
VAL to VHDL Transformer
An Implementation Guide

Larry M. Augustin, Benoit A. Gennart,
Youm Huh, David C. Luckham,
Paraminder S. Sahai, Alec G. Stanculescu

Technical Report CSL-TR-89-390
Program Analysis and Verification Group Report No. 41

September 89

This work was supported by the VHSIC Program Office, Department of the Air Force
(AFSC), under Contract F33615-86-C-1137, and by the US Defense Advanced Research
Projects Agency, under Contract N00039-84-C0211.

VAL to VHDL Transformer

An Implement ation Guide

bY

Larry M. Augustin, Benoit A. Gennart,

Youm Huh, David C. Luckham,

Paraminder S. Sahai, Alec G. Stanculescu

Technical Report CSL-TR-89-390
Program Analysis and Verification Group Report No. 41

October 1989

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

St anford University
Stanford, California 94305-4055

Abstract

This report presents one implementation of the VAL semantics. It is based on a transformation
from VAL annotated VHDL to self-checking VHDL that is equivalent to the original source from
the simulation semantics standpoint.

The transformation is performed as a sequence of tree to tree transformations. The report
describes the semantic preserving transformations, as well as the structure of the transformer.

Key Words and Phrases: VHDL, hardware description languages, annotation languages,
simulation, tree to tree transformations

Copyright @ 1989

bY
Larry M. Augustin, Benoit A. Gennart, Youm Huh,

David C. Luckham, Bob Sahai, Alec G. Stanculescu

Contents

1 Introduction
1.1 VAL to VHDL Transformer vs VAL Compiler .
1.2 VAL to VHDL Transformation Principles .
1.3 Translation Methodology .
1.4 What to expect from the next three chapters .

2 Transformation Algorithm
2.1 Generation of Translation Skeleton .
2.2 Transforming VAL Annotations to Core VAL Annotations

2.2.1 Normalization of time qualified expressions
2.2.2 Isolation of Base Statements .
2.2.3 Elimination of Derived Syntax .
2.2.4 Flattening of Nested Guards .
2.2.5 Resealing of Timed Expressions .

2.3 Code Generation .
2.3.1 Translation of timed expressions .
2.3.2 Translation of time qualified expressions .
2.3.3 Translation of drive processes .
2.3.4 Translation of assertion processes .

2.4 Transformation of Attributes .
2 .4 .1 Changed. .

2.5 Transformation of Architecture VAL-Annotations .
2.6 Transformation VAL Configuration Annotations .
2.7 Summary .

3 Utility Packages
3.1 Abstract Syntax Tree .
3.2 Parser Generator .
3.3 Symbol Table .

4 Transformer Structure
4.1 Overview .
4.2 Transformer .
4.3 The AST and the symbol-table package .

3
3
8
8
9
9

11
11
13
13
14
14
15
20
20
21
22
25

27
27
27
27

29
29
29
30

. . .
111

List of Figures

2.1 Entity annotation . 4
2 . 2 M a p p i n g . 6
2.3 Relationship Between Design Units . 7
2.4 Translation of Time Qualified Expression . 14
2.5 Example of State Maintenance Process . 15
2.6 Translation of Finally assertion . 17
2.7 Translation of Sometime assertion . 18
2.8 Translation of Eventually assertion . 19
2.9 Transformation of X’CHANGED . 20
2.10 Transformation of X’CHANGED(va1) . 20
2.11 Transformation of Configuration that uses “ValEntity” 24
2.12 Transformation of Configuration that uses both “ValEntity” and “ValArchitecture” . 24

1v

Chapter 1

Introduction

1.1 VAL to VHDL Transformer vs VAL Compiler

In order for VAL annotations to be machine processable, they have to be transformed into some
machine executable form. For simulation purposes, there are two possibilities: (1) to transform
VAL annotated VHDL into pure VHDL and then use the existing VHDL compiler to transform the
pure VHDL into data processable by the simulation engine, or (2) to transform directly the VAL
annotated VHDL into data processable by the simulation engine.

This book presents an implementation of the first solution. Its advantage is that it supports
VAL in the context of any VHDL simulator. A VAL compiler would work only in conjunction with
one VHDL simulation engine.

The disadvantage of the chosen solution is that it is slower since it transforms VAL into VHDL
which is in turn transformed into Simulator processable data. Also, being independent of any
simulation environment, makes it more difficult to use. The user must keep track of the files that
are generated by the transformer and put them manually into the design library of the available
simulation environment.

1.2 VAL to VHDL Transformation Principles

The translation from VAL to VHDL is based on the following principles, supported by the VAL
language:

1. Principle of Separate Compilation

The transformation of VAL to VHDL is performed on a per compilation unit basis. Each
VAL annotated VHDL compilation unit can be transformed into pure VHDL independently
from one another. Note that all semantic analysis is performed after the translation, by the
VHDL Analyzer.

2. Principle of Name- Transparency

The VAL to VHDL translation should be hidden from the VAL writer. In other words, the
writer of VAL annotations should not need to know about the details of the VAL to VHDL

translation. VAL refers only to library names (entity, architecture, configuration names)
visible in the corresponding VHDL context.

In order to support this principle, the VAL configuration annotation contains VAL declara-
tions which state that a given compilation unit has to be used in the original VHDL form
or in the generated (translated) form. This way the VAL to VHDL translator has informa-
tion regarding the actual format of a referenced compilation unit; original VHDL format or
translated format.

1.3 Translation Methodology

The translation methodology used consists of using a parser generator to generate a parser for VAL
annotated VHDL. The parser is extended with a back end that performs the transformation into
pure VHDL. The back end uses an abstract syntax tree package in order to access the parse tree,
and a symbol table package in order to keep track of all declarations.

The transformation consists of consecutive tree to tree transformations that eventually lead to
the desired tree. Each transformation step can be verified using a VAL/VHDL Pretty Printer that
generates the ASCII VAL annotated VHDL corresponding to a given tree. Note that the Pretty
Printer can print text even if the tree does not correspond to a valid VAL annotated VHDL. This
allows to use the Pretty Printer for the verification of intermediate transformation steps that leave
the tree in an illegal state from a VAL/VHDL language standpoint.

1.4 What to expect from the next three chapters
The following chapters describe the implementation of the VAL to VHDL Transformer. The de-
scription is top down, from an algorithmic level to the detailed level of actual procedure calls.
It emphasizes the reusable packages that are part of the transformer. The use of such packages
enhanced the programming productivity.

2

Chapter 2

Transformat ion Algorithm

The VAL Transformer runs as a preprocessor on an annotated VHDL description to generate a
self-checking VHDL description. The annotated VHDL description is parsed into a tree format.
The transformation algorithm consists of consecutive tree to tree transformations.

Each transformation step can be verified using a VAL/VHDL Pretty Printer that generates the
ASCII VAL annotated VHDL corresponding to a given tree. Note that the Pretty Printer can print
text even if the tree does not correspond to a valid VAL annotated VHDL. This allows to use the
Pretty Printer for the verification of intermediate transformation steps that leave the tree in an
illegal state from a VAL/VHDL language standpoint.

In the transformation process, the Transformer must keep track of all VAL and VHDL decla-
rations. This is done by using the symbol table mechanism described in section 3.3.

VAL can annotate three kinds of compilation units: entities, architectures, and configurations.
For each compilation unit, there are different kinds of VHDL compilation units being generated.
Otherwise, the transformation paradigms for VAL entity annotations and VAL architecture anno-
tations are similar. Some transformations are independent of VHDL (in terms of VAL only), and
some are in terms of VHDL.

As a result of these characteristics of the transformation algorithm, the VAL to VHDL trans-
formation will be presented in five parts:

1. Generation of Transformed Skeleton (section 2.1)) describing what VHDL compilation units
are generated for each VAL annotated VHDL unit.

2. Transformation of VAL Entity Annotations into Core VAL Entity Annotations, described in
section 2.2.

3. Transformation of Core VAL Entity Annotations into VHDL, described in section 2.3.

4. Transformation of VAL Body Annotation, described in section 2.5.

5. Transformation of VAL Configuration Annotation, described in section 2.6.

2.1 Generation of Translation Skeleton

The translation skeleton is designed to implement the scoping and visibility rules of VAL. Consider
the problem of observing the operation of a chip on a circuit board. One way of monitoring the

3

chip is to remove it from its socket, plug a specially constructed adapter into the socket, and then
plug the chip into the adapter. The adapter senses the signals traveling between the circuit board
and the chip’s pins. The signals can then be monitored to verify the behavior (and use) of the chip.

For simple cases, the VAL translation algorithm works in just such a manner. The Transformer
generates an additional architecture called the Monitor that contains an instantiation of the com-
ponent (architecture) under test. The Monitor has the same pins r as the component, and contains
a socket for the component. The Monitor is plugged into a circuit in place of the component. The
component is in turn plugged into the socket in the Monitor.

The Monitor body has visibility over all signals traveling between the actual architecture and
the other components in the simulation. In addition, the Monitor contains logic to verify the VAL
assertions made about the component under test. This includes maintaining its own separate state
(the VAL state model) (figure 2.1).

ic
:P
iU

irn
:0
i n
i i
i t
:O
i r
:::::

b + t
u

Figure 2.1: Entity annot ation

One advantage of this approach (as opposed to simply monitoring the signals that the pins are
connected to) is that VAL assertions can separate the value on out ports of the component from

lAlmost. It may have an additional output pin, as described later, to allow other assertions to probe the monitored
architecture’s internal state.

the value on the signals that those ports drive 2. This allows the user to make assertions about the
value placed on the port by the entity. 3

Consider now an architecture containing several components. If a component is annotated, then
a monitor can be generated for that component. The mapping annotations in the architecture have
visibility over the internal state of the monitor of the component. This allows annotations within
the architecture that “map” the architecture’s state into the states of its components. The needed
visibility over the internal state of the component is provided through an additional out port on
the component that carries the component’s state.

The design units involved in the translation are shown in Figure 4.1. Assume an entity A exists
cant aining VAL annotations. Three design units are generated; two entity declarations and an
architecture. The architecture (named STATEMONITOR) contains the VHDL translation of the
VAL annotations that appeared in the entity declaration. This includes the annotations which
maintain the entity’s state model. The ports of architecture STATEMONITOR are the same as for
entity A with the addition of an out port of the same type as the entity’s state model. This out port
is used to provide visibility over the state of components of type A to any annotations within any
architecture that instantiates a component of type A. The generated entity VALOUT-A declares
the entity for STATEMONITOR.

Architecture STATEMONITOR contains a component SOCKET having the same ports as entity
A with the addition of an in port of the same type as the entity’s state model. A translated version
of the original architecture body T of A is plugged into this socket. Because the entity’s state is
passed into the SOCKET through a port, it is visible to annotations within the architectural body.
The translated version of T, VAL-T, contains a translation of the VAL annotations appearing in
the architecture into VHDL. Its entity interface is described by VALIN-A.

2The value placed on a port by an entity does not necessarily equal the value on a signal connected to that port
because bus resolution may come into play.

31n VHDL, a port of mode out, is not readable within the architecture. Therefore assertions about out mode ports
cannot be made in VHDL.

5

state assertions

,-mm-
: P
: 1
i a
:
:m
: 0
:n
: i
: t
: OI rII

---.
I
I

:

.w---
: a
: 1
: u
:
:mIO
:n
i i
: t
: 0
: 1:
:
I

Figure 2.2: Mapping

architecture S of
TEST-BENCH is. . .
component
TEST-ENTITY : A;

architecture S-EXPANDED
of TESTlENCH is

c
cbmponent TEST-ENTITY :

VALOUT-A;

entity VALOUT-A is
entity A is -- entity A plus an
-- VAL annotations \ c -- additional out port

- - of state type

architecture MONITOR of
VALOUT-A is
cb;nponent SOCKET :

VALIN-A;

architecture T
of A is
-- VAL Annotations

architecture VAL-T
of VALIN-A is

+ -- VHDL translation
--of VAL annotations

Figure 2.3: Relationship Between Design Units

2.2 Transforming VAL Annotations to Core VAL Annotations

Once the compilation units to be generated are produced, as described in section 2.1, the monitors
and the expanded architectures must be filled with code corresponding to the VAL annotations.
The first step is to transform the annotations to Core VAL annotations.

The core VAL annotations are equivalent to the original ones, but use fewer VAL constructs
and are easier to map to VHDL.

The transformation steps required to produce the Core VAL Annotations are:

1. Normalization of time qualified expressions.

2. Isolation of base statements.

3. Elimination of derived syntax.

4. Flattening of nested guards.

5. Resealing of timed expressions.

The following sections describe each of these steps in more detail.

2.2.1 Normalization of time qualified expressions

The normalization of time qualified expressions consists of three steps :

1. Generalize defaults - Default time references are added to every expression. There are two cases:

1. el during Tl becomes el during[-Tl,O]

2. el becomes el[O]

2. Set upper bounds - The upper bound of all time qualified expressions is shifted to zero. The
expression

S during [Tl , T2]

becomes,

S CT21 during [Tl -T2,0]

3. Push time references - Time references are “pushed” through each expression until they are
associated with signals. A timed expression (el[Tl])[T2] is rewritten as (el[Tl + T2]).

The interval in time qualified expressions is not affected by pushing time references. For
example,

8

(el CT11 during [T2,0]) [T2]

becomes,

el CT1 + T2l duringCT2, 0]

This eliminates all expressions of the form (e)[T]. Timed references are now only associated
with signals.

2.2.2 Isolation of Base Statements

The base statements can be either assertions or drive statements. Each statement or group of state-
ments may be guarded by hierarchical guard statements that contain general boolean expressions
(including time qualified boolean expressions). For the purpose of transforming time references,
each VAL assertion or drive statement is processed separately.

Each base statement is treated as if it had its own copy of the guards guarding it. Due to the
transformation algorithm that is explained below, the same guard may be transformed differently
for different guarded statements.

For example,

when ei then si; s2; end when;

becomes,

when el then SI; end when;
when el then s2; end when;

Where sl and s2 may be drive, assertion, or guarded statements.

2.2.3 Elimination of Derived Syntax

Derived syntax refers to language constructs that can be rewritten in terms of syntactically simpler
language constructs. The rules that specify how to eliminate a language construct are known as
rewrite rules since they specify how to rewrite one construct in terms of aSnothcr.

The following VAL constructs are eliminated by this step:

l Select - The select process activates one of a set of child processes based on the value of a
selection expression. It can be re-written as a set of when processes. For example,

9

select < expr >
cl 1 c2 => sl;

c3 1 c4 => s2;

else s3;

becomes ,4

when (cl = <expr>) or (c2 = <expr>) then sl; end when;

when (c3 = <expr>) or (c4 = <expr>) then s2; end when;

when (cl /= <expr>) and (c2 /= <expr>) and

(c 3 /= <expr>) and (c4 /= <expr>) then s3; end when;

l Macro - A macro is a name for a list of parameterized statements. For every occurrence of
the macro, the statements associated with the macro are copied, and the actual parameters
substituted for the formal parameters. the rewrite rules must be performed recursively on
the result of the expansion.

l Generate - The generate statement receives a label, if it has not one already (it is optional in VAL,
but mandatory in VHDL). The generate statement is then translated as a VHDL generate
statement.

l Else and elsewhen - The syntactically more complex forms of the guarded processes are rewritten
into simpler forms. For example,

when ei then si;

elsewhen e2 then s3;

else s4;

end when;

becomes,

when el then s 1; end when;

when not ei and e2 then s3; end when;

when not ei and not e2 then s4 end when;

*This, and the other rewrite rules, neglect semantic checking. If compile time semantic checks can guarantee no
semantic errors, then the behavior of the rewritten expression is correct. Otherwise the transformation rule can be
extended to include run-time semantic checking.

10

Once the rewrite rules have been performed recursively on the VAL description, only simple
when processes (with no else parts), drive processes, and assertion processes remain.

2.2.4 Flattening of Nested Guards

Next, nested guarded statements are flattened. The VAL process

when e 1 then
when e2 then

A;
end when;

end when;

becomes,

when ei and e2 then
s l ;

end when;

The VAL description now consists of a list of simple (no else clauses) guarded statements, each
guarding a single drive or assertion process.

2.2.5 Resealing of Timed Expressions

Since time in VAL is relative, the reference point of the entire description can be shifted in time
such that all references are to the past. This facilitates the translation to VHDL since only the
past value of a signal can be referenced in VHDL.

The rules for manipulating VAL expressions are described theoretically in [l].
The resealing of timed expressions consist of two steps:

1. Compute furthest future reference - For each guarded process, the time of the furthest forward
reference of all expressions in that process is computed. This includes expressions in the drive
or assertion process in the then part of the guarded process. This time point will be referred
to as Tmaz. For an expression e, MAX(e) = Tmaz is:

- MAX(e) = maximum of all the subexpressions of e

- MAX(e during[Tl,O]) = MAX(e)

- MAX(s[T]) = T

- MAX(Tl,T2,T3,...) = Ti if T; 2 Tj Vj # i

Tma2 for a guarded expression is the MAX
and all of its children. A different Tmax is

of all the expressions within the guarded
computed for each guarded expression.

statement

2. Rescale time - Each timed expression, with the exception of time in qualified expressions, has
Tmax subtracted from it. All time references should now be less than or equal to zero.

Qualified expressions are not affected since they are normalized already.

11

Note: from the standpoint of preserving semantics, substracting a value from all time refer-
ences in a condition that must hold over an interval is equivalent to adding the same value
to the bounds of the interval and to leave the time references in the condition as they are.

For example, consider:

when el CT11 during [T2, T3] then

s CT41 < - e2[T5];
end when;

The upper bound of the during is first shifted to zero, during the normalization of time
qualified expressions..

when el [Tl-T3] duringCT2-T3,Ol then

s CT41 <- e2 [T5] ;
end when;

The furthest future reference time is given by:

TMAX= MAX(T4,T5,Tl-T3)

The resealed code fragment becomes:

when el[Tl-T3-TMAX] during[T2-T3,0] then

s [T4-TMAX] < - e2 [T5-TMAX] ;
end when;

Note that causality requires that T4- TMAX = 0. If TMAX > T4, then the drive statement
depends on a future value (T5 > T4 from the definition of TMAX) and the behavior is
non-causal. Accordingly, a run time check for this condition is generated in the form of an
assertion.

12

2.3 Code Generation

Once the preceding transformations have been applied to the VAL description, the code is in a
canonical form characterized by:

l Only simple guarded processes with no nesting or else clauses.

l References resealed relative to zero.

l Upper bound of time qualified expressions set to zero.

l One statement per guarded process.

There are two kinds of processes that can appear within a guarded process: a drive process or a
flavor of assertion. In addition to these two cases of processes, timed expressions and time qualified
expressions must also be translated into the corresponding VHDL.

The transformation of the Core VAL Annotations into VHDL are preformed in four steps:

1. Translation of timed expressions.

2. Translation of time qualified expressions.

3. Translation of drive processes.

4. Translation of assertion processes.

The following sections describe the translation of each of these language constructs.

2.3.1 Translation of timed expressions

Recall that in an earlier translation step all time references were resealed relative to the constant
Tmax. Therefore all timed expressions must be less than zero; i.e. all timed expressions are delays.
This can be modeled in VHDL by a signal assignment statement using transport delay.5

An expression

e CT1

becomes

s <= transport e after T;

All occurrences of the expression e[T] are then replaced with the signal S. All expressions are
rewritten recursively until all timed expressions are eliminated. Transport delay is used to assure
that no preemption [4] occurs on the signal. In VAL, once an assignment to a signal is made, in
cannot be “undone.”

5The predefined VHDL attribute ‘delayed0 cannot be used for this because the argument of ‘delayed0 must
be a globally static expression. (See $7.4 of [5].) Although the argument generated by the translation algorithm is a
“run-time” constant, it is actually computed at elaboration time using functions defined in a VAL package. Therefore
it does not meet the VHDL definition of globally static.

13

signal GBE2 : BOOLEAN;

block
signal GBEI , GBEI-delay : BOOLEAN;
signal GBEl-stable : BOOLEAN := TRUE;

begin
GBEl < = e ;
GBEI-delay <= transport GBEl after T;
process(GBE1)
begin

if GBE-1) event then
GBEl-stable < = F A L S E ;
GBEl-stable <= transport true after T;

end if;
end process;
G B E 2 < = GBEI-stable and GBEl;

end block;

Figure 2.4: Translation of Time Qualified Expression

2.3.2 Translation of time qualified expressions

Recall that in an earlier step each time qualified expression was shifted in time such that its upper
bound was zero. This can be translated into VHDL as a check for stability over the most recent
interval using a VHDL process.6 The expression

e during CT, 01

is replaced by the signal GBE2 which is defined in VHDL in Figure 4.2.
Whenever the expression changes value, the process is activated and sets a flag to false to

indicate that the expression is not stable. The flag is reset if the process is not activated (the
expression does not change value) for T time units. Whenever the value of the expression changes,
the new signal GBE2 is set to true if the expression is true and has been stable and true for the
last T time units.

2.3.3 Translation of drive processes

In VAL/VHDL, the drive process can only be used to change the value of the entity state. After
the previous transformations, there may be several guarded processes containing a drive statement
affecting the entity state or a component of the state. Only one of these, however, should be active
at any point in time. Because VHDL requires that a signal may be the target of only a single
concurrent signal assignment statement, all of the guarded processes that may influence the state

6As with ‘delayedo, the predefined VHDL attribute ‘stable0 cannot be used in the translation because
the argument may not be a globally static expression as defined in VHDL. The argument may not be a globally
static expression because the Transformer introduces function calls as part of the translation process. In effect, the
transformer generates code to implement the ‘stable0 attribute itself.

14

are brought together into a single VHDL process. This process is sensitive to all of the signals that
may influence the state, and checks that only a single assignment to state is active at any point in
time.

Consider for example the following VAL code:

when Gl then
state <- El;

end when;
when G2 then

state <- E2;
end when;

This is translated into the VHDL shown in Figure 4.3.

VALSTATE: block
Sl : state-type;
s2 : state-type;

begin
Sl <= El;
S2 <= E2;
process (Sl ,S2)

variable count : integer;
begin

count := 0;
if (Gl) then

count := count + 1;
state <= Sl;

end if;
if (G2) then

count := count + 1;
state <= S2;

end if;
assert count <= 1

report "VAL Error: Multiple assignment to state";
end process;

end block;

Figure 2.5: Example of State Maintenance Process

2.3.4 Translation of assertion processes

The guards that guard assertions are eliminated. This is a VAL to VAL transformation step, which
for efficiency reasons has been implemented during the final translation to VHDL.

For example, the VAL code

15

when Gl then
assert Bl;

end when;

is translated to

assert Bl or not Gl;

There are four flavors of assertions in VAL: assert, finally, sometime, and eventually. Each of
these assertions is translated into a VHDL process, the details of which depend on the particular
flavor of assertion. Because the default severity level in VAL is WARNING, the translation must
set the severity level of generated VHDL assertions.

Assert

The VAL assert process is translated directly into the VHDL assert statement.

Finally

The finally assertion is translated into a VHDL process that wakes up whenever a signal in the
asserted expression changes. The process than sets itself to wake up at the first delta of the next
time and checks the value of the assertion. The value of the asserted expression will be the value
it held at the end of all of the deltas in the previous time point.

For the assertion

finally <test-expression>
report <message-expression>
severity <severity-expression>;

the corresponding VHDL process is given in Figure 4.4.

Somet ime

The translation for the sometime assertion closely resembles that for finally. Whenever a signal
in the test expression changes, a process wakes up and checks if the test expression is true. The
process then sets itself to wake up on the first delta of the next simulated time. When it wakes up
at the next simulated time, the process checks that the expression was true in at least one delta in
the previous simulation cycle. The translation for sometime is given in Figure 4.5.

Eventually

The eventually assertion is similar to finally, except that once the test expression goes true it must
remain true during all deltas in the remainder of the time point. the translation is thus very similar
to that for finally, with the addition that the process must check that the test expression never
makes the transition from false to true and back to false at the same time point.

The translation for eventually is given in Figure 4.6.

16

VAL-FINALLY I : block
signal next-t ime : BOOLEAN;
signal assert-expr : BOOLEAN;

begin
asser t - expr <= <tes t - express i on> ;
process (assert-expr ,next-time)

variable first : BOOLEAN := TRUE;
variable oneb : BOOLEAN := TRUE;

begin
if next-t ime J event then

assert oneb
report <message-expression>
severity <severity-expression>;

first := TRUE;
end if;
if assert-expr J event then

if (assert-expr /= oneb) then
oneb := assert-expr;
if first then
next-time <= not next-time after ifs;
first := FALSE;

end if;
end if;

end if;
end process;

end block VAL FINALLYI;

Figure 2.6: Translation of Finally assertion

VAL-SOMETIME : block
signal next-time, assert-expr : boolean := FALSE;

begin
assert-expr <= <test-expression>;
sometimes-label : process (assert-expr,next-time'transaction)

variable initial-cycle : boolean := TRUE;
variable oneb : boolean := FALSE;
variable first : boolean := TRUE;

begin
if initial-cycle then

initial-cycle := FALSE;
next-time <= not next-time after 1 fs;
first := FALSE;

end if;
if next-time J event then

assert oneb
report <message-expression>
severity <severity-expression>;

first := TRUE;
oneb := FALSE;

end if;
if (assert-expr'event or not next-time J event) then

oneb := oneb or assert-expr;
if (first and not assert-expr) then
next-time <= not next-time after ifs;
first := false;

end if;
end if;

end process sometimes-label;
end block VAL-SOMETIME;

Figure 2.7: Translatimr ()I’ ~oll~~~i ime assertion

VAL-EVENTUALLY : block
signal next-time, assert-expr : boolean := FALSE;

begin
assert-expr <= <test-expression>;
eventually-label : process (assert-expr,next_time)

variable glitch : boolean := FALSE;
variable oneb : boolean := FALSE;
variable first : boolean := TRUE;

begin
if (not assert-expr J event and not next-time J event) then
next-time <= not next-time after Ifs;
first := FALSE;

end if;
if next-time J event then

assert oneb
report <test-message>
severity <severity-expression>;

first := TRUE;
glitch := FALSE;

end if;
if (assert-expr J event) then

glitch := glitch or (oneb and not assert-expr);
oneb := assert-expr;
if (first and not oneb) then
next-time <= not next-time after ifs;
first := FALSE;

end if;
end if;

end process eventually-label;
end block VAL-EVENTUALLY;

Figure 2.8: Translation of Eventually assertion

19

2.4 Transformation of Attributes

2 . 4 . 1 Changed

This boolean attribute may have a parameter, such as in ‘CHANGED(va1) or may not have one,
such as in ‘CHANGED. In the latter case a parameter “any” is assumed.

If X’CHANGED is TRUE, it means that X changed its value in the last VHDL simulation cycle.
If X’CHANGED is FALSE, it means that X did not change its value since the last VHDL simulation
cycle. Thus, X’CHANGED is transformed as presented in figure 2.9.

(NOT X'STABLE)

Figure 2.9: Transformation of X’CHANGED

If X’CHANGED(va1) is TRUE, it means that X has changed its value to “val” in the last
simulation cycle. If X’CHANGED(va1) is FALSE, it means that X has not changed to “val” in the
last VHDL simulation cycle. Thus, X’CHANGED(1) ’ tva 1s ransformed as presented in figure 2.10.

((NOT X'STABLE) AND (X = val))

Figure 2.10: Transformation of X’CHANGED(va1)

20

2.5 Transformation of Architecture VAL-Annotations

A VAL-annotated VHDL architecture is translated in a VHDL architecture, called “expanded”. The
prefix “Val” is added to the original name of the architecture in order to produce a unique identifier.
The expanded architecture belongs to the VALIN, entity that is produced by transforming the
original entity. The VALIN, entity has a ValState port of mode in that provides the expanded
architecture with visibility over the state of the Monitor (the ValEntityState within the Monitor).

The component declarations within the expanded architecture may contain, in addition to their
original ports, a port called ValState of a type indicated by the associated VAL annotation. If such
a VAL annotation is missing, the component declarations maintain their original ports.

The instances of components that have the additional ValState port, have this port connected to
a signal named InstanceNameState. Also, all references to InstanceName. State are transformed
into refences to the signal InstanceName-St ate.

In order to make the out ports visible to annotations, a signal is declared for each out port.

21

2.6 Transformation VAL Configuration Annotations

The VAL user can select the entities to be monitored, with the VAL constructs -- 1 ValEntity,
and --I ValArchitecture.

l The -- 1 Valentity construct specifies that an entity is to be monitored using interface
annot ations.

l The -- 1 Valarchitecture construct specifies that an architecture is to be monitored using
body annotations.

Both annotations appear inside a VHDL component configuration, right after the binding indi-
cation. Component configurations appear in either architecture body or configuration declaration.
Currently the two constructs is supported only in configuration declarations.

For each entity E, with an architecture A, the Val transformer will produce two interfaces and
four architectures :

1. entity Va1out-E : entity E with an extra Valstate out port ;

2. architecture StateMonitor of va1out-E : monitor with a socket for the V&n-E entity,
state maintenance and assertion checking ;

3 . archi tec ture DummyMonitor of Va1out-E : monitor with a socket for the V&n-E entity,
but neither state maintenance nor assertion checking ;

4. entity Va1in-E : entity E with an extra ValState in port ;

5. architecture Va14 of Va1in-E : the architecture A of entity E, where all components have
been added an extra Valstate out port (if they themselves have a state model), and where
the Val annotations have been translated into VHDL statements.

6. architecture A of Va1in-E : the architecture A of entity E, where all components have
been added an extra Valstate out port, but without translation for Val annotations.

Assuming now a component configuration :
for . . . use entity E (A) ;

the VAL transformer will always add an extra level in the component hierarchy. Depending
on the specified configuration annotations, the transformer will pick from the available architec-
tures. If the -- 1 V a l e n t i t y construct appears in the component configuration, the transformer
will select the StateMonitor architecture. If not, it will select the DummyMonitor. If the -- 1
Valarchitecture construct appears in the component configuration, the transformer will select
the Va1-A architecture. If not, it will select the A architecture.

22

for
+or
end

end for
for

$0;

end
end for

for . . .
Gs!
end

end for
for
G

end
end for

for . . .
?A
end

end for
for

$6;

end
end for

for . . .--
--
for
end

end for
for

+oi-

end
end for

;se entity E(A) ;

$0; ;

use entit
f

Valout-E (DummyMonitor) ;
DummyMoni or
f Or E"Aal

: socket use entity Valin-E (A) ;
. . .

end for ;
end for ;
for ;

use entity E(A) ;
Ialentlty ;
io; ;
use entit

E
Valout-E (StateMonitor) ;

StateMoni or
for actual

for A
: socket use entity Valin-E (A) ;

end for ;
end for ;
for ;

use entity E(A) ;
Ialarchrtecture ;

use entit
z

Valout-E (DummyMonitor) ;
DummyMoni or
for actual : socket use entity Valin-E (Val-A) ;

for Val-A
end f& :

end for ; '
for ;

use entity E(A) ;
Valentit ;
ialarchr 1 ecture ;

io; ;

use entit
T

Valout-E (StateMonitor) ;
StateMoni or
for actual : socket use entity Valin-E (Val-A) ;

for Val-A
end for ;

end for ;
for ;

Figure 2.11 provides an example where the original VHDL architecture is to be used in con-
junction with the Val annotated entity.

Figure 2.12 provides an example where the Val annotated architecture is to be used in conjunc-
tion with the Val annotated entity.

23

for all: DFlipFlop use
entity DFlipFlop (simple) ;
--I ValEntity;

end for;

-- is transformed into

for all: DFlipFlop use
entity ValOut-DFlipFlop (StateMonitor);
for StateMonitor

for actual: Socket use
entity Valin-DFlipFlop (Simple) ;

end for ;
end for ;

end for;

Figure 2.11: Transformation of Configuration that uses “ValEntity”

for all: DFlipFlop use
entity DFlipFlop (Simple);
---I ValEntity;
--I ValArchitecture;

end for;

-- is transformed into

for all: DFlipFlop use
entity ValOut-DFlipFlop (StateMonitor);
for StateMonitor

for actual: Socket use
entity ValIn-DFlipFlop (ValSimple) ;

end for;
end for ;

end for;

Figure 2.12: Transformation of Configuration that uses both “ValEntity” and “ValArchitecture”

24

2.7 Summary

The VAL entity annotation is transformed into a Monitor that watches a socket in which an
architecture of the annotated entity can be plugged. Both the socket and the Monitor are hosted
in a generated VHDL architecture belonging to an VALIN- entity.

Whenever such an entity is used, the configuration specifies which architecture to use. In turn
the configuration of the generated architecture specifies some other architecture for the Actual
“chip” to be plugged in the socket.

This chapter presented the transformation of various VAL specific constructs into VHDL, in
order to implement the monitoring activity.

25

Chapter 3

Utility Packages

3.1 Abstract Syntax Tree

Each VAL-VHDL file is transformed into a tree (Abstract Syntax Tree), before the VAL statements
are transformed. The tree is inspired from the DIANA tree designed for ADA [3]. The tree is
including a symbol table, described in section 3.3. The internal tree format allows for fast access
of all information required at compile time. The tree is language independent. It is customized for
each language represents, by defining constants for node names and attributes.

For language customization, the tree uses constants generated by the parser generator for tree
node names, for terminal names and grammar rule names. It also relies on user defined constants
that, describe structural and semantic attributes.

3.2 Parser Generator

The PGEN parser generator [2] takes as input a LALRl description of the VHDL grammar. It
produces parse tables and a list of constants (tree node names, terminal names and grammar rule
names). Parse tables are used by the parser to produce from a VHDL file an abstract syntax tree,
on which the translation will be performed. The constants are used in pretty much every operation
performed on the tree.

3.3 Symbol Table

All identifiers encountered in a VAL-annotated VHDL description are stored in a symbol table,
along with any relevant semantic information such as type information.

The symbol table information is important in order to ensure the uniqueness of the generated
identifiers, as well as to perform some transformations based on the nature of the referenced object.
For example, all right hand side references to out ports in a generated Monitor or StateMonitor are
transformed into references to local signals containing the contribution of the original architecture
to the value of the signal connected to the given out port.

The symbol table is necessary for the following operations:

1. Determining the uniqueness of generated identifiers.

27

2. Determining if an identifier is an out mode port.

3. Finding the type of generated intermediate signals.

4. Finding the body of a macro call.

The symbol table does not need to perform overload resolution since the transformer never
needs to uniquely determine the actual function called.

28

Chapter 4

Transformer Structure

4.1 Overview

The transformer accepts as input an abstract syntax tree that corresponds to the annotated pro-
gram. This tree is created by the parser (automatically generated by PGEN). Accessing the infor-
mation in the tree is done using the abstract syntax tree (AST) package.

4.2 Transformer

The transformer performs tree to tree transformations on nodes of the tree that correspond to VAL
constructs. The subtree corresponding to each VAL construct is eventually replaced by a subtree
that consists of VHDL constructs only and represents the translated version of the VAL construct.
Sometimes the translation process requires the declaration of new signals/variables, the VHDL
subtrees corresponding to these are created and inserted in the right places. The transformed tree
is then passed to the pretty printer which traverses the tree and creates an ascii file that contains
the transformed version of the annotated program.

The transformer thus uses the AST package for tree to tree transformations and the pretty
printer for printing the transformed program. In addition, it also uses the symbol table package to
find out attributes of identifiers and to create unique names.

The transformation process is broken down into 6 stages that are executed one after the other.
Each stage of the transformation is implemented as an ADA separate procedure. The procedures
and their corresponding files are listed below. They are described in the next section. Each package
exports a single procedure which we call the main procedure.

The top level package is called TRANSFORMER and it exists in the files sxform,v.a and
sxform,b.a. A file ending in ,v.a contains the package interface whereas a file ending in -b.a contains
the package body. The procedures call sequence of a typical transformer run is given below. It
correspond to the file dependency graph of the transformer program. Each line of the figure is a
procedure call, and the file in which the procedure is written. Each 1 . . . sequence indicates the
nesting level of each file in the file dependency graph.

xf OITI “xf orm/xf orm. aI1
. .parser. init,tables “parser/p arser-b. a”

29

I . . . p a r s e r . p a r s e “parser/parserp-b. aI’
I . . . t ransformer . t ransform “xform/sxform-b.a”
I I. transformer. expand “xf arm/expand. tex”
I I. make-skeleton “xf arm/skeleton. atI
I I.push,time,in “xf arm/push. text’
I I. eliminate-derived-syntax “xf arm/eliminate. aIt
I I. r e s c a l e , t i m e d - e x p r e s s i o n “xform/rescale.al’
I I.flatten,when-statements “xform/flatten.at’
I I...1. x form,asser t t’xform/xform-assert. aI1
I I...1.xform,eventually “xf orm/xf orm,eventually . aI1
I I...1.xform,finally “xf orm/xf orm,f inally. aI1
I I...1. xf orm,sometimes “xf orm/xf arm-somet imes . ati
I I. remove-annotations “xf orm/sxf arm-b . at1
I I.print,tree “pp/exter,b. atI
I . . . p r e t t y - p r i n t e r .print “pp/prtty-b. aI1
I . . . make. command “xf orm/make,b . atI

In addition there is another package called SUBSTITUTE located in files substitute-v.a and
substitute,b.a. The main procedure is called REPLACE. This package is used by the package
SKELETONMAKER.

The file called xform.a contains calls to the parser, transformer and pretty printer in that
order. The user thus provides a text file containing an annotated program and gets back a text file
containing the transformed version.

4.3 The AST and the symbol-table package

The following figure shows package dependencies in the ast package. The type definitions for the
AST and the symbol table are found in package ast/val-def s-b. a. The two types are in the same
package since they are mutually dependent. The procedural interface to the symbol table package
is in ast/val-symbol-table-v. a and ast/val-symbol-table-b. a. The procedural interface to the
AST package is in val-ast-v.a and val-ast-b.a. A I . . . indicates the package or procedure is
made visible using an ADA with clause. A ! . . . indicates the package or procedure is separate.

va l , symbol- table “ast/val,symbol-table-v. all
I . . . val-def s “ast/val-def s-v. aI1

va l , symbol- table “ast/val,symbol-table-b. atI
I . . .errorp “ast/errorp-v. ait
I . . . symtab-io “ast/symtab-io-v. at1
I . . . namer I’ ast /namer-b. atI
I . . . u t i l i t i e s “ast/util-v. a”
I . . . val-ast “ast/val-ast-v. aI1
I . . .parse,table-defs “ast/uconsts .a”
I . . . v a l , a t t r s “ast/val,attrs-v. alI

30

I . . . val-def s “ast/val,def s-v. a”
I. . . . create-standard-environment “ast/create-standard-environment. a”
I. . . . get-scope-defined-by “ast/get-scope-def ined-by . a”
I. . . . insert-context “ast/context .a”
I. . . . get - ch i ld -scope ‘last/get-child-scope. a”
I. . . . walk-tree “ast/build. ati
I. . ..get.type “ast/get,type.a”

v a l , a s t “ast/val,ast,v. a”
I . . . sets “ast/sets-v. a”
I . . . parse-table-defs “ast/uconsts .a”
I . . . val-attrs “ast/val,attrs,v. a”
I . . . val-def s “ast/val-def s-v. a”

val-ast “ast/val-ast-b. a”
I . . . new-unchecked-deallocation
I . . . text-i0
I . . . hash-table “ast/hash,v. a”
I . . . val,symbol-table “ast/val-symbol-table-v. a”
I . . . diana-mappings “ast/val-ast-b. a”
I. . . . diana-mappings “ast/mapbl-b. a”

val,def s “ast/val,def s-v. a”
I . . . symbol-table “ast/symb-v. a”
I . . . v a l , a t t r s “ast/val-attrs-v. a”
I . . . parse,table-defs “ast/uconsts .a”

31

Bibliography

[1] L. M. Augustin. An Algebra of Waveforms. Technical Report , Computer Systems Laboratory,
Stanford University, 1989. Submitted to the IFIP International Workshop on Applied Formal
Methods For Correct VLSI Design, Leuven, Belgium, Nov. 1989.

[2] Rob Chang. ParseGen: A LALR(1) Parser Generator. Technical Note 85-283, Stanford Uni-
versity, November 1985.

[3] G. Goes, W. A. Wulf, A. Evans Jr., and K. J. Butler. DIANA, An Intermediate Language for
Ada. Volume 161, Springer-Verlag, 1983.

[4] D. C. Luckham, A. Stanculescu, Y. Huh, and S.Ghosh. The semantics of timing constructs in
hardware description languages. In IEEE International Conference on Computer Design: VLSI
in Computers (ICCD ‘SF), pages 10-14, Port Chester, New York, October 1986. Also published
as Stanford Univerity Computer Systems Laboratory Technical Report CSL-TR-86-303.

[5] IEEE Standard VHDL Language Reference Manual. IEEE, Inc., 345 East 47th Street, New
York, NY, 10017, March 1987. IEEE Standard 1076-1987.

33

