
COMPUTER SYSTEMS LABORATORY; 1

1 1 1
STANFORD UNIVERSITY. STANFORD, CA 943054055

.

Runtime Access to
Type Information in C++

John A. Interrante and Mark A. Linton

Technical Report: CSL-TR-90-418

March 1990

Research supported a gift from Di
ii!

itai
ration, by a grant from the Charles

Equipment Corpo-
ee Powell Foundation,

and by an equipment loan from Fujitsu America, Inc.

Runtime Access to Type I Information in C++

John A. lnterrante and Mark A. Linton

Technical Report: CSL-TR-90-418

March 1990

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305

Abstract The C++ language currently does not provide a mechanism for an object to
determine its type at runtime. We propose the Dossier class as a standard interface
for accessing type information from within a C++ program. We have implemented a
tool called mkdossier that automatically generates type information in a form that can be
compiled and linked with an application. In the prototype implementation, a class must
have a virtual function to access an object’s dossier given the object. We propose this
access be provided implicitly by the language through a predefined member in all classes.

Key Words and Phrases: Runtime systems, compilers, object-oriented programming.

Copyright @ 1990

bY

John A. lnterrante and Mark A. Linton

Runtime Access to Type information in C++

John A. lnterrante and Mark A. Linton
Stanford University

Abstract

The C++ language currently does not provide a
mechanism for an object to determine its type at
runtime. We propose the Dossier class as a stan-
dard interface for accessing type information from
within a C++ program. We have implemented a
tool called mkdussierthat automatically generates
type information in a form that can be compiled
and linked with an application. In the prototype
implementation, a class must have a virtual func-
tion to access an object’s dossier given the object.
We propose this access be provided implicitly by
the language through a predefined member in all
classes.

1 Introduction

Some applications need to know the names of
classes, their inheritance structure, and other in-
formation at runtime. For example, the X Toolkit
lntrinsics [3] define a customization mechanism
based on class and instance names. With this
mechanism, a user can pass a string to an ap-
plication that is matched against instances of a
named class. To applications, the string “*But-
ton*font:courierM” means that the default font
for all instances of Button is “courier147 Inter-
Views [2] is a C++ toolkit that supports the X
Toolkit customization mechanism. Because the
C++ language currently does not support access
to any type information at runtime, programmers
must write code in every Interviews class that de-
fines the class’s name.

Unfortunately, every class writer who needs run-
time access to type information must invent their
own conventions. These conventions make the
exchange of user-defined data types between pro-
grammers difficult. For instance, both OOPS[l]
and ET++[5] use macros in class definitions to
provide a class’s name and other information
about class types. Neither library can reuse a

Research supported by a gift from Digital Equipment Cor-
poration, by a grant from the Charles Lee Powell Foundation,
and by an equipment loan from Fujitsu America, Inc.

class type from the other library without modifi-
cation. Even if all libraries followed a standard
set of conventions, these conventions still make
writing classes more tedious.

.

Class writers must take two steps to eliminate
these problems: (1) define a standard interface
for accessing type information at runtime, and (2)
define a way to generate the type information au-
tomatically. In this paper, we propose the class
Dossier as the standard interface to type informa-
tion, and we describe the implementation of a tool
called mkdossierthat generates a C++ source file
containing dossiers. A programmer can then com-
pile and link this file with an application.

A type declaration might not reflect the type of
an object at runtimethe object could be a sub-
class of the declared class. Our prototype im-
plementation therefore requires a class to have a
virtual function which simply returns the dossier
for its class. Adding a virtual function presents a
problem because this change requires recompi-
lation of source code defining or using the class.
We propose that the C++ language be extended
to provide a predefined (not reserved) member
containing a pointer to a dossier. This extension
would make type information available for existing
classes without requiring changes to their source
code.

2 Dossier interface

The name “Dossier” connotes detailed informa-
tion about a subject. In this case, we want a
dossier to be the repository for information about
a type. Although a dossier could represent infor-
mation about any type, in this paper we will only
consider class types. Accessing information for
non-class types requires compiler and language
support, which we did not wish to undertake be-
fore defining an interface for classes.

Figure 1 shows the Dossier interface. The cur-
rent interface provides limited information about a
class: its name, the file and line number where the
class is defined, and iterators to visit parent and
children classes. The “isA” function determines

-2-

class Dossier;

class DossierItr {
public:

DossierItr();
virtual -DossierItr();

boolean more();
void next();

// dereference through current element
Dossier* operator ->();

// coerce to current element
operator Dossier*();

1;

class Dossier {
public:

Dossier(
const char* name,
const char* fileName,
unsigned int lineNumber,
Dossier** parents,
Dossier** children

\ .
I I

virtual -Dossier();

const char* name0 cons-t;
const char* fileName const;
unsigned int lineNumber const;
DossierItr parents0 const;
DossierItr children0 const;
boolean isA(const Dossier*) const;

// return array of dossier pointers for all classes
static Dossier*const* classes0 const;

1;

Figure 1: Interface to dossiers

void traverse(Dossier* d) (
for (DossierItr i = d->parents(); i.more(); i.next()) {

tout << "traversing w << i->name() << endl;
traverse(i);

tout << "back to " << d->name() << endl;

Figure 2: Traversing ancestors using iterator

-3-

whether a class type is a subclass of a given class
type. The “classes” function allows the application
to access all defined dossiers. Figure 2 shows a
sample function that uses an iterator to print the
names of all the ancestors of a class.

We anticipate extending the interface to include
size information, names of members, and member
functions. We concentrated on the minimal func-
tionality so that we could investigate the mecha-
nism without getting bogged down in too many de-
tails. When we settle on the final details, we can
extend the functionality by replacing the standard
“d0ssier.h” header file where Dossier is defined,
updating the library implementation of Dossier,
and providing a version of mkdossier that gener-
ates the additional information.

3 Dossier implementation

The Dossier interface describes what informa-
tion is available for a class type; it does not say
how the type information is generated. We ex-
pect a compiler or a special tool to automatically
generate the representation of dossiers so that
programmers need not manually define or update
dossiers. Like the virtual function table used by
most C++ compilers to implement virtual function
calls, only one dossier representation should exist
for each class in an application. We have imple-
mented a tool called mkdossier that we use to
generate dossiers just like we use makedepend,
a tool developed at MIT, to generate Makefile de-
pendencies.

Figure 3 shows the role of mkdossier in build-
ing an application. The build process calls mk-
dossier to scan all the source files and gen-
erate “-dossier. h” and “-dossier.c”. Then the
build process compiles the source files, including
“-dossier.c”, and links them into an executable
image.

Figure 4 shows a sample “_dossier.h”, the
header file that declares the generated dossiers’
names. The dossiers represent information about
the sample classes “App,” “ArgVec,” and “CPP”;
mkdossier defines each dossier’s name by con-
catenating the prefix string “-D-” and the class
type’s name. The application can include this
header file to import dossiers into application code
by name as well as use the “Dossier::classes”
function to import dossiers by address.

Figure 5 shows a sample “-dossier.c”, the
source file that initializes dossiers with information
about class types. Programmers can avoid hav-
ing to manually define dossiers by compiling and
linking this file into the application’s executable
image. At the end of the file, mkdossier gener-
ates a static array of pointers to all the dossiers
defined in that file. The “Dossier::merge” func-
tion merges the static array into a global array
containing pointers to all known dossiers so that
the “Dossier::classes” function will work correctly
even if the programmer compiles and links multi-
ple “-dossier.c” files into the executable image.

Our current implementation generates the file
“-dossier.h” because the compiler does not know
about dossier declarations. In our proposed lan-
guage extension, the compiler would automati-
cally import dossier declarations so that the ap-
plication would not have to include Idossierh”.

The current implementation of mkdossier calls
the C preprocessor to put preprocessed copies
of all the source files passed to mkdossier in a
temporary directory. The preprocessor strips com-
ments, includes header files, and expands macros
so mkdossier can see the same code the C++
compiler sees when it compiles the source files.
When mkdossier scans a preprocessed file, it con-
ducts a regular expression search for the keyword
“class” followed by text that looks like a class def-
inition. When mkdossier finds a match, it extracts
information about that class from its definition.
Once mkdossier has scanned all of the prepro-
cessed files, it writes the collected class informa-
tion to the files “-dossier.h” and “-dossier.c”.

Currently we explicitly tell mkdossier which
dossiers it should define so we can run mkdossier
on a library’s source files and include the com-
piled dossiers in the library. We can then run
mkdossier on an application’s source files without
mkdossier generating duplicates of the library’s
dossiers. Specifying which dossiers to generate
is inconvenient; we are therefore modifying mk-
dossier to output a dossier for a class only if at
least one of the source files defines a non-inlined
member function of that class. AT&T cfront 2.0
already uses a similar heuristic to decide when to
generate a virtual function table.

-4-

:::
:$a.out iij::::::2:.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.:.:.:.~~:.~:.~~~~~:,:,:._. .._.. . ._..

Figure 3: Generating dossiers with mkdossier

class Dossier:

extern Dossier D App;--
extern Dossier D ArgVec;- -
extern Dossier D CPP;- -

Figure 4: Declaration of dossiers

-5-

#include w d0ssier.h"
#include <dossier.h>

static Dossier* D App_parents[] = { 0 };- -
static Dossier* D App-children[]- - = { & D CPP, 0 };- -

Dossier D App = Dossier(- -
"App *' ,
"/master/iv/src/bin/mkdossier/App.h", 9,

D App_parents,- -
D App children-- -

1;

static Dossier* D ArgVec_parents[] = { 0 };- -
static Dossier* D ArgVec-children[] = { 0 };- -

Dossier D ArgVec = Dossier(- -
"ArgVec",
"/master/iv/src/bin/mkdossier/ArgVec.h", 4,

D ArgVec_parents,- -
D ArgVec children- - -

1;

static Dossier* D CPP_parents[] = { & D App, 0);- - - -
static Dossier* D CPP-children[] = { 0 };- -

Dossier D CPP = Dossier(- -
"CPP " ,
"/master/iv/src/bin/mkdossier/CPP.h", 9,

D CPP_parents,- -
D CPP children-- -

1;

static Dossier* exportedClasses[] = {
6 D APPr- -
& D ArgVec,- -
& D CPP,- -
0

1;

Figure 5: Initialization of dossiers

-6-

typedef class Dossier* ClassId;

extern ClassId ELLIPSE COMP;
extern ClassId ELLIPSE-VIEW;-

ClassId ELLIPSE COMP = &
ClassId ELLIPSE-VIEW = &

D EllipseComp;- -
- D EllipseView;- -

class EllipseComp : public GraphicComp {
public:

EllipseComp(SF Ellipse* = nil);-

virtual ClassId GetClassId();
// boolean IsA(ClassId); -- actually inherited from Component
1;

boolean Component::IsA (ClassId id)
return GetClassId()->isA(id);

ClassId EllipseComp:: GetClassId () { return ELLIPSE COMP; }-

ellipse.c:116: if (tool->IsA(GRAPHIC-COMP-TOOL)) {

Figure 6: Examples of dossiers’ use in Unidraw

4 Experience

We used the Unidraw library [4] as a test bed
because it already defines symbolic class identi-
fiers for most of the classes in the library. We
changed the typedef Classld from “unsigned int”
to “class Dossier*” and the symbolic class iden-
tifiers from integer constants to variables. This
change allowed us to use most of the library code
unchanged, including all the virtual “GetClassId”
member functions. We only had to replace a cou-
ple of switch statements by if statements. We re-
placed the virtual “ISA” member functions, which
were redefined in every class, with non-virtual
“ISA” member functions defined only in the base
classes. The application “drawing” that uses the
Unidraw library ran without error after we made
these changes, thereby demonstrating that our
approach is a practical way to give an applica-
tion runtime access to type information. Figure 6
shows example code fragments from Unidraw that
illustrate how we changed Unidraw classes to use
dossiers.

We considered automatically generating a
“GetClassId’‘-like function for existing class types.
We could have written a tool to produce new
header files with the function declaration added
and modified mkdossier to produce the function
definitions along with the dossiers. However, we

decided that manually adding a single function
definition in every class was not a significant prob-
lem. What is critical is that mkdossier automati-
cally generate the type information so that the pro-
grammer does not have to define it.

5 Language extension

If a programmer wants to use class types devel-
oped externally, it is inconvenient to modify some-
one else’s header files. A simple language ex-
tension would eliminate the need to change class
definitions and also make it possible to obtain type
information for typedef names in addition to class
types.

We propose that a read-only member “dossier”
of type Dossier* be predefined for all user-defined
types. By making “dossier” predefined instead of
reserved, we avoid disturbing the behavior of any
existing code. The programmer would use the
syntax “typename::dossier” to access information
for a class type or typedef and the syntax “ob-
jecf.dossier” or “object->dossier” to access infor-
mation for a class object.

Applications need not import the Dossier in-
terface to use a class object’s “dossier” mem-
ber. An application could compare the value
o f “object->dossier” with the value of “fype-

-7-

name::dossier” to identify a class object’s data
type. Including “d0ssier.h” makes additional in-
formation about the class object’s data type avail-
able.

Additionally, we propose that the compiler treat
“object->dossier” as equivalent to “objecf.dossier”
if the class does not have a virtual table and equiv-
alent to a virtual function call if the class has a
virtual table. For such classes, “object->dossier”
will return the dossier associated with the class
object’s dynamic data type even if the compiler
cannot determine the type statically. We call the
“dossier” member of such classes a “virtual mem-
ber variable.” One possible implementation would
generate a unique virtual table for every class and
place the address of the class’s dossier in the first
slot of the virtual table.

An analysis of the Unidraw library revealed that
only two out of 115 Unidraw classes would have
shared their parent’s virtual table if they had not
defined a virtual “GetClassld” member function.
We expect that requiring every class to have a
unique virtual table whether or not it could have
shared its parent’s virtual table will cause only a
small increase in the size of executables.

6 Future Work

Mkdossier must rescan all the source files when-
ever class information changes. If mkdossier
could rescan only the source files that the com-
piler has to recompile, mkdossier would run faster.
What we need is a way for mkdossier to remem-
ber the type information it collected last time.

We can make the previously collected type in-
formation available to mkdossier by compiling and
linking the file “_dossier.c” into the mkdossier ex-
ecutable after each run of mkdossier. To be
practical, this approach requires the availability of
shared libraries so that we can minimize the disk
space occupied by many instances of mkdossier.
Shared libraries allow us to store only the informa-
tion that actually differs among all of the instances.

Alternatively, we could store the type informa-
tion outside of mkdossier in an external file or in
a database server. When mkdossier starts up, it
reads the previous type information from the exter-
nal file or the database server. When mkdossier
shuts down, it writes the updated type information
to the external file or database server. We plan

to investigate which method wou Id be the best
method to let mkdossier scan files incrementally.

7 Summary

We have defined Dossier, an interface for access-
ing type information at runtime. We have imple-
mented mkdossier, a tool that generates a C++
source file containing the type information. To
demonstrate the practicality of our approach, we
modified the Unidraw library and a Unidraw-based
application to use dossier information. Finally, we
proposed a simple extension to C++ that would
provide a uniform method to access information
for classes and typedefs.

References

VI

PI

PI

VI

PI

Keith E. Gorlen. An object-oriented class li-
brary for C++ programs. In Proceedings of
the USENIX C++ Workshop, pages 181-207,
Santa Fe, NM, November 1987.

Mark A. Linton, John M. Vlissides, and Paul R.
Calder. Composing user interfaces with Inter-
Views. Computer, 22(2):8-22, February 1989.

Joel McCormack, Paul Asente, and Ralph R.
Swick. X Toolkit Intrinsics-C Language In-
terface. Digital Equipment Corporation, March
1988. Part of the documentation provided with
the X Window System.

John M. Vlissides and Mark A. Linton.
Unidraw: A framework for building domain-
specific graphical editors. In Proceedings of
the ACM SIGGRAPH Symposium on User ln-
terface Software and Technology, pages 158-
167, Williamsburg, VA, November 1989.

Andre Weinand, Erich Gamma, and Rudolf
Marty. ET+tAn object-oriented application
framework in C++. In ACM OOPSLA ‘88
Conference Proceedings, pages 46-57, San
Diego, CA, September 1988.

