
COOL: A Language for Parallel Programming

Rohit Chandra, Anoop Gupta and John L. Hennessy

Technical Report No. CSL-TR-89-396

October 1989

This research has been supported by the Defense Advanced Research Projects Agency
under contract No. NOOO14-87-K-0828.

COOL: A Language for Parallel Programming

Rohit Chandra, Anoop Gupta and John L. Hennessy

Technical Report: CSL-TR-89-396

October 1989

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-4055

We present COOL, an object-oriented parallel language derived from C++ by adding
constructs to specify concurrent execution. We describe the language design, and the
facilities for creating parallelism, performing synchronization, and communicating. The
parallel construct is parallel functions that execute asynchronously. Synchronization
support includes mutex functions and future types. A shared-memory model is assumed
for parallel execution, and all communication is through shared-memory. The parallel
programming model of COOL has proved useful in several small programs that we have
attempted. We present some examples and discuss the primary implementation issues.

Kev Words and Phrase%: parallel programming, programming languages, C, C++,
object-oriented programming, concurrency, shared-memory, synchronization, futures,
mutual exclusion, monitors.

Copyright @J 1989

bY

Rohit Chandra, Anoop Gupta, and John L. Hennessy

1 Introduction

The goal of this project is to design a general-purpose language for parallel processing, that will enable
us to use parallel machines effectively. The primary design goals are:

Efficiency: It should be possible to implement the parallel constructs efficiently. The performance
gain they provide should more than compensate for any associated overhead. A program should
not have to pay for features that it does not use.

Expressiveness: The language should facilitate the construction of a large variety of parallel pro-
gramming paradigms. This will encourage experimentation with different decompositions of a
problem.

The object-oriented approach to parallel processing is promising because object-oriented programs
are modular: side-effects may be confined within the class functions executing on an object, and
the data dependencies may be made explicit in the interface between an object and its users. This
modularity helps the programmer cope with multiple, simultaneously executing threads. The language
COOL (Concurrent Object Oriented Language) exploits the object-oriented paradigm for concurrent
programming by organizing concurrency around classes.

COOL is an extension of Ct+ [12], an object-oriented extension of C [9]. Extending an existing
language has the advantage of offering concurrency features in a familiar programming environment.
We chose C++ because it supports object-oriented programming, is widely used, and compilers for it
are freely available. The implementations are efficient and provide a good standard for performance
comparisons.

The language COOL is designed to facilitate expression of medium to large grain parallelism.
Compilers can automatically extract fine-grain parallelism for architectures that support such a level
of concurrency. The significant new features of COOL are:

0 parallel fun tic ons that execute asynchronously when invoked,

l mutex functions that execute atomically on an object, and

l future types that incorporate synchronization as part of the shared object.

The paper discusses these constructs and how they are integrated with C+t. The language is
evolving, and we do not discuss the interaction of our constructs with the more detailed features of
C++ such as friend or virtual functions, or overloading.

Section 2 describes the design of the language and discusses the new constructs in detail. Section
3 presents some example programs. Section 4 discusses the implementation of future types, and other
implementation issues. Section 5 compares COOL with other approaches to parallel programming.
Section 6 offers some concluding remarks and presents directions for future research.

2 The Language Design

COOL extends C++ with constructs for parallelism. We can classify these constructs as follows:

1. Class based concurrency and synchronization: These constructs specify both concurrency
and synchronization at the granularity of functions within a class.

1

‘

parallel int foo()
mutex int foo()
mutex parallel int foo()
int foo()
parallel foo()
parallel- foo()
foo0
int$ x
waitset
wait c l e a r
set(x)
clear(x)
isset
blocklock 1ockB
spinlock locks
lock(lockvar)
unlock(lockvar)
release(x)
release(lockBJ

What is it?

Function declaration

Function invocation

Variable declaration
synchronize
synchronize
Resolve
Unresolve
Test status
Lock de&ration
Lock declaration
Lock statement
Unlock statement
Release Statement
Release Statement

What does it do?
Declare foo() to be a parallel function
Declare foo() to be a mutex function
Declare foo() to be a parallel mutex function
Declare f oo () to be a sequential, non-mutex function
Invoke f oo () asynchronously
Invoke f oo () synchronously
Invoke f oo () as spectied in the declaration
Declare x as a future variable of type int
Block till x resolves
Block till x is unresolved
Explicitly set x to be resolved
Explicitly unresolve x
Test if x is resolved or not
h&relockB of typeblocklock
Declare locks oftypespinlock
Acquire the lockvar lock
Release the lockvar lock
waitset (x) and release current object
lock (1ockB) and release current obiect

rigure 1: Summary of language extensions

(a) Concurrency: Functions of a class may be identified as parallel functions in the class
definition. Such parallel functions execute asynchronously when invoked. The user
of the object need not be aware of the manner of execution; this decision is encapsulated
in the class definition. All functions execute in the same address space.

(b) Synchronization: Functions may also be identified as mutex functions, signifying that
they require exclusive access to an object while executing. This enables synchronization
across functions executing on the same object.

2. Object based synchronization: COOL introduces new data types called future types, which
incorporate synchronization for shared data structures as a property of the data itself.

The model of parallel execution is asynchronous fiu~tions executing on objects. The decomposi-
tion of the problem and design of data structures must be targeted to this model to exploit maximal
parallelism.

Figure 1 shows a list of the new constructs added to C++. The rest of this section discusses the
mechanisms to create parallelism, synchronize, and communicate.

2.1 Creating Parallelism

We create parallelism in a COOL program by the invocation of parallel functions. A member
function of a class, either private or public, may be declared to be a parallel function. As
with futures in MultiLisp [7], invocations of this function result in an asynchronous function call;
the calling thread does not wait for the call to complete but executes concurrently with the invoked
function. Synchronization for the result of the call is transparent to the caller, and occurs at the first
subsequent access to the result that needs the value. There are some sign&ant differences between
futures in MultiLisp, and parallel functions in COOL. MultiLisp futures are associated with
the invocation of an expression; in COOL, they are associated with the declaration of a function.
Synchronization for the return value of a future in Multilisp is transparent to the programmer and is

2

implemented (conceptually) through run-time checks on all variables l. Synchronization for the return
value of a parallel call in COOL is provided through variables of type future. These are new
data types in COOL and are implemented by the compiler. Section 2.2.2 discusses future types in
greater detail.

The COOL model declares parallel functions whose invocations automatically execute asyn-
chronously. The parallelism is thus encapsulated as an implementation detail within the class definition,
and the user of an object need not be aware of the underlying parallel execution. This is the preferred
way of using parallel functions. However, there are occasions when we want to specify the
manner of execution at an invocation site. For instance, asynchronous invocation is desirable only
if the caller has useful computation to perform while the result is being computed. It is otherwise
futile to pay the overhead of creating a parallel task and have the caller sit idle. In such situations the
caller may insist on sequential execution by specifying the parallel- attribute at an invocation site.
Similarly, invocation with the parallel attribute insists on concurrent execution. Thus an attribute
specified at an invocation site overrides the default specified in the function declaration. Invocations
without an attribute execute in the default manner specified in the function declaration.

The forms of class-based concurrency possible in COOL are:

1. Concurrency Across Objects: Functions on different objects may execute concurrently.

2. Concurrency Within an Object, Across Functions: Several functions may execute simultaneously
on the same object.

3. Concurrency Within a Function: A function executing on an object may invoke other par al le 1
functions.

2.2 Synchronization

Synchronization support in COOL includes mutex functions that execute exclusively on an object.
They provide synchronization at the function level on an object. Future types enable synchronization at
a finer granularity than functions, and help exploit concurrency from par al le 1 function invocations.
Finally, locks are provided for efficient fine-grain synchronization.

2.2.1 Synchronization with mut ex functions

We specify the mutex attribute for member functions of a class similarly to the parallel attribute.
A mutex function requires exclusive access to the object it is invoked on; no other public member
function may execute concurrently on the object. A mutex function cannot start executing until
all other functions executing on the object have completed; other function invocations on the object
cannot start until the mutex function completes. Functions are assumed by default not to require
exclusive access, and several of them may execute simultaneously on an object so long as no mutex
function is running.

The mut ex attribute provides multiple-reader single-writer style access to data objects. The reader
functions do not require exclusive access and can execute concurrently with other reader functions.
However, a function which needs write access cannot execute concurrently with other operations and
must be declared as a mutex function.

‘A compiler may optimize away many of these run-time checks.

3

An executing mutex function f oo may need to wait for an event that is caused by another
function bar on the same object. If f oo blocks waiting for the event then bar will never execute on
the object since it is locked by f oo, resulting in deadlock. In such situations the release statement
allows a function to atomically block itself on an event and release the object for other functions.
When bar causes the desired event f oo resumes execution at the point it left off, after any executing
functions complete. This ensures that only one function executes on the object at any time. Once
the desired event has occured other functions invoked on the object are blocked till f oo resumes and
exits, releasing the object. If the event causes several waiting functions to be woken-up then they
resume execution one at a time, again maintaining a single mutex function within the object at any
time. The release () statement must be invoked from within a member function that is declared
to bemutex.

The mut ex facility is similar to the monitor construct [8] in that it incorporates synchronization
as a property of the object. However, monitors are stricter than mutex since all functions require
exclusive access to the object while executing. With the mutex facility access to an object is more
flexible than in monitors, and may enable additional concurrency to be exploited, as illustrated in the
hash table example of Section 3.1. The release statement is similar to waiting on a conditional
variable in a monitor. It is more flexible in that a function can block on either future variables or
locks (discussed later in Sections 2.2.2 and 2.2.3 respectively), or choose to block without releasing
the object.

Some properties of the mutex attribute are worthy of note. First, mutex and parallel are
orthogonal attributes, and each can be specified for a function independent of the other. Thus a
function may have both the mutex and parallel attributes specified for it. Second, the mutex
attribute provides synchronization at the function level. Synchronization at a granularity finer than
task or function granularity is possible through future types. Third, synchronization is against other
functions on the same object; functions on other instances of the same or another class may execute
concurrently. Fourth, synchronization is against other public member functions; private functions
may be invoked from within an executing mutex function without deadlock. Finally, it provides
synchronization only against other member functions. In C++ (and hence in COOL) the public
fields of an object may be accessed directly while a mutex function is executing. This may result in
improved performance, as discussed in Section 2.3. Synchronization in such cases must be managed
by the programmer using future types or locks, which are discussed next

.

2.2.2 Synchronization with future types

Future types are new data types in COOL. They consist of a base type that may either be a primitive
type of C++, a user defined type or a class. Future types are specified by appending the base type with
the $ symbol (e.g. int $). A variable of type future (future variable) is accessed as if it were a variable
of the base type. It can be bound to all possible values of the base type. A future variable differs
from a base type variable in that it can be unresolved. This signifies that its value is not available
now, but will be available later. Access to an unresolved future variable blocks automatically until the
value is determined. Access to a resolved future variable behaves like one to a base type variable.

Some operations on future variables refer to the value but don’t actuaIly need it. Simple assignment
and parameter passing only need to reference the name and do not need to wait for the value to be
determined, resulting in additional concurrency. These are non-strict operations. However, all other
operations (like addition and comparison) need the value and must block until it is determined. These
are strict operations.

As stated above, the base type of a future type may be a primitive type, a user-defined type, or

4

a class. The first two have straightforward semantics since the variable only has a value. If the base
type is a class then the variable (object) has the additional property that operations may be invoked
on it. An operation invoked on a future object is allowed to continue only if the object is resolved.
If the object is unresolved then the operation blocks, to be awoken when the object is determined.

We discuss the properties of future variables below.

Behavior of Future Types and their Relation to the Base Type:
A future variable may be used at any site where a value of its base type is required. For instance,
if qx is of type int $ then it may be used in the expression qx+2. This use blocks till qx
is resolved and its value determined. The value is implicitly type converted to one of the base
type before being used. Similarly, a value of the base type may be used at any site where one
of the future type is expected. Its value is automatically coerced to a future type and used For
instance in the assignment qx=3 the integer 3 is coerced to a int $ with the determined value
3 and assigned to qx. Thus base types and future types may be used interchangeably with the
implicit type conversion rules of COOL.

Non-strict Access to Future Variables:
Simple assignment and passing as a parameter are the two instances of non-strict access to fu-
ture variables. They do not need to wait for the future to be resolved. Consider the assignment
qx=qy where both qx and qy are future variables (the parameter passing case is similar). This
statement is similar to an assignment statement of regular variables: qx receives the value of
9y. Its effect is to atomically copy the value that qy has, or is expecting, into qx. Thus
the assignment is by value, and subsequent changes to one do not affect the other. If qy is
resolved then qx is resolved to the value of qy , and subsequent changes to one do not affect
the other. qy may be expecting a value in two ways. If qy is unresolved awaiting the result
of a paralle 1 function then qx becomes unresolved awaiting that value as well. Subsequent
assignments to one do not affect the other. The second possibility is if qy is unresolved but not
awaiting any function return value; then qx becomes unresolved awaiting the assignment of a
resolved value to qy , aj2er which the variables qx and qy are independent.

The set () statement:
As mentioned above assignment to a determined value resolves a future variable. The statement
set (qx) also sets qx to be resolved. The set () statement serves two functions. First, future
variables are often used for synchronization where only their state (whether resolved or unre-
solved) is useful. With set () they can be explicitly resolved without having to assign them
a dummy determined value. The second need for the set () statement arises if the base type
of qx is a structured type. The various sub-fields of qx may need to be specified separately,
through several assignments. Partial assignments to fields of a complex structure do not resolve
a structure. This ensures that the structure is not resolved while only some fields have been
specified. After specifying all the values the structure may be resolved with an explicit set ()
statement. A future variable of a complex base type may be set to resolved by either a structure
assignment to a determined structure or the s et () statement. A future variable of simple type
may be set to resolved by either assignment to a determined value or the set () statement.

The i sset (> expression: -
_--. .- _.. -. -_-----

The expression is set (qx) is a non-blocking call to examine the status of qx. It returns 1
(true) if qx is resolved, 0 (false) otherwise. It is used to examine the status of a future value,
maybe the return value of a previously invoked parallel function or a value being produced
by some other concurrently executing function. This is useful for non-deterministic execution
as illustrated in the last example in Figure 2.

5

The release () statement:
The release (qx) statement (see Section 2.2.1) must be invoked from within a mutex func-
tion. It is similar to wait set (qx) in that it blocks for qx if qx is unresolved, and has no
effect otherwise. It differs from wait set in that if qx is unresolved then it atomically releases
the object locked by the mutex function so that other functions can be invoked on it.

Future Types and parallel functions:
Future types help exploit the concurrency of parallel functions. A parallel function ex-
ecutes asynchronously when invoked. If it has a non void return value, then the return value
may be declared to be a future type and assigned to a future variable in the caller. The future
variable acts as a placeholder for the value which the parallel function is computing. Syn-
chronization in the caller for the return value is delayed until a subsequent strict access to the
future variable, when the value is actually required. This permits maximal concurrency between
the caller and the invoked function. Being assigned the future return value of a parallel
function makes a future variable unresolved. When the parallel function completes, it
transparently resolves the variable to the determined return value. All waiting accesses to the
variable may then continue with the value.

Future types may also be used as the return type of a sequential function bar () . Invocations of
bar execute sequentially but return a future value. This is useful if bar invokes a parallel
function f oo () ; it need not block for f oo to complete and can return the future value returned
by foo to its (bar's) invoker.

A parallel function always executes in parallel. However, the type of the return value
and the manner of invocation determine if an invocation can continue without waiting for the
function to complete. For instance, consider a parallel function foo () having a future
return type but invoked with the return value being assigned to a non-future variable. Although
f oo executes concurrently with the caller, assignment to a non-future variable is a strict access
to the future return value and the caller blocks while f oo executes and the return value is
determined. Thus such an invocation results in synchronous execution.

Next consider a parallel function foo () defined with a non-future return type and invoked
with the return value being assigned to a future variable qx. Invocations of f oo execute
concurrently and the caller does not block The future variable qx remains unresolved u.ntiI
f oo completes, whereupon f oo's return value of the base type is coerced to a future value and
used to resolve qx.

The advantages of future types as synchronization mechanisms are:

1. The shared data object is the unit of synchronization. Synchronization is an integral property
of the data, rather than an external unrelated mechanism.

2. Synchronization is largely transparent with automatic block on access until the value is deter-
mined.

3. Synchronization granularity is separated from task granularity, and can be at a finer grain. Tasks
can synchronize at intermediate points during computation, rather than only at entry and exit.,
as is possible with the mutex facility.

This is in contrast to Multilisp where futures provide synchronization only at function call bound-
aries. Besides synchronizing for parallel functions future types in COOL are useful as general
synchronization mechanisms.

6

Future types are similar to promises [1 l] in that both are strongly typed and implemented by the
compiler. A future variable (promise) can be bound to the return value of par al le 1 functions (asyn-
chronous methods). The value of a future object (promise) does not change once it is determined, and
changes to a future variable require a new future object. The compiler/run-time system may optimize
this where possible without affecting the semantics. Promises and future types differ in that a promise
must be explicitly claimed (synchronized for) by the caller. This synchronization is automatically
done on accesses to future variables in COOL. Future types may be used for more flexible synchro-
nization patterns besides the return value of asynchronous function invocations. Promises implement
exceptions as they were designed to cope with communication errors in a distributed system.

Figure 1 lists the various constructs of COOL including those that manipulate future types. Figure
2 illustrates how parallel functions are defined and invoked, and presents a few small examples
that manipulate future variables and demonstrate the type casting.

2.2.3 Synchronization with locks

The mutex attribute is useful for synchronizing access to an object through member functions.
Future types integrate synchronization with the shared data objects. Locks may be required for
synchronization at a finer granularity, when necessary for reasons of efficiency. COOL provides two
kinds of locks to synchronize access to variables shared across concurrently executing threads. The
primitives available are:

blocklock Lvar
spinlock Lvar

Declare Lvar to be a lock variable, either a blocklock or a spinlock.

lock(Lvar)
The lock function attempts to acquire the lock Lvar. The calling thread waits for the lock
to become available, locks it, and continues. A bl ockl oc k causes the waiting process to be
suspended and placed on a queue of processes waiting for the lock. A spin1 ock busy waits
on the lock until it is available. A blocklock involves the overhead of blocking a process and a
context switch, while a spinlock consumes resources during busy-wait. A blocklock is preferable
if the waiting time for a lock is expected to be larger than the context switch overhead.

unlock(Lvar)
The unlock function unlocks the lock, wakes up the first waiting process in the case of a block-
lock, and continues.

release(Lvar)
Lvar must be a blocklock and the statement must be within a mutex function. As dis-
cussed in Section 2.2.1, this statement blocks till the lock Lvar is available. If the lock is not
immediately available then the object is released.

2.3 Communication
-.--- .- ---.. --.-._ - _-..- -- -._ -. -_._ --_- _-- _____ _.. - .- _._. - - _. ._.____ - _ __ --.- - --- -.

COOL does not provide any explicit constructs for communication between multiple tasks. Since
COOL assumes a shared-memory model, the facilities available in C++ for communication across
function calls enable communication across tasks in COOL. Communication is possible through
function arguments and return values, through global variables uniformly visible in all functions, and
through public variables of a class. Passing pointers to data permits efficient sharing of data. The

class testclass {
. . .

public:
parallel int$ foo();

I;
main0
i

testclass obj;
h-6 qx, qy;
int i, j;

.
qx = 3;

qx = obj.foo();

i zz j + qx;

F = obj.foo();

qy = qx;

i= qy;

j = obj.foo();

qx = obj.foo();
. . .
if isset

i 1. . .
else {...)

. . .
waitset(

//

//
//

//
//

//
//
//

//
//

//

//
//
//

//
//
//
//
//
//

//
//
//

//

//
//
//
//

//
//--

. . .

Declare foo to be a parallel function

future variables
ordinary variables

The integer 3 is type cast to a future int.
qx becomes resolved with the value 3.

Asynchronous invocation of foo.
qx becomes unresolved, awaiting
completion of foo() .

strict access to qx.
Block till the value is determined

asynchronous call again

non-strict access to qx, non-blocking
qy becomes unresolved, awaiting the same
value as qx

Since i is not a future variable, this
assignment blocks till qy is resolved.
The value is then cast to an int,
and assigned to i
Both qx and qy are now resolved with
the same value

Since j is not a future variable, this is
a strict access to the return value of foo
Illustrates how (int$) is cast to int

asynchronous call

examine qx to see if resolved or not
use the new value
use the old value
results in a non-deterministic choice.

explicitly synchronize.
Block till qx is resolved

Figure 2: Example: Parallel Functions and Future Types

8

shared-memory model ensures that references from different tasks to global variables refer to the same
location.

The public variables of a class are accessible directly without having to invoke a member
function. This violates the modularity of objects and side-effects are no longer confined within
functions. Violating modularity destroys the mutex facility which provides synchronization only
across functions, and can lead to subtle bugs. In such cases synchronization must be managed by the
programmer using locks. However, modular code can sometimes be restrictive in both expressiveness
and efficiency. Allowing direct access to some fields of an object may save unnecessary copying of
data and the overhead of a function call. This can often result in substantial performance improvement
as demonstrated by the merge sort program in Section 3.2.

3 Example Programs

The object-oriented model provides a useful way to organize concurrency and synchronization. We
have written several programs in COOL including the bounded-buffer problem, an LU decomposition
using Gaussian elimination, the simplex algorithm for linear programming, the travelling salesman
problem, and the maximum flow in a graph (maxflow) problem. In this section we present two small
examples that illustrate the use of the parallel features of COOL. They are a concurrent hash-table
implementation, and a merge-sort algorithm.

3.1 Concurrent Hash Table

The first example is an implementation of a concurrent hash table. It illustrates how data can
be organized to permit parallel operations, and how the mutex attribute facilitates the multiple-
reader single-writer paradigm of concurrent computation. Records are stored in a list on which three
operations can be performed: lookup, insert, and remove. This list is partitioned into buckets.
The hash function uses the key value of a record to determine its bucket number. Since a lookup is a
read-only operation, various lookups can execute concurrently on either the same or different buckets.
Insertion and removal require exclusive access to the bucket because they modify the data. However,
insert and remove operations for different buckets can execute concurrently.

The code for the example is shown in Figure 3. The class Has hT ab le defines the interface: the
public functions are insert, remove, and lookup. The hash function is private; it takes the
record key and returns the bucket number in which the record may be found. HashTable's private
data consists of an array of buckets. AlI three public functions are parallel functionsand do not
block the user of the hash table. Each lookup, insert or remove call will spawn a parallel
task. The user blocks only when the value of a fetched record is accessed. None of the functions are
mut ex functions; exclusive access is only required within a bucket.

The class BucketType consists of an array of records, and provides the insert, remove, and
lookup operations. Insert and remove are mutex functions, since they require exclusive access to
the bucket. The lookup operation is read-only and does not require exclusive access. Operations
on a Bucket Type perform the real work of fetching, inserting, or removing a record. Insertion
and removal require exclusive access to the bucket, but several lookup operations may execute
concurrently on the same bucket. Since a parallel thread to perform the requested operation has already
been spawned by the HashTable class, no functions need be declared parallel functions.

class HashTable {
BucketType buckets[MaxBuckets];
int hash(KeyType);

public:
parallel void insert(KeyType, RecordType);
parallel void remove(KeyType);
parallel RecordTypeS lookup(KeyType);

parallel int HashTable::insert(KeyType key, RecordType record)
{
buckets[hash(key)].insert(key, record);

parallel int HashTable::remove(KeyType key)
i
buckets[hash(key)] .remove(key);

parallel RecordTypeS HashTable::lookup(KeyType key)
t
return(buckets[hash(key)].lookup(key));

int HashTable::hash(KeyType key)

. ..return bucket number that the key hashes to...
1

class BucketType {
RecordType list[MaxSize];

public:
mutex void insert(KeyType, RecordType);
mutex void remove(KeyType);
RecordType lookup(KeyType);

I;
mutex void BucketType::insert(KeyType key, RecordType record)
{

. ..find index in bucket to insert...
list[index] = record;
. ..move other records around if need be...

1
1

mutex void BucketType::remove(KeyType key)
{ -

. . . find index in bucket to remove...
list[index] = NULL;
. ..move other records around if need be...

RecordType BucketType::lookup(KeyType key)
,

. . . find index in bucket to return...
return(list[index]);

1 - - - - -- ---..---- ----- -.__ -- -

Figure 3: Example: A Hash Table

10

class array {
int count, *aptr; // count = number of elements.

// aptr = pointer to list of elements.
public:

array(int, int*);
parallel int$ sort();

1;
array:: array(int n, int *s)

count = n;
aptr = s;

parallel int$ array::sort()

if (count<MinSize) {
. . . size too small to divide: sort using a serial algorithm...

1
else {

array left(count/2, aptr);
array right(count - (count/2), aptr+count/2);

// create and initialize the left and right halves
int$ done = left.sort();

// invoke sort on the left half in parallel
parallel- right.sort();

// invoke sort on the right half sequentially.
// overlap sorting of the two halves

waitset(done);// synchronize for the left half to get sorted

. . .now serially merge the two sorted halves...

Figure 4: Example: Merge Sort

3 . 2 M e r g e - S o r t

The second example implements a merge-sort based on the divide-and-conquer paradigm. The
list to be sorted is split into two approximately equal parts, each of which is sorted separately. The
sorted halves are then merged. Sorting the left and right halves are independent tasks and can be done
concurrently.

The class array in Figure 4 defines the sort () function. The variable aptr points to the
list of numbers to be sorted. If there are fewer than MinS i z e integers in the list, then some serial
algorithm is used. Otherwise sort () creates two array objects and initializes them with pointers to
the left and right halves of the current list. Note that since the split is done using pointers, no elements
need to be copied. The left half of the list is sorted in parallel with the right half by invoking sort ()
on the left half in parallel, and sorting the right half sequentially in the caller. The invocation
for sort0 on the righthalfhas the parallel- attribute, demanding sequential execution. The

.-.. -. .-_ merge part is done sequentially once both halves have been sorted. --- - - -- -- - - --

This example illustrates how to overlap concurrent tasks and synchronize when results are required.
The shared-memory model saves the cost of repeatedly copying elements of the list across tasks.

11

4 Implementation Issues

The programmer’s view in COOL is that of an unlimited number of homogeneous processors all
sharing the same address space. Parallel execution is obtained through asynchronous function calls,
without requiring (of the programmer) creation of a task, moving data to shared memory, allocating
resources, or scheduling. All this is done transparently by the implementation. The only difference
between synchronous and asynchronous calls is in concurrent execution, and in the accompanying
non-determinism and possible violation of data dependencies. ParalIel threads execute in the same
address space, similar to the sequential case.

The major implementation issues are the implementation of future types, the run-time environment,
memory management, and implementation of scope rules.

4.1 Implementation of Future Types

The implementation of future types requires that future variables be possibly bound to an unresolved
value. Strict accesses to future variables wait until the value is determined. Since future variables are
known at compile time the compiler can generate code ensuring that all accesses to future variables
check the state of the variable. Run time status information needs to be maintained for each future
variable; therefore there is a structure associated with each future variable. Typical information in
such a structure would include:

l status of the variable, which may be resolved or unresolved.

l value of the variable, a field of the base type. It contains the actual value of the variable if the
status is resolved.

l queue on which an access waits if the variable is unresolved. Waiting accesses continue when
the value becomes determined.

The three possible states of a future variable are reserved, clear and set. A variable is reserved if
it is unresolved, associated with an executing parallel function, and awaiting its return value. A
variable is clear if it is unresolved, but there is no corresponding par alle 1 function. This is the
case when a variable is initially declared, or is explicitly cleared with the clear () statement. As
shall become clear below, we need to distinguish between these two states of a variable. A variable
is set if it has a determined value. An unresolved variable is one which is either reserved or clear. A
resolved variable is one which is set.

We define a blocked access to be one which attempted to access an unresolved (either clear or
reserved) variable. Therefore it has to block until the variable is resolved. To define a chiZd variabZe
consider the statement qx=qy , where both qx and qy are future variables. If qy is unresolved, then
qx inherits the state of qy, waiting for the value of qy to be determined. When qy gets resolved,
qx should get the determined value as well. Thus qx is said to be a child of qy. However, the
relationship is not symmetric; qy is not a child of qx, since changes to qx do not affect qy. For
instance, a subsequent assignment to qx, say qx=3, will not affect qy. Xf qy is resolved then qx is
assigned its value and does not become a child of qy. -- - .- _ . .

A variable which is set will not have any blocked accesses or child variables. A reserved or clear
variable may have either or both of these.

Let qx and qy be future variables, and z be a regular variable. We discuss the implementation
in terms of the behaviour of the future variable qx. We may use a future variable in two different
situations. First, where a value of the base type is expected (e.g. z=qx+l). Lf qx is unresolved then

12

/**XX***** previous state set ******XX***/
qx = 3; // qx is set, value = 3
. . .
qx = 4; // qx remains set, value = 4

/********* previous state reserved ******/
w = parallel obj.foo(); // qx is reserved, expecting the

// value of the parallel function foo()
. . .

// qx may acquire blocked accesses
// and child variables

. . .
qx = 3; // qx becomes set, value = 3

// Blocked accesses and child variables
// receive the return value of foo()
// when it completes

/********* previous state clear ******/
clear(qx); // qx is clear
. . .

// It may acquire blocked accesses and
// child variables

. . .
qx = 3; // qx becomes set, value = 3

// Blocked accesses and child variables
// receive the value 3

Figure 5: Effect of statements that set a future variable qx

the access must block until the value becomes available. If it is set then the value is used without
blocking. Second, we may use qx where a value of the future type is expected (e.g. qy=qx). This
access is non-blocking even if qx is unresolved. However, if qx is reserved or clear then qy becomes
a child of qx. The parallel function computing qx, or any other subsequent assignment to qx
also updates qy.

Future variables may be assigned to in several ways. Statements may alter the state of the variable
to become set, reserved, or clear. We consider each of these possibilities in turn.

Statements that set a variable (e.g. set (qx) or qx=23) set the variable to a determined value
with no blocked accesses or child variables. Figure 5 illustrates their effect. They may find q-x in
any of the three states when they execute. If qx was set then only its value needs to be changed. If
qx was reserved or clear then it may have acquired blocked accesses and child variables. If it was
reserved these continue to await the return value of the associated parallel function. If it was
clear then they receive the value being assigned to qx.

Statements that reserve a variable (e.g. qx=parallel ob j . f oo (. . .)) make qx unresolved
awaiting the value of an executing parallel function. They are presented in Figure 6. The case
when qx was previously set is straightforward. If qx was reserved then any blocked accesses and
child variables receive their value from the previous function ob j . bar () . If it was clear then they - - -
receive their value from the new function, ob j . f oo (> .

Finally, statements may clear a variable (e.g. clear (qx)) and are illustrated in Figure 7. If q~
was set then is cleared. If it was reserved then the blocked accesses and child variables receive their
value from the executing parallel function ob j . f oo () . If it was clear then there is no change.

13

/********* previous state set ***********/
qx = 3; // qx is set, value = 3
. . .
qx = parallel obj.foo(); // qx becomes reserved, awaiting the

// value of the parallel function foo()

/*******XX previous state reserved ******I
qx = parallel obj.bar(); // qx is reserved, awaiting the

// value of the parallel function bar0
. . .

//
//

. . .
F = parallel obj.foo(); //

//
//
//

qx may acquire blocked accesses
and child variables

qx becomes reserved, awaiting the
return value of obj.foo()
Blocked accesses and child variables
receive their value from obj.bar()

/********* previous state clear ******/
clear(qx); // qx is clear
. . .

// It may acquire blocked accesses and
// child variables

. . .
qx = parallel obj.foo(); // qx becomes reserved, awaiting the

// value of obj.foo()
// Blocked accesses and child variables
// receive their value from obj.foo()

Figure 6: Example: Effect of statements that reserve a future variable qx

With these general requirements of an implementation, we outline two possible schemes. The first
is to implement a future variable as a record structure that includes the value field and other necessary
fields. Each future variable has its own structure; they are not shared. Thus variables may be updated
in place. However, it becomes harder to keep track of child variables and blocked accesses since child
variables have their own structure. The salient aspects of the algorithm are:

1. The future function keeps a list of all structures that need the value it is computing.

2. An unresolved structure keeps a list of its child variables which must be updated when it gets
resolved.

3. Each structure has a pointer to the parallel function or parent variable (if any) that it is
going to get its value from. If, in the meanwhile, this variable gets set by some other means
then it should remove itself from the list of the par al le 1 function or parent variable.

Another possibility is to implement a future variable as a pointer to a structure. It is not neces-
- -- -- -- - - - - si3.1~ to maintain lists of structures that need to be updated, since strwtufes are shared &is happens

automatically. However, since several variables may share a structure, a new structure will have to
created on every update to a variable. This may be optimized by maintaining reference counts of
the number of variables which are sharing a structure. It is important to maintain which variable is
the owner of the structure, and which ones are children of that variable. Only changes to the owner
variable should be reflected in the structure, not those to the child variables.

14

/********* previous St-+-e set ******XX***/
qx = 3; // qx is set, value = 3
. . .
clear(qx); // qx becomes clear

/********* previous state reserved ******/
qx = parallel obj.foo(); // qx is reserved, expecting the value

// of the parallel function foo()
. . .

// qx may acquire blocked accesses
// and child variables

. . .
clear(qx); // qx becomes clear

// Blocked accesses and child variables
// receive their value from obj.foo()

/********* previous state clear **jr***/
clear(qx); // qx is clear
. . .

// It may acquire blocked accesses and
// child variables

. . .
clear(qx); // qx remains clear

// Blocked accesses and child variables
// continue awaiting a value for qx

Figure 7: Example: Effect of statements that clear a future variable v

The advantages of sharing are that all blocked accesses sleep on the same template. Copies are
cheaper to make, since they involve only a pointer copy rather than that of the whole structure. Storage
sharing saves on the amount of memory consumed, important in a system with no garbage collection.

4.2 Run-time Environment

The primary responsibility of the run-time environment is to handle dynamic task creation. When a
parallel function is invoked, a new task must be created, allocated resources, and scheduled to
run.

Creating a new process has a large overhead cost. A major portion of this cost is-in copying
the address space, which we do not require since we allocate all data in shared memory. If every
parallel function invocation resulted in a new process, the cost of process creation would make
parallel functions useful only for very large granularity. To keep this cost as low as possible, the
COOL environment does its own task management. When a parallel function is invoked, a task
is created and placed on a task queue. Server processes are created at start-up time, usually one per
processor. They pick tasks off the queue in FIFO order and execute them. The queue is globally
shared between the servers. Tasks are light-weight since the only resource they require is a stack.- - .- ---.. -- -

We may later explore more sophisticated techniques for scheduling and allocation. These could
include dynamic control over the amount of parallelism, allowing user-specified priorities in the
scheduling of tasks, executing a task on a particular processor or set of processors, co-locating certain
tasks on the same processor, and creating more than one server per processor.

15

4.3 Memory Management

The COOL memory management system ensures that all tasks (parallel function calls) execute
in the same address space. All local variables in a function are allocated in the activation record for
the function. All free variable references should refer to the same location in memory whether the
function was invoked sequentially or concurrently. This location should be lexically obvious from the
sequential program. Since C++ allows pointers to local variables to be passed across functions, all
data needs to be allocated in shared memory.

We discuss below the implementation considerations of the different kinds of variables accessible
to a function in COOL.

Global Variables: All global variables must be allocated in shared memory.

Local Variables: Local variables are allocated on the stack associated with a task

Actual Parameters: Those parameters which are passed by value are allocated on the called functions
activation record. However, if a pointer to a variable within another task’s scope is passed as an
actual argument, then the stack of the other task should be mapped into this function’s address
space. Thus all stack space associated with a task should be allocated in shared memory.

Instance Variables: These variables are accessed through the inheritance hierarchy. Since objects
are allocated on the heap, it suffices to map the heap into the shared address space.

4.4 Scope

A potential problem arises when local variables within a function are accessed by a paralle 1
function. This may happen if the first function invokes the second with a pointer to a local variable
as an argument. The caller may exit and deallocate its local variables before the called function
completes. Any further references to the variables by the still executing called function will encounter
garbage.

The initial language design ignores this issue, placing the responsibility on the programmer. To
ensure that an invoked parallel function has completed before exiting the caller’s scope, the return
value of the function must be explicitly touched in the caller with the wait set statement. This will
block the caller till the invoked function has completed. If the called function does not access the
calling thread’s scope, then the caller need not wait for it to complete.

This scheme is efficient, since an invoked parallel function is synchronized only if necessary.
However, forgetting to wait for a function can lead to bugs that may be very difficult to detect. We
plan to explore the following alternative ways of handling this problem.

1. Require all par al le 1 function invoked from within a scope to complete before the caller
exits. This scheme ensures secure and correct operation, but may result in reduced efficiency
because of unnecessary blocking.

2. Require the programmer (or compiler) to specify one of two kinds of exits from a scope, strict
- - and non-strict2. A strict exit would require all par al le 1 function invocations to complete; a - - -

non-strict would be an immediate, non-blocking exit that does not wait for any executing tasks
to complete.

‘Not to be confused with strict and non-strict acceSSeS to future variables in Section 2.2.2.

16

3. Allow the calling thread’s scope to exit, but keep its stack around until all parallel function
invocations from within that scope complete. This would ensure correct operation when the
tasks access any variable within the scope. However, maintaining the scope after it is exited
may be both difficult and expensive, since extra work would be required at run-time.

5 Related Research

COOL is based on earlier work done at AT&T Bell Labs which is discussed in [23. Other related
research includes the PRESTO project at the University of Washington and research on concurrent
C++ at Brown University. Both projects attempt to exploit the object-oriented model of C++ for
concurrency. We compare these projects with COOL in some detail.

PRESTO [l] supports parallel programming within C++ through a set of pre-defined classes. To
specify parallel execution, the programmer creates an instance of the thread class and starts it
executing by giving it an object, a function, and the arguments with which to invoke the function. All
threads execute in the same address space; each has a program counter and a stack. The user of an
object can decide whether to invoke a function synchronously (as in C++) or asynchronously with a
thread.

PRESTO and COOL are similar in that both attempt to exploit the object model for concurrency.
Several threads may execute concurrently on an object. The major differences between COOL and
PRESTO are:

1. In PRESTO the programmer has to explicitly create threads; the COOL conceptual model is
simpler since task creation and management is transparent to the programmer.

2. COOL attempts to encapsulate parallelism within the implementation of a class (i.e. in the class
definition). In PRESTO the user of an object decides between synchronous and asynchronous
invocations.

3. There is no automatic synchronization for the return value of an asynchronously invoked function
in PRESTO.

4. PRESTO provides monitors, but the mutex facility of COOL is more flexible (see Section
2.2.1).

Researchers at Brown University have integrated C++ with a threads package [5] to exploit con-
currency on multiprocessors [4]. It provides a predetied class t ask on which only the constructor
can be invoked. This constructor executes asynchronously and in the same address space. Synchro-
nization for the return value is provided through the task function result () , which blocks till
the value is available. Additional synchronization support includes a queue associated with each task;
processes can wait on this queue till some other process does a wakeup () . A monitor class with
condition variables for synchronization, and dynamically reconfigurable queues for communcation are
provided. COOL differs in the following ways:

1. The C++/threads package does not attempt to exploit class-based concurrency. Instead the pro-
grammer deals with parallelism at the level of tasks using primitive classes to create parallelism,
to synchronize, and to communicate across tasks. COOL provides constructs fully integrated
with the class-model of C+t.

2. Monitors in C++/threads are strict whereas COOL allows the constraints to be relaxed (see
Section 2.2.1).

17

The ARGUS system [lo] is designed for distributed programming. ARGUS Guardians are similar
to COOL objects in that they can be accessed through handlers (public functions). Several han-
dlers may execute concurrently if invoked asynchronously. Promises (future types) help implement
asynchronous handler invocations (invocations of par al le 1 functions). Several threads (member
functions) may execute concurrently within a guardian (object) in the same address space.

In ARGUS the manner of invocation (synchronous or asynchronous) is determined at the invocation
site, depending on whether the return value is assigned to a promise or not. In COOL this is a property
of the function declaration in the class. In COOL synchronization across different functions may be
obtained through the mut ex attribute; ARGUS has no such facility and all asynchronous invocations
execute concurrently. The ARGUS coenter facility expresses concurrency within a thread, similar
to invoking a parallel function from within a concurrently executing function. However, the
synchronization in coenter is strict: all sub-tasks within the coenter must complete before the thread
is allowed to continue.

Other approaches to exploiting object-oriented concurrency include several variations of Smalltalk
[6]. The general approach is to exploit asynchronous message sends for concurrency, similar to invo-
cations of parallel functions in COOL. However, Smalltalk implementations have the overhead
of dynamic typing. Information must be maintained at runtime to determine a variable’s type, which
can change dynamically. The procedure to be invoked at a procedure call is determined dynamically,
based on the type of its first parameter. Garbage collection of objects that are no longer required is
expensive.

C++ is strongly typed and more information is available at compile time. Its implementations
are correspondingly more efficient than those of Smalltalk. The dynamic nature of programming in
Smalltalk was of less importance to us than the efficiency possible with C++.

COOL differs from various Smalltalk extensions in that they require specification of synchronous
or asynchronous execution at the invocation site. We briefly review some of the extensions of Smalltalk
below.

ConcurrentSmalltalk [14] allows messages to be sent both synchronously and asynchronously. Syn-
chronization for the reply is through an object called CBox, which is similar to future types.
ConcurrentSmalltalk also provides atomic objects for synchronizing accesses at the object level.
Atomic objects are a stricter version of the mutex facility of COOL.

CST [3] defines all messages as asynchronous, and synchronization for their retum values is auto-
matic. Several methods may execute concurrently on an object, but synchronization across tasks
is managed by the programmer using locks and semaphores. CST introduces the concept of a
distributed object with a single name but distributed state. Making all messages asynchronous
relieves the programmer from identifying parallelism, and helps in extracting fine-gram concur-
rency.

ABCL/l [15] Although it is not an extension of Smalltalk, it is based on communicating autonomous
objects that can process only one message at a time. Concurrency across objects is exploited
through three types of messages - asynchronous, synchronous, and future.

_ -

6 Conclusions and Directions for Future Research

We have described the design of COOL, a concurrent object-oriented language. COOL extends
C++ with high-level abstractions that apply the object-oriented approach to parallel programming.

18

While the effectiveness of object-based concurrency and future types has yet to be demonstrated, our
initial experience has been encouraging. The expressiveness of COOL has facilitated useful parallel
decompositions of several problems. We hope to report on our programming experience with COOL
at a later date.

The primary ideas in COOL are:

1. It introduces concurrency and synchronization support at the function level on objects. This
approach integrates well with the object model.

2. It introduces future types as a general synchronization mechanism.

Other interesting features of COOL are that parallelism is encapsulated as part of the implemen-
tation of a class, transparent to its users. In other languages the choice of parallel execution is left
to the users of the class, made when invoking the parallel function. The mutex feature provides
synchronization at the function level. This affords the programmer greater flexibility than synchro-
nization at the object level as in monitors. It exploits class-based concurrency in C++ and hence
does not pay the overhead costs associated with dynamic typing. Finally, COOL provides a modular
object-oriented model of parallel execution for the security concerned programmer, it simultaneously
permits the efficiencyconcerned programmer to relax some modularity constraints and exploit them
for increased performance.

Current and Future Research: We are currently writing application programs in COOL to
further understand and refine the language. We plan to implement the language on a shared-memory
multiprocessor (the Encore Multimax3). An implementation will help us evaluate the performance
issues in the language. The implementation has several issues, including dynamic load balancing,
scheduling and queuing strategies, controlling the nature and degree of parallelism, and minimizing
the overheads due to the concurrency constructs. These are especially interesting in a multi-user
multiprocessing environment [131.

Future directions for research include exploiting futures as general synchronization objects. Also, at
various stages of designing the language we opted for the simple approach of requiring the programmer
to make decisions about the degree and nature of parallelism, scope management, or future variables.
Several of those tasks should be done by the compiler or run-time system. Finally, there should
be a precise definition of the interaction of the extensions in COOL with features of Ctt- such as
inheritance, virtual and friend functions, and operators.

References

[l] Brian Bershad, Edward Lazowska and Henry Levy. PRESTO: A System for Object-Oriented
Parallel Programming. So$-ware-Practice and Experience 18, 8 (August 1988), pp. 713-732.

[2] Rohit Char&a. Programming with MultiC++. AT&T Bell Labs Technical Memorandum No.
11354-880915-13TM, September 1988.

-_ ---.-. _ - [3] William J. Dally and Andrew A. Chien. Object-Oriented Concurrent Programming in CST. In -~-
Proc. 3rd Symposium on Hypercube Concurrent Computers and Applications, 1988.

[4] Thomas W. Doeppner and Alan J. Gebele. C++ on a Parallel Machine. Dept. of Computer Science,
Brown University, Technical Report CS-87-26, November 1987.

3Multimax is a trade-mark of the Encore Computer Corporation.

19

[5] Thomas W. Doeppner. Threads: A System for the Support of Concurrent Prograrnming. Dept.
of Computer Science, Brown University, Technical Report CS-87-11, June 1987.

[6] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading MA, 1983.

[7] Robert Halstead. Parallel Symbolic Computing. IEEE Computer 19, 8 (August 1986), pp. 35-43.

[8] C. A. R. Hoare. Monitors: An Operating System Structuring Concept. Communications of the
ACM 17, 10 (October 1974), pp. 549-557.

[9] Brian W. Kemighan and Dennis M. Ritchie. The C Programming Language. Second Edition,
Prentice-Hall, Englewood Cliffs NJ, 1988.

[lo] Barbara Liskov and R. Scheifler. Guardians and Actions, Linguistic Support for Robust Dis-
tributed Programs. ACM Trans. on Programming Languages and Systems 5, 3 (July 1983), pp.
381-404.

11 l] Barbara Liskov and Liuba Shrira. Promises: Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems. In Proceedings of the Conference on Programming
Language Design and Implementation, Atlanta GA, June 88, pp. 260-267.

[12] Bjame Stroustrup. The C++ Programming bnguage. Addison-Wesley, Reading MA, 1986.

[131 Andrew Tucker and Anoop Gupta. Process Control and Scheduling Issues for Multiprogrammed
Shared-Memory Multiprocessors. In Proceedings of the 12th ACM Symposium on Operating
Systems Principles, Litchfield Park, AZ, December 1989 (to appear).

[14] Yasuhiko Yokote and Mario Tokoro. The Design and Implementation of ConcurrentSmallTalk.
In Proceedings of the OOPSU-86 Conference, Portland OR, September 1986, pp. 33 l-340.

[15] Akinori Yonezawa, Jean-Pierre Briot and Etsuya Shibayama. Object Oriented Concurrent Pro-
gramming in ABcL/l. In Proceedings of the OOPSLA-86 Conference, Portland OR, September
1986, pp. 258-268.

Acknowledgements: This research has been sponsored by the Defense Advanced Research
Projects Agency under DARPA contract #N00014-87-K-0828. Several initial ideas for this research
were developed when the first author was visiting the Computing Systems Architecture department at
AT&T Bell Laboratories, Holmdel, NJ. Bruce Hillyer and Tom London of AT&T Bell Laboratories
contributed several ideas, and their support is gratefully acknowledged. The name for the language,
COOL, was suggested by Ashok Subramanian. Comments offered by Paul Calder, Craig Chambers,
Kourosh Gharachorloo, Monica Lam, J. P. Singh, as well as the anonymous referees are gratefully
acknowledged.

P_.. - -_ _-__----~ _______ _.---__- . __- --.-_ .._ -_-__ -_ .

20

