Tango Introduction and Tutorial

Stephen R. Goldschmidt and Helen Davis

Technical Report No. CSL-TR-90-410

January 1990

This research has been supported by DARPA contract N00014-87-K-0828. Authors
also acknowledge support by fellowships from the Fannie and John Hertz Foundation.

Tango Introduction and Tutorial
Stephen R. Goldschmidt and Helen Davis
Technical Report: CSL-TR-90-410

January 1990

Computer Systems L aboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 943054055

Abstract

Tango is a software-based multiprocessor simulator that can generate traces of
synchronization events and data references. The system runs on a uniprocessor and provides
a simulated multiprocessor environment. The user code is augmented during compilation to
produce a compiled simulation system with optional logging. Tango offers flexible and
accurate tracing by allowing the user to incorporate various memory and Synchronization
models. Tango achieves high efficiency by running compiled user code, by focusing on
information that is of specific interest to multiprocessing studies, and by allowing the user to
select the most efficient memory simulation that is appropriate for a set of experiments.

Kev Words and Phrases: multiprocessors, parallel processing, simulation, trace

generation.

Copyright ® 1990

by
Stephen R. Goldschmidt and Helen Davis

Contents

1 Introduction

2 Simulation Approach

2.1 Functiona Simulation
2.2 Timing Simulation
2.3 LoggingEvents

3 Application Source Files

4 Compilation into a Tango Simulator

41 Tango Script o
4.2 Compilation Steps

5 Target Machine Models

5.1 Standard Machine Models - - - - - - - . o oL

5.2 User-Provided Machine Models

5.3 User-Provided Functions

5.3.1 Simulator Interface for def aul t
5.3.2 Simulator Interface for hl sync Modél (Mem_Sim)
5.3.3 Simulation Parameter Interface (aug-read-other)
5.3.4 Simulation Results Interface (aug.summary-other)
5.3.5Machine Model Interface (Mem_I s sue)
5.4 CPU Timing Parameter File (aug-init)

5.5 Memory and Synchronization Timing Parameters

6 Output File Formats
6.1 Synchronization Varible Listing

6. 2 Simulaton Summaries
6.3 Event Logs . -« oo

6.3.1 Event Record Format

Model (Mem_Latency)

............

............

11
1
12
12
13
13
13
14
14
15
16

17
17
17
18

632 Event Type Codes i

7 Sample makefile

8 Common Compilation and Execution Problems

81
8.2
83
8.4
85
8.6
8.7
8.8
89

8.10 Other Pitfalls

COMPIIEr EITOIS + « « « v v e e e e e e e e e e e e e e
COMPIlEr WaIMiNgGS -« « « « « v oo e e e e e e
Syntax EITOrs e
Undefined SymbolsinLink - - -« « oo oo
Semaphore Faillures at RUN-IME, « « « « « « v v e e e e e e
Shared Memory Failuresat Run-time - - - -+« o o o oo
“T00 Many LOCKS 0 TIaCE" « « « « « « v v e e e e e e e e
Output File DeVElOPSANECNO -« + « « « v o oo e e e e e e
SimU|aIi0nLoops Indefinitely -« - o o

9 Programs Associated with Tango

9.1 AUG Program
9.2 rmids Program

10 Acknowledgements

19

21

23
23
23
23
24
25
25
25
26
26
26

28
30
31
31
31
31

33

Chapter 1

| ntroduction

Simulation plays an important role in hardware and software studies by providing measurements needed to
evaluate proposed architectures and algorithms. This paper discribes the methodology and use of Tango, a
software-based simulation facility that supports a wide range of multiprocessing studies.

In multiprocessing studies, it is the parallel aspects of the computation that are of greatest interest. These
can be studied by examining the global operations, operations that are visible to more than one process. Private
or local operations, which are visible to a single process, are generally interesting only with respect to how
they affect the timing of global operations. In the shared-memory programming paradigm, global operations
are shared data references and synchronization operations; in the message-passing paradigm, they are message
sends and recieves. Because of their importance in many investigations, Tango alows the user to efficiently
focus on these global operations. In very detailed studies, it may be necessary to consider the impact of local
data operations on the performance of shared network and memory resources. For this reason, Tango can also
simulatelocal dataoperationsin detail.

The accuracy of resultsis an important issuein simulation. Accurately tracing parallel programsis difficult
because the execution path through the program often depends on the real-time behavior of the hardware system
(thisis generally not the case for serial programs). Tango uses CPU timing parameters and a memory system
simulator to model the real-time behavior of the target machine under study. The execution path taken during
simulation is determined by this machine model. Simple abstract machine models permit us to study program
requirements in a relatively machine-independent environment. More detailed and realistic machine models
are necessary in some hardware studies. Tango also provides allows usersto incorporate their own specialized
simulator for network, memory, and sychronization Systems. By alowing the user to vary CPU timing parameters
and incorporate appropriate memory models, Tango accurately supports the needs of awide range of studies.

Efficiency isalso an important issue in simulation, since interesting applications tend to be large and long-
running. The time and space required for event logging may be significant, so Tango allows the user to choose
between: logging alt data memory operations, logging global operations, logging synchronization operations, and
simulation without logging. (Tango does not provide instruction traces, since this would very time consuming,
and instruction references do not have asignificant impact in many multiprocessor invesigations.) Tango gains
much of its efficiency by running compilied user code to simulate the functional execution of the application
on the target machine. Timeis simulated by using simple constant delays for CPU operations, and using more
costly simulations for memory operations only when necessary. Tango's simplest, and most efficient, memory
simulation assumes uniform memory access times. Greater accuracy is provided by more detailed memory
simulations that can simulate non-uniform memories and contention. Thus, Tango achieves high efficiency by
running compiled user code, by focusing on information that is of specific interest to multiprocessing studies,
and by alowing the user to select the most efficient memory simulation that is adequate for a set of experiments.

When using Tango, applications should be written in the C programming language, and use m4 macros
developed at Argonne National Laboratory [3]. The macro package is a set of C macros that provide machine-
independent abstractions for shared memory alocation, process creation and control, communication, and syn-
chronization. Someinitial work has been done toward providing a similar Fortran Tango environment.

Our implementation is designed to run on uniprocessor under an operating system that provides support for
shared memory and semaphores. Currently Tango is running on the MIPS M/120 and the SGI 4D/240S under
System V, and on the DECstation 3100 under Ultrix. The number of application processes is limited by the

number of processes and semaphores the system allows and various table sizes, and is currently 256 in our
systems.

Chapter 2 outlines the simulation methods used by Tango. For amore detailed discussion of Tango's
implementation, see Reference [1]. Chapter 3 describes the application source code conventions and outlines
the Tango macro set. Chapter 4 explains how to compile the application into an executable Tango simulation.
The formats of parameter files are described in Sections 5.4 and 5.5, and a sample makef il e ispresentedin
Chapter 7. Chapter 6 explains how to run a simulation and describes the output files generated. Chapter 8 gives

advice on many pitfalls that are commonly encountered with Tango. Chapter 9 describes the Tango software
and related utilties.

Chapter 2

Simulation Approach

Tango simulates both the functional execution and also the progression of time of an application on some target

system. A simulation processis created for each application process, which Tango assumes is associated with
aunique processor on the target machine. The user application routines and libraries are augmented during the
compilation process with code to simulate time, manage the simulation, and log events. A Tango scheduler

multiplexes processes during the simulation in away that preserves the order of the events of interest.

2.1 Functional Simulation

We simulate the functional behavior of a process by compiling the associated application code and executing
it on available hardware. To emulate synchronization primitives that are not available on the real machine, the
software makes calls to macros or software libraries. Running compiled code in this manner is much more
efficient than using a software interpreter, where each target instruction would be emulated by executing many
instructions on the real machine. Beacuse we are not interested in the details of local compuatations, this
approach adequately mimics the functional behavior of the target system.

During the simulation, compiled application processes are multiplexed to maintain the correct ordering for
the operations being studied. A distributed scheduler is used: application processes are augmented to perform
rescheduling before each of the operations under study (i.e., either synchronization, global, or al data operations).
This ensures that only the process furthest behind in simulation time performs such an operation. Since, a process
performing local CPU operations is assumed not to affect any other process, this rescheduling maintains a correct

ordering of the operations under study.

2.2 Timing Simulation

Tango divorces the progression of time on the target machine from the passage of real time; the actual time needed
to perform the simulation does not affect the times recorded in traces. There is a software clock associated with
each process that maintains the simulated time for that process. A process's clock is updated in each program
basic block, at synchronization points, and optionally at shared datareferences or all datareferences. Whenever
the delay for an operation can be determined at compile time, instructions are simply inserted into the code to
increment the clock by the appropriate amount Sequences of local CPU computation, for example, have such
predictable delays. When the delay for an operation is not known at compile time, the clock update is done
by calling routines to perform the necessary calculation or simulation Shared memory latencies, for example,
may be known at compile time when a simple memory model is used, but in some studies they will have to be
determined by simulation at runtime.

The individual process clocks are not precisely synchronized, but are loosely synchronized so that the timing

of the operations of interest is preserved. There are four user options for maintaining synchronization among
clocks. The strictest, and most costly, option isto synchronize at local data references and global operations.
Thisis necessary for detailed cache simulations in which a cache miss on alocal reference can cause network
traffic that affects other processors in the system. Under a second option, the clocks are kept within one global
operation of each other, differing only by the duration of sequences of exclusively local computation. This option
is useful for studies that require precisely-ordered shared data references. For higher simulation efficiency, athird
option ensures only that clocks be within one synchronization event of each other. This option is useful when
studying synchronization, and also can be used to study shared memory reference patterns in some programming
models, or when trading off some accuracy for increased efficiency. A final alternative allows the user to specify
an approximate number of clicks' by which clocks may differ. This cannot be used to ensure that clocks are
synchronized any closer than a single basic block, and it is intended to be used in conjuction with one of the
first three options.

By permitting the user to select an appropriate degree of clock synchronization, Tango provides the accuracy
required for avariety of studieswithout doing more process switches than necessary.

2.3 Logging Events

When an application is run under Tango, an event log is optionally produced for each process. Each event in
thelog is atwelve-byte binary record, which includes the issuing process, the originating source code line, the
operation (a memory or synchronization event type), the associated data address, and atime stamp. The format
of theselog filesisdescribed in Section 6.3.

To achieve this, Tango synchronization macros have been modified to optionally log synchronization events,
such aswhen alock is acquired or released. In addition, each application can be automatically instrumented at
the assembly level to log data references. The user can disable logging for particular sections of code (either
statically or dynamically) by means of special macros in the source code. When logging is disabled statically,
the specified section will not be instrumented with logging code, and there will be no overhead associated
with logging for these sections of code. Where logging has not been turned off statically, code is inserted to
conditionally produce atrace log, depending on the run-tune logging status. In this case, since a check must be
made at run time, there is a small overhead associated with logging even when it is dynamically disabled.

For applications which consist of multiple sourcefiles, Tango provides a back-referencing feature to allow
log entries to refer back to a specific source file.

1a click is the smallest unit of time understood by ‘Tango

Chapter 3

Application Source Files

The application program should be written in the C programming language and augmented with special m4
macros for parallel constructs. The macro set originated at Argonne National Labs, and the original standard
is described in Reference[3). Tango uses a modified macro set that has extensions to support synchronization
tracing and target machine simulation.

C source code files (with macros embedded) should have the suffix “.C” on their names; C header files (with
macros embedded) should have the suffix “.H”.

The following macros implement the Tango environment:

MAIN_ENV This macro defines the global symbols, variables, and functions that make up the Tango environment.
This macro should appear at the beginning of the main source file for the application. (Every application
should contain exactly instance of this macro.)

EXTERN_ENV Thismacro declaresthe symbols, variables, and functions that make up the Tango environment.
UnlikeMAIN_ENV, however, this macro declaresvariableswi t h the extern qualifier to indicate that the
actua definition appears in another file. This macro should appear at the beginning of each source file
except the main source file.

MAIN_INITENV (,share-mem) This macro initializes the Tango environment. It should be the first executable
statement of the application (so that the environment gets initialized as soon as possible). The first
argument is not used The optional second argument share-mem may be used to alter the number of bytes
of shared memory that are available to Tango and the application.

CLOCK (variable) This macro sets the specified variable to the current simulation time.

MAIN_END This macro terminates the Tango environment. It should be the last executable statement of the
procedure mai n.

Thefollowing macrosimplement shared memory and process-creation primitives:

CREATE (function-name) This macro creates and initializes a new Tango process and causes it to call the
function function-name. The called function should have no arguments, The child process gets a copy of
all of the parent process's code and data It isagood ideato flush al output file buffers before invoking
this mcaro. When the called function returns, the child process will terminate. (See also Section 8.8.)

GMALLOC (amount) and G.MALLOCF (amount) These macros allocate shared memory. Each returns a point-
er to amount bytes of unused shared memory on the heap. The G MALLOC macro is terminated by a
semicolon, so it cannot be used in a C expression; otherwise, the two macros are identical.

G FREE (pointer) Thismacro relases a block of shared memory that was acquired with G MALLOC.

The following macrosimplement synchronization primitives:

LOCKDEC (name) Thismacro declares alock variable with the specified name. Locks should only be declared
in shared memory.

LOCKI NI T (name) This macro initializes the lock variable with the specified name. Locks are initially un-
locked

LOCK (name) Thismacro acquires alock variable with the specified name. Locks can only be acquired by one
process at atime. If the desired lock is busy, the process waits until it is released.

UNLOCK (name) This macro is used to release alock variable with the specified name.

ALOCKDEC (name, number) This macro declares an array of number lock variables with the specified name.
Lock arrays should only be declared in shared memory.

ALOCKI NI T (name, number) This macro initializesan array of number lock variableswith thespecified name.
All locksinthearray areinitially unlocked.

ALOCK (name, i) This macro acquires the ith lock in alock array with the specified name. Locks can only be
acquired by one process at atime. If the desired lock is unavailable, the process waits until it is released

AULOCK (name,i) This macro releases the ith lock in alock array with the specified name.

BARDEC (name) This macro declares a barrier with the specified name. Barriers should only be declared in
shared memory.

BARI NI T (name) This macro initializes a named barrier.

BARRI ER (name, number) Thismacro causes the processto enter the barrier specified by name. Each process
entering a barrier must wait until the specified number of processes have entered, at which time all the
processes that have reached the barrier are released

GSDEC (name) This macro declares a self-scheduled loop subscript with the specified name. The subscript
should be declared in shared memory.

GSI NI T (name) This macro initializes a self-scheduled loop subscript with the specified name.

GETSUB (name, variable, subscripts, processes) This macro causes the process to schedule itself for the next
available subscript of the loop specified by name. The total numbers of subscripts and processes are
specified in the invocation of the macro. If no more subscripts are available, processes wait for the
completion of al outstanding subscripts before proceeding, and the loop subscript is reinitialized.

WAIT_FOR_END (num) This macro causesthe processto wait for the completion of num other processes before
proceeding.

PAUSEDEC (name, number) This macro declares an array of number event flags with the specified name. If the
second argument is omitted, asingle flag is declared. Event flags should be declared in shared memory.

PAUSEI NI T (name, number) This macro initializes the array of number event flags with the specified name.
If the second argument is omitted, asingle flag isinitialized.

SETPAUSE (name,i) This macro setstheith flag in the named array of event flags. All processes waiting for
that flag to be set are released. If the second argument is omitted, the first flag is set.

CLEARPAUSE (name, i) This macro resets the ith flag in the named array of event flags. If the second argument
isomitted, the first flag is reset.

WAl TPAUSE (name, i) This macro causes the process to check the ith flag in the named array of event flags.
If the flag is not set, the process waits on the flag until it is set. If the second argument is omitted, the
first flag is used.

EVENT (name,i) This macro causes the process to check the ith flag in the named array of event flags. If the
flag is set, the process waits on the flag until it is reset. Once the flag is reset, the process sets the flag.
If the second argument is omitted, thefirst flag is used.

PAUSE (name,i) This macro causes the process to check the ith flag in the named array of event flags. If the
flag is reset, the process waits on the flag until it is set. Once the flag is set, the process resets the flag.
If the second argument is omitted, the first flag is used.

The following macros implement message-passing primitives:

SRDEC (name , number) This macro declares an array of number send-receive flags with the specified name.
If the second argument is omitted, a single flag is declared. Event flags and associated message buffers
should be declared in shared memory.

SRINI T (name,number) Thismacroinitializes an array of number send-receive flags with the specified name.

SEND (name, code, number) This macro waits for the specified send-receiveflag to be reset, executes the
supplied user code to copy a message into a buffer, and sets the flag. with the specified name.

RECEI VE (name, code, number) This macro waits for the Speci f i ed send-receiveflag to be set, executes the

supplied user code to copy a message from a buffer, and resets the flag. with the specified name.
Here are the Tango extentionsfor simulation control:

ST.LOG (type, address) towritean event record with the specified type and address to the processor’slog file
(if logging is enabled) and pass the event to the timing simulator (if enabled).

AUGDELAY (n) todeay the current processor for n clicks.

AUG.ON and Aug, oFr to statically mark sections of code that are not to be augmented in any way.

TRACE- ON and TRACE- oFF to statically mark sections of code that are not to generate any log records.

REF_TRACE.ON and REF.TRACE.OFF to statically mark sections of code that are not to generate any data
reference log records. (Synchronization event logging is unaffected.)

DYN_TRACE_ON and DyN- TRACE- oFF to dynamically start and stop generation of log records.

DYN_REF.TRACE.ON and DYN.REF.TRACE.OFF todynamically start and stop generation of data reference
log records. (Synchronization event logging is unaffected)

DYN_SIMON and DYN_.SIMOFF to dynamicaly start and stop callsto the memory model simulator.

Chapter 4

Compilation into a Tango Simulator

This chapter describes how to compile application code into a Tango simulation. There are five stepsin
compiling an application: macro expansion, compilation, augmentation, assembly, and linkage. This differs
from the normal compilation process in several ways. Under Tango, the macro expansion uses a modified macro
library, the augmentation step has been added, and the link includes a specia Tango run-timelibrary.

In addition to the Tango macro library and run-time library, two parameter files are used as input to the
simulation process: aug-init (read during the augmentation step) andtango-init (readatruntime). These
files are used to specify timing and machine model parameters (see Sections 5.4 and 5.5). One may use the
default files or substitute customized parameter files.

A csh script, tango, has been used to simplify the process of compiling a simulation. Given alist of file
names, the script can perform the steps necessary to produce an executable simulation. When making changes
to the application, the script can be invoked from the make utility to perform each compilation step only when
itis required. Chapter 7 showsasample makefile for thispurpose.

In the following sections, the tango script options are defined, and then the compilation steps are described
in detail.

4.1 Tango Script

The tango script takes alist of file names and options, which it reads from left to right. All options begin with
adash (-).

Here are the most commonly-used options:

-s n Specifies that n steps of the compilation process be performed on each file (See Section 4.2). The default
isto perform asingle compilation step.

-o filename Specifies that the name of the final executable file should filename. The default nameisa. out.

-M machineModel Specifies the desired machine model, which determines the Tango object library and macro
library to be used. Section 5.1 describes the currently defined machines models. One may specify auser-
defined machine model using this option in conjunctionwi th the -tmac and-tl1ib options, described
in Section 5.2.

-trace ops Specifies which events should be logged (see Sections 2.3 and 6.3). ops should be one of the
following:

A Log all datareferencesand synchronization operations.
G Log all global operations, that is, shared data references and synchronization operations.

SLog synchronization operationsonly.

-or der ops Specifies that the order of operations of type ops shall be maintained to agree with that of the
simulated target machine. This results in rescheduling each process at every operation of type ops. The
operations simulated by the machine simulator are always kept ordered by the simulation code.

The value of ops may be as follows:

A Preserve the order of all data references and synchronization operations.

D n Preserve the order of synchronization operations exactly, and also preserve the order of other oper-
ationsto within approximately n clicks. (After each n clicks, rescheduling is done at the end of the
current basic block).

G Preserve the order of dl global operations, that is, shared data references and synchronization operations.

S Preserve the order of synchronization operations only. This is the default.
Here are some less-commonly used tango script options:
-aug *“options” The string Of options, options, is passed to any invocation to the AUG program during the

augmentation phase of the compilation process.

-augCall s Indicates that subroutine calls are modified so that augmented versions of the system run-time
routineswill be called in place of the normal ones. If this option is omitted, each run-time routine will be
heated as a singleinstruction and shared data references within runtime routineswill not be instrumented,

-CC "options™ The string of options, options, is passed to each invocation of the C compiler cc. The- 1
option (below) should be used to specify object libraries.

-count Ref s Generate code to count data references and clicks. The totals for each process are writeen to
the summary files (see Section 6.2). The default isto count clicks only.

-1 m™x™ Thisoption causes the loader 1d to search for undefined symbolsin the object library 1ibx. a. Libraries
specified in thisfashion are searched before Tango run-timelibraries.

-v Run tango and augmentation in verbose mode, informing the user of progress. The default isto run quietly.

Additional options, used to define new machine models, are described in Section 5.2.

Any word in the command line that is not recognized as an option is assumed to be a file name. When a
file name is encountered, the script performs compilation steps on that file using the option settings read up to
that point.

The suffix of the file name (the portion after the dot) is used to determine the type of file and thus the current
step of the compilation process. Files with the extention “ . ¢ are assumed to be C code with unexpanded
macros. The suffix “. - indicates expanded C code. “. s” indicates norma MIPS assembly code, “. S’
indicates augmented assembly code, “. o” indicates object code, and“.a” i ndi cat es an obj ect library.

Thus, for example, the command
tango main.C

performs macro expansion on the unexpanded source file main. C t0 produce an expanded source file main.c
using all the default options.

tango -s 5 -0 mysimmain.C
performs the complete compilation process on the sametile, producing an execuatblenys im.
tango -s 5 -o nysim-M hlsync -trace S main.C

performs a similar compilation process, but using the hl sync machine model and producing an executable that
will generatealog of all synchronization activity.

4.2 Compilation Steps

As mentioned earlier, Tango compilation consists of five steps. The first step is to expand the m4 macros
which provide machine and synchronization abstractions. Normally, the user specifies the macro library in-
directly, by specifying the target machine model with the tango script’'s - M option. In this case, the macro
library nameissimply ¢ . n# . machine-model. The standard macro libraries are maintained in the directory
/usr/local/lib/tango. Alternately, the user may specify adifferent macro library directory to thetango
scriptwith the -tnmac option (See Section 5.2).

If the script is used, the awk program is also invoked during the macro expansion phase to elimiate blank
lines. Thisisdone because the expansion tends to produce many blank lines. Since the back-referencing feature
of Tango isonly effective on the first 2047 lines of each expanded source tie, it is helpful to reduce the number
of lines as much as possible. On some machines, the indent program may also be used to prettify the code.

The second compilation step is to compile the C code to produce a normal MIPS assembler file with the
suffix “ . s”. Inthisstep, the C pi-e-processor symhol AuG shouldbe defined usi ng t he ~DAUG option to thecc
command. This symbol indicates that the code will be augmented (in the next step). The tango script defines
this symbol automatically. In addition, a number of compilation options are specified in this step by definining
other cpp symbols.

Thethird step in the Tango compilation process is to augment the assembler code with the AUG program
(see Section 9.1) to produce a “. ™ file. This step inserts assembly code to update the virtual time for each
process, tocal | the memory system simulator, and to output data reference logging information. Theaug-init
(Section 5.4) file specifies to AUG the delay associated with each local operation. If augmented libraries are
to be used, the augmented code may contain calls to unaugmented function, so the augmented code is merged
with the plain assembler code to producethe“. S" file.

The fourth step isto assemble the “. s" file into an object module using as, the MIPS assembler.

When al the modules of the application have been compiled into“. o” files, the fifth and final stepisto link
them together with the required object libraries(“.a" files), to produce the executable for the simulation. The
standard Tango libraries provide miscellaneous code that is part of the Tango environment, such as the routine
that allocates shared memory.

When using the tango script, the correct library for the specified machine modd is ordinarily included
automatically on the basis of the machine model selected with the - M option. In this case, the library name
issmplylibmachine-model . a. The standard objectl i braries are mantainedin t he directory/usz / | ocal -
/1ib/tango. Alternately, theuser may speci fy adifferent object library directory tothescriptwith the -tlib
option (see Section 5.2).

If augmented libraries are to be used, then the specia versions of the standard run-time libraries (such as
libc. a andlibm a) mustbeincluded inthelink The names of the augmented libraries are formed by
inserting a string beginning with " aug” before the extention of the original library name. ‘The characters in this
string indicate t he augmentation options that apply to the library. Thus, libcaug. a is aversonof libc. a
which has been augmented for timing onl y, 1ibcaugl sf a. a hasbeeninstrumented for timing and tracing,
and so on.

Currently, augmented libraries are available only on the Mips M/120, and they are located in the directory
/usr/local/lib. Thetango script does not automatically add these to the link, so they must be specified
with the -1 option.

10

Chapter 5

Target Machine Models

This section describes standard Tango machine models. It also explains how to customize a Tango simulation
by modifying the timing parameter files or by writing a new machine model simulation.

5.1 Standard Machine Models

Several standard machine modelsare currently defined. Some (such as defaul t) are abstract models that
may be useful in algorithm studies. Some(suchas DASH provide detailed simulation for specific architectures.
Othersareinterfaces for those who would like to integrate their own memory system simulatorsinto the Tango
envrionment.

Once the machine model is chosen, parameter files allow the user to specify timing characteristics for
machinemodels. Thereare two standard parameter files. The aug-init file, described in Section5.4,isread
at compiletimeandspeci fies CPUtim ng parameters;thetango.init file, describedin Section 5.5, isread
at run time and specifies timing characteristics of the memory and synchronization systems.

The tango script =M option is used to select one of the standard machine models. When a machine model
provides an interface for auser memory system simulator, the user should also usethe-sim option to specify
the type of simulator provided (see Section 5.2).

- M machineModel This option selects the machine model for memory system timing simulations and synchro-
nization abstractions. Current standard machine modelsinclude:

defaul t Thisisthe default model. Latenciesfor synchronization operations are calculated by the user-
provided function,Mem_Lat ency (see Section5.3). If no such function isdefined, constant latencies
for synchronizationoper at i ons are readfromthetango-init file, as describedinSection5.5.
If the-sim TI ME G option is specified with this machine model, the extra latencies for a shared
references (the numbers of clicks needed in excess of the times taken by the equivaent local refer-
ences) ar e determinedi n asi nilar manner (by calling Mem Latency Of readi ngt het ango-i nit
file). Otherwise shared references do not take any time in excess of that required for loca references.

cachedLocks Shared memory and synchronization operation latenciesar e determinedas in defaul t.
Synchronization operations generate log records that correspond to the network traffic resulting in a
system where locks are implemented as shared data and are cached with an invalidation protocol.
(Blocked lock operationsare re-issued after unlocks.)

hl sync The memory simulator, Mem_Sim, iscalled at each shared data reference (see Section 5.3).
Itisalso called with “high-level” synchronization operations, which are those implemented by the
synchronization macros. When data reference logging is active, each reference generates atwo log
records, one for the time of issue and one for the time when the request was satisfied.

pasH References and timing arc as in the proposed DASH architecture. [2].

1

5.2 User-Provided Machine Models

One can create a new machine model by substituting a custom macro file and creating a new Tango run-time
library. Thetango.init parameter file may aso be extended to include the specification of new timing
parametersfor user-defined machine models (see Section 5.5).

The following tango options are used to customize a simulation:

-s im rype ups Specifies the type of memory system simulator. If rype is TI ME, the simulator handles timing
only and data values are managed by the application code; thi s isthedefault. If rypei s paTA, the
simulator receives acopy of the datafor each applicable write and is allowed to modify the data returned
by each applicable read in addition to updating the clock.

The ops word specifies at the operations at which the simulator will be called:

A at dl data references and synchronization operations.
G at al global operations, that is, shared data references and synchronization operations.
Sat synchronization operations only.

- M machineModel Specifies the machine model name, which is used to construct library and macro file
names. The Tango library file is named 1ibmachineModel . a, and thethe Tango macro file iS named
c . m .machineModel. The directoriesfor thesefilesare determined by the-t 1ib and-tmac options.

-t lib tangoLibrary Search thedirectory tangoLibraryfor the tango object library specified by the- M option.
Thedefaulti s /usr/local/lib/tango.

-t mac macroDirectory Search the directory macroDirectory for the tango macro library specified by the - M
option.Thedefaultis /usr/local/lib/tango.

-p Tumns on Tango profiling. Prints the (real) time spent executing memory simulations, context switches
initiated by the tango scheduler, and the augmented application code.

Implementation code for the standard tango macros and librariesis maintained in the directory /us ¢ / -
local/src/tango/1lib. The common source filesar e inthesubdirectory /usr/local/src/tango/-
lib/src. There is al so asubdirectory/usr/local/src/tango/lib/model for eachmachinemodel
containing the library routines and macro files unique to that model. It is suggested that new user machine
model sbe constructed similarly.

Notice that, since user libraries are linked in before Tango libraries, a user may redefine subsets of the
standard Tango library functions using the - 1 option.

5.3 User-Provided Functions

This section describes Tango functions that may be rewritten by the user to provide customized timing or
machine models.

Most of the functions which provide customized timing and memory simulation are specific to a particular
Tango machine model. For thedef aul t model, theinterfaceconsi st s of thef uncti ons Mem.Latency-Init
and Mem Latency. Forthehl sync model, thei nt er f ace consists Of Mem Sim Init, Mem Sim, and
Mem Sim End.

In addition, Tango supplies hooks for passing input parameters into a simulation and writing results to the
summary files. These include the functions aug.read.other andaug-summary.-other.

Thefunctions used to provide new machinemodelsincludeMem_I s sue, Mem.Init | Mem Sync, Mem.-
Wai t, andMem.End.

12

53.1 Simulator Interface for default Mode (Menlat ency)

MenLat ency isused by the defaul t machine model to allow the user to specify the latency of shared data
references and synchronization operations as a simple function. It does not alow the simulator to return to
Tango with any outstanding memory requests.

int Mem_Latency (pid, op, addr, data)

int pid, /* processor identification */

int op; /* operation */

char *addr; /* operation address x*/

char *data; /* operation data, used when appropriate */

If MenLat ency is used, afunctionMem Latency-Init should be defined to initalize any data needed
by MenLat ency.

voi d Mem Latency Init ()

5.3.2 Simulator Interface for hl sync Mode (Mem_Sim)

Mem_Sim isused by the hl sync machine model to allow the user to provide a detailed simulation of the
memory and syncrhonization system. This machine model allows the simulator to have uncompleted memory
requestsin progress when it returns control to Tango.

int Mem Sim (issueQ, t issue, t max, t_mem doneQ)
sc_blk **issuedQ; /* |ist-of memory ops to issue */

int t_issue; /* time of issue for menory ops */

int t_max; /* upper bound for sinulation time */
int *t_mem /* return time sinulated up to */
sc_blk *doneQ; /* return list of ops exiting nenory */

The simulator should simulate until simulation time t .max is reached or an operation exits the memory
system, whichever comes first. The simulator setst mem to the new simulation time, which indicates that the
simulator is ready to accept operations that would occur on the target machine at that time. If the simulation
timeexceedsti s sue, the listof operations,i s sueQ, should be entered into the memory system at that time
(andissueQ sett o NULL). Ifthereturn value of doneQ is non-NULL, thendoneQ is aistofoperationsthat
have completed, and t nem isthe time when they compl eted.

(See the file /user/include/tango/tangodefs. h for a more complete description of the data struc-
tures used by theMem_Sim function.)

If the Mem_Sim interfaceis used, the functionSMem.Sim.Init andMem.Sim.End should be definedto
initalize any data needed by MenLat ency and clean up the simulator state when the application is finished.

voi d Mem Sim Init ()
void Mem Sim End ()

5.3.3 Simulation Parameter Interface (aug-r ead- ot her)

The usercan wite code tohandle otherwise undefined t angoi nit tags (Section 5.5) by rewriting this
flinction.

voi d aug-read-other (tag, fp, fspec)
char tag[], fspec[];
FILE *fp;

13

This function is called during the initidization of the Tango run-time envrionment whenever an unrecognized
tag is encountered in the tango_init file. It takes atag word, a pointer to an open file, and the tile name.
Based on the identity of the tag word, the user function should read the arguments from the file and initialize
the simulator accordingly.

The userversionof aug- r ead- ot her may makeuse of the Tango functions aug-read.-.word andaug.-
read-num toread the arguments of the user-defined tags:

int aug read word (buf, len, fp, fspec)
char buf[], fspec[]:;
int len;
FILE *fp;

int aug _read num (fp, fspec)
FILE *fp;
char fspec[];

aug-read.word takesabuffer with aspecified length in bytes. It reads aword (delimited by whitespace)
into the buffer and returns the length of the word. If the end of the line is read, it returns zero. If the end of
the file isencountered, it returns -1.

aug-read.num readsaword and convertsit to anumber. The resulting integer is returned.

5.3.4 Simulation Results Interface (aug- summary- ot her)

This function is called at the completion of each Tango process. It may be used to print out simulation statistics.
It is passed the name and file structure for the process's summary file (Section 6.2). User output to the summary
filewill appear after the normal Tango statistics.

void aug_sumary other (fname, sum fp)
char fname[];
FI LE *sum_ £fp;

5.3.5 MachineModd Interface(Mem-I s sue)

This interface supplies hooks for creating new machine models. Thisinterfaceistied directly to Tango, unlike
the interfaces provided by the standard machine models.

Thefunctionsthat make up thisinterfaceincludeinclude Mem_Issue,Mem-Init, Mem_Sync, Mem Wait,
andMem_End. Also, the aug- sunmary-ot her andaug-read-other functions are availableatthisevel.

Mem I s sue iscalled by Tango at every event where simulation is required. The -s im option in the
tango script may be used to determine which events are simulated and whether the simulator handles data
values.Mem.Init is called toinitialize the memorysystem andMem.End i s cal | ed whentheapplication
completes.

Mem Init ()

Mem Issue (vtime, type, address)
unsi gned int vtime;
unsi gned int type;
unsi gned int address;

Mem_End ()

14

The datavaue, if any, is passed between Tango and the memory system in an eight-byte buffer called
aug-data.

Mem.Wait should causethe simulator to process the next outstanding memory request. Mem_Sync should
cause the simulator to schedule other processes until the memory system and all other application processes
have simulated beyond time on the current process clock.

Mem Wait ();
Mem_Sync ();

5.4 CPU Timing Parameter File (aug-init)

The parameter fileaug-init isatext file which defines the type and delay associated (for simulation purposes)
with local operations. Fixed delays may be specified for each assembler mnemonic on the machine being used
to run the simulation. This file is read during the augmentation phase of the compilation. For each basic block
in the application, augmentation adds code to advance the local clock by the sum of the amounts associated the
assembler operationsin that block. The progression of time on the target machine is based on these delays, so
they should approximate the timing of the target machine as closely as possible.

Thedefault aug-init file is located in the directory /usr/local/lib/tango. To specify a different
file, theaua N T environment variable may be set to the full pathname of the desired parameter file. Alternately,
the pathname may be specified with the - 1 option of the AUG program.

Each line describes a single mnemonic, using the following format:
<menoni ¢> <type> <clicks>

For instance:
1.d DLOAD 1

defines the mnemonic 1. d to be a double-word load instruction which takes one click.

Thevaid mnemonic typesare:

o data referencet ypes definedin reftypes. h (BLOAD, HLOAD, LOAD, DLOAD, BSTORE, HSTOCRE,
STORE, and DSTORE)

 JUMP : for unconditional branches

o cALL : for branches that return

o FORK: for conditiona branches

o o0 : forinstructions that do not branch or reference memory
o DATA: for data-generating mnemonics

o Lager : for mnemonics that generate branch targets

o s« . for other mnemonics that do not generate code or data

o ERR for mnemonics that cannot be processed by AUG

15

5.5 Memory and Synchronization Timing Parameters

Machine models may accept ti mi ng parameters for the memory and synchronization system; the file t ango- -
init isread at runtime to determine such parameters.

If theenvironment variable TRACEDI R i s defined, at angoi nit file i n that directory will be used.
Otherwise, the tangoinit file is assumedtobe in the currentdirectory.If the tango-init file isnot
found, awarning is printed, and the timing parameters are left at their default val ues.

Thelinesin thisfile have the following format:
<t ag> <args>

Upper- and lower-case are considered to be distinct within thisfile.
The default memory model uses the scost tag to specify the (fixed) latency associated with synchro-
nization events and the additional latency for shared references. For instance, the lines:

scost LOCK_ENTER 3
scost DLOAD 6

indicates that there is a three-click latency to enter a LoCk macro and six extra clicks are needed for shared
double-word loads. Latenciesthat are not specified are zero by defaullt.

The user can wite acustomversionofaug-read-other to handle othert angoi nit tags. See Sec-
tion 5.3.3.

16

Chapter 6

Output File Formats

When the augmented application is executed, the simulation will write output files to the directory specified by
the environment variable TRaCEDIR. If thisenvironment variable is not defined, the current directory is used.
Note that each user is allowed to run only one simulation at atime on a given machine.

The simulationwi | | create afile namedsyncvarTbl. Thisfile containsinformation about each synchro-
nization variable used by the application. See Section 6.1 for adescription of thistile.

The simulation also writes a summary file for each processor, wi t h t he namesunmarynnn. dat where nnn
is the processor number (starting with 000). This file contains the virtual time when each process completed
and a dump of the data reference counters. In addition, custom messages may be added to this file using the
function aug-summary.ot her described in Section 5.3.4. See Section 6.2 for a description of thisfile.

I n addition, if logging was enabledwith the tango script-trace option, the simulation will write an event
log file for each processor. Thesetiesare namedt racennn . dat, wherennnisthe processor number. The
format of the log fileis described in Section 6.3.

6.1 Synchronization Varible Listing

The syncvarTbl file containsinformation about each synchronization variablein the application, including
its name, address, and type. The linesin thisfile have the format:

<variabl e index> <hex_address> <group> <type> <neasure> <plot> <nane>
andtypically look likethis:
11 1021d75c¢ 1000 1000 1 1 gm->idlock

In this example, the 1 Ith synchronization variable in the program was at the hexadecimal address1021d75¢
andwas namedgm->idlock.

6.2 Simulation Summaries

Each summary file contains the time when the process completed and a dump of the data reference counters. If
the -count Ref s option was not specified, reference counters will all be zero.

The summary file has the format:

17

Summary (process <nunber>):
Fi nal clock reading: <nunber >
byt e hal f word doubl e

reads <nunber> <nunber> <nunber> <nunber>
wites <nunber> <nunber> <nunber> <nunber>

Here is a sample summary file:

Sumary (process 0):

Fi nal clock reading: 16673002

byte hal f word double
reads 106 0 7504595 6
wites 0 0 1088337 8

Users may add their own output to this file as described in Section 5.3.4.

6.3 Event Logs

When tracing is enabled, the simulation produces one event log file for each process. After theruniscompleted,
the tmerge program (Section 9.4) can be used to merge the log files into a single file with the eventsin
chronological order.

The teat filter converts log files into a human-readable form, as described in Section 9.5. The tfilt filter can
be used to find selected events in alog file, as described in Section 9.3.

63.1 Event Record Format

The event logs are made up of 12-byte binary records. Each record represents a synchronization event or data
reference.

Herei s adefinitionof alogrecord as aCstruct, takenfromtheheader filetrfile.h in /usr-
/i ncl ude/ tango:

typedef struct ref {

int type; /* including source |ocation and processor nunber */
int time,; /* simulation tine of the event */
int address; /* operation address, if applicable */

} ref;

Hereisabyte-by-byte description (using big-endian conventions):

« BytesO-l:
If adatareference, thisfield isacode that indicates which line of the source code generated the reference.
Thisfield isnot used for synchronization events.

. Byte2:
Processor number, an 8-bit binary integer. In the raw event log files, thisis set to zero, but when the log
is processed by tmerge this field is set to the processor number where the event happened.

. Byte3:
The type of event, an 8-bit binary code. Seethelist in Section 6.3.2.

18

« Bytes4-7.
The click (simulated time) in which the event happened. It is a 32-hit integer.

« Bytes8-11:
The 32-hit virtual address of the shared data location or synchronization variable.

The filter tcat converts event log files into a human-readable form (see Section 9.5). The filter tfilt can be
used to find selected eventsin alog file (see Section 9.3).

6.3.2 Event Type Codes

The type codes for synchronization events are defined in the header file synct ypes. h. The type codes for data
references are defined in the header filer ef types. h. Both of these header files are found in the directory
/usr/include/tango. Event codesfrom 32 to 63 arereserved for user-defined events, which may be
generated using thesT.LOG macro.

Thetype codes include:

« BLOAD(0) abyteload

« HLOAD(1) a2-byteload

« LOAD(2) a4-byte load

« DLOAD(3) an 8-byte load

« BSTORE(8) abyte store

« HSTORE(9) a2-byte store

« STORE(10) a4-byte store

o DSTORE(11) an 8-byte store

« BLOAD+1 6thru DSTORE+16(16-27) like (O-11) but used with the memory system simulator to indicate
the completion of the memory reference, whereas 0-11 indicate the initiation of the reference.

+ ST_THREAD_DONE(70) a [PrOCesS terminates

« ST-THREAD_START(71) aprocess starts execution

« ST_LOCK-ENTER(72) a process attemptsto acquire alock

« ST_-LOCK.EXIT(73) aprocessacquiresalock

« ST_.UNLOCK(74) aprocess releasesalock

« ST_BAR.ENTER(75) aprocess beginswaiting at abarrier

« ST-BAR_EXIT(77) aprocessl|eavesabarrier

« ST_BAR_EXI T_LAST(78) aspecial case of (77) for the last process to leave the barrier
« ST.GS.ENTER(79) aprocess requests an index for a self-scheduled loop

« ST_GS_EXIT(80) aprocessacquiresanindex for a self-scheduled loop

« ST_.GS_EXI T-LAST(81) aspecia case of (80) for the process that acquires the last available index
« ST.EVENT.ENTER(94) aprocessentersaEVENT, SETPAUSE, or CLEARPAUSE macro
o ST-EVENT-EXI T(% aprocess|eavesa EVENT, SETPAUSE, or CLEARPAUSE macro

19

o ST- PAUSE- ENTER(% aprocessenters a PAUSE, WAl TPAUSE macro

+ ST_-PAUSE_EXIT(97) a process leavesaPAUSE or WAl TPAUSE macro
ST_SEND.ENTER(98) aprocessentersaSEND macro

+ ST_SEND.EXIT(99) a process leavesaSEND macro

¢ ST_RECEIVE_ENTER(100) a process enters aRECElI VE macro

« ST_RECEIVE.EXIT(101) aprocessleavesaRECEl VE macro

« ST_ALOCK_ENTER(104) a process attemptsto acquire alock from alock array

« ST.ALOCK.EXIT(105) aprocessacquiresalock from alock array

« ST_-AULOCK(106) aprocess releases alock from alock array

+ ST-WAIT.FOR(107) during aWAIT_FOR.END Macro, another application process terminated

* ST_GMALLOC(108) aprocess requestsa block of shared memory

« ST_.GFREE(109) aprocess releases ablock of shared memory

Other codes may appear if the application uses undocumented synchronization primitives or the sST-LoG

macro (see Section 3). In addition, new codes may be added from time to time; all event log post-processors
should degrade gracefully when undefined codes are encountered.

20

Chapter 7

Samplemakefile

In this example thesource code isin two files: main. C andlinear. C Bothof these depend on the header
file 1struct.H, whichcontains m4 macros. Various compilation options are shown as comments.

#!/ bi n/ make -f
Sanpl e makefile for Tango.
TARCGET = ../linear

Trace global operations; order synchronization only.
machi ne nodel with cached |ocks and nonuniform menory accesses

include object library libdir.a
#TFLAGS = -trace G -1 dir -M cachedLocks -sim TIME G

custom user nachi ne nodel and nenory data simnulator provided.
calls full data nmenmory simulator at every nenory reference.
#TFLAGS = -M encore -sim DATA A -tlib ~davis/lib -tnmac ~davis/macs

order sync ops and shared refs; uniform menory machi ne
TFLAGS = -order G

.SUFFIXES:
.SUFFIXES: .0 .S .s .¢c .C .h .H
; S (TANGO) -s 1 $*.
:; $(TANGO) -s 1 $*.

:; S$(TANGO) -s 2 $*.
; $(TANGO) -s 1 S$*,
: $ (TANGD) -3 2 $*.
; $(TANGO) =-s 3 $*.
7 S(TANGD -s 1 $*.
:$ (TANGD) -s 2 $* .
; $(TANGO) -s 3 $*.
;. S (TANGO) ~s 4 $*.
; $(TANGO) -s 1 $*.

TO0OO0O000008®nov
TOoOw200 W 0w
TOoOo0Oonooownwou®

TANGO = tango $(TFLAGS)
here begins the application-specific part of the makefile

OBJS = lu.o matio.o

21

i nstall
$ (TANGO)

$ (TARGET) : $ (OBJS)
-o $(TARGET) $(OBJS)

lu.s matio.s: matrix.h

22

Chapter 8

Common Compilation and Execution
Problems

This section covers problems you may encounter in compiling and running code in the Tango environment or
in porting to System V from the Encore or other system.

8.1 Compiler Errors

The header filestrings. h doesnot exist under System V. Many programs use this file to declare string
functions suchas strcpy andstrcat. In this case, youwillhave toaddthedeclarationsfort.hesefunctions
to the code.

8.2 Compiler Warnings

The MIPS C preprocessor (cpp) Will warn you when you re-#def i ne acpp macro. In particular, NuLL
i s defined in the headerfilestdio . h andM.p | is definedin math. h under System Vv, but these are often
redefined by applications written on other systems. If this bothersyou, put #i f def' s around the extradefinition.

Also, you maygetawani ngi f t he applicationuses t he valuer et ur ned bysprint £, since the return value
is anint in SystemV anda(char *) pointer in other systems.

8.3 Syntax Errors

m4 macroes must not have any white space between the macro name and the arguments. In the following
example, there i s a blank between the MAI N- 1 Nl TENV macro and its arguments. Therefore, the arguments are
treated as normal C code, causing a syntax error during compilation.

main (0 {
MAI N- I NI TENV (25,10000)
printf ("Hello, world!\n");
MAI N_END

Normally, Tango macros expand into C statements, that is, they do not expect the user to place a semicolon

23

after the macro. In the following code, there is an extrasemicolon after the CLOCK macro, so the compiler
cannot associate the el se clausewith thei f, causing a syntax error.

sub (i) {
if (i ==0)
CLOCK(i)
el se
i =0

The G.MaLLOC macro has a semicolon at the end This means that, like the other m4 macros, its return
value cannot be used in an expression. Thereis a specia version of G.MaLLoc caled G MALLOC.F which
can be used as a function. (G MALLOC.F is the only Tango macro that needs a semicolon; all the others are

complete statements.)
Thus:

if ((glob = G_MALLOC(10)) == 0) {
should berewritten as:

glob = G_MALLOC(10)
if (glob == 0) {

or:

if ((glob = G_MALLOC F(10)) == 0) {

8.4 Undefined Symbols in Link

If there are undefined m4 macros in your program, m4 and cc may not detect the error, treating the macro asa
cal to an (undefined) external function.

Some run-time library routines that are available on Ultrix systems do not exist under System V. Usually
there is another routine (often with a different argument list or result type) that can be used to achieve the same
effect. Compare the man pages for details For instance,

1. for bcopyusenencpy
. for bzero use memset

. for srandonuse srand

2

3

4. forrandonuse rand or Drand48 and see also Section 8.10.
5

. forindex use strchr

Sinmilarly, thetimer_init functionisEncore-specific; usethem4 CLOCK macro instead.

Y ou might also get this error if you need an augmented object library in the link. For instance, if the symbol
print f_aug isundefined, then the object library I i bcaug. a is neededinthelink.

24

8.5 Semaphore Failures at Run-time

The message“Can't allocate n semaphores" indicatesthat the simulation is unable to alocate the
semaphores it needs because of a system-imposed limit on the size of a semaphore request. It will reduce the
size of its request until it either succeeds or reduces its request to a single semaphore.

In the context of a semaphore error, hemessage“ No Space Left On Device" indicates thatthe
simulation is unable to allocate the semaphores it needs because of a system-imposed limit on the number of
semaphores. Y ou may get thiserror if other simulations are running on your machine, or because of simulations
which failed to deallocate their semaphores.!

Messagessuch as.

|dentifier renoved
36 Bl ock fail ed.

I nvalid argunent
22 Block failed.

Identifier renpved
36 Rel ease fail ed.

and:

Invalid argunent
22 Rel ease fail ed.

indicate that semaphores used by the simulation were removed while they were till in use. One common
cause for this error isfailure to execute the MAIN.END macro at the end of an application.

8.6 Shared Memory Failures at Run-time

The message“ Shared nmenory segnments not contiguous" means that the simulation allocated two
shared memory segments during the initialization of the Tango environment, but they were not contiguous. This
will happen on systems where the maximum shared memory segment size is less than the segment alignment
multiple. In this case, Tango’'s shared memory allocation will be reduced

The error message “ Shared Menory Exhausted" means that the simulation needed more shared
memory than was alocated during initialization. The error message will describe the details of the situation.
The default amount is currently 2.5 megabytes. Y ou can override the default by specifying the number of bytes
as the second argument totheMAIN_INITENV macro. For instance:

MAIN INITENV(,5000000)

will allocate 5 megabytes of shared memory.

8.7 “Too Many Locks to Trace”

This message indicates that Tango ran out of table space while creating the table of lock addresses for the
SyncVarThblfile.

1The rmids program (Section 9.2) can be used to find stray semaphore and shared memory identifiers in the system. It notes all such
identifiers and attempts to remove them.

25

The limitissetby t he macro ST- MAX- LOCKS in the macro libraries. You can make your own version of the
macro library with an increased limit or ask that the limit be raised in the public version. The limit is currently
set to 20000 locks.

8.8 Output File Develops an Echo

When a process forks, each child gets a copy of its file buffers. Later, all the copies of the buffer are flushed,
writing multiple copies of the buffer contents to the file. To avoid this problem, flush all output file buffers
immediately before any CREATE macro.

8.9 Simulation Loops Indefinitely

Remember that the simulation will be significantly slower than the original application-it may just be taking
along time! When experimenting with Tango, you should run a small application at first to get a feel for the
expected simulation time.

Some applications intentionally loop on shared memory locations for synchronization purposes. For example:

if (waiter)

whil e (glob->Q == 0);
el se

glob->Q = 1;

Such code will loop indefinitely if the simulation reschedules processes only at sychronization events. Y ou
can cause the simulation to reschedule on shared dat a references by using the- order G option in the tango
script.

Alternatively, you could modify the application. Y ou can force Tango to reschedule at any point by adding
acal | tothefundionSc_Reschedule:

if (waiter)
while (glob=>Q == 0) {
AUG_OFF
Sc_Reschedule () ;
AUG ON

el se {
AUG_CFF
Sc_Reschedule () ;
AUG_ON
glob->Q = 1;

Note that the correct waytouse SC Reschedul e isto place calls before each read or write to shared
memory that is not protected by alock In particular, rescheduling after awrite will not produce the desired
effect.

8.10 Other Pitfalls

The rand function returnsavalue in the range 0 to 32767 under System V, while under Ultrix and on many
other systems, it returns avalue in the range 0 to 214748347.

26

If the application was written for a small multiprocessor, it may be a hard-coded limit (such as 4 or 16) on
the number of processors. If the limit is in the main source file, you may want to replace it with MAX- PROC,
which isan m4 macro set by MAIN_ENV. For example, if the application source contains:

#defi ne nmaxi mum nunber - of - processors 16

you could replace it with:
#defi ne maxi mum nunber - of - processors MAX- PROC

This will not work if the module does not contain MAIN_ENV.

Make sure that the first and last executable statementsi n the application sourcecode are MAIN_INITENV
and MAI N- END, respectively. Thisis more vital in Tango than it is in other environments, and many applications
written for those environments omit MAIN_END entirely. If MAI N- END i s omitted, thesyncvarTbl file and
the main summary file will not be written, and the semaphore and shared memory identifiers will not be recycled.

Finally, refer to Chapter 9 for information on many of the messages generated by AUG, rmids, and other
Tango programs.

27

Chapter 9

Programs Associated with Tango

For each program, a synopsis of the argumentsis given, followed by a description of the program and a list of
important messages with explanations.

9.1 AUG Program

Synopsis.
AUG [-a] [-aml [-ar] [-au] [-b] [-Bn] [-c) [-£) [-fmi [-fr] [-fu] [-i] [-Ifile]
[-111-m [-nm] {-nr]) [-nu] (-z] [-s] [-Tn] [-u] [-U [-V]

This program reads assembler code from the standard input and writes augmented assembler code to the
standard output. The executablefort hi s programismaintainedi n t he directory /usr/local/bin andthe
sourcei sin/usr/local/src/AUG.

Switches in the AUG command line include:
-a Do not augment absolute data references. This is an optimization for simulations which check for shared

data references, since shared data is always addressed indirectly, never as an absolute address. This option
is equivalent to the combination of ~am, - ar, and - au. Compare withthe-f option.

-am This disables event logging augmentation of absolute data references.
-ar Thisdisables reschedule augmentation of absolute data references.
- au Thisdisables memory simulation augmentation on absolute data references.

-b Add the source file name to the back-reference file back- r ef s, which lists the source files of the application.
Thisfileisuseful for determining which source lines that generate particular data references. Thisoption
isrecommended.

-Bn Don't instrument basic blocks containing less than n clicks of local operations. This might be used to
speed up simulations (at the cost of some accuracy).

-c Generate code to count shared data references and simulation-time clicks. The totals for each process are
written to the summary files (see Section 6.2). The default isto count clicks only.

-f Do not augment stack frame references. Thisisan optimization for simulations which check for shared data
references, since the stack frame should never be shared This option is equivalent to the combination of
the~fm, -f r, and-f u options. Compare withthe - a option.

-f m Thisdisables event logging augmentation of stack frame references.

28

- f r Thisdisables reschedule augmentation of stack frame references.
- f u Thisdisables memory simulation augmentation on stack frame references.

-i Augment subroutine calls so that the augmented versions of the run-time routines will be substituted for the
normal ones. If this option is not used, each run-time routine will be treated as a single instruction and
shared data references within run-time routines will not be detected.

-Ifile Read click countsfor each assembler mnemonic from file. This option overrides the pathname implied by
theenvironmentvariable AUG NI T. The default file is aug-init in the directory /usr/local/lib-
/tango, which setsevery executable mnemonic to one click. Using this option, one may customize a
simulation to use different click counts for different instructions. A description of this file format is found
in Section 5.4.

-1 Augment data load operations. This optionismodified by the-f (or -fn) and-a(or -am) options. See
aso the -s option.

- m Augment shared data references. This option is equivalent to the combination of the - 1 and ~s options.
This option is modified by the- £m, ~nm and -am options (and dsothe- f, -n, and-a options).

-nm This causes event logging augmentation to bypass range checking onall references. Normally, the logging
routine checks whether the reference address is in the range of shared addresses that was determined at
initialization, and references outside that range ate ignored. This option is used to allow logging of ail
datareferences, shared and unshared.

-nr This causes rescheduling augmentation to bypass range checking on al references. Normally, the reschedul-
ing routine checks whether the reference addressis in the range of shared addresses that was determined
at initialization, and references outside that range are ignored, This option is used to allow rescheduling
on all data references, shared and unshared.

-nu This causes memory simulator augmentation to bypass range checking on all references. Normally, the
memory simulation routine checks whether the reference address isin the range of shared addresses that
was determined at initialization, and references outside that range are ignored. This option is used to
allow memory simulation of all datareferences, shared and unshared.

-r Reschedule processes at |oads and stores to preserve the order of data references. This option is modified
by the-fr, -nr and-ar options(andasothe-£, -n, and-a options).

-s Augment data store operations. This option ismodified by the-f (or-fn) and-a (or -am) options. See
also the -1 option.

-Tn Generate code to reschedule processes approximately every n clicks. If the shared data in the application
isprotected by locksor if the-r option is used, this should not be necessary.

-u Pass references to the memory simulator at shared data loads and stores. The simulator should update the
simulation time. This option ismodified by the-f w, -nu and-au options(andalsothe-f, -n, and
-a options).

- U Passreferences to the memory simulator at shared data loads and stores. Use timing results and data from
the simulator. This option is modified by the - £y, -nu and-au options(anddsothe-f, -n, and-a
options).

-v Run AUG in verbose mode, informing the user of its progress asit runs. The default isto run silently.
Error messagesinclude:

e error opening "Ale"for input
The named file does not exist or is not readable.

e error reading "file"
The named file isincorrectly formatted.

29

e invalid type "word™ in initialization file
Theinitialization file specifiesthe typeword which isnot one of the valid types described in Section 5.4.

e unknown mmenonic “word”
The assembler mnemonic word appears in the input, but is not defined in the initialization file.

statenment cannot be processed
The input file contained a statement that could not be augmented. Such statements should be rare in
compiler-generated assembly files.

too many source files for backreferencing
The application uses more than 31 source files, S0 back-referencing is not possible.

Warning messages include:

o unknown comand-I|ine argument ignored
Aninvalid option appeared in the AUG command line.

« noreorder prevented block augnentation
The input file contained the nor eor der directive, meaning that code-rearrangement is forbidden. There-
fore, parts of the code were not augmented as requested.

9.2 rmids Program

Synopsis: rnids [-q]

rmids attempts to find al the shared-memory and semaphore identifiers in the system and delete them. If
you are not super-user, this will remove your own identifiers but not those of other users. If you are super-user,
this will remove all identifiersin the system, including those belonging to other users. The executable for this
programi s maintainedin the directory /usr/local/bin and thesource is in /usr/local/src/rmids.

If the-q option is specified, messages will only be printed when identifiers are actually deleted.
Messages include:

. argumnent ignored
indicating that an argument other than-q appeared on the command line.

« Searching for shared nenory identifiers and
Searching for sermaphore identifiers
indicating normal progress of the program

« Shared nmenory identifier #nbelongs to another user and
semaphore identifier #nbel ongs to another user
indicating that the identifier could not be removed because you do not have permission to do so

o« error renoving shared nenory identifier #nand
error renoving semaphore identifier #n
indicating that the identifier could not be removed for some reason other than lack of permission

o Shared nenory identifier #nwas REMOVED and
Semaphore identifier #n was REMOVED
indicating successful removal of identifiers

30

9.3 tfilt Program

Synopsis. tfilt [file] [-a hexaddr hexaddr| [-c code] [-p processor] [-s filenum linenum] [-t
timel time2]

This program reads an event log from file and writes a filtered log to the standard output. The executable
fort hi s programismaintainedin the directory /usr/local/bin and thesour cei sin /usr/local/src-
/tfilt.

If no file is specified, it reads the input log from the standard input. If the - a option is specified, it selects
events with the address field in the range of hex addresses specified If the -p option is specified, it selects
events on the specified processor (the first processor is numbered “0”). If the -t option is specified, it selects
events between the two times indicated. If the -s option is specified, it selects events whose source file and
line number match those specified. If the~c option is specified, it selects events whose type code matches that
specified.

If multiple options are specified, tfilt finds the events which match all of the specified conditions.

9.4 tmerge Program

Synopsis. t nerge file {file . ..)

This program takes alist of event log files and merges them together into a single file, which isthen written
to the standard output. It uses the time-stamp on each event in the log files to put the eventsin chronological
order. It also sets the processor number field in each event record to indicate from which log file the event
came. This program assumesthat the individual log files are already chronologically ordered.

The executablefort hi s programismaintainedi n the directory /usr/local/bin andthesourceisin
/usr/local/src/tmerge.

If you supply no arguments, tmerge prints a usage summary.

Error messagesinclude:

unabl e to open input file "file" -The named file does not exist or is not readable.

9.5 tcat Program

Synopsi s: tcat [file]

This program reads a event |og file and writes a human-readabl e version to the standard output. If no file is
specified, it reads the event log from the standard input. It al so uses the back.refs file generated by AUG,
if present. It writes one line of output for every log record

The executable for this programi s maintainedi n the directory /usr/local/bin andthe sourceisin
/usr/local/src/tcat.

9.5.1 Sample tcat Output

A full tcat output line consists of:
<eventtype> at <time> <hexaddress> On <proc#> at line <line#> in <file>

Here is an example

31

STORE at 2298: 1021défc on 0 at line 558 in ™mainNew.c"

Synchronization events do not contain source references. Also, the line number may be unknown (if it was
greatert han 2047) or the file maybe specified byanumber(if noback,refs file was foundby teat).

32

Chapter 10

Acknowledgements

Thiswork was supported in part by the Fannie and John Hertz Foundation by through graduate fellowships for
Stephen R. Goldschmidt and Helen Davis. It was also supported in part by DARPA contract N00014-87-K-0828.

Thissupport isgratefully acknowledged.

33

Bibliography

[1] H. Davis and S. Goldschmidt. Tango: A multiprocessor simulation and tracing system. Technical Report
(to appear), Stanford University, 1990.

[2] D. Lenowski, J. Laudon, K. Gharachorloo, A. Gupta, J. Hennessy, M. Horowitz, and M. Lam. Stanford
dash multiprocessor. Technical Report CSL-m-89-403, Stanford University, 1989.

[3] Lusk and Overbeek €t al. Portable Programs for Parallel Processors. Holt, Rinehart and Winston, Inc.,
1987.

34

