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Abstract

In this paper we show how to compose user
interfaces with InterViews, a user interface toolkit
we have developed at Stanford. InterViews
provides a library of predefined objects and a
set of protocols for composing them. A user
interface is created by composing smple primitives
in a hierarchical fashion. allowing complex user
interfaces to be implemented easily. InterViews
supports the composition of interactive objects
(such as scroll bars and menus), text objects
(such as words and whitespace), and graphics
objects (such as circles and polygons). To
illustrate how InterViews composition mechanisms
facilitate the implementation of user interfaces,
we present three simple applications: a dialog
box built from interactive objects, a drawing
editor using a hierarchy of graphical objects,
and a class browser using a hierarchy of text
objects. We also describe how InterViews supports
consistency across applications as well as end-user
customization.

1 Introduction

Graphical user interfaces for workstation appli-
cations are inherently difficult to build without
abstractions that simplify the implementation
process. To help programmers create such
interfaces. we considered the following questions:
What sort of interfaces should bhe supported?
What constitutes a good set of programming
abstractions for building such interfaces?” How does
a programmer go about building an interface given
these abstractions? Our efforts to develop user
interface tools that, address these questions have
been guided by practical experience. We make the
following observations:

e All user interfaces need nof look alike. It
is desirable to maintain a consistent “look
and feel” across applications. but users often
have different preferences. For example, one
user may prefer pop-up menus, while another
insists on pull-down menus. Our tools must

therefore allow a broad range of interface styles
and must be customizable on a per-user basis.

e User interfaces need not be purely graphical.
Many application designers prefer iconic inter-
faces because they believe novices understand
pictures more readily than text. However,
recent, work [14] suggests that excessive use
of icons can confuse the user with unfamiliar
symbolism. A textual interface may be more
appropriate in a given context. The choice
of graphical or textual representation should
favor the clearest alternative.

e User interface code should be objecf-orient ed.
Objects are natural for representing the
elements of a user interface and for supporting
their direct manipulation. Objects provide
a good ahstraction mechanism, encapsulating
state and operations, and inheritance makes
extension easy. Our experience is that,
compared to a procedural implementation,
user interfaces are significantly easier to
develop and maintain when they are written
in an ohject-oriented language.

e Interactive and abstract objects should be
separate. Separating user interface and
application code makes it possible to change
the interface without modifying the underlying
functionality and vice versa. This separation
al so facilitates customization by allowing
severa interfaces to the same application. It
is important to distinguish between interactive
objects, which implement the interface, and
abstract objects, which implement operations
on the data underlying the interface.

An effective way to support, these principles is
to equip programmers with a toolkit of primitive
user interface objects that use a common protocol
to define their behavior. The protocol alows user
interface objects to be treated uniformly, enabling
in turn the introduction of objects that compose
primitives into complete interfaces.  Different
classes of composition objects can provide different
sorts of composition. For example, one class of
composition object may arrange its components



in abutting or tied layouts, while another alows
thenl to overlap in prescribed ways. A rich set
of primitive and composition objects promotes
flexibility, while composition itself represents a
powerful way to specify sophisticated and diverse
interfaces.

Composition mechanisms are central to the
design of InterViews, a graphical user interface
toolkit we have developed at Stanford. Interviews
is a library of C++ [20] classes that define com-
mon interactive objects and common composition
strategies.  Figure 1 depicts how objects from
the InterViews library are incorporated into an
application, and Figure 2 shows the relationship
bhetween the various layers of soft ware that support
the application. Primitive and composition
objects from the InterViews library are linked into
application code. The window svst em is entirely
abstracted from the application; the application’s
user interface is defined in terms of InterViews
objects, which communicate with the window and
operating svstems.

InterViews supports composition of three cate-
gories of object. Each category is implemented as
a hierarchy of object classes derived from a common
base class. Composition subclasses within each
class hierarchy- allow hierarchical composition of
object instances.

1. Interactive objects such as buttons and
menus are derived from the interactor base
class. Interactors are composed by scenes;
scene subclasses define specific composition
semantics such as tiling or overlapping.

2. Structured graphics objects such as circles
and polygons are derived from the graphic
base class.  Graphic objec ts are composed
by pictures, which provide a common
coordinate system and graphical context for
their components.

3. Structured text objects such as words and
whitespace are derived from the text base
class. Text objects are composed by clauses;
clause subclasses define common strategies for
arranging components to fill available space.

The base classes define the communication protocol
for al objects in the hierarchy. The composition
classes define the additional protocol needed by the
elements in a composition, such as operations for
inserting and removing elements and operations for
propagating information through the composition

(see Appendix A, Primitive and Composition
Protocols).

Hierarchical composition gives the programmer
considerable flexibility. Complex behavior can be
specified by building compositions that combine
simple behavior. The composition protocol
facilitates the task of both the designer of a
user interface toolkit, and the implementor of a
particular user interface. The toolkit designer
can concentrate on implementing the behavior of
a specific component in isolation; the interface
designer is free to combine components in any way
that suits the application.

In this paper we focus on using InterViews to
build user interfaces. We present several simple
applications and show how InterViews objects can
be used to implement their interfaces. We also
illustrate the benefits of separating interactive
behavior and abstract data in several different
contexts. Finally. we discuss Int erViews support,
for end-user customization as well as the status of
the current implementation.

2 Interactor Composition

An interactor manages some area of potentia input
and output on a workstation display. A scene
composes a collection of one or miore interactors.
Because a. scene is itself an interactor, it must
distribute its input and output area among its
components.  In this section, we discuss the
various InterViews scene subclasses that, provide
tiling, overlapping, stacking, and encapsulation of
components. We concentrate on how these scenes
are used rather than giving their precise definitions.

2.1 Boxes and Glue

Consider the simple dialog box shown in Figure 3.
It condists of a string of text, a button containing
text, and a white rectangular background sur-
rounded by a black outline. Pushing the button
will cause the dialog box to disappear. The dialog
hox will maintain a reasonable appearance when
it is resized by a window manager. If parts of the
dialog box previously covered by other windows are
exposed, then the newly exposed regions will be
redrawn.

InterViews provides abstractions that. closely
model the elements. semantics, and behavior of
the dialog box. A user interface programmer can
express the implementation of the interface in the
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hella world

| goodbye world |

Figure 3: A simple dialog hox

same terms as its specification. The Inter Views
library contains a variety of predefined interface
components; we will use the following components
in the dialog box:

e message, an interactor that contains a string
of text

e push button. an interactor that responds to
the press of a mouse button

e box. a scene that tiles its components

e glue. variable-sized space between interactors
in a box

e frame. a scene that puts an outline around a
single component

Boxes and glue are used to compose the other
elements of the didog box. The composition model
we use is a smplified version of the TEX[6] boxes
and glue model. This model makes it unnecessary
to specify the exact placement of elements in the
interface, and it eliminates the need to implement
resize behavior explicitly.

Two types of box are used: an hbox tiles its
components horizontally. while a vbox tiles them
vertically. Glue is used between interactors in a
hox to provide space between components. Hglue
(horizontal glue) is used in hboxes, while vglue
( vertical glue) is used in vboxes.

Each interactor defines a preferred or naturalsize
and the amount by which it is willing to stretch
or shrink to fill available space. Glue of various
natural sizes. shrinkabilities, and stretchabilities
can be used to describe a wide variety of interface
layouts and resize behaviors.

Figure 4 depicts schematically how the elements
of the dialog box are composed using boxes and
glue. The corresponding object struct ure is shown
in Figure 5, and the C++ code that implements
the dialog box appears in Figure 6. The message
and button interactors are each placed in an hbhox

e hglue

$ vglue

Figure 4: Sdiematic of dialog box composition
using hoses and glue

Figure 5: Object structure of dialog box composi-
tion

with hglue on either side of them. The hglue to
the left of the message has a. natural size of a
quarter of an inch and cannot stretch. while the
glue on the right has a natural size of zero and
can stretch infinitely (as specified by the constant
hfil). If the dialog box is resizecl (Figure T), the
margin to the left of the message will not exceed
a quarter of an inch, while the space to the right
can grow arbitrarily. Similarly, the button has
infinitely stretchable hglue to its left, and fixed size
hglue to its right, so that the margin to the right
of the button will not exceed a quaster of an inch.

The hboxes are composed vertically within a
vbox, separated by pieces of vglue. The pieces of
vglue ahove the message and below the button have
a natural size of a quarter of an inch, while the
vglue between the message and the but ton has a
natural size of half an inch. The inner vglue can
stretch twice as much as the outer two pieces of
vglue. On resize. therefore. the message and button



const i nt space = round(.25%inches);
ButtonSt ate* status;

Frame* frane = new Frame(
new VBox(

new VGlue(space, hfil),

new HBox (
new HGlue(space, 0),
new Message("hello world"),
new HGlue(0, hfil)

),

new VGlue(2#space, 2*vfil),

new HBox (
new HGlue(0, hfil),

/% (natural size, stretchability) =/

new PushButton("goodbye worl d", status, false),

new HGlue(space, 0)
),
new VGlue(space, hfil)

Figure 6: C++ code for conposi ng the didog box interface

hello world

Figure 7: The didog box &fter resizing

interactors will remain twice as far apart from each
other as they are from the edge of the diadog box.

2.2 Tray

Suppose we want a. dialog box centered atop
another interactor, perhaps to notify the user of an
error condition. Furthermore. we want the dialog
box to remain centered if the interactor is resized
or repositioned. Boxes and glue are inappropriate
for this type of non-tiled composition.

The tray scene subclass provides a natural way
to describe layouts in which components *“float”
in front of a background. A tray typically
contains a background interactor and several other
components Whose positions are determined by a
set of alignments. For example, the background

interactor might display the text in a document:
other components could include various messages.
buttons, and menus.

Each alignment of a tray component is to some
other target interactor, which can be another
component of the tray or the tray itself. The
alignment specifies a point on the target. a point
on the component, and the characteristics of the
glue that connects the alignment points. a1
alignment point can be a corner of the interactor,
the midpoint of a side, or the center. The tray will
arrange the components to satisfy al aignments as
far as possible. If necessary, the components and
the connecting glue will be stretched or shrunk to
satisfy the alignments.

Figure § shows a. simple application in which a
tray composes a textual interface and a dialog box.
The interactor containing text and a scroll bar are
composed with an hbox and placed into the tray as
its background. When the dialog box is required
it is inserted into the tray with its upper left and
lower right corners aligned to the corresponding
corners of the tray. Figure 9 shows the arrangement
of components, and Figure 10 gives the code
that implements the interface. The alignments
interpose stretchable but non-shrinkable glue with
a natural size of an eighth of an inch to maintain
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const i nt space = round(.125*inches);
TGlue* gl = new TGlue(space, space, hfil, vfil, 0, 0);
TGlue* g2 = new TGlue(space, space, hfil, vfil, 0, 0);

/% (width, height,
Tray* tray = new Tray(
new HBox (
vi ew,

new VBorder (1),
new VScroller(view)

tray->Insert(dialog);

tray->Align(TopLeft, di al og, g1);

tray->Align(BottomRight, di al og,

g2);

hshrink, hstretch, vshrink, vstretch) */

Figure 10: C++ code for composing the tray interface
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Figure 11: Tray interface after resizing

a minimum spacing between the edges of the tray
and the dialog box. These alignments guarantee
that the dialog hox. will remain centered atop the
background interactor after resizing (Figure 11).
Note how the tray shrank the dialog box to satisfy
the alignment constraints once the glue reached its
minimum size.

2.3 Deck

Another comumon interface is one in which the user
flips (rather than scrolls) through “pages’ of test
or graphics as through a hook. Such an interface
can be built in InterViews by composing interactors
with a deck. The interactors in a deck are
conceptually stacked on top of each other so that,
only the topmost interactor is visible (Figure 12) .
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Figure12: Composition using a deck

The deck’s natural size is determined by the natura
size of its largest component. A set of operations
alow “shuffling” the deck to bring the desired
component to the top.

Decks can be used in other contexts as well. A
set of color or pattern options in a dialog box could
be composed with a deck, alowing the user to flip
through them until the desired choice is reached.
Alternate menu entries could be stored in a deck
and inserted into a menu to allow changes in the
menu’'s appearance without having to rebuild it
each time,

2.4 Single Component Scenes

Boxes, trays, and decks are examples of scenes
with arbitrary numbers of components. InterViews
also provides severa scenes that can have only one
component. Such scenes are derived from the scene
subclass monoscene and Serve two PUrpoSEs.

Some monoscenes serve as contamners that
surround another interactor. The frame used
to place a border around the dialog box in
Section 2.1 is one example. Other examples
include shadow frame, which adds a drop shadow
to its component. and title frame, which adds
a banner. A viewport iS a monoscene that
scrolls an int eractor larger than the available space.
Viewports are useful for providing a scrolling
interface to non-scrolling interactors.

Other monoscenes provide « bstraction; they
are used to hide the internal structure of an
interactor that is implemented as a composition.
For example, the class menu is derived from
monoscene. A menu is implemented as a box
containing the interactors that represent the menu
items. However, the box composition should not

components

e visible to a programmer who wants to use the
menu in a user interface. The monoscene hides the
implementation of menus, making them easier to
understand and allowing their structure to change
without affecting other interface code.

3 Graphic Composition

Direct, manipulation editors allow the user to
manipulate graphical representations of familiar
objects directly. A drawing editor lets an artist
draw a circle and drag it to a new location. A music
editor lets a composer write music by arranging
notes on staves. A schematic editor lets an engineer
“wire up” graphical representations of circuits.

The programmer of such systems must provide
underlying representations for the graphical objects
and define the operations they perform. InterViews
provides a collection of structured graphics objects
that simplifies the programmer’s task.

3.1 A Simple Drawing Editor

Figure 13 depicts a simple drawing editor appli-
cation in which the user can draw, move, and
rotate rectangles and scroll and zoom the drawing
area. To draw a rectangle. the user presses the
rect button and drags out a. rectangle in the
drawing area. An existing rectangle can be moved
or rotated by pressing the appropriate button and
dragging the rectangle.

In each of these operations, the drawing editor
provides animated feedback as the user creates
and manipulates rectangles. Animation reinforces
the user’s belief that he is manipulating real
objects. AS a rectangle is moved, for instance,
its outline follows the mouse: during rotation,
the outline revolves: about the rectangle’s center.
Such dynamic feedback is characteristic of a direct
manipulation editor.

3.2 Implementing the Drawing
Editor

The elements of the user mterface can be composed
using InterViews interactor and graphic subclasses
as shown in Figure 14. The buttons are instances of
radio button, a predefined subclass of the button
class. The interface to scrolling and zooming is
provided by a palmer. the two-dimensional scroller
in the lower right of the interface. The drawing area
in which the rectangles appear is a. graphic block,
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Figure 13: A simple drawing editor application

an interactor that displays structured graphics
objects. These elements are composed using hoses
and glue. The editor's pop-up command menu.
appearing in the center-right of Figure 13. is an
instance of the menu class.

Each rectangle in the drawing is an instance
of the rectangle class, a subclass of graphic.
The rectangles are composed in a picture, and
the picture is placed in the graphic block. The
graphic block translates and scales the picture
to implement, scrolling and zooming. Rectangles
are moved and rotated by calling transformation
operations on the rectangle objects. The picture
performs hit detection by returning the component
that corresponds to a coordinate pair.

3.3 Semantics of Graphic
Composition

The drawing editor demonstrates simple composi-
tion of graphics. In this example, the hierarchy
of graphica. objects is only one level deep; all
the rectangles are children of a single parent,
picture. Of course. more complex hierarchies are
common in a practical drawing editor. However,
even the simple one-level hierarchy demonstrates
the semantics of graphic composition. For
example, when the graphic block applies a
transformation to the picture to scroll or zoom it,
the transformation affects all the rectangles in the
picture. Furthermore, atering any of the picture’s
graphics state attributes would affect, its children
as well. For example, changing the picture’s brush
width attribute would also change the brush widths
of its children.

The composition mechanism defines how the
picture’s graphics st ate information affect s its com-
ponents. A picture draws itself by drawing each
component recursively with a graphics state formed
by concatenating the component’s state with its
own. The default semantics for concatenation
are that the attributes defined by a graphic’s
parent, override the graphic’s own attributes. If a
parent. does not define a particular attribute. then
the child graphic’s attribute is used. Coordinate
transformations are concatenated so that the
child's transformation precedes the parent’s.

These semantics represent a kind of reverse
inheritance of graphics attributes, since parents
can override their children.  This mechanism
is useful in editors where operations performed
on interior nodes of the graphic hierarchy affect
the leaf graphics uniformly. Classes derived
from the graphic class can redefine the semantics
of concatenation if the default, semantics are
inappropriate.

3.4 Immediate Mode Graphics

Structured graphics objects are not normally
used to draw scroll bars, menus, or other user
interface components that are simple to draw
procedurally.  Interactors use painter objects
for this purpose. Painters provide imm edial e
mode drawing operations (including operations for
drawing lines, filled and open shapes, and text),
and operations for setting the current fill pattern,
font, and other graphics state. The results of a
painter drawing operation appear on the display
immediately after the operation is performed. The
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Figure 14: Drawing editor object structure

difference between painter-generated graphics and
structured graphics is that painters do not maintain
state or structure that reflects what has been
drawn, so there is no way to access and manipulate
the graphics. In contrast, structured graphics
objects maintain geometric and graphical state
and can be manipulated before and after they are
drawn.

Structured graphics is most appropriate in
contexts where an indefinite number and variety
of graphical objects ae manipulated directly. It
is a powerful tool for constructing graphics editors
that provide an object-oriented editing metaphor
because structured graphics objects embody the
same metaphor. These objects typically represent
the data managed by the editor. Painters should
be used to draw simple, unchanging elements of the
interface that do not justify the storage overhead
of graphics objects.

4 Text Composition

Direct manipulation textual interfaces require
special support to handle the problems that arise
in the presentation of text, such as line and page
breaking and arranging text, to reflect the logical
structure of a document. InterViews structured
text objects simplify the implementation of direct
manipulation textual interfaces.

4.1 A Simple Class Browser
Application

Figure 1.5 shows the interface to a class browser,
a simple application for perusing C++ class

declarations. The browser displays a class
declaration with the class name underlined and
member functions in bold. Clicking on the class
name opens a window showing documentation for
the class, and clicking on a member function opens
a window showing the function’'s definition. The
arrangement, of the text is maintained by text
composition objects. As Figure 16 shows, resizing
the window reformats the text to make good use of
available space.

4.2 Implementing the Class
Browser

Text, and clause subclasses are used to compose the
text displayved in the browser. Objects of class
word (a string of characters) and whitespace
(blank space of a given size) are assembled using
various composition objects so that the lines of
code will fill available space in an appropriate
manner. The entire composition is placed in a text
block ( an interactor that displays struc t ured text
objects), and the text block is inserted into a frame.

4.3 Semantics of Text Composition

Subclasses of clause specify the way their com-
ponents will be arranged. Different, clauses use
different, strategies for using available space:

« A phrase formats its components without
regard to space. The components are simply
placed end-to-end on a single line.

o A text list can arrange its components either
horizontally o r vertically. If there is not
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Figure 17: Ob ject structure of the text composition
for the Int eractor constructor

-10-

enough space for the whole list to fit in a
horizontal format, then the list will place each
component, on a separate line. Text lists are
used in the browser for composing the member
function parameter lists.

« A display defines an indented layout. If the
display will not fit on the current line, then it
is placed on the following line with a. specified
indentation. The browser composes class and
member function declarations using displays.

o A sentence Wwill place as many components
as possible on the current line and will begin
a new line if necessary. The browser uses
sentences for comments.

To illustrate how text, composition can be
used, consider the composition of the Int eractor
constructor in the browser (Figure 17). The
declaration is composed as a phrase with three
components:  the first component is a word
representing the string Int eractor (, the second
is a display that contains a text list of the formal
parameters, and the third is a word representing
the string ) ; . Figure 18 shows that the constructor
declaration will appear in one of severa layouts
depending on the available space. In the top
example all the text can fit on a single line. In
the middle example the available space has been
reduced so that there is not enough room for the
display containing the parameter list; the display is
placed on a separate, indented line. In the bottom
example the available space has been reduced
further, causing the text list to display vertically
instead of horizontaly.

Text composition is most useful when the
interface requires direct manipulation of text, when
the text should reflect the structural characteristics
of the document, or when the text layout should
automatically make good use of available space.
Painters are more appropriate for embellishing
interfaces with simple, non-interactive text.

5 Subjects and Views

In InterViews we distinguish between interactive
objects, which implement a user interface, and
abstract objects, which encapsulate the underlying
data. We refer to interactive and abstract,
objects as views and subjects, respectively.
This separation IS important in many aspects
of user interface design. It is a vehicle for



Interactor(Sensor* in = stdsensor, Painter* out = stdpaint);

Interactor(

Sensor* in = stdsensor, Painter* out

Interactor(
Sensor* in = stdsensor,
Painter* out = stdpaint

st dpai nt

Figure 18: Possible layouts of the Interactor constructor

customization, alowing programmers to present
different, independently customizable interfaces to
the same data. It is a useful structuring mechanism
that separates user interface code from application
code. It permits different representations of the
same data to be displayed simult aneously such
that changes to the data made through one
representation are immediately reflected in the
others.  Several other user interface packages
support this separation, including the Andrew
Toolkit [13], Smalltalk MVC [7], GROW [2], and
MacApp [17].

Views in InterViews are typically implemented
with compositions of interactors, graphics, and
text objects. Subjects are often (but need not
be) derived from the subject class. A subject
maintains a list of its views. Views define an
Update operation that is responsible for reconciling
the view's appearance with the current, state of the
subject. Cdling Motif y on a subject in turn cals
Update on its views, thus enabling the views to
update their appearance in response to a change in
the subject.

In practice it is inconvenient to force every user
interface concept nto the subject/'view model. For
example, it is unnecessary- to associate a subject
with every menu because interfaces seldom require
multiple views of the same menu. However, many
InterViews library components do use the subjects
and views paradigm. Two examples relate to the
implementation of scrolling and buttons.

5.1 Scrolling and Perspectives

An interactor that supports scrolling and zooming
main tains a perspective. The perspective is

a subject that defines a range of coordinates
representing the total extent of the interactor’s
output space and a subrange for the portion of the
total range that is currently visble. For example,
in the drawing editor of Section 3.1 the total extent
of the graphic block’s perspective is obtained from
the picture’s bounding box: its subrange is the
space the graphic block occupies on the screen. In
a text editor the vertical range might he the total
number of lines in a file; the subrange would be
the number of lines displayed by the editor on the
screen.

Scrolling and zooming are performed by modi-
fying the interactor’s perspective. An interactor
can modify its own perspective (when the text
editor adds a line to the file, for example), or
the perspective can be modified by the user
manipulating one of its views.

The panner in the drawing editor is a view of
the perspective associated with the editor’s graphic
block. The panner is really a composition of
several other perspective views. a slider, a set of
four movers. and two zoomers. Each of these
elements views the same perspective: the slider
scrolls the drawing in both x and y dimensions,
each mover provides incremental scrolling in one
of four directions, and the zoomers respectively
enlarge and reduce the drawing. There is no limit
to the number of views on the same perspective;
a change made through one view of a perspective
will be reflected in al its views.

The advantage of this organization is that one
view of a perspective need not, know about other
views of the same perspective. Whenever the
perspective is changed, either by the interactor
or by a view, all the views are notified. Each
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Figure 19: How a perspective coordinates scrolling of a graphic block

view of the perspective is responsible for updating
its appearance appropriately in response to the
change. For example, when a. mover or zoomer is
pressed, the perspective is updated and the dider is
notified automatically. The dider can then redraw
itself to reflect the new perspective.

Figure 19 shows how a graphic block’s perspec-
tive coordinates the scrolling operation when the
user presses one of the palmer’'s movers. The
graphic block modifies its perspective on behalf
of the mover because the graphic block may want
to limit the amount of scrolling. In this instance
the perspective and the interactor are considered
together as the subject to which views such as
panners are at tached.

5.2 Buttons and Button States

The dialog box in Section 2.1 uses a button for
dismissal. In InterViews, a button is a view of
a button state subject, When the user presses
a button, the button sets its button state to a
particular value. Several buttons can view a single
button state: like any subject,, a button state
notifies al its views (buttons) when it changes.
To illustrate, consider how InterViews radio
buttons are implemented. A radio button acts like
a tuning button on a car radio; only one button

in a group of radio buttons can be “on” a a time.
Radio buttons are provided when the user should
select an option from several mutually-exclusive
choices. A single button state is used as the subject
for a group of radio buttons. Pressing one of the
radio buttons sets the button state to a particular
value. The button will stay pressed until the button
state is changed to a different value. usualy by
pressing another radio button in the group.

6 Customization

InterViews adopts the X Toolkit [9] model to
support customization Of interactors. Users can
define a hierarchy of attribute names and values.
An interactor can retrieve the value of an attribute
by name; it interprets the value t0 customize some
aspect of its appearance or behavior. Attribute
lookup involves a search through parts of the
attribute hierarchy that match the interactor’s
position in the object instance hierarchy. Each
interactor can have an instance name: interactors
not explicitly named inherit a class name. The
name given the interactor at the root of the
instance hierarchy is usually the name of the
application.



For example, suppose the application con-
taining the example dialog box of Section 2.1
was called “hello” , and the push button in
the dialog box had the instance name “bye.”
The full name of the attribute that specifies
the font for the button label would then be
hello.Frame.VBox.HBox.bye.font. Attribute
names can include “wildcard” specifications so that
one attribute can apply to severa interactors. The
font. of the push button in the example dialog box
is more likely to be specified by an attribute named
hello*PushButton . font. which would apply to
any push button in the application, or even *font.
which would apply to any font in any application.
The mechanism for accessing attributes ensures
that the attribute with the most specific name is
the one used to satisfy a query. The InterViews
library automat ically handles standard attributes
such as “font” and “color”.

The designer of an application chooses names
for interactors that users can customize. Users
specify. these names to refer to interactors they
want to customize. Consistency- across a range
of applications is achieved by a consistent choice
of instance and attribute names. For example,
all confirmation buttons in all “quit” dialog
boxes Wwill be red if the user lists the attribute
*quit#*0K. background: red, if al quit dialog boxes
are given the instance name “quit”, and if all
confirmation buttons are named “OK.”

7 Current Status

InterViews currently runs on MicroVAX, Sun, HP,
and Apollo workstations on top of the X Window
System [16] versions 10 and 11. The library is
roughly 30.000 lines of C++ source code, of which
about 2,000 lines are X-dependent. Interviews
applications do not call X routines directly and are
thus isolated from the underlying window system.

We have implemented several applications on top
of the library, including a scaable digital clock, a
load monitor. a drawing editor, a reminder service,
a window manager, and a display of incoming
mail. The applications have been used daily- by
about 20 researchers for nearly two years. and
the library is being used in many development
efforts at Stanford, at other universities, and in
industry. We are currently- using InterViews in
the development’ of a more general drawing system,
a program editor. a. visual command shell, and a
visual debugger.

-13-

8 Conclusion

Our experience with InterViews has convinced
us of the importance of object-oriented design,
subject/view separation, and composition in
facilitating the implementation of user interfaces.
Composition is particularly important,. Providing
one or two ways to combine interface elements is
not enough. To redly help the programmer, a user
interface toolkit must offer a rich set of composition
mechanisms along with a variety of predefined
objects to use. The programmer should he able
to pick and choose from among the predefined
components for the bulk of the interface, and the
toolkit should make it easy to synthesize those
components that are unique to the application.
The composition mechanisms in InterViews make
this possible.
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Appendix A
Primitive and Composition
Protocols

The set of operations defined on an object can
be thought of as a communicetion protocol that
the object understands. Since objects cannot
access the internal state of other objects, inter-
object. dependencies are limited by the semantics
of the protocol. Objects are thus isolated from
one another. promoting modularity and reusability.
Furthermore, objects derived from a common
base class (thus obeying a common protocol)
can be used without knowledge of their specific
class, operations redefined by the subclass are
automatically invoked on the objects instead of
the corresponding base class operations (a form
of dynamic binding). A common protocol makes
it possible for composition objects to treat their
components uniformly. Dynamic binding lets
composition objects take advantage of subclass-
specific behavior without modification. Together |
these attributes make composition possible.

Interactor Protocol

The protocol for int eractors includes the following
oper at ions:

void Draw OO

voi d Redraw(
Coord left, Coord bottom
Coord right, Coord top

)

voi d Resize();

voi d Update();

voi d Handle (Event&) ;
voi d Read (Event&) ;

The Draw operation defines the appearance of the
interactor. A call to Draw causes the interactor to
draw itsalf in its entirety. Redraw is called whenever
a part ofaninteractor needs to beredrawn. perhaps
because it had been obscured but is now visible. A
cal to Resize notifies the interactor that the screen
space it occupies has changed size. The interactor
can then take whatever action is appropriate. Draw,
Redraw, and Resize are automatically called by
InterViews library code in response to window
system requests. The Update operation indicates
that some state on which the interactor depends
may have changed: the interactor will usualy Draw
itself in response to an Update call. Typically,
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when a subject changes it will call Update on its
views.

Interactors handle input events with the Handle
operation. Each event is targetted to a particular
interactor. Any interactor can Read the next event
from the global event queue. Handle and Read can
be used to create event-driven input handling, in
which only one interactor is responsible for reading
events and forwarding them to their target.

Scene Protocol

Scenes add several operations for component
management to the basic interactor protocol:

voi d Insert (Interactor*);
voi d Insert(
Interact or*,
Coord X, Coord Yy, Alignment
)
voi d Remove(Interactor*);
voi d Rai se (Interactor*) ;

voi d Move(
I nteractor*,
Coord x, Coord y, Alignnent

/s
voi d Change(Interactor*);
voi d Propagate (bool ean) ;

Insert and Remove are used to specify a scene's
components.  Raise modifies the front-to-back
ordering of components within a scene to bring
the specified component, to the top. Move suggests
a. change in the position of a component within
the scene. Not all scenes implement all these
operations. For instance, it does not make sense to
cal Raise on a monoscene since it can have only
one component.

The Change operation tells a scene that one
of its components has changed. A scene can do
one of two things in response to a. Change: it
can propagate the change by caling Change on its
parent, or it can smply reallocate its components
screen space. The Propagate operation specifies
which behavior is required for a particular instance.

Graphic Protocol

The graphic base class defines the protocol for
drawing objects, manipulating graphics state, and
hit detection. Operations include:



voi d Draw(Canvas*) ;
voi d DrawClipped(
Canvas*, Coord, Coord, Coord, Coord

voi d Erase(Canvasx) ;
voi d EraseClipped(

Canvas*, Coord, Coord, Coord, Coord

)

voi d SetColors(PColor* f, PColor* b);
VOoi d SetPattern(PPattern*) ;

voi d SetBrush(PBrushx) ;

vOoi d SetFont (PFont*) ;

voi d Translate(float dx, float dy);
voi d Scale(

float sx, float sy,

float ctrx =0.0, float ctry =0.0
5
voi d Rotate(

float angle,

float ctrx =0.O float ctry =0.0

7

voi d SetTransformer (Transformerx) ;

voi d GetBounds (

float& float& float& floaté&

/s
bool ean Contains (Point0bj&);
bool ean Intersects(Box0Obj&);

In addition to the operations for setting graphics
state attributes and coordinate transformations,
there are complementary operations for obtaining
the current values of these parameters. The
Contains and Intersects operations are often
used to determine whether a user clicked on a
graphic. Point0Obj and Box0Obj specify a point
and a rectangular region. respectively. Contains
can be used to detect an exact hit on a graphic;
Intersects can be used to detect a hit within a
certain tolerance.

Picture Protocol

Each picture maintains a list of component
graphics. A picture draws itself by drawing
each component, with a graphics state formed by
concatenating the component’s state with its own.
Pictures define default semantics for concatenation;
subclasses of picture can redefine the semantics
or can rely o n their componda to do the
concatenation.

Contains, Intersects, and bounding bhox
operations defined in the graphic base class
are redefined in the picture class to consider

all the components relative to the picture’s
coordinate system. The picture class defines
operations for editing and traversing its list of
components.  Pict ures also define operations for
selecting graphics they compose based on position:

G aphi c* FirstGraphicContaining(
Poi nt Ohj &

);

G aphi c* FirstGraphicIntersecting(
Boxoj &

);

G aphi ¢* FirstGraphicWithin(Box0bj&) ;

G aphi c* LastGraphicContaining(Point0Obj&) ;
G aphi c* LastGraphicIntersecting (Box0bj&) ;
G aphi ¢c* LastGraphicWithin(Box0bj&) ;

i nt GraphicsContaining(
Point0Obj&, Graphic**&
)
i nt GraphicsIntersecting(
Boxoj & Graphic**&
)3
i nt GraphicsWithin(Box0Obj&, G aphic**&);

The .. Containing operations return the
graphic(s) containing a point; . . . Intersecting
operations return the graphic(s) intersecting a rect-
angle, . . .Within operations return the graphic(s)
faling completely within a rectangle.

Pictures draw their components starting from
the first component in the list. The Last. . .
operations can be used to select, the ‘topmost”
graphic in the picture, while First. . . operations
select the “bottommost .”

Text Protocol

The Text object protocol includes the following
operations:

voi d Draw(Layout*);
voi d Locate(
Coord &xl, Coord &yi1,
Coord &x2, Coord &y2
);
voi d Reshape () ;

Draw defines the appearance of an object in
a given layout. A Layout object, defines the
area of the screen into which a hierarchy of text
objects will be composed. Locate is used for
hit detection on text objects. Reshape calculates
geometric information about an object for use in
implementing composition strategies.



Clause Protocol

Clauses add operations for stepping through com-
ponents and for modifying the list of components:

Text* First O ;

Text* Succ (Text*) ;

Text * Pred(Text*) ;

bool ean Follows(Text*, Text*);

voi d Append(Text*);

voi d Prepend(Text*) ;

voi d InsertAfter(Text#* ol d, Text*)
voi d InsertBefore(Text* ol d, Text*
voi d Replace(Text* ol d, Text*);
voi d Remove(Text*) ;

)

First returns the leftmost or topmost compo-
nent. Succ andPred return the successor or
predecessor of a conponent. Follows can he used
to determine if one component comes before or
after another.

To Probe Further

We have only considered the basic elements of
the various protocols in this discussion. A more
detailed look at these protocols and the implemen-
tations behind them can be found elsewhere [8.22].
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Appendix B
Making User Interface
Development Easier

Many software systems have been developed
to facilitate the construction of graphical user
interfaces.  Such systems can be divided into
two broad categories. toolkits and user interface
management, systems (UIMSs).

Toolkits

A user interface toolkit provides programming ab-
stractions for building user interfaces. Interviews.
the X Toolkit, and the Andrew Toolkit (ATK) are
good examples. The X Toolkit defines widget and
composite classes analogous to interactors and
scenes in InterViews. Tiling composites include
box and vpaned, and the form composite allows
its components to overlap. Composite objects
maintain a pointer to a geometry manager
function that is responsible for the proper layout
of components. The geometry manager can
be replaced at runtime to change the layout,
strategy. ATK includes objects that comprise the
data to be edited, such as text, bitmaps, and
more sophisticated objects such as spreadsheets
and animation editors. ATK’s composition
mechanism allows these objects to be embedded
into multimedia documents.

In addition to standard toolkit functionality,
GROW allows the programmer to specify con-
straints between objects. Constraints can enforce
dependencies bet ween individua pieces of data
For example. the programmer can specify that
a value stored in one object is a function of a
value in another object. GROW also has graphical
constraints for confining and connecting graphical
objects. Suda constraints can guarantee that a
graphical object, stays within a prescribed area or
that two visually connected objects stay connected
when one or the other is trandated.

Smalltalk MVC and its descendant, Apple’s
MacApp, are among the earliest’ and best known
object-oriented toolkits. MacApp is different’ from
newer toolkits in that it implements a particular
“look and feel ,” namely that of Macintosh
applications. MVC is unique in that it divides
interface components into model, view, and
controller. Models are similar to subjects in
Interviews, controllers are responsible for input
handing, and views are responsible solely for

out put. In contrast, other toolkits that distinguish
bhetween interactive and abstract objects put the
functionality of MVC controllers and views into
a single object (corresponding to an InterViews
view) that handles input and output. This
consolidation reflects the tight coupling between
input and output in direct-manipulation interfaces.
Placing responsibility for input and output in the
same object reduces the tota number of ob jects
and the communication overhead bet ween them,
simplifying the toolkit and potentially increasing
its efficiency.

UIMSs
UIMSs are generadly characterized by

1. complete separation of code that implements
the user interface to an application and the
code for the application itself, and

2. support for specifying the user interface at
a higher level of abstraction than general-
purpose programming languages.

UIMSs separate interface and application for
some of the same reasons that many toolkits
separate subjects and views, namely to isolate
application code and interface specification and to
allow different interfaces to the same application.
However, UIMSs do not implement any application
code, whereas subjects usually do. Moreover,
UIMSs minimize the interaction between the
application and the interface to maximize their
independence.  UIMSs generally concentrate on
abstracting the syntax and semantics of the user
interface.  Their main goal is to let, interface
designers and even end users design and modify
the interface quickly without requiring extensive
programming skills or knowledge of the application.
To avoid convent ional programming, UIMSs use
special-purpose languages or other formalisms such
as finite state transition diagrams to describe
the appearance of the interface and the kinds
of interaction it supports. In most UIMSs the
specification is interpreted by a runtime system
that is incorporated into the application.

A widely known and used UIMS is Apollo
Computer’s Domain/Dialog [18]. The package
consists of a compiler and a run-time library. The
compiler reads a declarative description of the user
interface and how it connects to the underlying
application. It then generates a more compact



description that is interpreted by the runtime
library.

The user interface is specified in terms of inter-
action techniques, which correspond to primitive
interface components, and structuring tech-
niques, which are the composition mechanisms for
the primitives. Domain/Dialog defines structuring
techniques for arranging components into rows and
columns and a “oneof”™ technique that displays only
a single component. These struc t uring techniques
allocate space for their components in a manner
similar to InterViews boxes and glue; they request
a minimum, maximum, and optimal size from
their components and distribute the available space
among them.

Domain/Dialog places greater emphasis on com-
position than most UIMSs, which center more on
how to specify the input and output behavior of a
user interface without conventional programming.
Sassafras [5], a prototype UIMS developed at
the University of Toronto, focuses on supporting
concurrent user input from multiple devices and
on efficient, communication and synchronization
between the modules that support user interaction.
Syngraph [12] takes a description of a user interface
written in a formal grammar and generates Pascal
code that implements it. Recent work by Foley
et d. [4]uses a knowledge base describing the
interface to raise the level of abstraction beyond
detailed assembly of components.

Another class of UIMS lets designers create a
user interface by direct manipulation instead of
textual specification. Research systems such as
Cardelli’s dialog editor [3] and Myers Peridot [10]
and commercia systems such as SmethersBarnes’
Prototyper [19] let designers draw the user interface
using a drawing edit or-like metaphor . The
system then generates routines that must be
incorporated into the application. Carddlli’s
system lets designers specify the resize semantics
using at tachment points: an edge of a component
can be attached to an arbitrary point in the
interface. The component will stretch or shrink
if necessary to maintain the attachment. Peridot
dlows the designer to specify many aspects of the
interface by demonstration, inferring the proper
semantics of the interface from the designer’'s
actions. Prototyper provides a drawing editor
interface to building Macintosh applications and
is one of the few commercially-available direct
manipulation interface editors.
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Toolkits, UIMSs, and InterViews

Currently there is a growing interest in toolkits,
while many have begun t O question whether
UIMSs really help [15]. Early non-object-oriented
toolkits [1,21] were criticized as being too low-
level and difficult to use, thus widening interest in
UIMSs. Yet today few UIMSs have gained wide
acceptance. Researchers [11] have identified severa
shortcomings of existing UIMSs:

e Limited range of interfaces. Since UIMSs
allow interface specification at a high level,
they necessarily limit the range of interfaces
they can creat e. This is especially true of
direct manipulation imterface editors, which
must rely on graphical or demonstrational
specification of the interface’s semantics.

Reliance on an interpreted specification lan-
guage. The special purpose language used by
a traditional UIMS is likely to be unfamiliar
to programmer and interface designer alike.
Moreover, the language is usually- inferior
in quality to established general-purpose lan-
guages, debugging tools are primitive or non-
existent,, and run-time overhead associated
with interpreting the specification often de-
grades performance compared to conventional
implementations.

Inadequacy for direct manipulation interfaces.
The dtrict separation of application and inter-
face code usually results in a low-bandwidth
connection between the two. Thus, most
UIMSs do not support interfaces requiring
real-time response to user input, such as those
using rubberbanding or other animated effects.

Difficulty mn adapting to change. The time
it takes to produce UIMSs makes it difficult
to keep them in step with the latest interface
designs. The problem only gets worse as
Interfaces become more complex.

Because InterViews is a toolkit, it avoids the
problems associated with UIMSs. InterViews is
distinguished from other toolkits in its variety
of composition mechanisms (tiled, overlapped,
stacked, constrained, and encapsulated), its
support for nonlinear deformation (independent
stretching and shrinking) of interactors, and its
object-oriented approach to structured graphics
and text. InterViews simplifies the creation of both
the controlling elements of the interface (buttons
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and menus) and the data to be manipulated (text,
and graphics objects). InterViews thus offers
comprehensive support for building user interfaces.



Appendix C
Glossary

hox. hbox, vhox scenes that support tiled com-
position of interactors.

button state a subject, that maintains state

associated with one or more buttons.

button. push button. radio button the but-
ton base class defines the interface to generic
button interfaces; push but tons provide a
momentary cont act interface, radio but tons
allow the user to select, from one of several
mutually-exclusive choices.

clause base class for structured text composition
objects.

deck a scene that stacks interactors.

display a clause that defines an indented text
layout.

frame. shadow frame. title frame
monoscenes that embellish their component:
frames add a simple border, shadow frames
add a. drop shade, and title frames add a
banner.

glue. hglue. vglue interactors that act as spac-
ers hetween components of a scene.

graphic base class for structured graphics objects.

graphic block an interactor that disnlavs

structured graphics objec t .

a

immediate mode graphics a graphics mode in
which individual geometric shapes are drawn
by routines that smply modify pixels on the
screen as they are called.

interactor base class for interac tive oh jects such
as menus and buttons.

message an interactor that displays a string of
characters.

mover an interactor that scrolls another interac-
tor by some increment.

painter an object providing immediate-mode
graphics operations and operations for setting
graphics state parameters

panner an interactor tliat supports continuous
two-dimensional scrolling and increment al
scrolling and zooming.

perspective a subject that maintains scrolling
and zooming information, including the total
size of a view and how much is currently
visible.

phrase a clause that places its components end-
to-end on a single line.

picture base class for structured graphics compo-
sition objects.

rectangle a graphic that represents and draws a
rectangle.

scene. monoscene scene is the base class for
objects that compose interactors; monoscenes
are scenes that contain only one component.

sentence a clause that places as many of its
components as possible on the same line and
begins a new line if necessary.

slider a two-dimensional scroll bar.

structured graphics a graphics model that sup-
ports hierarchical composition of graphical
elements; support is usually provided for
coordinate transformations, hit detection, and
automatic screen update.

structured text a graphics model that allows
hierarchical composition of textual elements,
emphasizing the arrangement of elements to
make use of available space.

subject an object that maintains state and
operations that underlie a user interface; a
subject maintains alist of views to be notified
when the subject’s state changes.

text base class for structured text objects.

text block an interactor that displays a struc-
tured text object.

text list a clause that arranges its components
either horizontally or vertically depending on
available space.

tray a scene that maintains constraints on the
placement of potentially overlapping compo-
nents.



view an object that provides the user interface to
a subject.

viewport a monoscene that can scroll and zoom
its component.

whit espace a text object used to introduce space
between other text objects in a clause.

word a text object that represents ..« draws a
string of characters.

zoomer an interactor that magnifies or reduces
another iuteractor.
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