
Tango Introduction and Tutorial

Stephen R. Goldschmidt and Helen Davis

Technical Report No. CSL-TR-90-410

January 1990

This research has been supported by DARPA contract NOOO14-87-K-0828. Authors
also acknowledge support by fellowships from the Fannie and John Hertz Foundation.

Tango Introduction and Tutorial

Stephen R. Goldschmidt and Helen Davis

Technical Report: CSL-TR-90-410

January 1990

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 943054055

Tango is a software-based multiprocessor simulator that can generate traces of
synchronization events and data references. The system runs on a uniprocessor and provides
a simulated multiprocessor environment. The user code is augmented during compilation to
produce a compiled simulation system with optional logging. Tango offers flexible and
accurate tracing by allowing the user to incorporate various memory and synchronization
models. Tango achieves high efficiency by running compiled user code, by focusing on
information that is of specific interest to multiprocessing studies, and by allowing the user to
select the most efficient memory simulation that is appropriate for a set of experiments.

&ev Words and Phrm: multiprocessors, parallel processing, simulation, trace
generation.

Copyright 8 1990

Stephen R. Goldschmidt and Helen Davis

Contents

1 Introduction 1

2 Simulation Approach 3

2.1 Functional Simulation . 3

2.2 Timing Simulation .

2.3 LoggingEvents .

3 Application Source Files

4 Compilation into a Tango Simulator

4.1 Tango Script .

4.2 Compilation Steps .

5 Target Machine Models

, 3

, 4

5

8

.I 8

. 10

11

5.1 StandardMachine Models . 11

5.2 User-Provided Machine Models . 12

5 . 3 User-ProvidedFunctions . 12

5.3.1 Simulator Interface for default Model (MemLatency) 13

5.3.2 Simulator Interface for hlsync Model (Memdim) 13

5.3.3 Simulationbrameterhterface (aug,readother) 13

5.3.4 Simulation Results Interface (aug,summary-other) 14

5.3.5 Machine Model Interface (MemI s sue) 14

5.4 CPU Timing Parameter File (aug-init) 15

5.5 Memory and Synchronization Timing Parameters . 16

6 Output File Formats 17

6.1 Synchronization Varible Listing . 17

6.2 SimulationSummaries . 17

6 . 3 EventLogs. 18

6.3.1 Event Record Format . 18

. . .ill

6.3.2 EventTypeCodes . 19

7 Sample makefile 21

8 Common Compilation and Execution Problems 23

8.1 Compiler Errors . 23

8.2 Compiler Warnings . 23

8.3 SyntaxErrors . 23

8.4 Undefined Symbols in Link . 24

8.5 Semaphore Failures at Run-time. 25

8.6 Shared Memory Failures at Run-time . 25

8.7 “Too Many Locks to Trace” . 25

8.8 Output File Develops an Echo . 26

8.9 Simulation Loops Indefinitely . 26

8.10 OtherPitfalls . 26

9 Programs Associated with Tango 28

9 . 1 AUGProgram . 28

9 . 2 rmidsProgram . 30

9.3 tfiltprogram . 31

9 . 4 tmergeProgram . 31

9 . 5 tcatProgram . 31

9.5.1 SampletcatOutput . 31

10 Acknowledgements 33

iv

Chapter 1

Introduction

Simulation plays an important role in hardware and software studies by providing measurements needed to
evaluate proposed architectures and algorithms. This paper discribes the methodology and use of Tango, a
software-based simulation facility that supports a wide range of multiprocessing studies.

In multiprocessing studies, it is the parallel aspects of the computation that are of greatest interest. These
can be studied by examining the global operations, operations that are visible to more than one process. Private
or local operations, which are visible to a single process, are generally interesting only with respect to how
they affect the timing of global operations. In the shared-memory programming paradigm, global operations
are shared data references and synchronization operations; in the message-passing paradigm, they are message
sends and r&eves. Because of their importance in many investigations, Tango allows the user to efficiently
focus on these global operations. In very detailed studies, it may be necessary to consider the impact of local
data operations on the performance of shared network and memory resources. For this reason, Tango can also
simulate local data operations in detail.

The accuracy of results is an important issue in simulation. Accurately tracing parallel programs is difficult
because the execution path through the program often depends on the real-time behavior of the hardware system
(this is generally not the case for serial programs). Tango uses CPU timing parameters and a memory system
simulator to model the real-time behavior of the target machine under study. The execution path taken during
simulation is determined by this machine model. Simple abstract machine models permit us to study program
requirements in a relatively machine-independent environment. More detailed and realistic machine models
are necessary in some hardware studies. Tango also provides allows users to incorporate their own specialized
simulator for network, memory, and sychronization systems. By allowing the user to vary CPU timing parameters
and incorporate appropriate memory models, Tango accurately supports the needs of a wide range of studies.

Efficiency is also an important issue in simulation, since interesting applications tend to be large and long-
running. The time and space required for event logging may be significant, so Tango allows the user to choose
between: logging all data memory operations, logging global operations, logging synchronization operations, and
simulation without logging. (Tango does not provide instruction traces, since this would very time consuming,
and instruction references do not have a signiticant impact in many multiprocessor invesigations.) Tango gains
much of its efficiency by running compilied user code to simulate the functional execution of the application
on the target machine. Time is simulated by using simple constant delays for CPU operations, and using more
costly simulations for memory operations only when necessary. Tango’s simplest, and most efficient, memory
simulation assumes uniform memory access times. Greater accuracy is provided by more detailed memory
simulations that can simulate non-uniform memories and contention. Thus, Tango achieves high efficiency by
running compiled user code, by focusing on information that is of specific interest to multiprocessing studies,
and by allowing the user to select the most efficient memory simulation that is adequate for a set of experiments.

When using Tango, applications should be written in the C programming language, and use m4 macros
developed at Argonne National Laboratory [33. The macro package is a set of C macros that provide machine-
independent abstractions for shared memory allocation, process creation and control, communication, and syn-
chronization. Some initial work has been done toward providing a similar Fortran Tango environment.

1

Our implementation is designed to run on uniprocessor under an operating system that provides support for
shared memory and semaphores. Currently Tango is running on the MIPS M/120 and the SGI 4D/24OS under
System V, and on the DECstation 3100 under Ultrix. The number of application processes is limited by the
number of processes and semaphores the system allows and various table sizes, and is currently 256 in our
systems.

Chapter 2 outlines the simulation methods used by Tango. For a more detailed discussion of Tango’s
implementation, see Reference [l]. Chapter 3 describes the application source code conventions and outlines
the Tango macro set. Chapter 4 explains how to compile the application into an executable Tango simulation.
The formats of parameter files are described in Sections 5.4 and 5.5, and a sample makef ile is presented in
Chapter 7. Chapter 6 explains how to run a simulation and describes the output files generated. Chapter 8 gives
advice on many pitfalls that are commonly encountered with Tango. Chapter 9 describes the Tango software
and related utilties.

2

Chapter 2

Simulation Approach

Tango simulates both the functional execution and also the progression of time of an application on some target
system. A simulation process is created for each application process, which Tango assumes is associated with
a unique processor on the target machine. The user application routines and libraries are augmented during the
compilation process with code to simulate time, manage the simulation, and log events. A Tango scheduler
multiplexes processes during the simulation in a way that preserves the order of the events of interest.

2.1 Functional Simulation

We simulate the functional behavior of a process by compiling the associated application code and executing
it on available hardware. To emulate synchronization primitives that are not available on the real machine, the
software makes calls to macros or software libraries. Running compiled code in this manner is much more
efficient than using a software interpreter, where each target instnrction would be emulated by executing many
instructions on the real machine. Beacuse we are not interested in the details of local compuatations, this
approach adequately mimics the functional behavior of the target system.

During the simulation, compiled application processes are multiplexed to maintain the correct ordering for
the operations being studied. A distributed scheduler is used: application processes are augmented to perform
rescheduling before each of the operations under study (i.e., either synchronization, global, or all data operations).
This ensures that only the process furthest behind in simulation time performs such an operation. Since, a process
performing local CPU operations is assumed not to affect any other process, this rescheduling maintains a correct
ordering of the operations under study.

2.2 Timing Simulation

Tango divorces the progression of time on the target machine f/ram the passage of real time; the actual time needed
to perform the simulation does not affect the times recorded in traces. There is a software clock associated with
each process that maintains the simulated time for that process. A process’s clock is updated in each program
basic block, at synchronization points, and optionally at shared data references or all data references. Whenever
the delay for an operation can be determined at compile time, instructions are simply inserted into the code to
increment the clock by the appropriate amount Sequences of local CPU computation, for example, have such
predictable delays. When the delay for an operation is not known at compile time, the clock update is done
by calling routines to perform the necessary calculation or simulation Shared memory latencies, for example,
may be known at compile time when a simple memory model is used, but in some studies they will have to be
determined by simulation at runtime.

The individual process clocks are not precisely synchronized, but are loosely synchronized so that the timing

3

of the operations of interest is preserved. There are four user options for maintaining synchronization among
clocks. The strictest, and most costly, option is to synchronize at local data references and global operations.
This is necessary for detailed cache simulations in which a cache miss on a local reference can cause network
traffic that affects other processors in the system. Under a second option, the clocks are kept within one global
operation of each other, differing only by the duration of sequences of exclusively local computation. This option
is useful for studies that require precisely-ordered shared data references. For higher simulation efficiency, a third
option ensures only that clocks be within one synchronization event of each other. This option is useful when
studying synchronization, and also can be used to study shared memory reference patterns in some programming
models, or when trading off some accuracy for increased efficiency. A final alternative allows the user to specify
an approximate number of clicks’ by which clocks may differ. This cannot be used to ensure that clocks are
synchronized any closer than a single basic block, and it is intended to be used in conjuction with one of the
first three options.

By permitting the user to select an appropriate degree of clock synchronization, Tango provides the accuracy
required for a variety of studies without doing more process switches than necessary.

2.3 Logging Events

When an application is run under Tango, an event log is optionally produced for each process. Each event in
the log is a twelve-byte binary record, which includes the issuing process, the originating source code line, the
operation (a memory or synchronization event type), the associated data address, and a time stamp. The format
of these log files is described in Section 6.3.

To achieve this, Tango synchronization macros have been modified to optionally log synchronization events,
such as when a lock is acquired or released. In addition, each application can be automatically instrumented at
the assembly level to log data references. The user can disable logging for particular sections of code (either
statically or dynamically) by means of special macros in the source code. When logging is disabled statically,
the specified section will not be instrumented with logging code, and there will be no overhead associated
with logging for these sections of code. Where logging has not been turned off statically, code is inserted to
conditionally produce a trace log, depending on the run-tune logging status. In this case, since a check must be
made at run time, there is a small overhead associated with logging even when it is dynamically disabled.

For applications which consist of multiple source files, Tango provides a back-referencing feature to allow
log entries to refer back to a specific source file.

*a click is the smalkst unit of time understood by ‘Tango

Chapter 3

Application Source Files

The application program should be written in the C programming language and augmented with special m4
macros for parahel constructs. The macro set originated at Argonne National Labs, and the original standard
is described in Reference [3]. Tango uses a modified macro set that has extensions to support synchronization
tracing and target machine simulation.

C source code files (with macros embedded) should have the suffix “.C” on their names; C header files (with
macros embedded) should have the suffix “.H”.

The following macros implement the Tango environment:

MAINBW This macro defines the global symbols, variables, and functions that make up the Tango environment.
This macro should appear at the beginning of the main source file for the application. (Every application
should contain exactly instance of this macro.)

EXTERNJWV This macro declares the symbols, variables, and functions that make up the Tango environment.
Unlike MAINXNV, however, this macro declares variables with the extern qualifier to indicate that the
actual definition appears in another file. This macro should appear at the beginning of each source file
except the main source file.

MAIN,INITENV (, share-mem) This macro initializes the Tango environment. It should be the first executable
statement of the application (so that the environment gets initialized as soon as possible). The fkst
argument is not used The optional second argument share-mem may be used to alter the number of bytes
of shared memory that are available to Tango and the application.

CLOCK (variable) This macro sets the specified variable to the current simuhtion time.

MAINXND This macro terminates the Tango environment. It should be the last executable statement of the
procedure main.

The following macros implement shared memory and process-creation primitives:

CREATE (function-name) This macro creates and initializes a new Tango process and causes it to call the
functionfunction-nam. The called function should have no arguments, The child process gets a copy of
all of the parent process’s code and data It is a good idea to flush all output file buffers before invoking
this mcaro. When the called function returns, the child process will terminate. (See also Section 8.8.)

GJ4ALLOC (amour) and GMALLOC-F (amount) These macros allocate shared memory. Each returns a point-
er to amount bytes of unused shared memory on the heap. The GmLLOC macro is terminated by a
semicolon, so it cannot be used in a C expression; otherwise, the two macros are identical.

G-FREE (pointer) This macro relases a block of shared memory that was acquired with G-MALLOC.

5

The following macros implement synchronization primitives:

LOCKDEC (name) This macro declares a lock variable with the specified name. Locks should only be declared
in shared memory.

LOCKINIT (name) This macro initializes the lock variable with the specified name. Locks are initially un-
locked

LOCK (~me) This macro acquires a lock variable with the specified ~me. Locks can only be acquired by one
process at a time. If the desired lock is busy, the process waits until it is released.

UNLOCK (name) This macro is used to release a lock variable with the specified ~rne.

ALOCKDEC (name, number) This macro declares an array of number lock variables with the specified name.
Lock arrays should only be declared in shared memory.

ALOCKINIT (~me, number) This macro initializes an array of number lock variables with the specified ~me.
All locks in the array are initially unlocked.

ALOCK (~me, i) This macro acquires the ith lock in a lock array with the specified MOE. Locks can only be
acquired by one process at a time. If the desired lock is unavailable, the process waits until it is released

AULOCK (MMP, i) This macro releases the ith lock in a lock array with the spetied MMQ.

BARDEC (name) This macro declares a barrier with the specified nume. Barriers should only be declared in
shared memory.

BARINIT (name) ‘IhiS macro initializes a named barrier.

BARRIER (~rne, number) This macro causes the process to enter the barrier specified by name. Each process
entering a barrier must wait until the spetied number of processes have entered, at which time all the
processes that have reached the barrier are released

GSDEC (name) This macro declares a self-scheduled loop subscript with the speci&d MFW ‘Ihe subscript
should be declared in shared memory.

GSINIT (name) This macro initiahzes a self-scheduled loop subscript with the specified name.

GETSUB (~me, variable, subscrzpts,processes) This macro causes the process to schedule itself for the next
available subscript of the loop specified by name. The total numbers of subscripts and processes are
specified in the invocation of the macro. If no more subscripts are available, processes wait for the
completion of all outstanding subscripts before proceeding, and the loop subscript is reinitialized.

WAITJ?ORXND (mm) This macro causes the process to wait for the completion of luun other processes before
proceeding.

PAUSEDEC (~me, number) This macro declares an array of number event flags with the specified ~rne. If the
second argument is omitted, a single flag is declared. Event flags should lo declared in shared memory.

PAUSEINIT (~me,number) This macro initializes the array of number event flags with the specified ~me.
If the second argument is omitted, a single flag is initiaI.ized.

SETPAUSE (~me, i) This macro sets the ith flag in the named array of event flags. Au processes waiting for
that flag to be set are released. If the second argument is omitted, the first flag is set.

CLEARPAUSE (~rne, i) ‘Ihis macro resets the ith flag in the named array of event flags. If the second argument
is omitted, the tirst flag is reset.

WAITPAUSE (~me, i) This macro causes the process to check the ith flag in the named array of event flags.
If the flag is not set, the process waits on the flag until it is set. If the second argument is omitted, the
first flag is used.

EVENT (~rne, i) This macro causes the process to check the ith flag in the named array of event flags. If the
flag is set, the process waits on the flag until it is reset. Once the flag is reset, the process sets the flag.
If the second argument is omitted, the first flag is used.

PAUSE (~me, i) This macro causes the process to check the ith flag in the named array of event flags. If the
flag is reset, the process waits on the flag until it is set. Once the flag is set, the process resets the flag.
If the second argument is omitted, the first fiag is used.

The following macros implement message-passing primitives:

SRDEC (~me , number) This macro declares an array of number send-receive flags with the specified name.
If the second argument is omitted, a single flag is declared. Event flags and associated message buffers
should be declared in shared memory.

SRINIT (~me, number) This macro initiahzes an array of number send-receive flags with the spetied name.

SEND (~me, code, number) This macro waits for the specified send-receive flag to be reset, executes
supplied user code to copy a message into a buffer, and sets the flag. with the specified name.

RECEIVE (~me, code, wnber) ‘his macro waits for the Specified send-receive flag
supplied user code to copy a message from a buffer, and resets the flag. with the

Here are the Tango extentions for simulation control:

ST-LOG (type, address) to write an event record with the specified type and address
(if logging is enabled) and pass the event to the timing simulator (if enabled).

to be set, executes
SpeCifkd M??W.

the

the

to the processor e’s log file

AUGDELAY (n) to delay the current processor for n ckks.

AUG,ON and AUG,OFF to statically mark sections of code that are not to be augmented in any way.

TRACE-ON and TRACE-OFF to statically mark sections of code that are not to generate any log records.

REF,TRACE-ON and REF-TRACE-OFF to statically mark sections of code that are not to generate any data
reference log records. (Synchronization event logging is unaffected.)

DYN-TRACE-ON and DYN-TRACE-OFF to dynamically start and stop generation of log records.

DYNmREF-TRACE-ON and DYNwREF-TRACE-OFF to dynamically start and stop generation of data reference
log records. (Synchronization event logging is unaffected)

DYNSIKON and DYNZIl4OFF to dynamically start and stop calls to the memory model simulator.

Chapter 4

Compilation into a Tango Simulator

This chapter describes how to compile application code into a Tango simulation. There are five steps in
compiling an application: macro expansion, compilation, augmentation, assembly, and linkage. This differs
from the normal compilation process in several ways. Under Tango, the macro expansion uses a modified macro
library, the augmentation step has been added, and the link includes a special Tango run-time library.

In addition to the Tango macro library and run-time library, two parameter files are used as input to the
simulation process: aug-init (read during the augmentation step) and tango-init (read at run time). These
files are used to specify timing and machine model parameters (see Sections 5.4 and 5.5). One may use the
default files or substitute customized parameter files.

A csh script, tango, has been used to simplify the process of compiling a simulation. Given a list of file
names, the script can perform the steps necessary to produce an executable simulation. When making changes
to the application, the script can be invoked from the make utility to perform each compilation step only when
it is required. Chapter 7 shows a sample makefile for this purpose.

In the following sections, the tango script options are defined, and then the compilation steps are described
in detail.

4.1 Tango Script

The tango
a dash (-).

script takes a list of file names and options, Which it reads from left to right. All options begin with

Here are the most commonly-used options:

-s n Specifies that n steps of the compilation process be performed on each file (see Section 4.2). The default
is to perform a single compilation step.

-0 filename Specifies that the name of the final executable file should filename. The default name is a. out.

-M machineMode Sped&s the desired machine model, which determines the Tango object library and macro
library to be used. Section 5.1 describes the currently defined machines models. One may specify a user-
defined machine model using this option in conjunction with the -tmac and -tlib options, described
in Section 5.2.

-trace ops SpecifTies which events should be logged (see Sections 2.3 and 6.3). ops should be one of the
following:

Abga.U data references and synchronization operations.
G Logall global operations, that is, shared data references and synchronization operations.

8

S Log synchronization operations only.

-order ops Specifies that the order of operations of type ops shall be maintained to agree with that of the
simulated target machine. This results in rescheduling each process at every operation of type ops. The
operations simulated by the machine simulator are always kept ordered by the simulation code.
The value of ops may be as follows:

A Preserve the order of alI data references and synchronization operations.
D n Preserve the order of synchronization operations exactly, and also preserve the order of other oper-

ations to within approximately n clicks. (After each n clicks, rescheduling is done at the end of the
current basic block).

G Preserve the order of all global operations, that is, shared data references and synchronization operations.
S Preserve the order of synchronization operations only. This is the default.

Here are some less-commonly used tango script options:

-aug “options” The string of options, options, is passed
augmentation phase of the compilation process.

to any invocation to the AUG program during the

-augCall s Indicates that subroutine calls are modified so that augmented versions of the system run-time
routines will be called in place of the normal ones. If this option is omitted, each run-time routine will be
heated as a single instruction and shared data references within runtime routines will not be instrumented,

- c c noptiomw The string of options, options, is passed to each invocation of the C compiler cc. The -1
option (below) should be used to specify object libraries.

-count Ref s Generate code to count data references and clicks. The totals for each process are writeen to
the summary files (see Section 6.2). The default is to count clicks only.

-1 “xn This option causes the loader Id to search for undefined symbols in the object library libx. a. Libraries
specified in this fashion are searched before Tango run-time libraries.

-v Run tango and augmentation in verbose mode, informing the user of progress. The default is to run quietly.

Additional options, used to define new machine models, are described in Section 5.2.

Any word in the command line that is not recognized as an option is assumed to be a file name. When a
file name is encountered, the script performs compilation steps on that file using the option settings read up to
that point.

The suffix of the file name (the portion after the dot) is used to determine the type of file and thus the current
step of the compilation process. Files with the extention “ . C” are assumed to be C code with unexpanded
macros. The suffix “ . C" indicates expanded C code. “. 3” indicates normal MIPS assembly code, U. S”
indicates augmented assembly code, M. 0” indicates object code, and ((. a" indicates an object library.

Thus, for example, the command

tango main.C

performs macro expansion on
using all the default options.

the unexpanded source filemain.C to produce an source

tango -s 5 -0 mysim main.C

performs the complete compilation process on the same tile, producing an execuatble mys im

tango -s 5 -0 mysim -M hlsync -trace S main.C

performs a similar compilation process, but using the
will generate a log of all synchronization activity.

hlsync machine model and producing an executable that

f2emain.c

9

4.2 Compilation Steps

As mentioned earlier, Tango compilation consists of five steps. The first step is to expand the m4 macros
which provide machine and synchronization abstractions. Normally, the user specifies the macro library in-
directly, by specifying the target machine model with the tango script’s -M option. In this case, the macro
library name is simply c . m4 . machine-model. The standard macro libraries are maintained in the directory
/usr/local/lib/tango. Alternately, the user may specify a different macro library directory to the tango
script with the -tmac option (see Section 5.2).

If the script is used, the awk program is also invoked during the macro expansion phase to elimiate blank
lines. This is done because the expansion tends to produce many blank lines. Since the back-referencing feature
of Tango is only effective on the first 2047 lines of each expanded source tie, it is helpful to reduce the number
of lines as much as possible. On some machines, the indent program may also be used to prettify the code.

The second compilation step is to compile the C code to produce a normal MIPS assembler file with the
suffix “ . s”. In this step, the C pi-e-processor symbol AUG should be defined using the -DAUG option to the cc
command. This symbol indicates that the code wilI be augmented (in the next step). The tango script defines
this symbol automatically. In addition, a number of compilation options are specified in this step by def3iining
other cpp symbols.

The third step in the Tango compilation process is to augment the assembler code with the AUG program
(see Section 9.1) to produce a “. S" file. This step inserts assembly code to update the virtual time for each
process, to call the memory system simulator, and to output data reference logging information. The aug-init
(Section 5.4) file specifies to AUG the delay associated with each local operation. If augmented libraries are
to be used, the augmented code may contain calIs to unaugmented function, so the augmented code is merged
with the plain assembler code to produce the “. S" file.

The fourth step is to assemble the “. S" file into an object module using as, the MIPS assembler.

When all the modules of the application have been compiled into U. 0” files, the fifth and final step is to link
them together with the required object libraries (“. a" files), to produce the executable for the simulation. The
standard Tango libraries provide miscellaneous code that is part of the Tango environment, such as the routine
that allocates shared memory.

When using the tango script, the correct library for the specified machine model is ordinarily included
automatically on the basis of the machine model selected with the -M option. In this case, the library name
is simply libmachine-model . a. The stamkrd object libraries are maintained in the directory /usr / local-
/lib/tango. Alternately, the usermay specify a different object library directory to the script with the -tlib
option (see Section 5.2).

If augmented libraries are to be used, then the special versions of the standard run-time libraries (such as
libc. a and libm. a) must be included in the link The names of the augmented libraries are formed by
inserting a string beginning with "aug" before the extention of the original library name. ‘The characters in this
string indicate the augmentation options that apply to the library. Thus, libcaug. a is a version of libc. a
which has been augmented for timing only, libcauglsf a. a has been instrumented for timing and tracing,
and so on.

Currently, augmented libraries are available only on the Mips M/120, and they are located in the directory
/usr/local/lib. The tango script does not automatically add these to the link, so they must be specified
with the -1 option.

10

Chapter 5

Target Machine Models

This section describes standard Tango machine models. It also explains how to customize a Tango simulation
by modifying the timing parameter files or by writing a new machine model simulation.

5.1 Standard Machine Models

Several standard machine models are currently defined. Some (such as default) are abstract models that
may be useful in algorithm studies. Some (such as DASH) provide detailed simulation for specific architectures.
Others are interfaces for those who would like to integrate their own memory system simulators into the Tango
envrionment.

Once the machine model is chosen, parameter files allow the user to specify timing characteristics for
machine models. There are two standard parameter files. The aug,init fj.le, described in Section 5.4, is read
at compile time and specifies CPU timing parameters; the tango,init file, described in Section 5.5, is read
at run time and specifies timing characteristics of the memory and synchronization systems.

The tango script -M option is used to select one of the standard machine models. When a machine model
provides an interface for a user memory system simulator, the user should also use the -sim option to specify
the type of simulator provided (see Section 5.2).

-M machineMode This option selects the machine model for memory system timing simulations and synchro-
nization abstractions. Current standard machine models include:

default This is the default model. Latencies for synchronization operations are calculated by the user-
provided function, Merr&at ency (see Section 5.3). If no such function is de&M., constant latencies
for synchronization operations are read from the tango-init file, as described in Section 5.5.
If the -sim TIME G option is specified with this machine model, the extra latencies for a shared
references (the numbers of clicks needed in excess of the times taken by the equivalent local refer-
ences) are determined in a similar manner (bycallingMemLatency or readingthetango-init
file). Otherwise shared references do not take any time in excess of that required for local references.

cachedLocks Shared memory and synchronization operation latencies are determined as in default.
Synchronization operations generate log records that correspond to the network traffic resulting in a
system where locks are implemented as shared data and are cached with an invalidation protocol.
(Blocked lock operations are re-issued after unlocks.)

hlsync The memory simulator, Metiim, is called at each shad data reference (see Section 5.3).
It is also called with “high-level” synchronization operations, which are those implemented by the
synchronization macros. When data reference logging is active, each reference generates a two log
records, one for the time of issue and one for the time when the request was satisfied.

DASH References and timing arc as in the proposed DASH architecture. [2].

11

5.2 User-Provided Machine Models

One can create a new machine model by substituting a custom macro file and creating a new Tango run-time
library. The tango-init parameter file may also be extended to include the specification of new timing
parameters for user-defined machine models (see Section 5.5).

The following tango options are used to customize a simulation:

-s im type ups Specifies the type of memory system simulator. If type is TIME, the simulator handles timing
only and data values are managed by the application code; this is the default. If type is DATA, the
simulator receives a copy of the data for each applicable write and is allowed to modify the data returned
by each applicable read in addition to updating the clock.
The ops word specifies at the operations at which the simulator will be called:

A at all data references and synchronization operations.
G at all global operations, that is, shared data references and synchronization operations.
S at synchronization operations only.

-M machineMode Specifies the machine model name, which is used to construct library and macro fiIe
names. The Tango library file is named libmachkM&eZ . a, and the the Tango macro G.le is named
c . m4 . machineModel. The directories for these files are determined by the -t lib and -tmac options.

-t lib tangoLibrary Search the directory tangoLibrary for the tango object library specified by the -M option.
Thedefault is /usr/local/lib/tango.

-tmac macroDirectory Search the directory macroDirectory for the tango macro library specified by the -M
option.Thedefaultis /usr/local/lib/tango.

'P Turns on
initiated

Tango profiling. Prints the (real) time spent executing memory
by the tango scheduler, and the augmented application code.

simulations, COlltfXt switches

Implementation code for the standard tango macros and libraries is maintained in the directory /US r / -
local/src/tango/lib.The commonsourceG.les are inthesubdirectory /usr/local/src/tango/-
lib/src. There is also a subdirectory /usr/local/src/tango/lib/maiel foreach machine model
containing the library routines and macro IiIes unique to that model. It is suggested that new user machine
models be constructed similarly.

Notice that, since user libraries are linked in before Tango libraries, a user may redefine subsets of the
standard Tango library functions using the -1 option.

5.3 User-Provided Functions

‘Ikis section describes Tango functions that may be rewritten by the user to provide customized timing or
machine models.

Most of the functions which provide customized timing and memory simulation are specific to a particular
Tango machine model. For the default model, the interface consists of the functions MemLatency-Init
and MemLatency. For the hlsync model, the interface consists of MemSimInit, MemSim, and
MemSimEnd.

In addition, Tango supplies hooks for passing input parameters into a simulation and writing results to the
summary files. These include the functions aug-read-other and aug,summary-other.

The functions used to provide new machine models include Me-1 s sue, MemInit , MemSync, Mem-
Wait, and MemEnd.

12

53.1 Simulator Interface for default Model (MemLatency)

MemLatency is used by the default machine model to allow the user to specify the latency of shared data
references and synchronization operations as a simple function. It does not allow the simulator to return to
Tango with any outstanding memory requests.

int Mem Latency- (pid, op, addr, data)
int pid; /* processor identification */
int op; /* operation */
char *addr; i* operation address */
char *data; /* operation data, used when appropriate */

If MemLatency is used, a function MemLatency-Init should be defined to initalize any data needed
by MemLatency.

void Mem-Latency-Init ()

5.3.2 Simulator Interface for hlsync Model (MemSim)

MemSim is used by the hlsync machine model to allow the user to provide a detailed simulation of the
memory and syncrhonization system. This machine model allows the simulator to have uncompleted memory
requests in progress when it returns control to Tango.

int Mem Sim (issueQ, t issue,
sc-blk **issuedQT

t max, t mem, doneQ)
/* list-of memory ops to issue */

int t issue;- /* time of issue for memory ops */
int t max;- /* upper bound for simulation time */
int *t mem;
sc-blk-*doneQ;

/* return time simulated up to */
/* return list of ops exiting memory */

The simulator should simulate until simulation time tmax is reached or an operation exits the memory
system, whichever comes first. The simulator sets t mem to the new simulation time, which indicates that the
simulator is ready to accept operations that would occur on the target machine at that time. If the simulation
time exceeds ti s sue, the list of operations, is sueQ, should be entered into the memory system at that time
(and issueQ set to NULL). Ifthe return valueof doneQ isnon-NULL, then doneQis alistofoperationsthat
have completed, and tmem is the time when they completed.

(SeetheCle/user/include/tango/tangodefs. h foramorecompletedescriptionofthedatastruc-
tures used by the MemSim function.)

IftheMemSim interface isused, the functions MemSimInit and MemSimAnd should be definedto
initalize any data needed by MemLatency and clean up the simulator state when the application is finished.

void Mem-Sim-Init ()
void Mem-Sim-End ()

5.3.3 Simulation Parameter Interface (aug-read-other)

The user can write code to handle otherwise undefined tangoinit tags (Section 5.5) by rewriting this
fllnction.

void aug-read-other (tag, fp, fspec)
char tag[], fspec[];
FILE "fp;

13

This function is called during the initialization of the Tango run-time envrionment whenever an unrecognized
tag is encountered in the tango-init file. It takes a tag word, a pointer to an open file, and the tile name.
Based on the identity of the tag word, the user function should read the arguments from the file and initialize
the simulator accordingly.

The userversionof aug-read-other may make use oftheTangofunctions aug-read-word and aug--
read,num to read the arguments of the user-defined tags:

int aug read word (buf, len, fp, fspec)
char buf[]T fspec[];
int len;
FILE *fp;

int aug-read-num (fp, fspec)
FILE "fP;
char fspec[];

aug-readword takes a buffer with a specified length in bytes. It reads a word (delimited by whitespace)
into the buffer and returns the length of the word. If the end of the line is read, it returns zero. If the end of
the file is encounten& it returns -1.

aug,readnum reads a word and converts it to a number. The resulting integer is returned.

5.3.4 Simulation Results Interface (aug-summary-other)

This function is called at the completion of each Tango process. It may be used to print out simulation statistics.
It is passed the name and file structure for the process’s summary file (Section 6.2). User output to the summary
file will appear after the normal Tango statistics.

void aug summary other (fname, sum fp)
char f&ne[]; -
FILE "sum_fp;

5.3.5 Machine Model Interface (Mem-I s sue)

This interface supplies hooks for creating new machine models. This interface is tied directly to Tango, unlike
the interfaces provided by the standard machine models.

The functions that make up this interface include includeMenIssue, MemInit, MemSync, MemWait,
and MemXnd. Also,the aug-summary-other and aug-read-other functions are available at thislevel.

MemI s sue is called by Tango at every event where simulation is required The -s im option in the
tango script may be used to determine which events are simulated and whether the simulator handles data
values. MemInit is called to initialize the memory system, and MemEnd is called when the application
completes.

Mem-Init()

Mem Issue(vtime, type, address)
unsigned int vtime;
unsigned int type;
unsigned int address;

Mem-End0

14

The data value, if any, is passed between Tango and the memory system in an eight-byte buffer called
aug-data.

MemWait should cause the simulator to process the next outstanding memory request. MemSync should
cause the simulator to schedule other processes until the memory system and all other application processes
have simulated beyond time on the current process clock.

Mem-Wait();
M--Sync () ;

5.4 CPU Timing Parameter File (aug-init)

The parameter file aug-init is a text file which defines the type and delay associated (for simulation purposes)
with local operations. Fixed delays may be specified for each assembler mnemonic on the machine being used
to run the simulation. This file is read during the augmentation phase of the compilation. For each basic block
in the application, augmentation adds code to advance the local clock by the sum of the amounts associated the
assembler operations in that block. The progression of time on the target machine is based on these delays, so
they should approximate the timing of the target machine as closely as possible.

Thedefault aug-initfileis located inthedirectory/usr/local/lib/tango. Tospecifyadifferent
file, the AUGINIT environment variable may be set to the full pathname of the desired parameter file. Alternately,
the pathname may be specified with the -I option of the AUG program.

Each line describes a single mnemonic, using the following format:

<mnemonic> <type> <clicks>

1 . d DLOAD 1

For instance:

defines the mnemonic 1. d to be a double-word load instruction which takes one click.

The valid mnemonic types are:

l data reference types defined in reftypes.h (BLOAD, HLOAD, LOAD, DLOAD, BSTORE, HSTORE,
STORE, and DSTORE)

l JUMP : for unconditional branches

l CALL : for branches that return

l FORK: for conditional branches

l OP : for instructions that do not branch or reference memory

l DATA: for data-generating mnemonics

l LABEL : for mnemonics that generate branch targets

l NON : for other mnemonics that do not generate code or data

l ERR: for mnemonics that cannot be processed by AUG

15

5.5 Memory and Synchronization Timing Parameters

Machine models may accept timing parameters for the memory and synchronization system; the file tango--
init is read at run time to determine such parameters.

If the environment variable TRACEDIR is defined, a tangoinit tie in that directory will be used.
Otherwise, the tangoinit file is assumed to be in the current directory. Ifthe tango-init tie is not
found, a warning is printed, and the timing parameters are left at their default values.

The lines in this file have the following format:

<tag> <args>

Upper- and lower-case are considered to be distinct within this file.

The default memory model uses the scost tag to specify the (fixed) latency associated with synchro-
nization events and the additional latency for shared references. For instance, the lines:

scost LOCK ENTER 3
scost DLOC 6

indicates that there is a three-click latency to enter a LOCK macro and six extra clicks are needed for shared
double-word loads. Latencies that are not specified are zero by default.

The user can write a customversion of aug-readother tohandle other tangoinit tags. See Sec-
tion 5.3.3.

16

Chapter 6

Output File Formats

When the augmented application is executed, the simulation will write output files to the directory specified by
the environment variable TRACEDIR. If this environment variable is not defined, the current directory is used.
Note that each user is allowed to run only one simulation at a time on a given machine.

The simulation will create a file named syncVarTb1. This file contains information about each synchro-
nization variable used by the application. See Section 6.1 for a description of this tile.

The simulation also writes a summary file for each processor, with the name summarynnn. dat where nnn
is the processor number (starting with 000). This tie contains the virtual time when each process completed
and a dump of the data reference counters. In addition, custom messages may be added to this file using the
function aug-summary-other described in Section 5.3.4. See Section 6.2 for a description of this file.

In addition, if logging was enabled with the tango script -trace option, the simulation will write an event
log file for each processor. These ties are named t racennn . dat, where nnn is the processor number. The
format of the log file is described in Section 6.3.

6.1 Synchronization Varible Listing

The syncVarTb1 file contains information about each synchronization variable in the application, including
its name, address, and type. The lines in this file have the format:

<variable index> <hex address> <group> <type> <measure> <plot> <name>-

and typically look like this:

11 1021d75c 1000 1000 1 1 gm->idlock

In this example, the 1 lth synchronization variable in the program was at the hexadecimal address 1021d75c
and was named gm->idlock.

6.2 Simulation Summaries

Each summary file contains the time when the process completed and a dump of the data reference counters. If
the -countRef s option was not specified, reference counters will all be zero.

The summary file has the format:

17

Summary (process <number>):

Final clock reading: <number>
byte half word double

reads <number> <number> <number> <number>
writes <number> <number> <number> <number>

Here is a sample summary file:

Summary (process 0):

Final clock reading: 16673002
byte half word double

reads 106 0 7504595 6
writes 0 0 1088337 8

Users may add their own output to this file as described in Section 5.3.4.

6.3 Event Logs

When tracing is enabled, the simulation produces one event log file for each process. After the run is completed,
the tmerge program (Section 9.4) can be used to merge the log files into a single file with the events in
chronological order.

The teat filter converts log files into a human-readable form, as described in Section 9.5. The tfilt filter can
be used to find selected eventi in a log file, as described in Section 9.3.

63.1 Event Record Format

The event logs are made up of 12-byte binary records. Each record represents a synchronization event or data
reference.

Here is a definition of a log record as a C struct, taken from the header file trfi1e.h in /usr-
/include/tango:

typedef struct ref (
int type; /* including source location and processor number */
int time; /* simulation time of the event */
int address; /* operation address, if applicable */

} ref;

Here is a byte-by-byte description (using big-endian conventions):

l Bytes O-l:
If a data reference, this field is a code that indicates which line of the source code generated the reference.
This field is not used for synchronization events.

l Byte 2:
Processor number, an &bit binary integer. In the raw event log files, this is set to zero, but when the log
is processed by tmerge this field is set to the processor number where the event happened.

l Byte3:
The type of event, an 8-bit binary code. See the list in Section 6.3.2.

18

l Bytes 4-7:
The click (simulated time) in which the event happened. It is a 32-bit integer.

l Bytes 8-11:
The 32-bit virtual address of the shared data location or synchronization variable.

The filter teat converts event log files into a human-readable form (see Section 9.5). The titer tfiIt can be
used to find selected events in a log file (see Section 9.3).

6.3.2 Event Type Codes

The type codes for synchronization events are defined in the header file synctypes. h. The type codes for data
references are defined in the header file ref types. h. Both of these header ties are found in the directory
/usr/include/tango. Event codes from 32 to 63 are reserved for user-defined events, which may be
generated using the STJlOG macro.

The type codes include:

l BLOAD(O) a byte load

l HLOAD(~) a 2-byte load

l LOAD(~) a 4-byte load

l DLOAD(3) an 8-byte load

l BSTORE(8) a byte store

l HSTORE(9) a 2-byte store

l STORE a 4-byte store

l DSTORE(ll)an 8-byte store

l BLOA.D+~ 6 thru DSTORE+16(1627) like (O-11) but used with the memory system simulator to indicate
the completion of the memory reference, whereas 0-11 indicate the initiation of the reference.

l STmTHREADDONE(70)a process tt2nnina t.M

l ST-THREAD-START(71) a process starts e⌧eWiOn

l STJIOCuNTER(72) a process attempts to acquire a lock

l STJIOCILEXIT(73) a process acquires a lock

l STJJNLOCK(74) a process releases a lock

l STBARENTER(75) a process begins waiting at a barrier

l STBAR-EXIT(77) a process leaves a barrier

l ST-BAREXI TJAST(78) a special case of (77) for the last process to leave the barrier

l ST,GS-ENTER(79) a process requests an index for a self-scheduled loop

l ST,GS,EXIT@~) a process acquires an index for a self-scheduled loop

l ST,GS-EXI T,LAST(81) a special case of (80) for the process that acquires the last available index

l STJWENT,ENTER(94) a process enters a EVENT, SETPAUSE, or CLEARPAUSE macro

l ST-EVENT-EXIT(%) a process leaves a EVENT, SETPAUSE, or CLEARPAUSE macro

19

l ST-PAUSE-ENTER(%) aprocessenters a PAUSE,WAITPAUSE macro

l ST-PAUSE-EXIT(q) aprocess leaves a PAUSE or WAITPAUSE macro

. ST,SEND,ENTER(98) a process enters a SEND ma Cr 0

l ST,SEND,EXIT(!@) aprocess leaves a SEND macro

l ST,RECEIVE,ENTER(loo) aprocess enttm a RECEIVE macro

l ST,RECEIVE,EXIT(lol) a process leaves a RECEIVE ma c r o

l ST-ALOCECENTER(lOd) a process attempts to acquire a lock from a lock array

l STALOCILEXIT(~~~) a process acquires a lock from a lock array

l STJdJLOCK(lO6) a process releases a lock from a lock array

l ST,WAIT,FOR(~~~)~I,U~Q a WAITJOFuND macro, another apphCatiOnproCXss terminated

* ST,GMALLOC(lO@ a process requests a block of shared memory

l ST,GFREE(~@) a process releases a block of shared memory

Other codes may appear if the application uses undocumented synchronization primitives or the ST-LOG
macro (see Section 3). In addition, new codes may be added from time to time; all event log post-processors
should degrade gracefully when undetied codes are encountered.

20

Chapter 7

Sample makefile

In this example, the source code is in two files: main. C and linear. C. Both of these depend on the header
filelstruc+&. H, which contains m4 macros. Various compilation options are shown as comments.

#!/bin/make -f
Sample makefile for Tango.
TARGET = ../linear

Trace global operations; order synchronization only.
machine model with cached locks and nonuniform memory accesses
include object library 1ibdir.a
#TFLAGS = -trace G -1 dir -M cachedLocks -sim TIME G

custom user machine model and memory data simulator provided.
calls full data memory simulator at every memory reference.
#TFLAGS = -M encore -sim DATA A -tlib -davis/lib -tmac -davis/macs

order sync ops and shared refs; uniform memory machine
TFLAGS = -order G

.SUFFIXES:

.SUFFIXES: .o .S .s .c .C .h .H

.s.o: ; $(TANGO) -s 1 $*.S

. s.s: ; $(TANGO) -s 1 $*.s

. s.0: ; $(TANGO) -s 2 $*.s

.c.s: ; S(TANGO) -S 1 $*.c

. c.s: ; $ (TANGO) -s 2 $*.c

. c.0: ; $(TANGO) -3 3 $*.c

. c . c : ; $ (TANGO) -s 1 s*.c

.c.s: ; $ (TANGO) -s 2 $* .C

. c . s : ; S(TANG0) -s 3 $*.C

. c . o : ; S(TANG0) -s 4 $*.C

.H.h: ; $(TANGO) -s 1 $*.H

TANGO = tango $(TFLAGS)

here begins the application-specific part of the makefile

OBJS = lu.0 matio.0

21

install $(TARGET): S(OBJS)
$ (T=JGO) -0 $(TARGET) $(OBJS)

1u.s matio.s: matrix.h

22

Chapter 8

Common Compilation and Execution
Problems

This section covers problems you may encounter in compiling and running code in the Tango environment or
in porting to System V from the Encore or other system.

8.1 Compiler Errors

The header file strings. h does not exist under System V. Many programs use this file to declare string
functions such as strcpy and strcat. Inthiscase, youwillhave toaddthedeclarationsfort.hesefunctions
to the code.

8.2 Compiler Warnings

The MIPS C preprocessor (cpp) will warn you when you re-#def ine a cpp macro. In particular, NULL
is defined in the header file stdio . h and FQ I is defined in math. h under System V, but these are often
redefined by applications written on other systems. If this bothers you, put #if def's around the extra definition.

Also,you maygeta wamingifthe application uses the value returned by sprintf,since theretumvalue
is an int in System V and a (char *) pointer in other systems.

8.3 Syntax Errors

m4 macroes must not have any white space between the macro name and the arguments. In the following
example, there is a blank between the MAIN-INITENV macro and its arguments. Therefore, the arguments are
treated as normal C code, causing a syntax error during compilation.

I-f&n 0 t
MAIN-INITENV (25,lOOOO)
printf ("Hello, world!\n");
MAIN END-

Normally, Tango macros expand into C statements, that is, they do not expect the user to place a semicolon

23

after the macro. In the following code, there is an extra WnidOn after the CLOCK macro, so the compiler
cannot associate the else clause with the if, causing a syntax error.

sub (i) I
if (i == 0)

CLOCK(i);
else

i = 0;
1

The G-MALLOC macro has a semicolon at the end This means that, like the other m4 macros, its return
value cannot be used in an expression. There is a special version of GMALLOC called G-MALLOCJ? which
can be used as a function. (G3ALLOC-F is the only Tango macro that needs a semicolon; all the others are
complete statements.)

Thus:

if ((glob = GJIALLOC(10)) == 0) {

should be rewritten as:

glob = GMALLOC(10)
if (glob == 0) {

if ((glob = GMALLOC-F(10)) = 0) {

8.4 Undefined Symbols in Link

If there are undefined m4 macros in your program, m4 and cc may not detect the error, treating the macro as a
call to an (undefined) external function.

Some run-time library routines that are available on Ultrix systems do not exist under System V. Usually
there is another routine (often with a different argument list or result type) that can be used to achieve the same
effect. Compare the man pages for details For instance,

1. for bcopyusememcpy

2. for bzerowmemset

3. for srandomuse srand

4. for randomuse rand or Drand48 andsee alsoSection 8.10.

5. for indexuse strchr

Similarly, the timer-init function is Encore-specific; use the m4 CLOCK macro instead.

You might also get this error if you need an augmented object library in the link. For instance, if the symbol
print f-aug is undefined, then the object library libcaug. a is needed in the link.

24

8.5 Semaphore Failures at Run-time

The message “Can't allocate n semaphores" indicates that the simulation is unable to allocate the
semaphores it needs because of a system-imposed limit on the size of a semaphore request. It will reduce the
size of its request until it either succeeds or reduces its request to a single semaphore.

In the context of a semaphore error, he message “No Space Left On Device" indicates that the
simulation is unable to allocate the semaphores it needs because of a system-imposed limit on the number of
semaphores. You may get this error if other simulations are running on your machine, or because of simulations
which failed to deallocate their semaphores1

Messages such as:

Identifier removed
36 Block failed.

Invalid argument
22 Block failed.

Identifier removed
36 Release failed.

and:

Invalid argument
22 Release failed.

indicate that semaphores used by the simulation were removed while they were still in use. One common
cause for this error is failure to execute the MAIN-END macro at the end of an application.

8.6 Shared Memory Failures at Run-time

The message “Shared memory segments not contiguous" meansthatthesimulationallocatedtwo
shared memory segments during the initialization of the Tango environment, but they were not contiguous. This
wi.lI happen on systems where the maximum shared memory segment size is less than the segment alignment
multiple. In this case, Tango’s shared memory allocation will be reduced

The error message “Shared Memory Exhausted" means that the simulation needed more shared
memory than was allocated during initialization. The error message will describe the details of the situation.
The default amount is currently 2.5 megabytes. You can override the default by specifying the number of bytes
as the second argument to the MAIN-INITEW macro. For instance:

MAIN-INITENV(J000000)

will allocate 5 megabytes of shared memory.

8.7 “Too Many Locks to Trace”

‘Ihis message indicates that Tango ran out of table space while creating the table of lock addresses for the
SyncVarTbl file.

‘The rmifis program (Section 9.2) can be wed to find stray semaphore and shared memory idcntifks in the system. It notes all such
identifiers and attempts to remove them.

25

The limit is set by the macro ST-MAX-LOCKS in the macro libraries. You can make your own version of the
macro library with an increased limit or ask that the limit be raised in the public version. The limit is currently
set to 20000 locks.

8.8 Output File Develops an Echo

When a process forks, each child gets a copy of its file buffers. Later, all the copies of the buffer are flushed,
writing multiple copies of the buffer contents to the tie. To avoid this problem, flush all output file buffers
immediately before any CREATE macro.

8.9 Simulation Loops Indefinitely

Remember that the simulation will be signiCcant.ly slower than the original application-it may just be taking
a long time! When experimenting with Tango, you should run a small application at first to get a feel for the
expected simulation time.

Some applications intentionally loop on shared memory locations for synchronization purposes. For example:

if (waiter)
while (glob->Q == 0);

else
glob->Q = 1;

Such code will loop indefinitely if the simulation reschedules processes only at sychronization events. You
can cause the simulation to reschedule on shared data references by using the -order G option in the tango
script.

Alternatively, you could modify the application. You can force Tango to reschedule at any point by adding
a call tothefundion SC-Reschedule:

if (waiter)
while (glob->Q = 0) {

AUG OFF
Sc-Eeschedule();
AUG ON

else {
AUG OFF
Scpeschedule();
AUG ON
glob->Q = 1;

Note that the correct way to use SC-Reschedule is to place calls before each read or write to shared
memory that is not protected by a lock In particular, rescheduling a&r a write will rwt produce the desired
effect.

8.10 Other Pitfalls

The rand function returns a value in the range 0 to 32767 under System V, while under Ultrix and on many
other systems, it returns a value in the range 0 to 214748347.

26

If the application was written for a small multiprocessor, it may be a hard-coded limit (such as 4 or 16) on
the number of processors. If the limit is in the main source file, you may want to replace it with MAX-PROC,
which is an m4 macro set by MAINXNV. For example, if the application source contains:

#define maximum-number-of-processors 16

you could replace it with:

#define maximum-number-of-processors MAX-PROC

This will not work if the module does not contain MAIN-ENV.

Make sure that the Crst and last executable statements in the application source code are MAIN-INITENV
and MAIN-END, respectively. This is more vital in Tango than it is in other environments, and many applications
written for those environments omit MAIN-END entirely. If MAIN-END is omitted, the syncVarTb1 file and
the main summary file will not be written, and the semaphore and shared memory identifiers will not be recycled.

Finally, refer to Chapter 9 for information on many of the messages generated by AUG, rmids, and other
Tango programs.

27

Chapter 9

Programs Associated with Tango

For each program, a synopsis of the arguments is given, followed by a description of the program and a list of
important messages with explanations.

G Program9 . 1 AU(

Synopsis:
AUG [-a]
i-11 I-ml

[-am] [-ar] [-au] [-b] [-Bn] [-cl C-f] [-fm] [-fr] [-fu] [-i] [-Ifire]
[-run] [-nr] [-nu] [-r] [-s] [-Tn] [-u] [-U] [-v]

This program reads assembler code from the standard input and writes augmented assembler code to the
standard output. ‘The executable for this program is maintained in the directory /usr/local/bin and the
sourceisin /usr/local/src/AUG.

Switches in the AUG command line include:

-a Do not augment absolute data references. This is an optimization for simulations which check for shared
data references, since shared data is always addressed indirectly, never as an absolute address. This option
is equivalent to the combination of -am, -ar, and -au. Compare with the -f option.

-am This disables event logging augmentation of absolute data references.

-ar This disables reschedule augmentation of absolute data references.

-au This disables memory simulation augmentation on absolute data references.

-b Add the source file name to the back-reference file back-ref s, which lists the source files of the application.
This file is useful for determining which source lines that generate particular data references. This option
is recommended.

-Bn Don’t instrument basic blocks containing less than n clicks of local operations. This might be used to
speed up simulations (at the cost of some accuracy).

-c Generate code to count shared data references and simulation-time clicks. The totals for each process are
written to the summary files (see Section 6.2). The default is to count clicks only.

-f Do not augment stack frame references. This is an optimization for simulations which check for shared data
references, since the stack frame should never be shared This option is equivalent to the combination of
the -fm, -f r, and -f u options. Compare with the -a option.

- fm This disables event logging augmentation of stack frame references.

28

- f r This disables reschedule augmentation of stack frame references.

- f u This disables memory simulation augmentation on stack frame references.

-i Augment subroutine calls so that the augmented versions of the run-time routines will be substituted for the
normal ones. If this option is not used, each run-time routine will be treated as a single instruction and
shared data references within run-time routines will not be detected.

- Ifile Read click counts for each assembler mnemonic from fire. This option overrides the pathname implied by
theenvironmentvariable AUGINIT. Thedefauhfile isaug-initinthedirectory/usr/local/lib-
/tango, which sets every executable mnemonic to one click. Using this option, one may customize a
simulation to use different click counts for different instructions. A description of this file format is found
in Section 5.4.

-1 Augment data load operations.
also the -3 option.

This option is modified by the -f (or - fm) and -a (or -am) options.

-m Augment shared data references. This option is equivalent to the combination of the -1 and -S options.
This option is modified by the - fm, -nm and -am options (and also the - f, -n, and -a options).

-n.rt-~ This causes event logging augmentation to bypass range checking on alI references. Normally, the logging
routine checks whether the reference address is in the range of shared addresses that was determined at
initialization, and references outside that range ate ignored. This option is used to allow logging of all
data references, shared and unshared.

-nr This causes rescheduling augmentation to bypass range checking on all references. NormalIy, the reschedul-
ing routine checks whether the reference address is in the range of shared addresses that was determined
at initialization, and references outside that range are ignored, ‘Ihis option is used to allow rescheduling
on all data references, shared and unshared.

-nu This causes memory simulator augmentation to bypass range checking on all references. Normally, the
memory simulation routine checks whether the reference address is in the range of shared addresses that
was detexmined at initialization, and references outside that range are ignored. This option is used to
allow memory simulation of aZZ data references, shared and unshared.

-r Reschedule processes at loads and stores to preserve the order of data references. This option is modified
by the -fr, -nr and -ar options (and also the -f, -n, and -a options).

-s Augment data store operations. This option is mod&d by the -f (or -fm) and -a (or -am) options. See
also the -1 option.

-Tn Generate code to reschedule processes approximately every n clicks. If the shared data in the application
is protected by locks or if the -r option is used, this should not be necessary.

-u Pass references to the memory simulator at shared data loads and stores. The simulator should update the
simulation time. This option is modified by the -f u, -nu and -au options (and also the -f, -n, and
-a options).

-U Pass references to the memory simulator at shared data loads and stores. Use timing results and data from
the simulator. This option is mod&d by the -fu, -nu and -au options (and also the -f, -n, and -a
options).

-V Run AUG in verbose mode, informing the user of its progress as it runs. The default is to run silently.

Error messages include:

0 error opening "fire" for input
The named jiZe does not exist or is not readable.

l error reading �fir e�

The named fire is incorrectly formatted.

29

invalid type "word" in initialization file
The initialization file specifies the type word which is not one of the valid types described in Section 5.4.

unknown mnemonic “word”
The assembler mnemonic word appears in the input, but is not defined in the initialization file.

statement cannot be processed
The input file contained a statement that could not be augmented. Such statements should be ram in
compiler-generated assembly files.

too many source files for backreferencing
The application uses more than 31 source ties, so back-referencing is not possible.

Warning messages include:

l unknown command-line argument ignored
An invalid option appeared in the AUG command line.

l noreorder prevented block augmentation
The input file contained the noreorder directive, meaning that code-rearrangement is forbidden. There-
fore, parts of the code were not augmented as requested.

9.2 rmids Program

Synopsis: rmids [-q]

rmids attempts to find all the shared-memory and semaphore identifiers in the system and delete them. If
you are not super-user, this wiI.l remove your own identifiers but not those of other users. If you are super-user,
this will remove all identifiers in the system, including those belonging to other users. The executable for this
program is maintained inthedirectory /usr/local/bin andthe sourceisin /usr/local/src/rmids.

If the -q option is specitied, messages wi.lI only be printed when identifiers are actually deleted.

Messages include:

l argument ignored
indicating that an argument other than -q appeared on the command line.

l Searching for shared memory identifiers and
Searching for semaphore identifiers
indicating normal progress of the program

l shared memory identifier #n belongs to another userand
semaphore identifier #n belongs to another user
indicating that the identifier could not be removed because you do not have permission to do so

l error removing shared memory identifier #nand
error removing semaphore identifier Xn
indicating that the identifier could not be removed for some reason other than lack of permission

l Shared memory identifier #n was REMOVEDand
Semaphore identifier #n was REMOVED
indicating successful removal of identifiers

30

9.3 tfilt Program

Synopsis: tfilt yiZe] [-a hexa& hexaalir
time1 time2]

I [-c code] [-p processor] [-3 filerum Zinenum] [-t

This program reads an event log from jiZe and writes a filtered log to the standard output. The executable
for this programismaintained inthedirectory /usr/local/bin andthe sourceisin /usr/local/src-
/tfilt.

If no file is specified it reads the input log from the standard input. If the -a option is specified, it selects
events with the address field in the range of hex addresses specified If the -p option is specified, it selects
events on the specified processor (the first processor is numbered “0”). If the -t option is specified, it selects
events between the two times indicated. If the -s option is specified, it selects events whose source file and
line number match those specified. If the -c option is specified, it selects events whose type code matches that
specified.

If multiple options are specified, tfilt fkls the events which match all of the specified conditions.

9.4 tmerge Program

Synopsis: tmerge fire yiZe . ..J

This program takes a list of event log ties and merges them together into a single file, which is then written
to the standard output. It uses the time-stamp on each event in the log files to put the events in chronological
order. It also sets the processor number field in each event record to indicate Tom which log file the event
came. This program assumes that the individual log files are already chronologically ordered.

The executable for this program is maintained in the directory /usr/local/bin and the source is in
/usr/local/src/tmerge.

If you supply no arguments, tmerge prints a usage summary.

Error messages include:

unable to open input file "fire" -The named fire does not exist or is not readable.

9.5 teat Program

Synopsis: teat @Ze]

This program reads a event log file and writes a human-readable version to the standard output. If no file is
specified, it reads the event log from the standard input. It also uses the backxefs file generated by AUG,
if present. It writes one line of output for every log record

The executable for this program is maintained in the d&dory /usr/local/bin and the source is in
/usr/local/src/tcat.

9.5.1 Sample teat Output

A full teat output line consists of:

<eventtype> at <time>: <hexaddress> on <proc#> at line <line#> in <file>

Here is an example:

31

STORE at 2298: 1021d6fc on 0 at line 558 in "mainNew.c"

Synchronization events do not contain source references. Also, the line number may be unknown (if it was
greater than 2047) or the file may be specified by a number (if no back,refs file was found by teat).

32

Chapter 10

Acknowledgements

This work was supported in part by the Fannie and John Hertz Foundation by through gxaduate fellowships for
Stephen R. Goldschmidt and Helen Davis. It was also supported in part by DARPA contract NOOO14-87-K-0828.
This support is gratefully acknowledged.

33

Bibliography

[1] H. Davis and S. Goldschmidt. Tango: A multiprocessor simulation and tracing system. Technical Report
(to appear), Stanford University, 1990.

[2] D. Lenowski, J. Laudon, K. Gharachorloo, A. Gupta, J. Hennessy, M. Horowitz, and M. Lam. Stanford
dash multiprocessor. Technical Report CSL-m-89-403, Stanford University, 1989.

[3] Lusk and Overbeek et al. Portable Programs for Parallel Processors. Halt, Rinehart and Wmton, Inc.,
1987.

34

