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Abstract

In this pa,per  we show how to compose  user interfa.ces  with  InterViews,  a user interface
toolkit we have deT,eloped  at Stanford. InterViews  provides  a library of predefined  objects
and a set of protocols  for composin,c them. -4 user interface is created  h\~ composing  simple
primit,ives  in a hierarchical fashion, allowing  complex  user interfaces  t)o be implemented
easily. Int,er1;iews  supports  the composit,ion  of intera,ctive  objects  (such a,s scroll  bars and
menus),  text objects  (such as words  and whitespace).  and graphics  objects  (such a.s cir-
cles and polygons  ) . To illustrate  how InterkYews  composition  mechanisms  facilitate  the
implementation  of user int,erfaces, we present  three simple  applicaCons:  a dialog box built
from interactive  objects, a drawing  editor using a hierarchy  of graphical  objects,  and a.
class browser  using a hierarchy of test objects. We also describe  how Int,er\,?ews  supports
consistenq-  across  applications  as well  as end-user  customization.

Key Words and Phrases: Gser  interfarce  tJoolkits. interactive  gra,phics,  worksta8tion  ap-
plications  software.





Composing User Interfaces with InterViews

Abstract

In this paper we show how t$o compose user
int,erfaces with Int,erViews, a user interface toolkit
w e  haxye d e v e l o p e d  a t  St#anford. Int er\‘iews
provides a library of predefined olsjects and a
set of protocols for composing them. A user
int8erfa.ce is crea.ted  by composing simple primitives
in a hierarchical fashion. allowing complex user
interfaces to be implement~ed  easily. InterViews
supports the composit~ion  of interacGve  objects
(such as scroll bars and menus), test, objeck
(such as words and whitespa.ce),  and graphics
ol>jects  ( such  as  c i rc les  and  po lygons) .  To
illustra,te  how InterViews composition mechanisms
facilita.te  the implement8ation  of user interfaces,
we present t.hree  simple applicat,ions: a dialog
box built  from intSeractive  objects,  a  drawing
editor using a hierarchy of graphical objects,
and a class browser using a hierarchy of t’ext
objects. M’e also describe how Inter1’iews  supports
consistency across applicat8ions  as well as end-user
customization.

1 Introduction

Graphical user interfaces for workstation appli-
cations are inherently difficult to build without8
abstlractions  tl1a.t  s impl i fy  t,he implementa t ion
process. To help programmers create such
int,erfaces. we considered the following yuest,ions:
Llhat sort,  of interfaces should he supported?
\1’hat constitutJes  a  good  set,  o f  p rogramming
abst,ractions  for building such int,erfaces?  How does
a programmer go about building an int,erface given
t,liese abstract,ions? Our efforts to develop user
intSerface  tools that, address t*hese  questions have
been guided by pract,ical experience. \Ve make the
following observations:

l A l l  u s e r  inferfuces n e e d  n o f  l o o k  a l i k e .  It!
is  desirable to maintSain  a consistSent “look
and feel” across applications. but users often
have different preferences. For example, one
user may prefer pop-up menus, while anot,lier
insists on pull-down menus. Our t,ools must

therefore allow a broa,d  range of int,erface st#y,les
and must be customizable on a per-user basis.

S’ser inftrfuces need not be purely graphicnl.
RIany application designers prefer iconic int’er-
faces because they believe novices understaud
pictures more readily than text. However,
recent, work [13]  suggests that, excessive use
of icons can confuse t#he user with unfamiliar
symbolism. A t,extual  intSerface  may be more
a.ppropriat(e  in a given contSest. The choice
of graphical or text#ual representNa.tion  should
favor t!lie clearest altSernati\.e.

User inferfcr.ce code should be objecf-orient ed.
Object,s a r e  nat,ural  fo r  r epresen t ing  the
elements of a user intBerface  and for supporting
t,lieir direct manipulation. Objects provide
a good ah. ts ractiou  mechanism, enca.psulat8ing
sta.te and operations, and inheritance makes
ext,ension easy7. Our experience is t’liat,
compared t,o a procedural implementatlion,
user interfaces are significantly easier tlo
develop and maint,ain  when they a.re  writt#en
in an ol-,ject,-oriented language.

Inferacfive a n d  a b s t r a c t  o b j e c t s  s h o u l d  b e
separate. Separat ing user  intSerface  and
application code makes it possible to change
the int,erface witJhout  modifying the underlying
functNionality  and vice versa. This separation
a l s o  facilit,at,es  custNomization  b y  a,llowing
several interfaces to the same applicat’ion. It,
is importSant  to ‘dist,inguish  between interactive
objects,  which implement t#he interface, a.nd
abskact  olljects, which implement operations
on the daka underlying the interface.

An effect,ive  way t,o support, these principles is
to eyuip programmers wit’li a tSoolkit  of primitive
user interface objects t,hat use a common protocol
t,o define their behavior. The protNocol  allows user
interface objects to be t,reated uniformly, enabling
in t,urn  the intSroduction of o13jectSs  tha,t compose
priniit,ives  into complete int#erfaces. Different
cla.sses  of composition objects can provide different
sorts of composit~ion. For example, one class of
composition object may arrange ik components



in abut,ting  or filed la.youts, while anotller  allows
then1 to o\.erlap  in prescribed ways. A rich set
of primitive a.nd composition objects promotes
flexibilit#y,  wliile  composit,ion  itself represents a
powerful way t,o specify sopllistSicated  and diverse
int,erfaces.

Coniposition  n1ecl1a.nisms  a r e  c e n t r a l  t o  tlie
design of Int,erViews, a graphical user interface
toolkit8  we have developed at Stanford. Interviews
is a libra.ry of C++ [20]  classes t,hat, define com-
111011  int,eract$ive  olljectSs  and common composition
st,rat(egies. Figure 1 depicts how object,s from
the  Int4erViews  library,  a r e  incorporatSed  in to  an
applicatNion,  and Figure 2 shows the relationship
13etweeii t,lie various layers of soft ware that support
t h e  applicatSion. Primitive and composition
objects from t,he Int8erViews  library are linked intro
a.pplication  code. The window spst  em is enbirely
abst,ract#ed  from t811e  application; the applicatSion‘s
user intSerface  is defined in terms of InterViews
objectSs. which communicate with tl1e window and
operating syst~enis.

InterViews  supports composition of three cat#e-
gories of object. Each ca.tegory is implemented as
a hierarclly of object classes deri\.ed  from a common
base class. CompositSion  subclasses within each
class hierarchy- allow liierarchical  composition of
object’ instances.

1. Int,era,ctive  objects such  as  bu t tons  and
menus are derived from the interactor  base
class. Interactors are composed by, scenes;
scene subclasses define specific composition
semantics sucli as t,iling or overlapping.

2. Struct,ured  graphics ol-tject,s such as circles
and polygons are derived from the graphic
base class. Graphic objet ts are composed
by pictures, which provide a common
coordina,te  system and graphical cont#ext  for
t,lieir components.

3. St,ructured  t,ext,  objects such as words and
wl1itespace are derived from tl1e  text base
class. Text objects are composed by clauses;
clause subclasses define common strategies for
arranging components to fill available space.

Tl1e  base classes define the communicat,ion  prot,ocol
for all objects in t.he hierarchyr.  The composition
classes define the addit4iona.l  protocol needed by t’l1e
elements in a composition, such as operations for
inserting and removing elements and operations for
propagatSing  information tSllrougll  tlie compositSion

(see Appendix A, Primitive and Composition
Prot80cols).

Hierarchical compositJion  gives the programmer
considerable flexibility. Complex bel1a.vior  can he
specified by building compositions tl1at combine
simple behavior. The  compositNion  p ro toco l
fa.cilita.tes  tl1e t ask  of  bo th  the  des igner  o f  a
user int’erface  toolkit, and the implementor of a
particular user intZerfa.ce. Tl1e  tNoolkitf  designer
can concent~ra~te  on implementing tlie behavior of
a specific component in isolat,ion; t,lie  interface
designer is free t,o combine component,s  in any way’
that suits the applicat,ion.

In this paper we focus on using IntSerViews  to
build user interfaces. 11-e  present several simple
applica.tions  and show how InterViews objectIs  can
be used t,o implement tl1eir interfaces. J4,‘e also
i l l u s t r a t e  tSlle  benefit#s  o f  separa.ting  intSeractive
behavior and abstract dat,a  in several different3
contextNs. Finally. we discuss Int erViews support,
for end-user cust,on1ization as well as the st,atus of
the current implementation.

2 Interactor Composition

An interactor manages some area of potential input’
and output on a workstatNion display. A scene
composes a collect,ion  of one or niore  intreractSors.
Because a. scene is itself an int.eractor,  it must
distrihut#e  its input and output area among its
con1ponents. In  th i s  sect(ion,  we  d i scuss  t,l1e
various Interl’iews  scene subclasses that, provide
tiling, overlapping, st,acking, and encapsulation of
components. We concentrate on 110~7  these scenes
are used rather than giving t,heir  precise definitions.

2.1 Boxes and Glue

Consider tl1e simple dialog box shown in Figure 3.
It consists of a st,ring of t,ext,, a buttron cont,aining
t)ext, and a w-bite  rectangular background sur-
rounded by a black outline. Puslling t,l1e  buttIon
will cause the dialog box t,o disappear. The dialog
hox will maintSain  a reasonable a.ppearance  when
it is resized by a, window nlanager.  If part,s  of t,l1e
dialog box previously covered by ot,her  windows are
exposed, then tl1e newly exposed regions will he
redrawn.

Int8erViews  provides aMractions  that. closely
model the elements. semantics, and behavior of
the dia.log box. A user interface programmer can
express t,lie  in1plement~ation  of the intJerface  in the
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Figure 1: Incorporatsing  InterViews objects into an application

I Application

InterViews

Window System

I Operating System

Figure 2: Layers of soft,ware  underlying an applicat,ion
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Figure 3: A simple dialog  box

same t,erms  as its specificatNion. The Inter Views
library contNa,ins  a va.riet17  of predefined intSerface
components; we will use the following components
in the dialog box:

message, an intleractSor  that conta.ins a string Figure 4: S 1c lematic of dialog box composition
of t,ext, using hoses a.nd  glue

push button. an int.eract(or  that responds t#o
the press of a mouse button

box. a scene that t,iles its components

glue. va.riahle-sized space between int&eractors
in a box

frame. a scene that puts an out,line around a
single component

H hglue
:.m,*.:

hbox : : vbox
f.....i

Boxes and glue are used to compose the other
elements of the dialog box. The composition model
we use is a simplified version of the T&K[6]  boxes
and glue model. This model makes it unnecessarJ7
to specify the exact placement of elementJs  in the
interface, and it eliminates the need to implement
resize behavior explicitly.

‘TWO types of box are used: an hhox tiles its
component3s  horizontally. while a vbox tiles them
vertically. ClT ue is used betKeen intera.ctors  in a
box to provide space between components. Hglue
(horizont)al glue) is used in hboxes,  while vglue
( l’ert8ical  glue) is used in I-boxes.

Each interactor defines a preferred or nufurcllsize
and the amountJ  by which it is willing t#o  strekh
or shrink to fill available space. Glue of iyarious
na.tural  s izes.  shrinka,bilities,  and stret,chabilities
can be used t#o describe a wide variety of int,erface
layouts and resize behaviors.

Figure 4 depict,s  schema.tically  how the elements
of t#he dialog box are composed using boxes and
glue. The corresponding object,  st,ruct ure is shown
in Figure rj, a.nd t,he C++ code that, implements
the dialog box appears in Figure 6. The message
and buttSon  interact,ors  are each placed in an hhos

Figure 5: Object struct,ure  of dialog box composi-
tion

with hglue on either side of t,hem.  The hglue to
the left,  of the message has a. naAura1  size of a
quart$er  of an inch and cannot stNretch, while t’he
slue  on t,he right has a natural size of zero andb
can stret#ch infinitNely  (as specified by the constant
hfil). If the dialog box is resizecl (Figure T), t,he
margin t’o the leftf of the message will not exceed
a quarter of an inch, while t(lie space to the right
can grow arbit,rarily. Similarly, the button has
infinitely stret8chable  hglue to its left, and fixed size
hglue t,o its right, so that, the margin t,o the right
of t,he but,ton  will not exceed a. quaster of an inch.

The hboxes  axe composed vertically within a
vbox,  separated by pieces of vglue. The pieces of
vglue ahove the message and below ihe buttSon  have
a nat,ural  size of a quart,er of an inch, while the
vglue bet#ween  t#he message and t#he but tlon has a
natural size of half a,n inch. The inner vglue can
stSretch  twice as much as the out#er two pieces of
vglue. On resize. tllerefore, t,he message and but,ton
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const int space = round(.25*inches);
ButtonState* status;

Frame* frame = new Frame(
new VBox(

new VGlue(space,  hfil), /* (natural size, stretchability) */
new HBox(

new HGlue(space,  01,
new Message("hello world"),
new HGlue(0, hfil)

1,
new VGlue(2*space, 2*vfil),
new HBox(

new HGlue(0, hfil),
new PushButton("goodbye  world", status, false),
new HGlue(space,  0)

),
new VGlue(space,  hfil)

>
);

Figure 6: C++ code for composing t,he dialog box interface

Figure 7: The dialog box after resizing

interactors will remain twice as far apart from each
other as they are from the edge of the dialog box.

2 .2  Tray
Suppose we want a. dialog box centered atop
another iiitLeractSor,  perhaps to iioGfi\’ the user of an
error condition. Furthermore. we want the dialog
box to remain cent.ered if t,he interactor is resized
or repositioned. Boxes and glue are inappropriatje
for t,his type of non-tiled compositjion.

The tray scene subclass provides a nakural  way
t,o describe layouts in which components “float”
in front of a background. A t,ray tmJ7pically
contains a background interactSor  and several other
component,s  whose positions are determined by a
set of aligninents. For example, t,he background

int,eractor  might display the text in a document:
other components could include various messages.
butStons,  and menus.

Each alignment of a tral- component is to some
other  krget intera.ct.or, which  can  be  ano ther
coinponentV  of the tray or the tray itself. The
alignnient~  specifies a point on t,lie target. a point
on the component, and the charaScteristlics  of the
glue tha.t connects the alignment8  points. A l l

a.lignnient  point can be a corner of t,lie interactor,
t,he midpoint1  of a side, or the cent,er.  The tray will
arrange the components t,o satisfy all alignments as
far as possible. If necessary, the cornponent,s  and
the connecting glue will be stretched or shrunk to
satisfy the alignments.

Figure 8 shows a. simple a.pplicat,ion  in which a
tray composes a text’ual int,erface and a dialog box.
The intleract,or  containing t,ext and a scroll bar are
composed with a.11  hhos  and placed into the tray as
its background. Tl’hen the dialog box is required
it is insertJed  int80  t,he tray with it,s upper left and
lower right corners aligned to the corresponding
corners of t,he t,ray. Figure 9 shows t,he arrangement
of components, and Figure 10  gives the code
that iinpleiiient~s  the interface. The alignments
interpose stSretchable  but,  non-shrinkable glue with
a iiat,ural  size of an eight,11  of an inch to niaintJa.in
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const int space = round(.l25*inches);
TGlue* gl = new TGlue(space,  space, hfil, vfil, 0, 0);
TGlue* g2 = new TGlue(space, space, hfil, vfil, 0, 0);

/* (width, height, hshrink, hstretch,  vshrink, vstretch)  */

Tray* tray = new Tray(
new HBox(

view,
new VBorder(l),
new VScrollerCview)

>
\ .

tray->Insert(dialog);
tray->Align(TopLeft,  dialog, gl>;
tray->Align(BottomRight,  dialog, g2);

Figure 10:  c’++ code for composing the tray interfarce

total 357
druxrwxr-x
drwxrwrr-r
drrxrwrr-x
drwxrla'r-x
drwmar-x
drurrwxr-x
drwurwrr-,:
drlwrr-~:'V-Y
drwrrwxr->:
druxrwxr-x
drwxrwxr-x
-r--r--r--
-r--r--r--

2 1 lntor 1024 kt 16 00:48 MIPSEL/
2 llnton 512 Uct 16 Or,:49 MIPSEL,Xll/

110:
2 1 lntm 512 Oct. 27 IS:24  ‘iwl~;+l!lli
1 llnton 22810  Saul 20  05:43  X10-graphics,c
1 llnton :solfJ $neP 2 OU:15 X10-u1ndows.c

-m-r--r--  1 Iinton 23(518  TJct I& O(I:37  XII-9raphics.c i;~ij~

Figure 8: An interface using a trq,

badcground
tnterador

/

tray

tray component
(dialog box)

f) tray altgnrnents  (uwng glue)

Figure 9: Schematic of t(ray interface

:
,, File 1~ write-protected, :i::.I.,:
d :.
d
d

@r-J ;::j
::

drwxrwxr-r, 2 1 lnton
-r--r--r-- 1 1 lnton
-r--r--r-- 1 linton
-m-r--r-- 1 linton

Figure 11: Tray int(erfa.ce  after resizing

a minimum spcing  between the edges of the tray
and the dialog box. These alignments guarantee
that the dialog 130~~  will remain cent,ered atflop  the
ba.cl;ground  intSera.ctfor after resizing (Figure 11).
Notre how t,he tray shrank the dialog box to satisfy
the alignment constraints once the glue reached it’s
minimum size.

2 . 3  D e c k

Another COI-I~ZOI~  intjerface is one in which the user
flips (rat,her t,lian  scrolls) through “pages” of test
or graphics as through a hook. Such a.n interface
can be built  in Int(erViews  133’ composing intera&ors
with a deck. The int8eract80rs  in a deck are
concept,ually  st,acked  on t,op of each other so that,
only the t,opmost  interactSor  is visible (Figure 12).
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Ficrure  12:0 C,omposition using a deck

The deck’s natural size is determined hi. the natural
size of it,s largest component. A set of operations
allow ‘~shuffling”  t,he deck t#o bring t#he desired
component to the t’op.

Decks can be used in other cont,exts as well. A
set of color or pattern options in a dialog box could
be composed with a deck, allowing t#he user to flip
t$hrough t3hem until the desired choice is rea.ched.
Alt,erna.te  menu entries could be stored in a deck
and inserted int,o a menu t,o allow changes in t’he
menu’s appearance
each time.

without having t#o rebuild it

2.4 Single Component Scenes

Boxes, trays, and decks are examples of scenes
wit,11  arbitrary numbers of componentSs.  InterViews
also provides several scenes that, can have on137  one
component. Such scenes are derived from the scene
subclass lllolloscelle  and serve tNwo purposes.

Some monoscenes serve as co&uiners  t,hat,
surround another interactor. The frame used
to place a border around t.he dialog box in
Section 2.1 is one example. Other examples
include shadow frame, which adds a drop shadow
to it#s component. and title frame, which adds
a banner. A viewport  is  a monoscene that,
scrolls an int eract,or larger t8han  the available space.
k’iewportSs  are useful for providing a scrolling
inberface to non-scrolling intJeractors.

Other monoscenes provide (1 bsiradiun; t#heJ
are used t,o hide t,he internal structure of a4
interactor that is implemented as a compositSion.
For example, the class menu is derived from
monoscene. A menu is implementSed  as a  box
containing the int*eract,ors  t,liat represent t,he menu
items. However, the box composition should not

be \:isible t#o a programmer who wants t(o use t#he
menu in a, user int,erface. The monoscene hides t,he
implementa.tion of menus, making them easier to
understSand  and allowing t,heir  struct,ure to change
witrlioutl  affecGng ot,lier int+erface  code.

3 Graphic Composition

Direct ,  ma.nipulation  edit,ors allow the user to
manipulate graphica,  representations of fa,miliar
objects directlJ7. A drawing editor lets an artist’
draw a circle and drag it’ to a new loca.tion. A music
editor lets a composer write music hy arranging
notes on sta\.es.  A schemat,ic editor lets an engineer
“wire up” graphical represent~a,tions  of circuits.

The programmer of such systSems  must provide
underlying representSat,ions  for the graphical objects
aad define the operations they perform. InterViews
prolrides a collection of st,ruct,ured graphics objects
that simplifies the programmer’s task.

3.1 A Simple Drawing Editor

Figure 13 depick a simple drawing editor appli-
cation in which the user can dra.w, move, and
rot,ate rectangles and scroll and zoom t’he dra.wing
area. To draw a rectangle. the user presses t#he
rect button and drags out a. rectangle in the
drawing area. An existing rectangle can be moved
or rotated hi- pressing the appropria,te  button and
dragging the rect#angle.

In each of these operaCons,  the drawing editor
provides animated feedback as t,he user creates
and manipulat,es  rectangles. Animation reinforces
the user’s belief that he is manipulating real
013ject,s. As a rect,angle is moved, for inst,ance,
its outline follows the mouse: during rot ation 1
the outline revolves% about,  the rectVangle’s  centSer.
Such dyna.mic feedback is charact,eristic  of a direct
manipulation edit,or.

3.2 Implementing the Drawing
Editor

The e1ement.s of the user int,erface can be composed
using Int&erViews  intSeractor  and graphic subclasses
as shovrr~l in Figure 14. The but,tons  a.re  inst,ances of
radio button, a predefined subclass of t#he  button
class. The int&erface to scrolling and zooming is
provided by a palmer. t$he t)wo-dimensional  scroller
in the lower right8  of the interface. The drawing area
in which t,he rectangles appear is a. graphic block,



Figure 13: A simple drawing editor application

an interactNor  that displays structured graphics
objects. These elements are composed using hoses
a.nd glue. The editor’s l)op-up command menu.
appearing in t#he center-right of Figure 1.3.  is an
inst,ance of the menu class.

Each rect.angle in the dra.wing  is an instance
of the rectangle class, a subclass of graphic.
The rectangles are composed in a picture, and
the picture is placed in t,he graphic block. The
gra.phic  b lock  t(ranslates  and  sca les  t#he pict,ure
to implement, scrolling and zooming. Rectangles
are moved and rotated by calling transformation
operat,ions  on t!he  rectangle objects. The picture
performs hit detection by returning the component
that corresponds tlo a coordinatSe  pair.

3.3 Semantics of Graphic
Composition

The drawing editor demonstrat,es simple composi-
tion of graphics. In this example, t,lie hierarchy
of graphica. objects is only one level deep; all
t,he rectangles are children of a single parent,
picture. Of course. more complex hierarchies are
common in a pract#ical  drawing editor. However,
even the simple one-level hierarchy demonstSrates
t h e  semant,ics  o f  g r a p h i c  composit~ion. For
example, when  t,lie g raph ic  b lock  app l i e s  a
t8ransforma.tion  to the picture t,o scroll or zoom it,
the transformation affects all the rect#angles  in the
picture. Furt,hermore,  altering any of t,he pict#ure’s
graphics stake at,tribut.es would affect, its children
as well. For example, changing the picture’s brush
width attribut,e  would also change the brush widths
of it,s children.

The composition mechanism defines how the
picture’s graphics st a.te informa.tion  a,ffect 8 its com-
ponents. A picture draws itself by drawing each
component8  recursively wit,11  a graphics state formed
by concat’enating  the component’s state with its
own. The default  sema.ntics  for concatNena.tion
are that the attributes defined by a graphic’s
parent, override t,he graphic’s own at,tributes. If a
parent. does not define a pasticular  attribut’e,  tShen
the child graphic’s attribute is used. Coordina.t,e
transformations are concatSenatfed so that the
child’s transforma.tion precedes t,he parent’s.

These semantNics  represent a kind of reverse
inheritance of graphics at,tributes,  since parents
can override their children. This mechanism
is useful in editors where operaGons  performed
on interior nodes of the graphic hierarchy affect
the leaf graphics uniformly. Classes derived
from t,he graphic class can redefine t#he semantics
of concatenation if the default, semantics are
i n a p p r o p r i a t e .  I

3.4 Immediate Mode Graphics

Struct,ured  g raph ics  ob jec t s  a.re  not, normal ly
used to draw scroll bars, menus, or other user
interface components t,hat are simple t,o draw
procedural13.. IntSeract.ors  use painter objects
for this purpose. Pa,int,ers  provide mm edicrf e
mode drawing operations (including operations for
drawing lines, filled and open shapes, and t,ext),
and operations for set,ting t,he current fill pat,tern,
font, and other graphics stat,e. The results of a
paintSer  drawing operation appeax  on the display
immedia.tlely  after the ol’eration is performed. The



Figure 14: Drawing edit#or object structure

difference betNween  painter-generated graphics and
structured graphics is that painters do not maintain
state or structure that reflects what has been
drawn, so t,here  is no way t,o a.ccess  and manipulat,e
the graphics. In conkast,  st#ructured graphics
object,s maintNain  geometric and graphical stat’e
and can be manipulated before and aft,er t#hey are
drawn.

Structured graphics is  most  appropriate in
cont,exts where an indefinke  number and variet#y
of gra.phical objects are manipulated directly. It
is a powerful tool for constructing graphics editors
that provide an object-oriented editing met~aphor
because structured graphics objectls embody the
same metaphor. These objects t,ypically  represent
the da,ta managed hi’ t,he editor. PaintIers should
be used to draw simple, unchanging elements of the
interface that do not just#ify the storage 0verhea.d
of graphics objects.

4 Text Composition

Direct  manipulat)ion text,ual  int#erfaces r e q u i r e
special support t*o handle the problems that arise
in t’he presentation of text, such as line aad page
breaking and arranging text, to reflect the logical
struct,ure of a document. IntNer\:iews  struct#ured
t#ext objects simplif>.  the implementation of direct’
manipulat8ion textual int,erfaces.

4.1 A Simple Class Browser
Application

Figure 1.5 shows the int#erface to a class browser,
a simple application for perusing C++ class

declara.tions. The browser displays a class
declara.tion  with the class name underlined and
member functions in bold. Clicking on the class
name opens a window showing documentation for
the class, and clicking on a member function opens
a window showing the function’s definitNion. The
arrangement, of t,he tNext8  is maintained b\; t'ext
composition object,s. As Figure 16  shows, resizing
t,he window reforma.ts  the text to make good use of
available space.

4.2 Inlplementing  the Class
Browser

Text, and clause subclasses a.re  used to compose the
t,ext displa\Ted in the browser. Objects of class
word (a stVring  of charact,ers)  and whitespace
(blank space of a given size) are assembled using
various composition objects so that the lines of
code will fill a,vailable  space in a.11 appropriate
manner. The ent*ire composition is placed in a text
block ( an intera,ctor  that, displays strut  t ured text
objects), a.nd t,he text block is inserted into a frame.

4.3 Semalltics of Text Composition

Subclasses of clause specify the way their com-
ponent,s will he arranged. Different, clauses use
different, strategies for using available space:

l A phrase formats its components without
regard to space. The components a.re simply
placed end-t,o-end  on  a single line.

l A text list can arrange its component*s  either
liorizontally o r  I-ert,ically. If  t,here  i s  no t



- I O -

class Inter-actor 5
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Figure 1.5: A simple class browser applica ion
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Figure 16: The class browser after resizing

Figure 17: Oh ject, st,ructure of the text compositeion
for the Int eractor constructor

enough space for the whole list to fit in a
horizont,al  forma,t, then t#lie list will place each
component, on a separat#e  line. Text lists are
used in the browser for composing the member
functNion para.met’er  lists.

l A display defines an indented layout. If t#he
display will not, fit on the current line, then it
is placed on the following line with a. specified
indentCa.tion. The browser composes class and
member function declarations using displays.

l A selltellce will place as maay components
as possible on the current line and will begin
a new line if necessary. The browser uses
sentences for comments.

T o  illustrat,e  h o w  t e x t ,  composit,ion ca.n  b e
used, consider the composition of t,he Int eractor
construct,or  in the browser (Figure li). The
declaration is composed as a phrase wit811  three
components: t,lie first, c o m p o n e n t  i s  a  w o r d
representing the skng Int eractor (, the second
is a display that contJains  a text list’ of the formal
paramet,ers,  and the third is a word representing
the string > ; . Figure 18  shows that the constructor
declaration will a,ppear  in one of several layouts
depending on the a.vailable  space. In the top
example all the text,  can fit on a single line. In
t,he middle example the available space has been
reduced so tha,t there is not enough room for the
display containing the parametVer  list; the displa.17  is
placed on a separa.te, indented line. In t#he bottom
example the available space has been reduced
further, ca,using  the t.ext  list t#o display verticall!.
instSea,d  of horizontally.

Text composition is most useful when the
interface requires direct manipula.tion of text, when
the text should reflect the structural chara&eristics
of the document, or when the t,ext layout should
aut~oma,tica.lly make good use of available space.
Painters are more appropriat,e  for embellishing
int,erfaces with simple, non-interactive text.

5 Subjects and Views
In InterViews we distlinguish  bet,ween  int$eractive
objects, which implement a user int,erface, a,nd
abstract objects, which encapsula.te  the underlying
dat(a. We refer t,o interactNive and abstract ,
olljects as views and subjects, respect,ivelJ..
Th i s  separa.tion  i s  import,ant, in  many aspec ts
of user int#erface design. It, is a vehicle for
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Interactor(Sensor*  in = stdsensor, Painter* out = stdpaint);

Interactorc
Sensor* in = stdsensor, Painter* out = stdpaint

Interactorc
Sensor* in = stdsensor,
Painter* out = stdpaint

Figure 18: Possible layouts of the Interactor constructqor

cust,omization, allowing programmers to present
different, independentSly customizable interfaces to
the same da.ta. It, is a useful structuring mechanism
that separat#es  user interfa,ce code from application
code. It permits different represent&ations  of t,he
same dat,a  t,o be  displa.yed simult a,neously such
that changes to the data made through one
represent,aGon  a r e  immediatSely  reflectNed  i n  t h e
otthers. Several other user interface packages
support this separation, including the Andrew
Toolkit [13], S malltalk  MVC [i]? GROW [2], a n d
MacApp  [li].

Views in InterViews are typica.lly  implemented
with composit,ions  of interactors, graphics, and
t#ext  objects. Subjects are often (but need not
be) derived from the subject class.
maintains a list,  of its views.

A subject
J’iews define an

Update operat,ion  that is responsible for reconciling
the view’s appearance with the current, state of t!lie
subject. Calling Motif y on a subject in turn calls
Update on its views, thus enabling the views t’o
update their appearance in response t#o a change in
t,lie subject.

In pract,ice it is inconvenient t,o force every user
interface concept int’o the subject/view model. For
example, it is unnecessary- to associate a subject
with every menu beca.use  int8erfaces seldom require
multiple views of the same menu. However, many
Inter1’iews  library component,s  do use t,he subjects
and views paradigm. Two examples relat’e to the
implementatlion of scrolling and buttons.

5.1 Scrolling and Perspectives

An interactor
ma.ii-1  teains a

that supports scrolling and zooming
perspective. The perspective is

a subject  t,hat defines a range of coordinat8es
representing the t,ot(al  extent of the int,eractor’s
output,  space a,nd a subraage  for the portNion  of the
t,ot,al range that is currentSly  visible. For example,
in the drawing editor of Section 3.1 t#he tot,al ext$ent
of the graphic block’s perspective is obtained from
the pict#ure’s  bounding box: its subrange  is the
space the graphic block occupies on the screen. In
a t#ext edit,or  the vertical range might he t#he t)otal
number of lines in a file; the subrange  would be
the number of lines displayed by the editor on the
screen.

Scrolling and zooming are performed by modi-
fying t(he int,eractor’s  perspective. An interact’or
can modify its own perspective (when the text’
editor a.dds  a line t’o the file, for example), or
the perspective can be modified by the user
manipulating one of its views.

The palmer  in the drawing edit,or is a view of
the perspect,ive a.ssociat#ed  witch the editor’s graphic
block. The panner is rea.lly a composition of
several other perspective views: a slider, a set of
four movers. and two zoolrlers. Each of t,liese
elements views the same perspective: the slider
scrolls the drawing in both x and y dimensions,
each mover provides incremental scrolling in one
of four directions, and t#he zoomers respect,ively
enlarge and reduce t,he drawing. There is no limit
t&o t,lie  number of views on the same perspectBive;
a change made through one view of a perspective
will be reflectSed in all its views.

The adva,lna.ge  of this orga,nization  is that one
view of a perspective need not, know about, other
views of t,lie  same perspective. Whenever the
perspective is changed, eit,her by the intera.ctor
or by a view, all the \Gews are notSified. Each
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Scrolling a graphic block using a perspective
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9
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5. Graphtc  block translates  and redraws  graphtic.

Figure 19: How a perspective coordinates scrolling of a graphic block

view of t,he perspective is responsible for updating
its appearance appropriat’ely  in response to the
change. For example, when a. mover or zoomer is
pressed, the perspective is updat,ed  and the slider is
noMed  automatically. The slider can t3hen  redraw
itself t#o reflect the new perspective.

Figure 19 shows how a graphic block’s perspec-
t,ive coordinates the scrolling operakion  when the
user presses one of the palmer’s movers. The
graphic block modifies its perspective on behalf
of t,he mover l~ecause  the graphic block may want
to limit t#lie amount of scrolling. In this instance
the perspective and t,he intZeractor  are considered
t,ogether  as the subject to which views such as
palmers are at t#ached.

5.2 Buttons and Button States

The dialog box in Section 2.1 uses a button for
dismissal. In Int(er1:iews,  a button is a view of
a button state subject,. W7ien t,lie user presses
a butkon,  the butSton sets  i ts  buttCon  st#ate to a
particular \yalue. Several butttons  can view a single
button st,a.te; like any subject,, a button state
noMies  all it,s views (buttons) when it changes.

T o  illustrat,e, consider how Int(erViews  radio
but(tons are implemented. A ra,dio hutt,on  acts like
a tuning butSton on a ca.r radio; only one butt,on

in a group of radio but,tons  can be “on” at a time.
Ra.dio  but,tons  are provided when the user should
select an option from several mutually-exclusive
choices. A single button state is used as the subject
for a group of radio buttons. Pressing one of the
radio buttons sets the buttSon  state to a part#icular
lralue. The button will st,ay pressed until the button
st,at,e is changed to a different value. usually by
pressing another ra.dio  but,ton  in the group.

6 Customization

InterViews adoptIs  t4he X T o o l k i t  [9]  m o d e l  t o
support cust)omization  of int’eractors. IJsers ca.n
define a hierarchy of attribute names and values.
An interact#or can retrieve the value of an a,t,t,ribut,e
by name; it interpret)s  t#he value  to custSomize  some
aspect of its appearance or behavior. Attribute
lookup involves a search tNlirough parts of the
a,ttribut*e  h ie ra rchy  thak match  t#he intera.ctor’s
position in the object8 instance hierarch!..  Each
intSeractor  can have an instSance  name: inberact80rs
not explicitly named inherit a class name. The
name g iven  t,lie interact$or  at! the  root  of  the
inst,ance hierarchy is usually the name of the
application.
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For example,  suppose t,he application con-
t,a.ining the example dialog box of Section 2.1
was called “hello” , a n d  t h e  p u s h  hutSton  i n
the dialog box had the instance name “bye.”
The fu l l  na.me of  t#he att8ribute tha t  spec i f i es
t,lie font for the button label would then be
hello.Frame.VBox.HBox.bye.font. AtStributce
names can include ‘.wildcard” specificat,ions  so tNliatS
one at~tribut~e can a,pply to several interactSors.  The
font, of the push buttNon  in the example dialog box
is more likely to he specified 11J7 an atltribute named
hello*PushButton  . font. which would apply t,o
any push hutNton  in the applicat’ion, or even *font.
which would apply to any font in any applicat,ion.
The mechanism for accessing attributes ensures
that the att,ribute  with the most specific name is
the one used t$o satisfy a query. The Int#er\;iews
library, autZomat ically handles standard attributes
such as “font” and “color”.

The designer of an application chooses names
for interactors t,liat users can customize. Users
specify. these names t$o refer to interactors they
want to customize. Consistency- across a range
of applica.tions  is a.chieved  by- a consisttent choice
of instNance  and att,ribut,e names. For example,
a l l  conf i rmat ion  butt,ons  in  a l l  ‘.yuit” d ia log
boxes will be red if the user lists the attribut’e
*quit*OK. background: red, if all quit dialog boxes
are given the instance name “quit”, and if all
confirmation butt,ons  are named ‘*OIi.”

7 Current Status

Int,er\*iews currently runs on f\Iicro1:AS,  Sun, HP,
and Apollo worl;stat,ions  on top of the X Window
Syst,em [16] versions 10 and 11. The library is
roughly 30.000 lines of C++ source code, of which
about 2,000 lines are X-dependent. Interviews
applicat,ions  do not call S routines direct,ly and are
t#hus  isolat,ed from t(he  underlying window syst4em.

1l’e  ha\-e  implementSed  several applications on top
of t(he  library, including a scalable digit,al  clock, a
load monit80r.  a drawing editor, a reminder service,
a window manager, and a display of incoming
mail. The applications have been used daily- by
about ‘20  researchers for nearly two years. and
the library is being used in many development
efforts at %anford,  at other universitlies,  and in
indust,ry.  1$7e  are currently- using InterViews in
the development’ of a more general drawing syst’em,
a program editor. a. visual command shell, and a
visual debugger.

8 Conclusion

Our experience wit#h InterViews ha.s convinced
us of the importance of ol)ject-orientNed  design,
subject,/view sepa.ra.tion, a n d  composit.ion  i n
facilitating the illlplelllent,at,ioll of user interfaces.
Compositlion  is particularly important,. Providing
one or two ways t(o combine interface elements is
not enough. To really help t#he programmer, a user
intSerfa,ce  t,ooll;it  must offer a rich set, of composition
mechanisms along with a variety of predefined
objects t’o use. The programmer should he able
tSo  pick and choose from among the predefined
components for the bulk of the intSerface,  and the
toolkit should make it’ easy t,o synthesize t’hose
components t81iatS  are unique t,o t,lie  applica.tion.
The composit(ion mechanisms in Int~erViews  make
this possible.
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Appendix A
Primitive and Composition
Protocols

The set of operat,ions  defined on an object can
b e  t,hought  of  as  a  communica-t~on  l)~locol  that,
the object understands. Since objects cannot
access the internal st,at,e of other objects, int’er-
object,  dependencies axe limitred  13~ t!he  semantics
of the protocol. Objects are tShus  isolated from
one anot,her. promoting modularity and reusability.
Furthermore, object,s derived from a common
ba.se class (thus obeying a, common protocol)
can be used without knowledge of t,heir  specific
class; operations redefined by the subclass are
automat,ically invoked on the objects instead of
the corresponding base class operations (a form
of dynamic binding). A common protocol makes
it possible for composition objects t)o treat!  their
components u:iiformlJ-. Dynamic binding lets
composit$ion  objects take a.dvant’age  of subclass-
specific behavior wit,hout modification. TogetSher  3
these attributes ma.ke compositSion  possible.

Interactor Protocol

The protocol
oiler at ions:

for int eractors includ .es the following

when a sullject  changes it will cam11  Update on its
views.

Int5eractors  handle input events with the Handle
opera.tion.  Each event, is t#a.rgetted to a particular
int,eract*or.  Any int8eractor  can Read the next’ event
from the global event, queue. Handle and Read can
be used tlo creat#e  event-driven input handling, in
which only one interactor is responsible for reading
events and forwarding them t,o their t#a.rget.

Scene Protocol

Scenes a.dd
management

several operations for component
to t,he basic interact,or  protocol:

void Insert (Interactor*)  ;
void Insert(

Interact or*,
Coord x, Coord y, Alignment

1;
void Remove(Interactor*) ;
void Raise (Interactor*)  ;
void Move(

Interactor*,
Coord x, Coord y, Alignment

/,
void Change(Interactor*) ;
void Propagate (boolean) ;

void Draw 0 ;
void Redraw(

Coord left, Coord bottom,
Coord right, Coord top

);
void Resize0 ;
void Update0 ;
void Handle (Event&) ;
void Read(Event&) ;

The Draw operation defines the appearance of the
interact,or.  A call to Draw causes the intSeractor  t’o
draw itself in its entiret,y.  Redraw is called whenever
a part of an interactor needs to be redra.\ul,  perhaps
because it had been obscured but is now visible. A
call t,o Resize not,ifies  t,he interactor that the screen
space it occupies has changed size. The interactor
can then t,ake whatever action is appropriate. Draw,
Redraw, and Resize are automatically called 11y
InterViews library code in response t,o window
system request,s. The Update operation indicatles
t,hat some state on which the int,eract,or  depends
ma.y have changed: t,he interact,or will usually Draw

Insert and Remove axe used to specify a. scene‘s
components. Raise modifies t(he  front-to-back
ordering of component,s  within a scene to bring
t,he specified component, t,o t#he  t,op.  Move suggests
a. change in the position of a component within
the scene. Not all scenes implement1  all these
operations. For instance, it does not make sense to
call Raise on a monoscene since it can have only
one coiiiponent .

The Change operation t(ells a scene that one
of its componentJs  has changed. A scene can do
one of two things in response to a. Change: it,
can propagate the change by calling Change on its
parent, or it can simply reallocat,e  its components’
screen space. The Propagate operation specifies
which behavior is required for a particular inst,ance.

Graphic Protocol

The graphic base class defines the prot80col  for
dra.wing objects, manipulating graphics stat,e, and

itself in response t,o an Update call. Typicall)., hit detection. Operations include:



void Draw(Canvas*);
void DrawClipped(

Canvas*, Coord, Coord, Coord, Coord

a l l  t h e  c o m p o n e n t s  relat,ive t#o t h e  pict,ure’s
coordinate s!-stem. The picture class defines
operations for editing and traversing its list of
components. Pitt  ures also define operations for
selectNing  graphics t,hey compose based on position:void Erase(Canvas*);

void EraseClipped(
Canvas*, Coord, Coord, Coord, Coord

1;

void SetColors(PColor*  f, PColor* b);
void SetPattern(PPattern*);
void SetBrush(PBrush*);

Graphic* FirstGraphicContaining(
PointObj&

1;
Graphic* FirstGraphicIntersecting(

BoxObj&
1;

void SetFont(PFont*); Graphic* FirstGraphicWithin(BoxObj&);

void Translate(float  dx, float dy);
void Scale(

float sx, float sy,
float ctrx =O.O, float ctry CO.0

J;

void Rotated
float angle,
float ctrx =O.O, float ctry =O.O

Graphic* LastGraphicContaining(PointObj&);
Graphic* LastGraphicIntersecting(BoxObjk);
Graphic* LastGraphicWithin(BoxObj&);

int GraphicsContaining(
PointObj&,  Graphic**&

/ ,
int GraphicsIntersecting(

BoxObj&, Graphic**&
1;
int GraphicsWithin(BoxObj&, Graphic**&);

1,

void SetTransformer(Transformer*);

void GetBounds(
float&, float&, float&, float&

1,

boolean Contains(PointObj&);
boolean Intersects(BoxObj&);

In addition tlo the operations for setting graphics
st,ate attNributes  and coordinate transformat(ions,
there are complementary opera,tions  for obtaining
the current values of these para.meters. The
Contains and Intersects operations are often
used to det,ermine whether a user clicked on a.
graphic. PointObj and BoxObj specify a point

The . . . Containing operations return the
gra*phic(s)  containing a point; . . . Intersecting
operations return the graphic(s) intNersecting  a rect-
angle; . . .Within  operations return the graphic(s)
falling completely within a rectangle.

Pict,ures draw their components st’arting from
the first component in the list. The Last. . .
operations can be used to select, the ‘topmost”
gra.phic  in the pict#ure,  while First. . . operations
select the “bot8tommost .”

and a rectangular region. respecGvel!v.  Contains
can be used to detect an exact hit on a graphic;
Intersects can be used t,o detect a hit within a
certain tolerance.

Text Protocol

The Text object protocol includes t#he following
operations:

Picture Protocol
void Draw(Layout*);
void Locate(

E a c h  pict)ure maintains a list of component
graphics. A pict,ure draws itself by drawing
each component, wit811  a graphics state formed by
concatenating the component’s stat,e with its own.
Pictures define default semantBics  for conca.tenation;
subclasses of picture can redefine the semantics
or can rely o n  t,lieir  components to do t,he

Coord &xl, Coord &yl,
Coord &x2, Coord &y2

1;
void Reshapeo;

Draw defines the appearance of an object in
a given layout. A Layout object, defines the
area of t,lie screen into which a hierarchy of t#est

conca.tenation. objects will be composed. Locate is used for
Contains, I n t e r s e c t s , and  bounding  box hit detNection  on  t#ext objects. Reshape calculates

opera,tions  defined i n  t h e graphic base cla.ss geometric informat,ion  about an object, for use in
are redefined in the picture class to consider implementing composition st#rat,egies.
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Clause Protocol

Cl auses add operations for
ponents and for modifying

st,epping through com-
t#lie list of component,s:

Text* First 0 ;
Text* Succ (Text*) ;
Text* Pred(Text*) ;
boolean Follows(Text*, Text*);

void Append(Text*);
void Prepend(Text*) ;
void InsertAfter(Text*  old, Text*);
void InsertBefore(Text*  old, Text*);
void Replace(Text* old, Text*);
void Remove(Text*);

First returns the leftlmost  or t80p”nost  conlpo-
neiit. Succ and Pred return t’he successor or
predecessor of a component. Follows can he used
t,o determine if one component comes before or
after another.

To Probe Further

Tl’e have only considered the basic elementSs  of
the various protNocols  in this discussion. A more
detailed look at these protocols and the implemen-
tations behind them can be found elsewhere [8,22].
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Appendix B
Making User Interface
Development Easier

hIan\, soft$ware  syst(ems  ha\,e heen d e v e l o p e d
t o  facilita.te  t h e  constJruction o f  gra,pliica,l  u s e r
int8erfaces. Such systems ca.n  be divided int’o
two broad categories: toolkits and user int,erface
management, s?‘stems  (UIhISs).

Toolkits

A user int,erface t.oolkit provides programming ab-
st,ra.ct,ions  for building user interfaces. Interviews.
the S Toolkit, and t,he Andrew Toolkit (ATK) are
good examples. The X Toolkit defines widget and
composite classes analogous to int#eract,ors  and
scenes in Inter1’iews. Tiling composit4es  include
box and vpaned, and the form compositJe  allows
its components t#o overlap. Composite objects
maintain a point,er t#o a geometry manager
function that is responsible for the proper layout
of components. The geometry manager can
be replaced at  runtime t#o change the layout,
strategy. ATK includes objects that comprise the
dat#a to be edited, such as t’ext,  bitmaps, and
more sophist,icatJed  object#s  such as spreadsheets
and  animatNion  ed i to r s . ATK‘s composit)ion
mechanism allows these objects to be embedded
into multimedia documents.

In addi t ion  to  s tandard  t,oolkit)  functionalit8y,
GROW allows the programmer to specify con-
straints between objects. Constraints can enforce
dependencies bet ween individual pieces of data.
For example. the progra.mmer  can specify t#ha.t
a value st’ored in one object is a functNion of a
lyalue in another object. GROW also has graphical
constraints for confining and connect8ing  graphical
objects. S 1UC 1 constNraintls  can guarantee that a
graphical object, st,ays within a prescribed area or
t,hat, t,wo visually connected objects stay connected
when one or the other is translated.

Smallt8alk  h/IVC  and i ts  descendant,  Apple’s
h/IacApp,  are amon,v the earliest’ and best known
object-orientNed  t,oolkits.  h4a.cApp is different’ from
newer t,oolkit,s in that it implement8s  a particular
“look and feel ,” n a m e l y  t h a t  o f  hlaxintosh
applications. RIVC  is unique in that it divides
int,erface components int,o model,  view, and
controller. Models are similar to subjects in
Interviews, controllers are responsible for input
handing, and views are responsible solely for

out put. In cont,rast,,  otNher  t,oolkits tl1a.t distinguish
between int8era,ctive  and a.Mract  objects put t’he
functionality of hIIVC cont,rollers and views into
a single object (corresponding to an Inter1’iews
view) that handles input and output. This
consolidat,ion  reflect)s  the tight coupling bet8ween
input and out8put8  in direct-manipulation int,erfaces.
Placing responsibilit,y  for input,  and output,  in t’he
same object reduces t#he total number of oh jects
and t#he communication overhead bet ween them,
simplifJ4ng  t,he troolkitL  and potentially increasing
its efficiency.

UIMSS

liIMSs are generally charact,erized  by

1. complet8e  separation of code that implements
t#lle  user interface t,o a.n application and the
code for the applica,tion  it)self, and

2. support for specifying t.lie user interface a.t
a higher level of abstraction tlia,n general-
purpose programming languages.

UIhlSs  separa,te interface and application for
some of the same reasons that many t8001kit8s
separa.te subjects and views, namely t.o isolate
application code and interface specification and t’o
allow different int,erfaces to the same application.
However, UIh/ISs  do not implement any a.pplica,tion
code, whereas subjects usually do. RJoreover  ,
UIh/ISs min imize  the  intera,ction  be tween  the
application and the int#erface to maximize their
independence. UIhiISs  generally concent,rat,e on
abstracting t,lie synt#ax  and semantics of the user
interface. Their ma,in  goal is t,o let, interface
designers and even ,end users design and modify
the intNerfa.ce  quickly without requiring extensive
programming skills or knowledge of the applica.tion.
To avoid convent iona.l  programming, ITIh4Ss  use
special-purpose languages or ot,lier  formalisms such
as finite sta.t,e transition diagrams t,o describe
the appearance of the int,erface and t,he kinds
of interactNion it supports. In m o s t  tJIh{Ss t h e
specification is interpreted by a runtime  system
that, is incorporatNed  into the a.pplication.

A widely known and used UIhlS  is  Apollo
Comput8er’s  Domain/Dialog [I8].  The package
consists of a compiler and a run-tNime  library. The
compiler rea.ds a decla.rative  descript,ion of the user
int#erface and how it connects t,o the underlying
applica t,ion. It t,lien generates a more compact
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description that  is  int3erpreted  by the runtime
library.

The user interface is specified in t*erms of inter-
action techniques,  which correspond to primitive
interface components, and structuring tech-
niques, which are t#he composition mechanisms for
the primitives. Domain/Dialog defines structuring
techniques for arra,nging  components into rows and
columns and a “oneof” t$echniyue  t1ia.t displays only
a single coniponent3. These st(ruc  t uring techniques
alloca,te  space for t,lieir components in a ma,nner
similar t#o Int~erViews  boxes and glue; they request
a minimum, maximum, and optimal size from
their components and distribut#e  t#he availa.ble  space
among them.

Domain/Dialog places grea,ter emphasis on com-
positlion  t,han most UIMSs, which center more on
how t,o specify the input and output behavior of a
user interface without8 conventional programming.
Sassafras [5], a  prot,otype  UIMS d e v e l o p e d  at,
the University of Toronto, focuses on supporting
concurrentL  user input from multiple devices and
on efficient, communication and synchronization
between the modules t1ia.t support user interacGon.
Syngraph [I’L] t#akes  a description of a user interface
writt$en in a formal grammar and generates Pa.scal
code that implements it. Recent work by Foley
et al. [4]  _uses a knowledge base describing the
int(erface  to raise the level of abstraction beyond
detailed assembly of components.

Anot,her class of IJIMS lets designers creat)e  a
user int#erface  by- direct manipulation instead of
t,extual  specifica.tion. Research syst)ems  such as
Cardelli’s dialog editor [3]  a,nd  Myers’ Peridot [lo]
a,nd commercial sr\st8ems such as SmethersBarnes
Prot,otyper [19] let designers draw the user interface
using a drawing edit or-like metaphor . The
system then generat8es rou t ines  that’ mus t  be
incorporat,ed  intNo t#he a.pplica.tion. Cardelli’s
system lets designers specify the resize semantics
using at tachnlent  points: an edge of a component8
c a n  b e  att,ached  t’o a n  arbikary  p o i n t  i n  t h e
int,erface. The component will stret~ch  or shrink
if necessary t%o maintain the at8tachment8.  Peridot
allows the designer tCo specify many aspectIs  of t,lie
interface by demonstlration, inferring the proper
semantics of the interface from the designer’s
ac t,ions. Prot(otyper  provides a drawing editsor
int*erface to building Rlacint,osh applications and
is one of the few commercially-available direct
manipulat,ion  intCerface  edit,ors.

Toolkits, UIMSs, and InterViews
Currently there is a growing int,erest in tloolltitNs,
w h i l e  m a n y  ha.ve  b e g u n  t  0  quest,ion wh&er
IJIMSs really help [15]. E ar y1 non-object-oriented
t,oolkit,s [l,‘Ll] were crit,icized  as being t)oo low-
level and difficult8 to use, t#hus  widening int8erest  in
UIMSs. k-et, t(oday few IJIMSs have gained wide
acceptance. Researchers [ll] ha,ve  ident,ified several
short,comings  of existing IJIMSs:

Lfmted r a n g e  o f  inierfc~ces. Since UIMSs
allow interface specificat(ion at a high level,
t(liey necessarily limit the range of int’erfaces
t!liey can treat e. This is especially t,rue of
direct manipula,tion int<erface  edit’ors,  which
must’ rely on graphical or demonst,ra.tional
specification of the int,erface’s semant,ics.

R e l i a n c e  o n  a n  anterprcfcd speci,ficntion lan-
guage. The special purpose language used by
a tradit,ional UIMS is likely t#o be unfamiliar
to programmer and interface designer alike.
Moreover, the language is usually- inferior
in qualit,y to established general-purpose lan-
guages, debugging tools are primitive or non-
existent,, and run-time overhead associated
with interpreting the specification oft’en de-
grades performance compared to conventional
in~plement~ations.

Inadequacy for dir& manzpulation  inierfaces.
The strict separation of a,pplica.tion  a.nd inter-
face code usually results in a low-bandwidth
connect8ion  between the t#wo. Thus ,  most,
IJIMSs do not support int8erfaces requiring
real-time response t’o user input, such as tllose
using rubberbanding or other animated effects.

Dzflculty In a d a p t i n g  t o  cha,nge.  T h e  t i m e
it t#akes  t,o produce UIMSs makes it difficult
to keep t,hem  in st,ep with t,he latest int,erface
designs. The problem only gets worse as
int8erfaces  become more complex.

Beca.use  InterViews is a toolkit, it, avoids the
problems associat,ed with UIMSs. InterViews is
distinguished from other toolkit,s in its va.riety
of compositNion  mechanisms (tiled, overlapped,
stacked, constrained, and encapsulated),  i ts
support for nonlinear deformation (independent
stretching and shrinking) of interactors, and its
object,-orientNed  approach to struct,ured graphics
and t,ext,. InterViews simplifies the crea.tion of both
the controlling elements of t,lie int,erface (hut,tons
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and menus) and the data t,o be rnanipulaked  (text,
and graphics objects). Intmerl’iews  t,lius  offers
comprehensive support for building user intSerfaces.
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Appendix C paiiiler  an inttera.ctSor  tlia.t supports continuous

Glossary t#wo-dimensional scrolling and increment a.l
scrolling a.nd zooming.

hox. llhox,  vhox scenes that, support, t,iled com-
position of int.eract%ors.

huttou state a subject, tha.t ma.inta.ins  sta,te
associat,ed with one or more but,tons.

perspective a subject!  tJ1a.t maintSains  scrolling
and zooming informatSion,  including the t,ot#al
size of a view and how much is currently
visible.

button. push button. radio button t#he but-
ton base class defines t$he interface t,o generic
butSton  int,erfaces; push but tons provide a
moment,ary cant act, int#erface, radio but t!ons
allow the user to select, from one of several
mutNua.lly-exclusive  choices.

clause base class for skuctured  t,ext compositIion
objects.

phrase a clause that places it#s  components end-
to-end on a single line.

picture base class for st(ructured  graphics compo-
sit,ion objects.

rectangle a graphic that represents and draws a
rect,angle.

scene. monoscene scene is t,he base class for
objects t,hat  compose interaBctSors;  monoscenes
are scenes tha.t cont,ain  only one componentN.deck a scene tha.t sta,cks  interactors.

display a clause that defines an indented t#ext
lavout.

seut,ence  a clause that places as many of it#s
components as possible on the same line and
begins a new line if necessaq‘.

frame. shadow frame?  title frame
monoscenes t,hat embellish their component:
frames add a simple border, shadow frames
add a. drop shade; and title frames add a
banner.

slider a two-dimensional scroll bar.

structured graphics a graphics model t,hat sup-
ports hierarchical composition of graphical
elements; support is usually provided for

glue. hglue, vglue interactors that a,ct,  ass spac- coordinate transformations, hit det’ection, and
automatic screen updat,e.ers bet#ween  components of a scene.

graphic base class for structured graphics objects. structured text a graphics model that allows
hierarchical composition of t,extual  elements,
emphasizing the arrangement of elements to
make use of available space.

graphic block an interact80r
structured graphics objet  t .

that

immediate mode graphics a graphics model in
which individual geometric shapes are drawn
17~1 routines t1la.t  simply modify pixels on the
screen as they are called.

subject an object t h a t  maint,a.ins  st,ate a n d
operat,ions  that underlie a user interface; aS
subject maint,ains  a list of views t,o be notified
when t!he  subject’s stat’e  changes.

in teractor  base class for in terac tive oh jects such text base class for st#ructured text objects.
as menus and buttIons.

text block an intSeractSor  tha,t, displays a struc-
essage  an interactor t,hat displays a

characters.
string of t,ured t,ext object.

text list a clause that arranges it#s  components
either horizont,ally  or vertically depending on
available space.

mover an intNeract80r  t,liat, scrolls
by some incrementC.

another intNerac-
tor

painter an object providing immediate-mode
graphics operations and operat,ions  for sett(ing

tray a scene that maintIains  constraintSs  on the
placement of potNentially  overlapping compo-

graphics st#at#e  paramet#ers nents.



view
a

an ol,ject, t,ha.t provides t,he user inkrface  t,o

viewport  a monoscene  that can
its components.

whit espace
lxdween

word  a  t’est
str.ing o f

a t,ext object used
other text,  objects in a cla,use.

object that
charactNers.

zoomer an
anotSher

intNerac  tar
intreractCor.

t’o

scroll and ZOOIll

intSroduce

represents

t(liat,

a n d  draws  a

magnifies or reduces
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