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Abstract

VAL (VHDL Annotation Language) provides a small number of new language constructs to
annotate VHDL hardware descriptions. VAL annotations, added to the VHDL entity declaration
in the form of formal comments, express intended behavior common to all architectural bodies of
the entity. Annotations are expressed as parallel processes that accept streams of input signals and
generate constraints on output streams. VAL views signals as streams of values ordered by time.
Generalized timing expressions allow the designer to refer to relative points on a stream. No concept
of preemptive delayed assignment or inertial delay are needed when referring to different relative
points in time on a stream. The VAL abstract state model permits abstract data types to be used
in specifying history dependent device behavior. Annotations placed inside a VHDL architecture
define detailed correspondences between the behavior specification and architecture. The result
is a simple but expressive language extension of VHDL with possible applications to automatic
checking of VHDL simulations, hierarchical design, and automatic verification of hardware designs
in VHDL.
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Chapter 1

Introduction

The VHSIC Hardware Description Language (VHDL) supports the design, description, and sim-
ulation of VHSIC components [17].  It provides a base language that can be used to describe
hardware ranging from simple logic gates to complex digital systems. As an IEEE standard [20],
VHDL will provide an important common base language for design tool development and design
documentation.

VHSIC designs will incorporate anywhere from a few hundred to perhaps a million components.
Managing this complexity requires a powerful hardware design support environment including a
library manager, profiler, simulator, and other design tools. Such environments must address
the key problem of verifying the correctness of a design. If current practice continues, the VHDL
designer will verify designs by using a simulator and manually comparing huge volumes of simulator
output with an informal design specification. For large and complex designs, this is simply not
practical.

VHDL Annotation Language (VAL) [2,3] p rovides an annotation facility that allows the VHDL
designer to make simple kinds of annotations during the design process. VAL annotations have
several possible applications, each of which may be supported by future environment tools. In this
paper, we describe VAL and its application to automatic checking of the correctness of a VHDL
design during simulation. Other applications of annotations, such as formal verification [4,7,5,9],
debugging [14,15,8], and simulation optimization, will be discussed in later papers.

In general, annotation languages permit information about various aspects of a program not
normally part of the program itself to be expressed in a machine readable form [la]. They pro-
vide facilities for explaining the intended behavior of the program. They are intended to reduce
programming errors by making programs more readable and by providing a great deal of error
checking at both compile and run time. Readability is improved by enabling the programmer to
express design decisions explicitly. Annotations may also serve as specification and thus precede
implementation of the program.

These ideas still hold for an annotation language in the hardware description language domain,
With this in mind, the design of VAL was undertaken with the following principle considerations:

1. VAL annotations should be powerful enough to express hardware behavior, yet simple enough
to facilitate correct description of that behavior.

2. VAL should appear more as a functional language with parallelism than an algorithmic pro-



gramming language.

3. VAL should be applied to simulation time checking of VHDL, and should not affect the
simulation result.

4. VAL annotations should
during the design phase.

be general enough to permit the use of formal abstract specifications

5. The designer should be free to annotate and specify as much or as little as desired.

The VHDL assertion facility allows the designer to specify conditions that are expected to be
true during the course of simulation. VAL achieves its design goals by building on the base provided
by VHDL a set of powerful but simple constructs geared specifically to the annotation of hardware
behavior.

VAL provides five main facilities extending VHDL. VAL provides new constructs for expressing:

1. time dependent behavior

2. abstract data types as models of entity state

3. concurrent processes with subprocesses for expressing behavior

4. temporal assertions

5. detailed mappings between behaviors and architectures

Timing constructs are based on a concept of relative time, which in turn is based on representing
behaviors as streams of values. A stream oriented view of hardware behavior allows the designer
to enter a VAL specification directly from a typical timing description of an entity. New high level
timing constructs, based on relative time, allow simple description of complex timing. Relative
time allows the designer to select any point in the data stream as a reference.

Because many hardware description languages fail to distinguish design constructs from pro-
gramming constructs they confuse design with programming. VAL permits the designer to model
the state of entities by abstract data types, thus hiding programming details from behavioral spec-
ifications. VAL clearly separates programming from design by treating programming as a support
utility and restricting support programming functions to a library environment of packages. VAL
is based on the view that hardware behavior is best expressed by parallel processes with dependent
subprocesses. No sequential programming constructs are present in VAL.

Annotations can only monitor the VHDL simulation and report errors. VAL annotations cannot
modify VHDL objects such as ports. Thus there is no possibility of introducing an error into a
VHDL simulation through a VAL annotation.

VAL and VAL-based tools are intended as extensions of VHDL and VHDL environments. Anno-
tations are included in the VHDL text as formal comments. This allows the annotated description
to be processed simply as a VHDL description without modification to the VHDL analyzer. If
desired, a preprocessor, the VAL Transformer, translates VAL annotations into VHDL source code,
resulting in a self-checking VHDL description. This self-checking VHDL description is then pro-
cessed by the VHDL tools. Thus a VHDL design including VAL annotations can be compiled and
executed by standard VHDL tools together with the addition of the VAL Transformer.
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In using VAL there is no assumption that that specification must be complete. The designer is
free to specify only those portions of the behavior that are relevant.

In the remainder of this paper, we will first give an overview of design checking using VAL.
Then we will describe VAL in more detail, showing how VAL annotations are used to generate
constraints on a VHDL simulation. A brief overview of the VAL Transformer demonstrates the
feasibility of our design. We conclude with some observat.ions  made from our experience with VAL
to date, and areas for future work.





Chapter 2

Design Checking With VAL

A designer usually verifies a design using some form of simulation. This task often requires the
designer to manually compare the simulation result with an informal design specification. Occa-
sionally, the designer also has a high level behavioral description (written in, for example, C or
Ada) whose output can be compared to the output of the simulator. The design is simulated using
a set of test vectors, the behavioral model is run on the same test vectors, and the results are
compared (Figure 2.1).

Test
InIjut

.  B e h a v i o r a l
Simulation

Simulation
- Out-put

Compare

.  S t r u c t u r a l
S imul at ion

I

Simulation
b- Out’put

Figure 2.1: Typical Model of Design Checking

While this process of verification is adequate for simple designs, as designs become more complex
it becomes less satisfactory. It is limited in the extent to which it allows the designer to debug a
new design because it assumes a “black box” view of the design unit (or entity), in which the entity
is accessible only through its ports.

VAL’s model of design checking is based on generating constraints on the entity’s input, internal
state, and output (Figure 2.2). Input constraints allow the simulator to check if an entity is being
used correctly. For example, if the setup or hold time on a signal is not met, the entity can report an
input constraint violation. This helps the designer to spot the source of timing errors as opposed
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to having to trace the source of the error back from the simulation result. Output constraints
behave like the post simulation comparison previously described, with the addition that they may
be executed dynamically, during the simulation. Mapping constraints allow an additional level
of internal checking beyond the checking of ports. For example, if the behavioral description is
a state machine, the states in the behavioral description must be somehow encoded within the
structural model. (i.e., distributed over the states of the lower level entities in the architecture.)
Mapping constraints allow the designer to explicitly describe the encoding and allow the simulator
to automatically check the internal state of the structure during simulation, rather than forcing the
designer to deduce an incorrect state transition from the simulation result.

Test
In$ut

4 S t r u c t u r a l
Simulation

I Simulation
Output

Figure 2.2: VAL Model of Design Checking



Chapter 3

Language Basics

VAL annotations may appear in all three VHDL design units; entities, architectures, and con-
figurations. Annotations in the entity declaration (entity annotations) express intended behavior
common to all architectures of the entity. They define an abstract model of the entity’s internal
state and use it, in conjunction with the inputs to the entity, to define constraints on values carried
by the output ports. In VHDL, ports of mode out cannot be read within the entity and therefore
assertions cannot normally be made about them. Unlike VHDL, VAL entity annotations have
visibility over the contribution of the entity to each of its out ports. This allows the designer to
define the entity’s contribution to the output port. Constraints may also be defined on input ports.
Static constraints on generic parameters are also declared as part of the entity annotations.

Annotations within the VHDL architecture (body annotations) can be used to constrain the
values of internal signals and ports of components. In addition, VAL annot ations within the
architecture have visibility over the abstract state of the entity (defined by the entity annotations)
as well as the internal states of each component instantiated in the architecture. Annotations in an
architecture relating to state are known as mapping annotations. In effect, mapping annotations
describe the way in which the abstract state introduced in the entity annotations is mapped into
the states of the architecture’s components.

Annotations appearing in a configuration (configuration annotations) allow the user to configure
the VAL portion of the simulation. For example, the user may want to select only some of the
entities in a large simulation for automatic checking. Also, the state model map, similar to a VHDL
port or generic map, can be used to map an assumed state model for a component in an architecture
into the actual state model of the actual component. This allows a designer to assume an abstract
state model for a component that may not yet be available while designing an architecture and
later provide a type conversion function to translate the assumed state model of the component to
the state model of the actual component.

3.1 Entity Annotations

VAL entity annotations may appear in the declarative part and the statement part of the VHDL
entity declaration. Assertions appearing in the declarative part are known as assumptions. As-
sumptions typically express constraints on generic parameters of the entity and may be checked
statically at compile time.
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Interface annotations appearing in the entity statement part consist of a list of parallel processes
that execute continuously. Unlike typical programming languages which execute a process once
when it activates, a VAL process executes continuously while active. In many ways this is similar
to actual hardware behavior. For example, an AND gate does not behave by watching its inputs for
a change and recomputing a new output when a change occurs. Instead, it continuously performs the
AND operation. More formally, continuously means that the operation is performed often enough
that performing it any more frequently would not produce any observable change in behavior.

The following sections summarize the most important entity annotation language constructs in
VAL and then show how the VAL concept of relative time, in conjunction with VAL processes,
models hardware behavior.

3.1.1 Assertions

An assertion process generates constraints on the simulation. Consider the VHDL entity declaration
for a two input AND gate shown in Figure 3.1. The identifiers input-a and input-b are input ports
and result is the output port. Assertions in the form of VAL processes are added to define the
behavior of this circuit. The behavior of the AND gate is specified by a single assert process that
makes an assertion about the value carried on the output port. The VAL annotations describing
the entity’s intended behavior appear following the VHDL keyword begin. The assert process
continuously checks a constraint (in this case (input-a and input-b) = result). It is similar to
the assert statement in VHDL, but applies to a wider class of elements, such as output ports. If
the constraint ever evaluates to false, the assert process performs the requested action. The else
keyword emphasizes that the severity and report clauses are executed when the boolean expression
is false. The else keyword is optional.

The default severity level of VAL assertions is WARNING.

-- Annotated VHDL two input AND gate

entity TwoInputAND is
port (input-a,  input-b :  in bit;

resul t : out bit);
begin

-- VAL Annotations defining the AND gate’s behavior

--I assert ((input-a and input-b) = result) else
- - l severity FAILURE
-- l report "Error in TwoInputAND" ;

end TwoInputAND;

Figure 3.1: Annotated VHDL AND Gate Entity Declaration

VAL provides a family of assertion processes for generating constraints. The assert process is
the strictest of these, requiring the constraint to be satisfied at every simulation cycle (i.e. at every
delta). Perfectly correct behaviors will often violate this constraint because a zero delay signal
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assignment in VHDL occurs after a delay of delta, limiting the usefulness of the VHDL assert
statement for checking this kind of behavior. Other VAL assertion processes operate by generating
constraints only at certain points during the simulation. For example, the finally assertion process
allows the user to specify a constraint that must hold only at the last delta in a simulation time
point. The constraint generated by the annotation in Figure 3.1 will report an error for a single delta
whenever a change in input-a or input-b causes a change in result because the VHDL simulation of
any architecture for this entity does not effect the change until the next delta. Replacing assert by
finally checks only after the assignment has been completed, reflecting more closely the intentions
of the designer.

Unlike VHDL, VAL provides the capability to hierarchically nest assertions using a guarded
process. The keyword when identifies a guarded process that consists of two lists of processes,
corresponding to a then part and an else part, and a boolean guard expression. (See Figure 3.2.)
The else part is optional. The guarded process continuously evaluates a boolean expression, and,
if the expression is true, the processes following the then clause are activated, otherwise those
following the else clause are activated. Note that the boolean expression is evaluated continuously
and any change in its value results immediately in the activation of one branch of the guarded
process and the deactivation of the other branch. Each guard can be viewed as a node in a binary
tree, the two branches being its then and else parts. A process at any level in the tree is active if
and only if all of the guards leading to that point in the tree are active.

3.1.2 Entity State

Because an entity’s future behavior may depend on its past behavior, VAL provides the entity state
as a means of specifying history dependent behavior. An entity’s state model consists of a single
type declaration of any type allowed in VHDL. For example, record types can model devices with
complex states. VAL requires the designer to model the entity state as a single abstract object. It
can be declared as an abstract data type in a VHDL package, along with the functions necessary
to manipulate it, and imported into the VAL description. This allows the designer to import a
generic package describing a Stack, Queue, Petri Net, or whatever abstract object most accurately
expresses the entity’s behavior.

For example, a D latch requires memory to model it. Since the D latch’s memory consists of a
single bit of information, its VAL state model can be declared as:

-- 1 state model is bit := '0' ;

The keywords state model is indicate that the following type definition (in this example bit)
defines the type of the entity’s state. An initial value for the state (in this example JO’) must be
given. In the behavioral description, the keyword state refers to the state model. The VAL drive
operator -> provides a means for affecting a change in state. It defines a process that, while active,
continuously assigns the value of an expression to an object. Whenever the value of the expression
changes, the value of the object also changes. Drive can only be applied to a component of the
state. When the state of a device is not driven, it retains its last value.

Using the entity state facility and guarded process, the VAL specification of a (flow through) D
latch can be written as described in Figure 3.2. Whenever the clock input is ‘I’, the internal state
of the D latch follows the value on the data input. When the clock goes to zero, the state maintains
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-- D Latch entity specification
entity Dlatch is

port (Clk : in bit; -- Clock input
D : in bit; -- Data input
Q : out bit; -- output
Qb= : out bit);

--I state model is bit := ‘0’ ; -- One bit of memory

begin

--I when (Clk = '1')
- - l then D -> state;
- - l end when;

-- Level triggered

-- The output always depends on the state

-- 1 assert (state = Q) ;
- - I assert (not state = Qbar);

end Dlatch;

Figure 3.2: Annotated D Latch Entity Declaration

its last driven value. The value of the outputs always depends on the value of the internal state.
The two assertion processes constrain the value carried by the output ports of any architecture of
the D latch to agree with the value of the state model (and its complement) in the VAL entity
specification.

3.1.3 Annotation of Timing Behavior

A signal in VAL is a sequence or stream of values ordered by time. In general, a hardware entity
describes a mapping between a set of input streams and a set of output streams. All references to
time in VAL describe a relative relationship between streams. Expressions in VAL refer to relative
points along streams. The relative time zero refers the current time. The relative time -t refers to
a point in time that occurs t units before (or in the past) relative to the current time. Similarly,
the relative time t refers to a point in time that occurs t units after (or in the future) relative to
the current, time.

Timed expressions in VAL are simple functions of time that allow the designer to describe
relative timing relationships. The timing operator C 1 can be applied to any object or expression
to refer to its value at any relative point in time. Thus signal-a[-51  refers to the value of signal-a
five time units ago, and signal-a[51 refers to the value of a five units in the future. The expression
signal-a refers to the current value of signal-a and is equivalent to signal-aC0I.

Assertion or drive processes define relative relationships between streams described with timed
expressions. Consider the following process:
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signal-a[-31  -> s i g n a l - b  ;

This is similar to the delayed assignment of VHDL (signal-b <= signal-a after 3;)l except that
the semantics of the VAL process are anticipatory [ll]. In VAL this process describes a relation-
ship between the stream associated with signal-a and the stream associated with signal-b. An
equivalent, process would be:

signal-aC-II -> signal-bC21  ;

This describes the same relationship between the streams; the value on signal-b has the same
shape as signal-b, but is shifted 3 time units into the past.

VAL cannot change the past value of an object. Therefore, non-causal processes such as,

signal-a C51 -> signal-b[-l]  ;

(the present value of signal-b is determined by the value of signal-a 6 time units in the future)
which have no physical meaning are not allowed.

The timing qualifier during can be applied to check the value of a boolean expression over a
time interval. The expression

( signal-a = I > during C-3,21

is true if signal-a = 1 from 3 units ago to 2 units in the future; otherwise it is false. Since timing
qualifiers commonly refer to a range over the most recent interval, the expression

( signal-a = 1) during 5

is a shorter notation for

( signal-a = I) during C-5,01

Note that references to future time can make sense because all timed expressions are relative.
Thus the designer can pick any point along an arbitrary waveform as a reference point when
describing a system’s behavior. There is no need to resort to inertial or transport delays and
preemptive semantics [ 111.

As an example of timing behavior, consider a falling edge triggered D flip-flop. Informally, a
description of this device will typically include a propagation delay as well as setup and hold time
requirements on the data. Assume that the state of the D flip-flop is only changed if the data
remains stable during a time SETUP before the falling edge of the clock and a time HOLD after the
falling edge. Also, assume that the new value of the data takes DELAY time units to appear on the
output after the state has changed. The VAL specification (Figure 3.3) follows almost, exactly from
the above informal description.

IHere,  and in the following discussion, the particular unit of time has been neglected since the units are irrelevant
to the current discussion and serve only to clutter the examples. VAL requires (as does VHDL) that all references to
time be of physical type TIME.
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-- DFlipFlop  entity declaration
entity DFlipFlop is

generic (SETUP, HOLD, DELAY : TIME);
port (Clk : in bit; -- Clock input

D : in bit; -- Data input
Q : out bit; -- output
Qb= : out bit);

-- Assertions about generics

--I assume (DELAY >= HOLD)
-- l report "Error in generic constant" ;

-- I state model is bit : = ‘0’ ; -- A single bit of memory

-- State maintenance

--I when Clk'Changed('0') then
- - I when (D'Stable  during C-SETUP, HOLD])
-- l then D -> ~~~~~CDELAY] ;
-- I end when;
- - l end when;

-- Check outputs

-- I assert ((state = Q) and (not state = Qbar))
-- l report "Simulator error - D latch" ;

end DFlipFlop;

Figure 3.3: Annotated D Flip-Flop Entity Declaration

The reference point for the specification in Figure 3.3 is the point at which the clock changes to
‘0’. The attribute ~'Changed(expression)  is TRUE if the value on signal S has changed to the value
of the expression at the current time instant. When ClkJChanged('OJ) becomes true, the guarded
process checking the setup and hold time of the data becomes active. Note that the expression
involving during[-SETUP,HOLD]  checks the interval SETUP time units in the past and HOLD time units
in the future. If the data remains stable over this interval, the internal state of the D flip-flop
is modified after a time DELAY. The assertion processes constrain the ports of the VHDL body to
match the state bit, and its negation, at all times.

The constraint DELAY >= HOLD is worth exploring further. Consider any time point t at which
Clk'Changed( '0') is true. The inner nested process is activated. Taking some liberties with the VAL
notation, the signal D is then checked over the interval [t - SETUP, t + HOLD]. If it is stable over the
entire interval (D ) Stable during [t - SETUP,~ + HOLD]) then the drive process (D -> S~~~~[DELAY])
is activated and the value of the signal State at the time point t + DELAY is assigned the value of
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D. The is description of the D flip-flop’s behavior is (conceptually) executed for every time point t
in the simulation. The assignment to state cannot happen if the time point t + DELAY has already
passed; i.e. t + HOLD > t + DELAY.

Conceptually, this implies that the output can never take on a new value before that new value is
latched into the internal state. If DELAY < HOLD were true, then the output could change after DELAY
time units, but the hold constraint might not yet be met, in which case the output value should
never have changed. In other words, if DELAY < HOLD then the behavior is said to be non-causal.
This is more obvious if the VAL description in Figure 3.3 is rewritten such that the reference point
is the point at which the state is assigned a new value. The relevant lines become,

when D'stable during [-SETUP-DELAY,HOLD-DELAY] then
D C-DELAY] -> state Co]  ;

end when;

If HOLD - DELAY > 0, then the assignment to the new value of state depends on an event that hasn’t
happened yet - the stability of the input during the hold time.

3.1.4 Assumptions

Static constraints assumed by the specification of the entity such as the DELAY >= HOLD condition
in the D flip-flop can be expressed using the assume declaration. The assume declaration specifies
conditions that should be observed by the user of the entity. An architecture of the entity is
designed under the assumption of this condition. The assume declaration has the same form as an
assertion:

assume <boolean-expression> [else]
[report <expression>]
[severity <expression>] ;

As with assertions, the keyword else and the report and severity expressions are optional. The
default severity level is WARNING. The boolean expression is assumed to be true, else an error message
defined by the report clause is issued and the simulation may continue or be aborted depending
on the severity clause. Assumptions may appear in the declarative part of the entity declaration
and may apply to generic parameters and constants. The condition assumed must be statically
checkable at elaboration time.

3.1.5 Other Constructs

The previous sections introduced the key elements of the VAL language. VAL also contains addi-
tional language constructs for iteration across indexed objects, boolean and existential quantifiers,
a macro facility, and other high-level features to aid in the construction of VAL behaviors. The
reader is referred to [lo] for a complete description of the VAL language.
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3.2 Body and Mapping Annotations

Any of the VAL processes, with the exception of drive, can appear in the entity body. Body anno-
tations specify implementation details and allow more detailed consistency checking between the
entity annotations (the entity’s functional description) and the VHDL architecture (implementa-
tion). Body annotations have visibility over all VHDL signals and ports normally visible at the
point at which the annotation appears, the entity’s state model, and the state models of all entities
instantiated as components.

The description of the two-bit modulo four counter in Figures 3.4 and 3.5 together show how
mapping annotations may be used to check the internal state of an entity. The reset signal sets the
state of the counter. Whenever a transition from ‘1’ to ‘0’ on the clock (Clk) occurs, the counter
counts up one. Bit0 represents the least significant bit of the counter and Bit1 the MSB. The VAL
state model is an integer and assert processes generate constraints on the output ports based on
the VAL state.

entity TwoBitCounter is
port (Clk : in bit;

reset : in bit;
BitO, Bit1 : out bit);

--I state model is integer := 0;

begin

-- l
- - l
- - l
- - I
- - I
- - l
- - I
- - l
- - l
- - l
- - I
- - l
- - l
- - l
- - I
- - l
- - l
- - l
- - l

when reset then
state <- 0;

elsewhen  Clk'changed('0') then
state <- (state + 1) mod 4;

end when;
select state is

in 0 => finally(Bit0  = ‘0’ and Bit1 = ‘0))
report "Counter - Output error"
severity warning;

in I => finally(Bit0  = ‘1’ and Bit1 = )O'>
report "Counter - Output error"
severity warning;

in 2 => finally(Bit0  = ‘0’ and Bit1 = '1,)
report "Counter - Output error"
severity warning;

in 3 => finally(Bit0  = ‘1’ and Bit1 = '1')
report "Counter - Output error"
severity warning;

end select ;

end TwoBitCounter;

Figure 3.4: Two-bit Counter Entity Declaration

The architecture SIMPLE of the counter contains two D-type flip-flops. Each flip-flop is similar
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to the ones described previously with the exception of a reset signal and the omission of timing
information (to keep the examples short enough to fit in this paper). Each flip-flop has a state
model consisting of a single bit. The states of the flip-flops (DFLI . state and DFL2. state) are related
to the state of the counter (state) by mapping annotations.

3.3 Configuration Annotations

Configuration annotations serve two purposes. First, they provide a local state model mapping
declaration to map the local state model defined in a component declaration to the actual state
model defined by the component’s entity annotations. The state model mapping declaration indi-
cates the function to use in mapping between the state model of the actual entity and the state
model of the component instance. It appears within a configuration specification at the same point
as other binding indications.

Second, they provide configuration information so that VAL generated architectures may be
automatically substituted for original component architectures for checking. The user may not
want to use a VAL annotated entity in place of the original VHDL entity for all components in
a simulation, particularly if the component is a library unit for which no annotated description
exists. The valentity construct allows the user to select the components of an architecture to be
monitored. The VAL Transformer will only generate code to monitor components marked with
valentity. The next section on the VAL Transformer explains how components are monitored. In
Figure 3.5 the valentity configuration annotation indicates that the VAL version of the component
Df lipflop should be used when the simulation is configured.
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architecture SIMPLE of TwoBitCounter is

signal Ql, Q2, Qlbar, Q2bar : bit;
signal Di, D2 : bit;

component DFlipFlop
port(Clk,  D : in bit;

9, Qbar : out bit;
Reset : in bit);

-- l state model is bit; -- local state model declaration
end component ;

begin
DFLl : DFlipFlop

port map(Clk, Dl, Ql, Qlbar, Reset);
DFL2 : DflipFlop

port map(Clk,  D2, 42, Q2bar, Reset);
D2 <= (Ql and Q2bar) or (Qibar and Q2);
Dl <= Qlbar;
Bit0 <= Ql;
Bit1 <= Q2;

mapping annotations relate the state of the counter
to the states of the components

-- l
- - I
- - l
- - I
- - l
- - I
- - l
- - l
- - l
- - I
- - l
- - I
- - l
- - l

select state is
0 => finally(DFLZ.state  = ‘0’ and DFLl.state  = ‘0’)

report "Counter state does not match flipflop state"
severity warning;

1 => finally(DFL=!.state  = ‘0 J and DFLI. state = J I ‘)
report "Counter state does not match flipflop state"
severity warning;

2 => finally(DFL2. state = ‘1’ and  DFLl.state  =  ‘0’)
report "Counter state does not match flipflop state"
severity warning;

3 => finally(DFL2. state = J 1 J and DFLI  . state = J 1’)
report "Counter state does not match flipflop state"
severity warning;

end select ;

end SIMPLE ;

use work. all;
configuration A of TwoBitCounter is

-- I valentity;
- - l valarchitecture;
for SIMPLE

for all: DFlipFlop use
entity DFlipFlop(SIMPLE);
-- I valentity;

end for;
end for;

end A;

16
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Chapter 4

VAL Transformer

The VAL Transformer runs as a preprocessor on an annotated VHDL description to generate a
self-checking VHDL description. The principles of the translation are described in detail in [16].
Here we describe the translation algorithm in terms of nine simple steps designed to give the reader
an understanding of the principles involved:

1. Elimination of derived syntax.

2. Isolation of base statements.

3. Flattening of nested guards.

4. Resealing of timed expressions.

5. Generation of translation skeleton.

6. Translation of timed expressions.

7. Translation of time qualified expressions.

8. Translation of drive processes.

9. Translation of assertion processes.

The first four steps are independent of the target language (VHDL) and are performed entirely
on the VAL description. They reduce the VAL description to a very simple canonic form, and
must be performed in the outlined order. The final five steps amount to code generation, and are
dependent on VHDL. For performance reasons, the actual translation is not implemented exactly
as in the manner described here.

The following sections describe each of these steps in more detail. In order to give the reader
a better feel for the overall structure of the translation, the generation of the translation skeleton
is described first. The skeleton is independent of the other transformations performed on the
description, so the point at which it is performed is not critical.
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4.1 Generation of Translation Skeleton

The translation skeleton is designed to implement the scoping and visibility rules of VAL. Consider
the problem of observing the operation of a chip on a circuit board. One way of monitoring the
chip is to remove it from its socket, plug a specially constructed adapter into the socket, and then
plug the chip into the adapter. The adapter senses the signals traveling between the circuit board
and the chip’s pins. The signals can then be monitored to verify the behavior (and use) of the chip.

For simple cases, the VAL translation algorithm works in just such a manner. The Transformer
generates an additional architecture called the Monitor that contains an instantiation of the com-
ponent (architecture) under test. The Monitor has the same pins 1 as the component, and contains
a socket for the component. The Monitor is plugged into a circuit in place of the component. The
component is in turn plugged into the socket in the Monitor.

The Monitor body has visibility over all signals traveling between the actual architecture and
the other components in the simulation. In addition, the Monitor contains logic to verify the VAL
assertions made about the component under test. This includes maintaining its own separate state
(the VAL state model).

One advantage of this approach (as opposed to simply monitoring the signals that the pins are
connected to) is that VAL assertions can separate the value on out ports of the component from
the value on the signals that those ports drive 2. This allows the user to make assertions about the
value placed on the port by the entity. 3

Consider now an architecture containing several components. If a component is annotated, then
a monitor can be generated for that component. The mapping annotations in the architecture have
visibility over the internal state of the monitor of the component. This allows annotations within
the architecture that “map” the architecture’s state into the states of its components. The needed
visibility over the internal state of the component is provided through an additional out port on
the component that carries the component’s state.

The design units involved in the translation are shown in Figure 4.1. Assume an entity A
exists containing VAL annotations. Three design units are generated; two entity declarations and
an architecture. The architecture (named MONITOR) contains the VHDL translation of the VAL
annotations that appeared in the entity declaration. This includes the annotations which maintain
the entity’s state model. The ports of architecture MONITOR are the same as for entity A with the
addition of an out port of the same type as the entity’s state model. This out port is used to
provide visibility over the state of components of type A to any annotations within any architecture
that instantiates a component of type A. The generated entity A-OUTSTATE  declares the entity for
MONITOR.

Architecture MONITOR contains a component SOCKET having the same ports as entity A with the
addition of an in port of the same type as the entity’s state model. A translated version of the
original architecture body T of A is plugged into this socket. Because the entity’s state is passed
into the SOCKET through a port, it is visible to annotations within the architectural body. The

1 Almost. It may have an additional output pin, as described later, to allow other assertions to probe the monitored
architecture’s internal state.

2The  value placed on a port by an entity does not necessarily equal the value on a signal connected to that port
because bus resolution may come into play.

31n  VHDL, a port of mode out is not readable within the architecture. Therefore assertions about out mode ports
cannot be made in VHDL.
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architecture S of
TEST-BENCH is

I . . .
component

I TEST-ENTITY : A; I

architecture S-EXPANDED
of TEST-BENCH is
cbkponent TEST-ENTITY :

A-OUTSTATE;

entity A-OUTSTATE  is
entity A is -- entity A plus an
- -  VAL a n n o t a t i o n s  \

c
-- additional out port
- - of state type

I architecture MONITOR of
A-OUTSTATE  is

PI cbkponent SOCKET : I
I I A-INSTATE; I

architecture T
of A is
-- VAL Annotations

1-11

Figure 4.1: Relationship Between Design Units

translated version of T, T-EXPANDED, contains a translation of the VAL annotations appearing in the
architecture into VHDL. Its entity interface is described by A-INSTATE.

4.2 Target Independent Transformations

These four transformations reduce the complete VAL language to a simple canonic form. They
can be applied regardless of the target language of the translator. Most of these operations can be
seen as removing “syntactic sugar” from the description. The result is that the code generations
routines need deal with only a restricted subset of the language.

4.2.1 Elimination of Derived Syntax

Derived syntax refers to language constructs that can be rewritten in terms of syntactically simpler
language constructs. The rules that specify how to eliminate a language construct are known as
rewrite rules since they specify how to rewrite one construct in terms of another.

The following VAL constructs are eliminated by this step:
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l Select  - The select process activates one of a set of child processes based on the value of a
selection expression. It can be re-written as a set of when processes. For example,

select <expr>

cl I c2 => sl;
c3 I c4 => s2;
else s3;

end select ;

becomes,4

when (CI = <expr>)  or (c2 = <expr>)  then SI; end when;

when (~3 = <expr>)  or (~4 = <expr>)  then ~2; end when;

w h e n  ( c l  /= <expr>)  a n d  (c=!  /= <expr>)  a n d

(c3 /= <expr>)  and (~4 /= <expr>)  then s3; end when;

l Macro - A macro is a name for a list of parameterized statements. For every occurrence of
the macro, the statements associated with the macro are copied, and the actual parameters
substituted for the formal parameters. the rewrite rules must be performed recursively on
the result of the expansion.

l Generate - The generate statement defines a
erate statements are expanded in-line by

set of statements parameterized by an index. Gen-
making a copy of the code for each index value.

l Else and elsewhen

into simpler
- The syntactically more
forms. For example,

complex forms of the guarded processes are rewritten

when ei then sl;

elsewhen  e2 then s3;

else s4;
end when;

becomes,

when ei then sl; end when;

when not ei and e2 then s3; end when;

when not e1 and not e2 then s4 end when;

4This,  and the other rewrite rules, neglect semantic checking. If compile time semantic checks can guarantee no
semantic errors, then the behavior of the rewritten expression is correct. Otherwise the transformation rule can be
extended to include run-time semantic checking.
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Once the rewrite rules have been performed recursively on the VAL description, only simple
when processes (with no else parts), drive processes, and assertion processes remain.

4.2.2 Isolation of Base Statements

This step associates a set of guards with a single process. Each guarded process with multiple
processes in it’s then part is rewritten as multiple guarded processes, each with a single process in
its then part. For example,

when ei then SI; ~2; end when;

becomes,

when el then Sl; end when ;
when el then s2; end when;

The processes SI and s2 may be drive, assertion, or guarded processes.

4.2.3 Flattening of Nested Guards

Next, nested guarded statements are flattened. The VAL process

when el then
when e2 then

sl;
end when;

end when;

becomes,

The VAL description now consists of a list
guarding a single drive or assertion process.

of simple (no else clauses) guarded statements, each

4.2.4 Resealing of Timed Expressions

Since time in VAL is relative, the reference point of the entire descript on can be shifted in time
such that all references are to the past. This facilitates the translation to VHDL since only the past
value of a signal can be referenced in VHDL. The rules used here for manipulating VAL expressions
are based on the theory described in [l]. Resealing is done in five steps.

1. Generalize defaults - Default time references are added to every expression. There are two cases:

1. el during Tl becomes el during[-Ti,O]

2. ei becomes eiC01
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2. Set upper bounds - The upper bound of all time qualified expressions is shifted to zero. The
expression

S during [Tl , T2]

becomes,

S[T21 during [Tl-T2,0]

3. Push time references - Time references are “pushed” through each expression until they are
associated with signals. A timed expression (el CT11 > [T2] is rewritten as (el [Tl + T2] ).

The interval in time qualified expressions is not affected by pushing time references. For
example,

(ei CT11 during [T2,01)[T21

becomes,

el[Tl + T2] during [T2,0]

This eliminates all expressions of the form (e) CT]. Timed references are now only associated
with signals.

4. Compute furthest future reference - For each guarded process, the time of the furthest forward
reference of all expressions in that process is computed. This includes expressions in the drive
or assertion process in the then part of the guarded process. This time point will be referred
to as Tmax. For an expression e, MAX(e) = Tmaz  is:

- MAX(e) = maximum of all the subexpressions of e

- MAX( e during[Tl,O]) = MAX(e)

- MAX(s CT]) = T
- MAX(Tl,T2,T3,. . . ) = T; if Ti 2 Tj Qj # i

Tmax for a guarded expression is the MAX of all the expressions within the guarded statement
and all of its children. A different Tmaz is computed for each guarded expression.

5. Rescale  time - Each timed expression, with the exception of time in qualified expressions,
has Tmax subtracted from it. All time references should now be less than or equal to zero.
Qualified expressions are not effected since they refer to an interval, and not to a relative
time point. For example, consider:
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when el CT11 during [T2, T3] then

sCT41  <- e2[T5];

end when;

The upper bound of the during is first shifted to zero.

when el [Tl-T3] during [T2-T3,0]  then

s CT41  <- e2 [T5] ;

end when;

The furthest future reference time is given by:

TMAX=  MAX(T4,T5,Tl-T3)

The resealed code fragment becomes:

when el [Tl-TS-TMAX]  during[T2-T3,0]  then

s [T4-TMAX]  <- e2 [T5-TMAX]  ;

end when;

Note that causality requires that T4-TMAX <= 0. If TMAX > T4, then the drive statement
depends on a future value (T5 > T4 from the definition of TMAX) and the behavior is non-
causal.

4.3 Code Generation

Once the preceding transformations
canonical form characterized by:

have been applied to the VAL description, the code is in a

l Only simple guarded processes with no nesting or else clauses.

l References resealed relative to zero.

l Upper bound of time qualified expressions set to zero.

l One statement per guarded process.

There are two kinds of processes that can appear within a guarded process: a drive process or a
flavor of assertion. In addition to these two cases of processes, timed expressions and time qualified
expressions must also be translated into the corresponding VHDL. The following sections describe
the translation of each of these language constructs.
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4.3.1 Translation of timed expressions

Recall that in an earlier translation step all time references were resealed relative to the constant
Tmax. Therefore all timed expressions must be less than zero; i.e. all timed expressions are delays.
This can be modeled in VHDL by a signal assignment statement using transport delay.”

An expression

e CT]

becomes

S <= transport e after T;

All occurrences of the expression eC~1 are then replaced with the signal S. All expressions are
rewritten recursively until all timed expressions are eliminated. Transport delay is used to assure
that no preemption [ll] occurs on the signal. In VAL, once an assignment to a signal is made, in
cannot be “undone.”

4.3.2 Translation of time qualified expressions

Recall that in an earlier step each time qualified expression was shifted in time such that its upper
bound was zero. This can be translated into VHDL as a check for stability over the most recent
interval using a VHDL process.6 The expression

e during [T , 01

is replaced by the signal GBE2 which is defined in VHDL in Figure 4.2.
Whenever the expression changes value, the process is activated and sets a flag to false to

indicate that the expression is not stable. The flag is reset if the process is not activated (the
expression does not change value) for T time units. Whenever the value of the expression changes,
the new signal GBE2 is set to true if the expression is true and has been stable and true for the
last T time units.

4.3.3 Translation of drive processes

In VAL/VHDL, the drive process can only be used to change the value of the entity state. After
the previous transformations, there may be several guarded processes containing a drive statement
affecting the entity state or a component of the state. Only one of these, however, should be active
at any point in time. Because VHDL requires that a signal may be the target of only a single

‘The  predefined VHDL attribute ‘delayed0  cannot be used for this because the argument of ‘delayed0 must
be a globally static expression. (See $7.4 of [20].)  Although the argument generated by the translation algorithm is a
“run-time” constant, it is actually computed at elaboration time using functions defined in a VAL package. Therefore
it does not meet the VHDL definition of globally static.

6As with ‘delayedo, the predefined VHDL attribute ‘stable0 cannot be used in the translation because
the argument may not be a globally static expression as defined in VHDL. The argument may not be a globally
static expression because the Transformer introduces function calls as part of the translation process. In effect, the
transformer generates code to implement the ‘stable0  attribute itself.
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signal GBE2 : BOOLEAN;

block
signal GBEI , GBEI-delay : BOOLEAN;
signal GBEI-stable  : BOOLEAN := TRUE;

begin
GBEI <= e ;
GBEI-delay  <= transport GBEI after T;
process ( GBEI)
begin

if GBE-1 J event then
GBEI-stable  <= FALSE;
GBEI-stable  <= transport true after T;

end if;
end process ;
GBE2 <= GBEI-stable  and GBEI;

end block ;

Figure 4.2: Translation of Time Qualified Expression

concurrent signal assignment statement, all of the guarded processes that may influence the state
are brought together into a single VHDL process. This process is sensitive to all of the signals that
may influence the state, and checks that only a single assignment to state is active at any point in
time.

Consider for example the following VAL code:

when Gl then
state <- El;

end when;
when G2 then

state <- E2;
end when ;

This is translated into the VHDL shown in Figure 4.3.

4.3.4 Translation of assertion processes

There are four flavors of assertions in VAL: assert, finally, sometime, and eventually. Each of
these assertions is translated into a VHDL process, the details of which depend on the particular
flavor of assertion. Because the default severity level in VAL is WARNING, the translation must set
the severity level of generated VHDL assertions.

Assert

The VAL assert process is translated directly into the VHDL assert statement.
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VALSTATE: block
Sl : state-type;
s2 : state-type;

begin
Sl <= El;
S2 <= E2;
process ( Sl ,S2 >

variable count : integer;
begin
count := 0;
if (Gl) then

count := count + I;
state <= Sl;

end if;
if (G2) then

count := count t 1;
state <= S2;

end if;
assert count <= 1

report "VAL Error: Multiple assignment to state";
end process ;

end block;

Figure 4.3: Example of State Maintenance Process

Finally

The finally assertion is translated into a VHDL process that wakes up whenever a signal in the
asserted expression changes. The process than sets itself to wake up at the first delta of the next
time and checks the value of the assertion. The value of the asserted expression will be the value
it held at the end of all of the deltas in the previous time point.

For the assertion

finally <test-expression>
report <message-expression>
severity <severity-expression>;

the corresponding VHDL process is given in Figure 4.4.

Sometime

The translation for the sometime assertion closely resembles that for finally. Whenever a signal
in the test expression changes, a process wakes up and checks if the test expression is true. The
process then sets itself to wake up on the first delta of the next simulated time. When it wakes up
at the next simulated time, the process checks that the expression was true in at least one delta in
the previous simulation cycle.

The translation for sometime is given in Figure 4.5.
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VAL-FINALLY1 : block
signal next-time : BOOLEAN;
signal assert-expr : BOOLEAN;

begin
assert-expr <= <test-expression>;
process ( assert-expr,next-time  )

variable first : BOOLEAN := TRUE;
variable oneb : BOOLEAN := TRUE;

begin
if next-time J event then

assert oneb
report <message-expression>
severity <severity-expression>;

first := TRUE;
end if;
if assert-expr'event  then

if (assert-expr /= oneb) then
oneb := assert-expr;
if first then

next-time <= not next-time after ifs;
first := FALSE;

end if;
end if;

end if;
end process ;

end block VAL-FINALLYl;

Figure 4.4: Translation of Finally assertion

Eventually

The eventually assertion is similar to finally, except that once the test expression goes true it must
remain true during all deltas in the remainder of the time point. the translation is thus very similar
to that for finally, with the addition that the process must check that the test expression ncvcr
makes the transition from false to true and back to false at the same time point.

The translation for eventually is given in Figure 4.6.
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VAL-SOMETIME : block
signal next-time, assert-expr : boolean := FALSE;

begin
assert-expr <= <test-expression>;
sometimes-label : process ( assert-expr,next-time'transaction  >

variable initial-cycle : boolean := TRUE;
variable oneb : boolean := FALSE;
variable first : boolean := TRUE;

begin
if initial-cycle then

initial-cycle := FALSE;
next-time <= not next-time after 1 fs;
first := FALSE;

end if;
if next-time) event then

assert oneb
report <message-expression>
severity <severity-expression>;

first := TRUE;
oneb := FALSE;

end if;
if (assert-expr'event or not next-time J event) then

oneb := oneb or assert-expr;
if (first and not assert-expr) then
next-time <= not next-time after ifs;
first := false;

end if;
end if;

end process sometimes-label;
end block VAL-SOMETIME;

Figure 4.5: Translation of Sometime assertion
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VAL-EVENTUALLY : block
signal next-time, assert-expr : boolean := FALSE;

begin
assert-expr <= <test-expression>;
eventually-label : process ( assert-expr,next-time  >

variable glitch : boolean := FALSE;
variable oneb : boolean := FALSE;
variable first : boolean := TRUE;

begin
if (not assert-expr'event and not next-time'event) then

next-time <= not next-time after ifs;
first := FALSE;

end if;
if next-time' event then

assert oneb
report <test-message>
severity <severity-expression>;

first := TRUE;
glitch := FALSE;

end if;
if (assert-expr'event) then

glitch := glitch or (oneb and not assert-expr);
oneb := assert-expr;
if (first and not oneb) then
next-time <= not next-time after Ifs;
first := FALSE;

end if;
end if;

end process eventually-label;
end block VAL-EVENTUALLY;

Figure 4.6: Translation of Eventually assertion
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Chapter 5

Experience, Status, and Future Work

The VAL Transformer is currently under development. A prototype transformer for a subset of
VAL is currently running with VHDL 7.2. We are currently implementing a VHDL 1076 version of
the Transformer. Very preliminary experiments show that annotations in general may slow down
the simulation by 20% to 70%, depending of the extent of their use. VAL provides a mechanism
(the configuration annotations) for selecting the components that are monitored. This allows the
user to select the level of checking necessary for a given application.

VAL has been used in the design and debugging of several benchmarks of moderate size. These
include the traffic light controller specified in [13] and described in VHDL in [18], the two-bit
counter from which earlier examples have been taken, the ALU in [19],  and a simple 16-bit CPU.
In all cases the VAL annotation has provided a clean and simple specification of the intended
behavior. Perhaps more importantly, the design checking provided by VAL significantly increased
our confidence in the correctness of the design. In one instance (the two-bit counter described
earlier), an outright design bug missed by the designer in reviewing the VHDL simulation output
was flagged and quickly located when the same simulation was automatically checked using VAL.
Mapping annotations were particularly useful in isolating the cause of the error. The reason for
this is that they allow the subcomponent related to an error to be immediately identified, since
an error is detected as soon as an assertion is violated, not just at the outputs of a component.

Currently we are focusing on gaining more experience with annotating larger benchmarks.
Language extensions such as additional abstraction mechanisms may be necessary for large and
complex entities. Additional kinds of annotations, such as package, type and subtype constraints
akin to those in [12]  might also be useful. While the current mapping annotations have so far proved
adequate, their coarse granularity doesn’t provide the detailed level of constraint checking that
might be needed. As an aid in debugging, a means of enabling and disabling more detailed assertions
would be useful. Finally, VAL’s semantics were kept simple to allow the potential application of
formal verification methods [4,7,6,9,5]. Formal verification would provide a degree of verification
beyond or perhaps in addition to the current model of simulation time constraint checking.

We view VAL as a trend in hardware design languages, and not as a finished project. The
next development will probably be constructs for expressing design hierarchy. These are clearly
required, even to develop our current VAL checker into a design debugger for use with VHDL
simulators. Hierarchy constructs are quite clearly needed to pursue more ambitious applications of
design languages such as mathematical verification of designs and (semi-automatic or interactive)
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synthesis.
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