operations: “M” (one’s complement), “-” (negation), and “!” (logical
negation).

12

3. Procedure call nodes: A procedure call is an extension of a normal
binary or unary operation. It may take more than two inputs and produce
one or more outputs. Thus, procedure-call nodes have multiple input
ports and output ports. Each port is identified by the port-id of a negative
integer, i.e., the input port whose port-id is -n (n is a positive integer)
corresponds to the n-th input argument to the procedure. The same rule is
applied to the output ports. The procedure-call node in Figure 1 (c) takes
n arguments and returns m values to caller.

0a 0C

Figure 1: Representation of operation nodes in the C/DFG
(a) Binary operation node (b) Unary operation node (c) Procedure call node

operation type

Arithmetic

Relational

Bitwise Op.

Logical

operations

“+“, “~“, “*~‘, “/“, ‘1 yott

“>“, “>=“, “<“, t’<=“, “==“, “!=”

“W (AND), “1” (OR), “h” (XOR), “>>“, “<<”

“&&” (AND), “I[” (OR)

TabIe 1: Binary operations

13

2.1.3 Control Nodes
A control node marks the beginning or end point of a basic block. In other words, a

basic block starts and ends with a control node. There are seven different control nodes
in ILSP, whose representations are shown in Figure 2.

1. start node: The start node represents the beginning of the whole graph,
thus there should be only one start node in the graph. The start node has
no input port but has one output port. In the C/DFG, the start node has
out-going edges that go to the data nodes corresponding to constants,
input signals, and state variables declared in the ILSP procedure.

2. end node: The end node represents the end of the graph, thus there
should be only one end node at the bottom of the C/DFG. The end node
has one input port that takes the edges from the data nodes corresponding
to the output signals and the state variables that are defined but not killed
(not assigned a new value) in the basic block ending with the end node.

3. fork node: A fork node is used in the if-then-else statement and marks
the beginning of the subgraph corresponding to the body of the
conditional statement. The fork node has two input ports. One port takes
edges from the data nodes which are used after the fork node, i.e., in the
body of the conditional statement. The other port takes an edge from the
node which produces the control data of the fork node. The fork node has
two output ports: TRUE and FALSE ports. These ports are the beginnings
of the subgraphs corresponding to then-part and else-part, respectively.

4. sfork node: A sfork node marks the beginning of a switch-statement. It
has two input ports, whose connections are same as those of a fork node.
Output ports mark the beginnings of the subgraphs representing case

. statements and default statement.

5. join node: A join node marks the end of an if-then-else or switch
statement. It has one input port and one output port. The join node also
marks the beginning of a while-loop subgraph.

6. loop node: A foop node is used as the starting control node for the
subgraph corresponding to a do-loop construct. It has one input port and
one output port. The function of the loop node is same as the join node in
the while-loop construct.

7. loop-end node: A loop-end node marks the end of the subgraph
corresponding to a do-loop construct. It has two input ports whose
connections are same as those of fork node, and two output ports, TRUE
and FALSE ports. The function of the loop-end node is almost same as
the fork node. The difference is that the FALSE port is connected to the
loop node by a control edge so that the subgraph between loop node and
loop-end node can be repeated.

(>a w

,/ SFORK \

0C

00ee

Figure 2: Control node representations in the C/DFG

15

2.2 Edges of C/DFG
.

An edge in the graph is a-directed edge which shows the flow of data or control from
the initial node to the terminal node. There are two types of edges: data edges and
control edges.

2.2.1 Data Edges
Data edges show

they connect, their
edges.)

1. data node to operation node: implies the corresponding data is
consumed by the operator.

the data flow in the C/DFG. Depending on the type of the nodes
implications are different. (Figure 3 shows an example of data

2. operation node to data node: implies the result produced by the
operation is stored in the variable represented by the data node.

3. operation node to temporary node: implies the data produced by the
operation is stored temporarily for use by another operation or control
node. This construction, for instance, is used for building the subgraph
for expressions which have more than one operation.

2.2.2 Control Edges
The implications of control edges are different depending on what types of nodes

they connect. The usage of control edges is as follows: (An example is given in Figure
4, where control edges are represented by solid arrows.)

1.

2.

3.

data or temporary node to control node: implies the value of the data
node controls the action of the control node (typically, fork, sfork and
loop-end nodes).

control node to data or constant node: implies the data or constant is
used in the basic block headed by the control node.

control node to control node: This type of control edges represents
control transfer.

2.2.3 Edge Attributes
Just as the node of the C/DFG has attributes, each edge of the C/DFG has attributes

independent of the edge type (DATA or CONTROL). Each edge has one of the
following attributes:

1. NORMAL: This means the edge is neither a BACK edge nor
TIMING-CUT edge. (See below.)

2. BACK: A BACK edge is an edge which constructs a loop in the C/DFG.
This edge appears in a subgraph which corresponds to the while-loop or

16

the do-loop. See while-loop and do-loop constructions in the next section.

3. TIMING-CUT: A TIMING-CUT edge has timing-cuts on it. A timing-cut
means the synchronization by a clock should be done at the cut point. The
data going through the edge will be stored in a register. The timing-cuts
creation program (automatic or manual) will choose the proper edges for
timing-cut position and makes them TIMING-CUT edges.

4. B-AND-P A B-AND-T edge is a BACK edge with timing-cut on it.

Figure 3: Example of data edges

17

1 I I

Loop Body

Figure 4: Example of control edges

18

3. Graph
An ILSP

statements,

Construction
procedure consists of three types of blocks: straight line code, if/switch
and while- and do-loops. Graph construction of each type of block is

described next.

3.1 Straight Line Code
A block of straight line code consists of expressions and assignments. The subgraph

representing straight line code is a directed acyclic graph (DAG). A typical example is
presented in Figure 5.

max

d
out

x = a[] - a[] cc 2 ;
y = b[] >> 1;
out[] = max (a[], x + y) ;

Figure 5: Straight line code

19

Usually many optimization and transformation techniques employed in a complier
are applied to these subgraphs in a behavioral synthesis systems. Expressions are
realized so that the operation nodes take edges from the operand data nodes.
Assignment is normally realized by the edge from an operation node to a data node,
which means that the result of the operation is stored in the variable represented by the
data node. Temporary data nodes are inserted if necessary. Note that temporary nodes
are shown for data produced by an operation node and consumed by another operation
node. In special cases like x = a or x = 0, the assignment operator is used to show the
value of the left side variable is replaced by that of the right hand side variable.

Retrieving data from or assigning values to a subset of group signals is allowed in the
ILSP syntax. To construct the subg-raph which shows such a partial retrieval or
assignment, the jjmck and jimpack (intrinsic library functions in the THOR simulator
[1,2]) procedure-call nodes are used as shown in Figure 6.

x = a[351

0a

a[351 = x

(W

Figure 6: (a) functionfpack (b) functionfunpack

3.2 Conditional Statements
The if-then-else block consists of two sub-blocks corresponding to the then-part and

else-part, respectively. The then-part (else-part) sub-block starts from the TRUE
(FALSE) port of a fork node and ends at a join node. The out-going control edges of
each port of the fork node show that the terminal nodes of those edges (data nodes or
constant nodes) will be used in then-part sub-block or else-part sub-block. The in-
coming edges of the join node show that the corresponding data nodes were defined but

20

not killed in either sub-block. The subgraph corresponding to the conditional
expression of the if statement is inserted in the basic block which ends at the join node.
The fork node takes several in-coming edges whose initial nodes were defined in the
basic block but not killed. An example is illustrated in Figure 7.

++
ss

SS SS

@@
JOINJOIN

..

..

Figure 7:Figure 7:

if (a[] == 0)
s[] = s[] + 1 ;

else
~11 = Ml ;

If-then-else construction

21

A switch statement is converted into a block which has several sub-blocks. Each of
these sub-blocks corresponds to a case statement or the defuuh statement of the original
switch statement. The sub-block corresponding to the n-th case (or default) statement
of the switch statement starts from the n-th port (or DEFAULT) port of a sfork node and
ends at a join node. The meaning of in-coming and out-going edges of the sfork node
and the join node is the same as in the if-then-else block. Figure 8 shows the graph
construct of a switch statement.

switch (a[]) {
case0:

s[] = 0 ;
break ;

easel:
s[] = s[] + 1 ;
break ;

default :
s[] = s[] - 1 ;

b r e a k ;

Figure 8: Switch construction

22

3.3 While- and Do-Loop Constructs
A while-loop subgraph is also constructed with fork and join nodes. In this subgraph,

the join node is followed by the subgraph corresponding to the conditional expression
of the while statement, which is connected to the CONTROL port of the fork node. The
subgraph which corresponds to the loop body starts from the TRUE port of the fork
node, and ends at the join node through BACK edges in order to show this block will be
iteratively executed. Figures 9 shows a while-loop construct.

while (a > 0) (
s = s + a ;

Figure 9: While-loop construction

. .

A do-loop subgraph consists of one block which starts from a loop node and ends at a
loop-end node. The subgraph of conditional expression is also included in this
subgraph. The loop-end node has two ports: the TRUE port connected to the loop node

23

by a BACK edge, and the FALSE port from which a new basic block begins after the
do-loop statement. An example is given in Figure 10.

+

c .

0 0

S a

do 1
s = s + a ;

; *
} why16 (a ; 0) ;

Figure 10: Do-loop construction

24

4. Examples
Combining the constructs explained in the previous section, the graph representations

of two procedures are shown, one for calculating the factorial of a given integer (Figure
11) and the other for finding the gcd (greatest common divisor) of two integers (Figure
13).

sum0
{

IN-LIST
SIG(enable);
GRP(in, 8);

ENDLIST,

/* declare input ports */

OUT-LIST
SIG(valid);
GRP(out, 16);

ENDLIST;

/* declare output ports */

int r, s; /* declare local variables */

valid = 0;
if (enable) {

r = inn;
s = 0;
while (r >= 0) (

S =s+r;
r -0

1 ’

out[] = s;
valid = 1;

1
/* set the flag */

return;
1

Figure 11: An ILSP procedure calculating the factorial of a given integer

Figure 12 shows the C/DFG for this procedure. Here, relational operator nodes are
represented by triangles to differentiate them from the other operational nodes.

25

f

7

I,
< E N D >

Figure 12: Graph representation of the ILSP procedure in Figure 11

26

Figure 13 shows the procedure that finds the gcd of two given integers, and Figure 14
shows the C/DFG for this procedure.

IN-LIST
SIG(enable);
GRP(a, 16);
GRP(b, 16);

ENDLIST,

OUT-LIST
SIG(valid);
GRP(out, 16);

ENDLIST;

int aa, bb;

valid = 0 ;
if (enable) { . .

aa=aO;
bb = b[] ;
while (aa !=.bb) {

while (bb > aa)
bb=bb-aa;

(aa, bb) = swap(aa, bb);
1

out[] = aa;
valid = 1;

1
return;

1

Figr2 13: An ILSP procedure calculating the greatest common divisor

27

e

Tn”
6)a

3.

fla se

Figure 14: Graph representation of the ILSP procedure in Figure 13

28

A. Graph Data Structures
The Hermod program is implemented in C++, an objected oriented programming

language. The internal representations of the C/DFG are described in this section. The
C/DFG is implemented around three linked lists, node-list, edge-list, and sub-graph.

A.I. Node Data Structure
The struct node-fist holds the information of the nodes in the C/DFG. The following

data structure is used for the data and control nodes.

struct node-list (
int type ;
int attr ;
struct caselabel * cl;
struct symtable * ps ;
struct edge-list * pe ;
struct node-list * next ;
int in ;
int out ;
vo id*pwl ;
void * pw2 ;
class NList * pN ;
struct hardware * hw ;
int num ;
struct basicblock * bb ;
int dfn ;
int tclevel ;
class HUnit * hu ;

1;

/* DATA, CONTROL, OP, CONST, or TMP */
/* node attribute */
/* pointer to case label table */
/* pointer to the symbol table. */
/* pointer to the edges connected to it */
/* pointer to the next entry */
/* in-degree */
/* out-degree */
/* work area 1 */
/* work area 2 */
/* pointer to the object for drawing */
/* pointer to the hardware information */
/* node number */
/* basic block, for control node */
/* data flow number, for operation node */
/* timing-cut level */
/* pointer to the associated hardware unit */

The meaning of each field in the struct node-list is briefly described.
l int type - shows the node type, values.

l int attr - shows the attribute of the node. The attribute, for example, means
kind of operation for operation nodes, kind of control for control nodes, and
constant value for constant nodes.

l struct symtable *cl - is a pointer to the mapping table between port
number and case label (case constant). This pointer is valid only for sfork
node. This pointer is NULL for other types of nodes.

l struct symtable *ps - is a pointer to the entry in the symbol table. This
pointer is meaningful for data nodes, temporary nodes and the procedure
call nodes. This pointer is NULL for the other types of nodes.

l struct edge list *pe - is a pointer to the first entry of the edges connected

29

to this node.

l struct node list *next - is a pointer to the next entry of the node-list.

l int in - is a number of in-coming edges.

l int out - is a number of out-going edges.

l void *pwl, void *pw2 - are used as working storages.

l class NList *pN - is a pointer to the object for drawing. This pointer is set
by the drawing procedure.

l struct hardware *hw - is a pointer to the hardware information assigned
the node.

l int num - is a node identification number. This number is zero or positive
integer. See next section for detail.

l struct basicblock *bb, int dfn - are set by the data flow analysis program
to indicate which basic block this node belongs to.

l int tclevel - represents the timing-cut level.

l class HUnit *hu - is a pointer to the associated hardware unit in the data
path built from this C/DFG.

Node Identification Number:

The node identification number is used not only for identifying each node but also for
drawing on the screen. The graph drawing routine draws and displays the graph based
on the node identification number. The following numbering rules are applied to draw
graphs.

The Node Numbering Rules:
1. The start node should have the node identification number 0.

2. If node nl has an out-going edge to node n2, the node identification
number of nl should be greater than that of the node n2.
Exception: This rule does not apply to the start node.

3. If node nl is in the subgraph corresponding to the then-part of an if-
statement and node n2 is in the subgraph corresponding the else-part, then
the node identification number of the node nl should be greater than that
ofthenoden2.

4. If the node nl is in the subgraph corresponding to the n-th case statement
of a switch statement and the node n2 is in the subgraph corresponding to
the m-th case statement where m > n or the default statement of the switch
statement, then the node identification number of the node nl should be
greater than that of the node ~22.

30

Figure 15 shows the legal node numbering. Nodes are numbered sequentially from 0
to the number of nodes according to the linking order in the node-fist maintained by the
synthesis system. Thus, the linking order of nodes in the node-list should follow the
above rules.

9

+
.

6

Figure 15: Node numbering

A.2. Edge Data Structure
The struct edge-list holds the information for edges in the graph.

struct edge-list {
int type ;
int io ;
int port1 ;
struct node-list * pair ;
int port2 ;
struct edge-list * mirror ;
struct edge-list * next ;
class EList * pE ;
edgetype et ;
int tcount ;

/* edge type *‘/
/* in-coming or out-going */
/* port of origin node */
/* pointer to the pair node */
/* port of the pair node */
/* pointer to the mirror edge. */
/* pointer to the next edge */
/* pointer to the object for drawing */
/* edge type */
/* number of timing-cuts in the edge */

31

int tcwork ; /* work area for the timing-cut functions */
class List * tcuts ; - /* timing-cuts to which this one belongs */
int mark.; /* used in the automatic timing-cut function */
int num ; /* edge number */

1;

For each node, there is a list of edges associated with it, each of which has the data
structure of edge-fist. The list is a linked list of all the edges connected to the node
(both in-comming and out-going edges). The head of the edge list is maintained in the
pe field of the node data structure.

In this graph data structure, two edge-list data structures are kept to represent each
edge. For an edge from node nl to 12, node nl sees the edge going to node ~2, while
node n2 sees it coming from node nl. They are called mirror edges. (Refer to Figure
16.)

node-list

b -

Figure 16: The mirror edge-list

l int type - shows the type of edge. It can be either DATA or CONTROL.

l int io - indicates the direction of the edge, incoming or out-going.

l int port1 - shows the port of the initial node of the edge if the edge is
out-going. Otherwise, it shows the port of the terminal node.

l struct node list *pair - is the terminal node of the edge if the edge is out-
going. Other&e, it is the initial node of the edge.

l int port2 - is the port of the terminal node to which the edge is connected if

32

the edge is out-going. Otherwise, it is the port of the initial node.

l struct edge list *mirror - is a pointer to the mirror edge.

l struct edge list *next - is a pointer to the next entry of the edge-list.

l class EList *pE - is the pointer to the object for drawing.

l edgetype et - takes the integer value; NORMAL, BACK, TIMING-CUT, or
B-AND-T. Each type is described in previous sections.

l int tcount - is the number of the timing-cuts on the edge.

l class List *tcuts - is the linked list of the time-cuts to which the edge
belongs.

l int num - is the unique id.

A.3. SubGraph Data Structure
The struct subJraph holds the head pointer to the start node of a data flow graph

which corresponds to a procedure in an ILSP program.

struct sub_graph {
int num ;
struct node-list * start ;
struct sub_graph * next ;
struct basicblock * bb ;
struct dfntable * trtable ;

class List * timing-cuts ;
class GraphData * gd ;
class StatDgrm * sd ;
class DataPath * dp ;

I;

/* sub_graph identification number */
/* pointer to the start node */
/* pointer to the next entry */
/* the basic blocks for this graph */
/* the data flow translation table,

associate data flow number to graph a node */
/* linked list of the timing-cuts */
/* pointer to the object for drawing */
/* pointer to the state diagram */
/* pointer to the data path graph */

l struct node list *start - is the pointer to the start node.

l struct sub-graph *next - is the pointer to the next subgraph.

l struct basicblock *bb, struct dfntable *trtable - are used in the data flow
analysis routine. The table (pointed to by trtable) maps a data flow number
to a graph node and a symbol table entry which contains information about
each identifier.

l class List *timing cuts - is the list of timing-cuts imposed on this C/DFG.

l class GraphData *gd - is the pointer to the data structures for drawing the
C/DFG on the screen.

l class StatDgrm *sd, class DataPath *dp - are the pointers to the data

33

structures that maintain the hardware assignment information.

A.4. Other Data Structures
1) The data structure carelabel holds a mapping table entry between a port of the

sfork control node and a case constant. This is used only for the sfork nodes.

struct caselabel (
int port ;
int label ;
struct caselabel * next ;

1;

/* port number */
/* case constant */
/* pointer to the next entry */

2) The data structure timing-cut holds the information on a timing-cut on an edge.
Timing-cuts on an edge are kept in the field tcuts of the structure edge-fist, and all the
timing-cuts in the subgraph are kept at the timing-cuts field in the structure subJraph.

struct timing-cut (
int id ;
List * edges ;
TimingNode * pN ;
int level ;
short drawn ;

1;

/* timing-cut identification number */
/* edges belonging to this timing-cut */
/* pointer to the object for drawing. */
/* relative position of the timing-cut */
/* flag for checking if already drawn */

3) The basicblock structures maintain the list of nodes belonging to a particular basic
block and the information on the usage of data nodes. They also contain state binding
and hardware representation information of the subgraph.

4) The class List is an implementation of the double-linked circular list. It can hold
pointers to any data type. The classes NList, EList, GraphData are derived classes of
the class List and used for drawing on the screen.

5) The classes StatDgrm and DataPath hold the information on the hardware
generated from the C/DFG by the synthesis tools. They are tightly coupled with the
C/DFG data structure by pointers so that the original C/DFG information can be
retrieved easily from these classes.

34

References
HI R. Alverson, T. Blank, K. Choi, S.Y. Hwang, A. Salz, L. Soule, and T. Rokicki.

THOR User’s Manual: Tutorial and Commands.
Technical Report CSL-TR-88-348, Stanford University, Stanford, CA, January,

1988.

PI R. Alverson, T. Blank, K. Choi, S.Y. Hwang, A. Salz, L. Soule, and T. Rokicki.
THOR User’s Manual: Library Function.
Technical Report CSL-TR-88-349, Stanford University, Stanford, CA, January,

1988.

131 A. Orailoglu and D.D. Gajski.
Flow Graph Representation.
In Proc. 23rd Design Automation Conf., pages 503-509. ACM/IEEE, June,

1986.

141 B.M. Pangrle and D.D. Gajski.
Design Tools for Intelligent Silicon Compilation.
IEEE Trans. Computer-Aided Design of Integrated Circuits and Syst.

CAD-6(6): 1098- 1112, November, 1987.

35

