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Abstract

High-level  synthesis  is the transformation  from a behavioral  level specification  of hardware, through
a series of optimizations  and translations,  to an implementation  in terms of logic gates and registers. The
success of a high-level  synthesis system is heavily dependent  on how effectively the high-level  language
captures the ideas of the designer in a simple and understandable  way. Furthermore,  as system-level
issues such as communication  protocols and design partitioning  dominate the design process,  the ability
to specify constraints on the timing requirements  and resource utilization  of a design is necessary  to
ensure that the design  can integrate with the rest of the system. In this paper, a hardware description
language  called HardwareC  is presented. HardwareC supports both declarative and procedural  semantics,
it has a C-like syntax, and it is extended with notion  of concurrent  processes, message passing,  timing
constraints  via tagging, resource  constraints,  explicit  instantiation  of models, and template  models. The
language  is used as the input  to the HercuZeslHebe  High-level  Synthesis  System.
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HardwareC - A Language for Hardware Design
Version 2.0

1 Introduction

High-level  synthesis  is the transformation  from a behavioral  level specification of hardware to a register
transfer level  description,  which may then be mapped  to a VLSI implementation.  The success of high-
level synthesis  systems is heavily  dependent  on how effectively the input language captures the ideas of
the designer  in a simple and understandable  way. This  paper describes  HardwareC, a hardware  description
language  that is used as the input to the HercuZes/Hebe  High-level synthesis system [2, 31.

Hardware behavior generally consists  of two sets of specifications  - a description  of the functionality
and a set of design constraints. The functionality  describes  the tasks to be performed by the hardware
design, such as logic operations  or control flow constructs. The design constraints specify the timing
and resource  requirements  that am imposed on the final hardware  implementation.  As circuits become
more complex,  the effective  integration  of a design with the rest of the system often dominate the design
process. This  increases the importance of modeling  hardware  partitions  and interfacing.

Hardwax& is a language  that uniformly incorporates  both functionality  and design constraints.  A
HardwareC description  is synthesized and optimized  by the Hercules and Hebe system, where tradeoffs
are made in producing  an implementation  satisfying  the timing  and resource constraints  that the user
has imposed  on the design. The resulting implementation  is in terms of an interconnection  of logic and
registers  described in a format called the Structural Logic Intermediate Format. We refer the interested
reader to [3] for an ovetview of the Hercules system.

1.1 Motivations

Many hardware  description  languages have been proposed  and used in both academia and in indus-
try. Most hardware  description  languages  are oriented  towards hardware  simulation and documentation
Notable  examples include ISP, ADLIB/SABLE,  ESIM, and VHSIC Hardware Description  Language.
Conversely,  HardwareC has been designed to be a hardware description  language for synthesis. The
following  criteria  are very important  in the design of a synthesis-oriented  HDL, and they have been
addressed in HardwareC:

1. Supports fill spectrum of design styles.

The language  should support readily the varying spectrum of design  styles of the designer, raw+%
from a pure behavioral  description  that is independent  of the structural  implementation,  to a mixture
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of behavior  and structure, to a pure structural  description of the interconnection  and instantiation
of hardware  modules.

2. Supports external interfacing.

An important  characteristic  of hardware  designs  is the need to communicate  with other  modules in
the system subject  to a particular  handshaking protocol.  The ability  of a design to interface with,
and synchronize to, external signals and events  is of critical concern  in the specification of complex
circuit designs, and should  be fully supported  by the language.

.

3. Supports timing and resource constraints.
As the complexity  of hardware increases,  there is a corresponding  increase in the number  and
strictness  of the constraints  that are imposed  on the hardware design. Timing constraints  that
specify bounds on the time separation  between operations, and constraints  that specify the resource
utilization  and binding  of operations  to resources,  are important  elements  in the language.

4. Simpre to learn and use.

The language is a tool that the designer  uses to capture and transform  abstract ideas into complete
designs. The tool must  therefore be simple  to learn and easy to use. Specifically, the language
should contain the most basic constructs  that are needed to describe  a design, without  being bur-
dened by specialized  constructs that are specific to a particular  class of designs.

Some synthesis systems and hardware  description  languages support  only a specific design  style,
either  pure structure or pure behavior. We believe a more effective approach  to design is to use a flexible
underlying  language that captures the essence of the design from the designer,  whether that essence be
behavioral,  structural, or a mixture of both. This criterion  is crucial in a design  environment  since very
often the designer  has a particular  structure in mind when designing  hardware.  This partial structure
should be captured by the language, and reflected in the results of synthesis.

1.2 Features of HardwareC

HardwareC attempts to satisfy the requirements  stated above. As its name suggests, it is based on the
syntax of the C programming  language [l]. The language has its own hardware  semantics, and differs

from the C programming  language in many respects.  In particular, numerous  enhancements  are made to
increase the expressive power of the language,  as well as to facilitate hardware  description. The major
features of HardwareC are:

l Both procedural and declarative semantics - Designs can be described  in HardwareC either as a
sequence of operations  and/or as a structural  interconnection  of components.

l Processes and interprocess communication - HardwareC models  hardware as a set of concurrent
processes that interact  with each other  through either port passing  or message passing mechanisms.
This pennits  the modeling  of concurrency  at the functional level.
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l Unbound  CuIcl bound caZ2.s - An unbound  call invokes the functionality  corresponding  to a called
model. In addition,  HardwareC supports bound call that allows the designer to constrain  the im-
plementation  by explicitly  specifying the particular  instance of the called model used to implement
the call, i.e. bind the call to an instance.

l Template models - HardwareC allows a single description  to be used for a group of similar  behaviors
through the use of template models. A template model is a model  that takes in addition  to its formal _
parameters one or more integer parameters, e.g. an adder template  that describes all adders of any
given size.

0 Varying degrees of parallelism - For imperative semantic  models,  HardwareC offers the designer
the ability  to adjust  the degree of parallelism in a given design  through the use of sequential ([ I),
data-parallel ({ }), and parallel (< >) groupings  of operations.

0 Constraint specification - Timing constraints  are supported  through  tagging of statements,  where
lower and upper bounds are imposed on the time separation  between  the tags. Resource constraints
limit  the number and biding of operations  to resources in the final implementation

2 Modeling Hardware Behavior

We model hardware behavior as a collection  of concurrent  modules.  Each module represents  a function-
ality that can be described  either  in terms of a structural  interconnection  of components (i.e. declarative
semantic), or as a set of operations  sequenced in time that performs  a particular algorithm (i.e. imperative
or procedural  semantic).  The modules communicate  and synchronize  with each other explicitly  through
the use of parameters, which can be either ports on which values  are placed and retrieved, or channels
on which messages are sent and received. Ports and channels are described  in later sections.

The concept  of a design  consisting of concurrent  modules  is powerful  for both hardware and soft-
ware systems. In both  domains, it allows the designer  to speczfi  the coarse-grain parallelism between
interacting  modules  at a high level, and isolate the points of communication and synchronization between
the modules  in an explicit  manner. To illustrate  the concept, consider the Intel 8251 UART shown in
Figure 1. The UART is modeled as four concurrently  executing  modules.  The main module  accepts
commands from the micro-processor  and coordinates  the execution  of the other modules. The trans-
mitter writes data out on the serial interface, and the two receiver modules,  synchronous-receiver and
asynchronous~eceiver,  read data from the serial interface.

2.1 Types of Models

There are four fundamental  design abstractions in HardwareC,  corresponding  to block, process, procedure,
and function modeLr.  At the topmost  level, a design is given in terms of a block. A block describes
the structural  relationship  and physical connectivity  among the various components of a design. It has
a declarative semantic,  and consists  of an interconnection  of logic  and instances of other  blocks and
processes. For example, a block model that describes a ripple chain of adders is shown in Figure  2.
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Figure 1: Hardware  model for Intel 8251 UART

In contrast,  process, procedure,  and function  models  have an imperative  semantic. An imperative
semantic  model describes an algorithm  that consists  of a set of operations  sequenced  in time. The
algorithm consists of data-flow operations  such as logic expressions  and assignments  to shared variables,
and control  flow constructs such as sequencing,  branching,  and iteration. Although  process,  procedure,
and function  all describe an encapsulation  of operations  in the form of an algorithm,  a process model
differs from the others in that it executes  the algorithm repeatedly. That  is, a process  automatically
restarts execution  upon the completion  of its last operation. An example of a process  that finds the
greatest common divisor is shown  in Figure  3. On the other hand, the computation  described by a
procedure or function model execute  only when the model is called.

The model of hardware behavior as a collection  of concurrent  and interacting  processes  is natural
for hardware description since hardware  modules  continuously  operate on a time varying set of inputs.
Therefore,  blocks describe the structural  relationships  among the processes, which in turn describe al-
gorithms  consisting  of a hierarchy of procedures  and functions. We now describe  the syntax of model
definitions.

l Block model - A block contains  either  logic  operations,  or calls to other  blocks (therefore  supporting
hierarchy)  and processes. The formal syntax of block definition is:

block nume ( parameter list )
parameter declarations
block-body
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Structural interconnection
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block ripple(a,b,s,cin,cout)
in port a[2],b[2],cin;
out port s[2],cout;

<
boolean ctrnp;
WalOl MO1 ,s[Ol ,cin,ct.mp);
FA(a[ll,b[ll,s[ll,ctmp,cout);

>

Block model description
co)

Figure  2: Example of using blocks to describe  a ripple  chain  of adders.

where name is an identifier  consisting of an alphanumeric  string of letters and digits, with the
first character  being  a letter. parameter Zist  is a list of identifiers  separated by commas, each
representing  a formal parameter  of the model. The size and type of the formal parameters are
declared in parameter declarations, with the content  of the model contained in block-body.

l Process model - A process  consists  of a hierarchy of procedures  or functions,  and executes concur-
rently with processes  in the system. A process will restart itself upon completion of its execution,
implying  that an operation  within a process will be activated  at most  once during  each execution
of the process. The formal syntax of process definition  is:

process name ( parameter list )
parameter declarations
process-body

l Procedure model - A procedure is an encapsulation  of operations,  and may consists  of calls to
other  procedures  or functions. A procedure executes  whenever it is called by another process,
procedure,  or function,  whereupon the control flow is temporarily transferred to the called model.
Upon completion,  the control flow returns  to the calling model. No recursion is permitted in the
language.  The formal syntax of procedure definition  is:

[ procedure ] name  ( parameter Zist )
parameter declarations
procedure-body
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begin

f - lwaitrising rst
r-lsample

xi,yi

done

swap X,Y

I 1

Q-Y = O?
N

Y
done

Flow chart of algorithm
00

process gcd(xi,yi,rst,ou)
in port xi[8], yi[8];
in port rst;
out port ou[8];

static x[8]  = 0, y[8]  = 0;
I* set output to 0 during algorithm */
write ou = 0;
I* wait until rising edge of rst */
while ( ! rst ).
I* sample input *t/
1

x = read(xi);
y = read(yi);

1
if ((x != 0) & (y != 0)) {

I* using euclid’s  gcd algorithm +I
repeat {

while (x >= y)
x = x - y ;

I* x should be less than y now */
I* so exchange x and y *t/
< x = y ; y = x ; >

} until ( y == 0 );
1
write ou = x;

1

HardwareC  process
0)

Figure 3: Example  of process that repeatedly  samples the inputs on the rising edge of r st, then finds
the greatest  common  divisor  of two input values using Euclid’s algorithm.



Note that the keyword procedure  is optional, where [ ] denotes an optional  clause.

l Function model - A function  is semantically  equivalent  to a procedure,  with the difference that a
function returns a scalar or vector  of Boolean values  to the calling  model, e.g. an add function
returns the sum of two operands. The formal syntax of function definition  is:

function name ( parameter list )
return boolean[ return-size ]

parameter declarations
function-body

where return-size is the return size of the function. If return-size is not specified, then the default
return size is 1. To return values to the calling model, explicit  assignments  are made to a keyword
return-value in the body of the function. The size of return-value is identical  to the size of the
function model. The last assigned value to return-value is the value that is returned.

Example 2.1.1.
below.

To illustrate  the definition  of models and parameters, consider the example

1” SimpleAdd -
* returns the sum of two S-bit operands
*/

function SimpleAdd(op1, 0~2) return boolean[6]
in boolean opl[S], op2[5];

/* return value is keyword- */
return value = opl + op2;-

SimpleAdd is a function  that returns the sum of two input  operands.  0

2.2 Synchronous Synthesis Paradigm

HardwareC is a hardware  description  language with specific constructs for the design of synchronous
digital circuits controlled  by a single-phase  system clock, as synthesized  by the Hercules system. In
particular,  HardwareC supports:

l Synchronous II0 operations

l Synchronous message passing

l Synchronous register &ding



These operations  are assumed to be synchronized  to a clock cycle, and to take an integral number  of
clock periods, or equivalently,  an integral number  of control states, to execute. Similarly, the constructs
of data-dependent  iteration and process in HardwareC have an underlying  synchronous  model, i.e. the
tasks described by the iterative and process  constructs  take an integral number  (possibly zero) of clock
cycles to execute.

2.3 Declare Before Use

Whenever  a model is called, the arguments to the invocation  are checked for both compatibility  in the
variable  size and type, as well as for compatibility  in the direction  of the formal parameter  (in, out,
or inout). For instance, an input parameter  cannot  be used as the argument to a call that requires an
output  parameter. Similarly, an output  parameter cannot be used as the argument to a call that requires
an input parameter. This compile time consistency  check improves the security of the language.

In order to provide this information to the parser, it is necessary  to declare a model before it can
be called. The declaration  of a model involves  specifying  its parameters  without  describing  its body.
Syntactically,  a keyword declare is prefixed on a model  definition, where the body of the model is left
out. In particular,

declare block  name ( parameter List )
parameter declarations

declare process name ( parameter list )
parameter declarations

declare [procedure] name ( parameter list )
parameter declarations

declare function name ( parameter Zist  )
return boolean[ return-size ]

parameter declarations

The names that are used in the parameter declarations  need not be the same as the names of the parameters
in the actual definition of the model.

Example 2.3.1. The following example illustrates the syntax of model declaration by declaring
the SimpleAdd function in the previous section.

declare function SimpleAdd( x, y ) return boolean[6]
in boolean x[S], ~153;

Note that the names of the parameters in the declaration (x and y) need not match the nameS in the
definition (opl and 0~2).  0
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process Nahc)

in port a,b;
out port c;

{ . . .
1

x Y z
pro==  Bkys)

out port x,y;
illptZ;

{ . . *

Port passing paradigm
(a)

process AW)
out channel  a;
in channel  b; a

process B&b)
in channel a;
out channel b;

. . . receive(a,buf);. . .
~~~(bmsg);

Message passing paradigm
0-9

Figure  4: Port passing versus message passing mechanisms.

2.4 Parameters to Models

The transfer of data to and from the models is accomplished  through  the use of two mechanisms -
port passing and message passing. Both mechanisms involve passing information  in the form of formal
parameters to a model, and are illustrated  in Figure 4.

0 Port passing - assumes the existence of a shared medium,  such as wires or memory, that in-
terconnects  the hardware  modules  implementing  the models. The protocol  which governs correct
handshaking  between  the modules  is provided by the designer,  and is described as an integral part
of the high-level  description.  The ports are further  categorized  into global and local ports.

- Global  port: Any access to a global port is zhmediatelj,  reflected to the other  connected
models. For blocks, the global ports serve as linkages  between  the processes  and define
their  structural  relationships.  For processes, procedures,  and functions,  global ports allow
direct access to external  signals, regardless of the nesting  depth of the calling  hierarchy. In
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particular, the value of a global  port may change during the execution  of the model. The
syntax of global port declaration  is:

{ in 1 out 1 inout } port portname  { , portname  }*;

where portname  is the name of the global  port, and the notation  { }* means zero or more
occurrences of the quantity  enclosed  in the curly braces. A global  port can be a scalar or a
vector, the size of the port is enclosed  in square brackets. For example,  in port r s t ;
describes a scalar global port rst,and out port sum[5]; describes  a global  port sum
with 5 elements.
A global port can be in or out or inout,  depending on whether the port is read-only, write-
only, or read-write. inout  global  ports  are bidirectional  lines that can either  be referenced
or modified.  The access protocol  of this bidirectional  line is left to the designer, and specified
as part of the design description.

- Local ports: In contrast  to global  ports,  a local port is used to transfer data across the calling
hierarchy, e.g. calling a function  with a set of operands, and obtaining  the results  after the
function completes  execution.  Local ports  are not used to interconnect  concurrently  executing
processes, and hence are not defined for blocks and processes. The value of a local port
remains unchanged  during the execution  of the corresponding  model (either  procedure  or
function). The syntax of local port declaration  is:

{ in 1 out } boolean portname  { , portname  }*;

where portname is the name of the local  port. A local port can be either in or out, depending
on whether the local port is read-only or write-only  in the corresponding  model. An input
local port is assumed to not change in value during the execution of the model, and an output
local port will reflect its value only when the model completes execution.

l Message passing - via explicit send and receive operations  can be used for both synchronization
and data-transfer. The message passing  paradigm is synchronous and blocking,  meaning  that the
sending process will wait until the corresponding  receiving process  has acknowledge  the message.
Likewise,  a receiving process will wait until the corresponding  process  sends the message.

The transfer of information  takes place on channels that interconnect  the models.  The corresponding
hardware  for communication,  as well as its handshaking  protocol, are automatically  synthesized  by
the synthesis tools.  Channels can be scalars or vectors; the size of a channel  is the size of the data
that is transferred on the channel. The syntax of channel declaration  is:

I

( in 1 out ) channel  channebaume ( 9 channelname )t;

where channelname is the name of the channel. An in channel can receive  incoming  messages,
whereas messages can be sent on an out channel  to other models.
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Due to its declarative  semantics, a block can only have global  ports  and channels.  A process can
also only have global ports and chanrrels  because of its repetitive  execution.  For procedure and function
models, both local and global ports are allowed in addition to channels.

Example 2.4.1. An Extended Example. We will illustrate the concept and syntax of models
through a simple design. The design contains two counters, which are activated depending on the value
of the select signal. Each counter uses a two-stage ripple-carry adder. We begin the description in
a topdown fashion, starting with the topmost model main.

block maintselect, data, resultl, result2)
in port select;
in port data[8];
out port resultl[8], result2[8];

<
counter(select, data, resultl);
counter(!select, data, result2);

>

Note that main is a block, consisting of an interconnection of two identical processes counter. The
idea is to increment the appropriate counter with data, based on the Boolean value of select. Note
that the declarative semantic of blocks implies that all operations within a block execute concurrently
without control flow dependencies. This is indicated by the use of parallel compound statements (<
>) to encapsulate the operations. Compound statements will be described further in Section 8.1. Now
we describe the counterprocess.

process counter(select, data, result)
in port select;
in port data[8];
out port result[8];

static value[8];
boolean carry;

if ( select )

/* increment */
adder(value, data, value, carry);

result = value;

The counter process first checks whether it is selected, then increments the value of an internal
register value by the appropriate amount by calling a procedure adder. To make the example more
interesting, we describe the adder procedure as consisting of two 4-bit addition functions. Note
that value appears twice in the call to adder. The first refers to the value of value, and the second
indicates that value is to be overwritten by the new result. Therefore, the “reference” to a variable is
decoupled from the “modification” to the variable. We describe the adder procedure as follows.
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procedure adder(op1,  0~2, result, carryout)
in boolean op1[8], op2[8];
out boolean result[81;
out boolean carryout;

,t
boolean carry;

result[0:3] = add4bit(opl[0:3],  op2[0:3], 0, carry);
result[4:7] = add4bit(oplE4:71,  op2[4:7], carry, carryout);

The adder procedure makes two calls to a 4-bit addition function. Since the value of the result is
valid only after the procedure completes execution, result  and carryout are output local ports. Finally,
we describe the addition function.

function add4bit(opl, 0~2, tin, tout) return boolean[4]
in boolean op1[4], op2[4];
in boolean tin;
out boolean tout;

{
int i;
boolean carry;

carry = tin;
for i = 0 to 3 do
1

return-value[il = opl[i] n op2[i] * carry;
carry = wUi1 C op2 [iI I carry C (opl[i] 1 op2[i]);

1
Gout = carry;

1

Recall that return-value is the return value of the function model, and its size is equal to the size of
the function model (4 in this case). 0

As a final point, a procedure or function cannot he defined within the body of another model. This
restriction follows the C language, which disallows nested procedural definitions. The resulting flattening
of the procedural definition is appropriate since for hardware description, it is more appropriate to identify
explicitly all inputs and outputs to a given model. Otherwise,  a procedure  defined within  the scope of
another  allows access to all variables that are defined within  the scope of its definition,  and hence its
boundary  is not well defined if nested procedural definitions  are allowed.
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t
block boolean break case
channel constraint cycles declare
default delay do downto
else for free from
function if in inout
instance int load maxtime
mintime msgwait of out
Port procedure process read
receive register repeat reset
return return-value rl rr
send static step switch
tag template to until
while with write xor

3 Constants and Variables

Figure 5: Keywords  in HardwareC.

There are two types of data entities  in the language - constants  and variables.  They comprise the
basic data objects that are manipulated  in a model. Constants can be decimal,  hexadecimal,  or binary,
depending  on their prefixes. Variables are named via identifiers. An identifier  is a sequence of letters and
digits; the first character  must be a letter. The underscore  “J’ counts as a letter. Upper and lower cases
am differentiated.  The identifiers in Figure 5 are reserved for use as keywords,  and may not be used as
variable names.

Note also the user is adviced against naming variables  as Tn, Mn, or Xn, where n is an integer
value, e.g. T3, M2, or Xl. The reason is because  the Hercules synthesis  system may automatically
create temporary  variables  whose names may coincide  with these user-defined  names. Although the
system automatically  resolves  all naming conflicts, the user-defined names may be changed.

3.1 Constants

There are several types of constants  in the language  - decimal constants, hexadecimal constants, and
binary constants. A sequence of digits is taken to be hexadecimal  if it is prefixed by Ox or OX. The
hexadecimal  digits include a or A through  f or F with values 10 through  15. A sequence of binary digits
0 or 1, prefixed by Ob or OB, is a binary constant, A sequence of digits  without  prefixes ranging from 0
through  9 is a decimal constant. We now state the convention  of interpreting  the order of the digits.

Convention: The default  convention  for constants  is from the most  significant  digit (MSD)
to the least significant digit  (LSD).
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The convention  is consistent  with the C programming language. For example, in the default con-
vention, 0x03 is 3 and OxOF is 15 l. The designer needs to ensure that the selected convention  is used
uniformly  throughout  the specification.  Note that for decimal constants,  the first appearing  digit is always
the most significant  digit.

.

Negative  constants  are represented using two’s complement  convention. In particular,  if the most
significant  bit is 1, then the constant is negative.  Otherwise,  the constant  is positive.

Example 3.1.1. Consider the assignment of -5 to a four-bit quantity signal [ 41, e.g. signal
= -5. The assignment is equivalent to s igna 1 = OblO 11 assuming the default convention of
MSB to LSB. The assignment is equivalent to the following bitwise  assignments:

signa1[3:3]  = 1; /* MSB *I'
signa1[2:2]  = 0;
signal[l:l]  = 1;
signal[O:O]  = 1; /* LSB */

The -5 is interpreted in terms of two’s complement representation for 4 bits, or OblOll. 0

3.2 Variables

A variable in the language is used to access the results of computation  in a given program.  When
a program references a particular  variable at different locations  in the code, it may reference different
values, depending  on whether the variable has been reassigned between  the references. The value of a
variable is defined to be the data most recently assigned  to it, where data is defined to be the results of
procedure  call, binary and unary operators, I/O command,  or message passing.

There are three major variable types in the language - int, boolean and static,  corresponding  to
integer, Boolean, and register variables. In the mapping  to tinal hardware  implementation,  boolean
variables are synthesized  either as wires or registers,  and static variables are always synthesized  as
registers. In contrast,  int variables are provided  for the convenience  of the description,  and will be
resolved at compile time during the synthesis tasks. The integer  variables  are often called meta-variables
to emphasize the fact that they are not synthesized  in the fnra.l hardware implementation.

All variables must be declared before use, and can be declared within any compound  statements  in
the description.  A declaration specifies the type and size of a given variable. Following  the semantics
of structured  languages,  a variable is visible  only within  the scope of its definition.  A variable  with the
same name at a deeper nesting block level will override  any current definition of the variable.

Example 3.2.1. For example, all nested declarations in the following code segment are valid.

I
int i;
boolean x;

‘The Hercules/Hebe  synthesis system has the option of adopting the alternate convention from LSD to MSD.
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int i; /* new i */
boolean x; /* new x */
boolean y;
. . .

/* y is not defined here */

Note that the Boolean variable y is not defined in the outer compound statement. 0

No global variables  are allowed in HardwareC.  This restriction  is due to the fact that global variables
allow side effects that are not explicitly  identified.  This is undesirable  from the standpoint  of security,
verifiability, and program readability.  If some data must be shared between  two models,  then the data
should be explicitly  specified as parameters  to the two models that are co~ected.  We now describe each
of the three variable  types in detail.

3.2.1 Integer Variables

Integer variables  may be used in any expression,  including arithmetic,  logic, and relational  expressions,
and can only be scalar quantities.  They are mainly used as indices to constant  iteration  loops (for loops),
and as indices  for accessing  components  of Boolean vectors.

Warning: Integer  variables (also called meta-variables)  are valid only when their values can
be resolved at compile  time.

Integer variables  are used only for the convenience  of the description,  and are not synthesized into
hardware. This restriction  disallows  the referencing of integer values that are updated either in a data-
dependent  loop or conditional  construct.  The examples below illustrate  the restriction.

Example  3.2.2. The following examples illustrate invalid references of an integer variable inside
first a conditional, then a data-dependent loop. The reason is because it is not possible to determine
the value of the integer variables at compile time.

int i;
boolean a[4];

if (a>5)
i = 0;

else
i = 1;

/* referencing i is invalid here */



Specifically, depending on the value of the E!oolean variable a, i is set to either 0 or 1. Therefore, i
cannot be resolved statically, and hence the reference is invalid. The code segment below illustrates
the invalid use of integer variables in data-dependent loops.

int i;
boolean a[4];

while ( a < 5 )
I

/* referencing i is invalid here */
i =i+l;

1
/* referencing i is invalid here also */

The referencing of i will be invalid since the number of times the loop iterates is not known at
compile time. In order to describe the iteration, it is necessary to use a Boolean variable, as shown
below.

boolean new-i[8];
boolean a[4];

/* 8-bit number */

while ( a < 5 )
1

new i = new i + 1;
1 - -
/* new i contains the number of loop iterations */-

The following examples demonstrate the use of integer variables and expressions in accessing com-
ponents of a Boolean vector, and in control structures.

Example  3.2.3. The swap procedure swaps two four-bit halfs of the input vector.

/*
* swaps the two nibbles in “an, put result in "b"
* b[0:3] <= a[4:7]
* b[4:7] <= a[0:3]
*/

Swap (a, b)
in boolean a[8];
out boolean b[8];

I
int i, j;
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/* copies LSB nibble to b bit-by-bit */
for i * 0 to 3 do

b[ i+l:i+4 ] - a[ i:i 1;

/* copies MSB nibble to b */
b[ 0:3 1 - a[ 4:7 I;

1

Example 3.2.4. The example below pm&as an output Boolean vcctm of a given pattern,
where the least signikant 3 bits src set to all ads.

int i;
boolean vet (24 I;

for i - 0 to 7 do (
switch (i) {
case 0:

vec[ 3*1:3*1+2 ] = 0x7; /* binary 111 */
break;

default:
vec[ 3*i:3*1+2 ] = i;
break;

1
1

Upon execution, the variable vet sbuld have the following vducs, starting from the MSB @it 23)
totheLSB (bit0): 111 110 101 100 011 010 001 111. 0

3.2.2 Boolean Variables

In contrast to integer variables, boolean variables have a corresponding mapping  to a hardware  imple-
mentation. A boolean variablt may be implanented as wires or registers,  depending on the decisions
of the synthesis system. A boolean variable represents  one or more signals, where each bit of the
variable corxqonds  to a signal  that can be either 0 or 1. The total number of bits is the size of the
variable. If th size is ant, tba~ the boolean variable is a sculaq otktisc, it is a vector.

A number is represented  in boolean variables using the 2’s complement  convention, and  the range
of values a boolean variable can take depends on its size. For example,  a scalar boolean variable can
aSsume the values of 0 and 1, and a vector of size n can assume the values ranging  from -2”j2 . . . ( 2”j2 -
1). TheindicesofavcctorstartfromOton - 1, where  index 0 qzreqMs  to the least significant bit
(LSB),  and  index n - 1 corresponds to the most significant bit (MSB).



A boolean variable is initialized 80 zero, and its value is mt saved XIDSS ~IOC&IC  invocations.
That is, the value assumed  by a boolean variable  defined  in a giva~ model will not be retahed the
next time the model is invoked.  The fhmal syntax of boolean  variable declaration  is:

boolt?anvur{ ,var}*
w~~varisthtnamtofthcvariahle,andtbem~on{}*meanszeroormo~ occumnces of the
quantity~ntainedwithinthccurlybcacts.’Zhtsizeofthtvariablccrmalsobtsptcifitdaspartofthe
declaration,withthcdefault  sizcbcingonc(scalar).  Thcfolhving  declarations  art all valid boolean
variables.,  In particular, a is a scalar, and b is a vector of five clcmcnts starting from index  0 though 4.

boolean a; /* s c a l a r  */
boolean b[5]; /* v e c t o r  */

Both boolean variabh  and static vahbles(dcscribcd  inthcncxt  scction)rcprescntBoolean
values, and arc rcfencd to as Boofeun  vcuiabl~. In Boolean vectors, specifying tht variable name without
braqkets, or with empty brackets,  rep- tk en&e vector.  For example, b and b [ ] are quivalent to
b[0:4].  Inadditi~aisrlsop<wsibleto~asvbPangcofvalutsinavtctor.  Thisisspecifiedby
thccolon(:) notation. Forexample,b[2:3]  np~avcctoroftwovalucsthatco~tothe
third and fourth element of b. The mm significant bit (MSB) is always  the higher index, with the least
significant  bit (LSB) being the smaller index. In specifying  subranges,  the user can specify  the lower and
upper indices in any order,  either  varfbweypper] or vur@pedower],  e.g. b [ 2 : 3 ] - b [ 3 : 2 I.

Integer  variable43  and expressions can be used in variable declarations  to specify the dimensions  of the
variable, or they can be used to ECM components  and subranges  of Boolean variables. In fact, integer
expressions  canbc used whenever constants ~TC requimi,e.g.  inport/channeldcclarations  or variable
declarations.

Example 3.25. The inwa variabk  i is used for both accusing suhangcs of a Boolean  vector,
as well~inthcdcchationofavariabkq.

int i;

i - 3 ;
b[i:i+l] = b[i-2:i-11; /* b[3:4] - b(l:2] */
{

boolean q[i+l]; /f q has 4 elements */
1

The integm variabk i can be used in variabk  dachtatiu~ since  it is always  resolved  statically. 0
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3 . 2 . 3  Static  Variables

Stutic variablek are similar to boolean variables, with tht semantic difference that their values are
retained across procedural invocations. Since static variables have stafe information, they are implemented _
as registers in the resulting hardware. The formal syntax for static variable declaration is:

static var [ = init,valuc ] { , var [ = init,valuc  ] )*

where VOT is tht name of the variable. Static variables may be optionally initialized to a given value,
which cornsponds to initializing the register implementing the variable to an initial value. hit-value can
be any constant or integer expression. If inifmhe  is not specified, then the initial value is assumed to
be 0.

Example  3.2.6. A typical use of static variables is in storing state information for finite automata
machines. An oscillator model is deacribexi below.

process oscillate(clear, elk)
in port clear;
out port elk;

static state = 1;

btate - !clear & !state;
clock - state:

1

The value of state  depends on the value af &at and the value of state  in the previous execution. 0

4 Expressions

The constants and variables  are combii using binaxy  and  unaq operutors to form expressions. There are
four major types of expressions in the language - arithmetic, logical.  relational,  and auto. The operators
can be unary  or bii, and take both  integer (i.e. int) and Boolean (i.e. boolean and static)
variables as operands. Integer  expressions or variables can be used as constants in an expression because
they are always  resolved  at compile time. Elgure 6 summarizes  the operators.

l Arithmetic Operators - Tht bii arithmetic operators arc +, -* *, and /. There is an unary
-,butnounary+.  ‘Ibe+and- operators  have the same precedence, which is lower than the
(identical) preccdc~~~ of * and /, which are in turn lower  than unary  minus.  Arithmetic operators,
as in C, 8fc gmupcd left to right The order of evaluation  is not specified for associative  and
commutative  operators like * and +, and the synthesii systan  is fiec to interpn%iitc  the order of
evaluation, either (u+b)+c oru+(b+c). The arithmetic expressions  assume the two’s complement
convention for t.k operands.
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Type 1 Operator Description
Arithmetic

-

PF

l-+-
I >>

Relational 1 >

1 >=
I <=
I 1.=

Auto 1 ++

II
binary addition  11

binary division II

unary bitwise  NOT 11

rotate left II

greater than II

not equal II
equal II

Figure 6: Valid operators  in HardwareC.
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l Logical Operators - The binary logical operators  am &, 1, and XOT (or equivalently  ,.), correspond-
ing to the bitwise AND, bitwise  OR, and bitwise XOR operations.  The unaxy ! complementation
operator  takes the bitwise complement  of a given value or variable.

A value or variable may be shifted by the shift and rotate operators. In particular,  < < shifts to the
left, > > shifts to the right, rl rotates  to the left, and rr rotates to the right. Furthermore,  the binary
concatenation  operator  @ concatenates  the left operand as the most  significant  portion  with the
right operand as the least significant  portion.  For example, b [ 0 : 7 ] = x [ 0 : 3 ] @ y [ 0 : 3 ] ;
will assign x [ 0 : 3 ] to the least significant  bits b [ 0 : 3 ] , and y [ 0 : 3 ] to the most significant bits
b[4:7].

l Relational Operators - The relational  operators  consist of >, > =, < , and < =, all with the same
precedence. Just below them in precedence  are the equality  operators: == and ! =, which have
the same precedence. Relationals  have lower precedence than arithmetic  operators,  so expressions
like x < num + 3 are taken as x < (num + 3). The relational  expressions  are assumed to use
two’s complement  convention  for the operands in the comparisons.

l Auto Increment and Decrement - Similar to C, Hardwar& provides  auto-increment  (+ t) and
auto-decrement  (- -) operators. For example,  a t + and + t a are equivalent  to a = a + 1,
whereas a - - and - - a are equivalent  to a = a - 1. However, there is one major difference: an
auto-incremented  or decremented  expression  cannot be referenced. That  is, b = a t t is illegal.
This difference arises from the convention  that only assignment  statements  can affect the value of
a given variable, thereby disallowing  the side-effects  of referring to tt and -- expressions.

5 Assignments

An assignment to a variable modifies the value of the variable, and affects subsequent  references to the
variable.  Both variables (either int, boolean,  and static) and output  ports can be assigned.  We describe
the assignment  to variables in this section. Assignments  to ports axe described  in Section 6.1.

The formal syntax of an assignment  is:

variable = expression;

where expression is either an arithmetic,  logical, or relational expression,  an I/O read statement, an IPC
receive or msgwait  statement, or a function  call. Only constants or integer  expressions  can be assigned
to integer  variables. There is no restriction  on the values that can be assigned to Boolean  variables.

While a static variable is always implemented  by a register, an assignment  to a static variable
may not require the update of the corresponding  register. This is because  it is possible  to group together
multiple  assignments  to a static variable,  so that a single register update  is necessary  to effect the multiple
assignments.  However, the user may explicitly  load the implementing  register  with a new value via the
load statement. Load statements  are applicable  to only static variables. The formal syntax of the load
statement  is:
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load static-variable = expression;

The value of staticx2riabZe  will be updated one control state after the execution  of the assignment.

6 Input/Output

.Data is transferred to and from a particular model using  either port passing  or message passing mech-
anisms. In this section,  we present  the port passing  paradigm of port assignments and explicit I/O
comma&s. We describe  the message passing paradigm in Section  7.

6.1 Port Assignments

Assignment  to an output  port will update the value of the corresponding  port, and hence do no? consume
a control state during  execution  of the corresponding hardware. The way in which this value is reflected
to the other models depends  on whether the port is local or globaL

For local ports, The value that is returned  is the last assigned  value in the model.  For global ports,
on the other hand,  explicit  I/O commands are used to reflect a value on the corresponding  global port. If
there are no explicit  I/O commands  for a given global port, then the value that is returned is also the last
assigned value in the model (similar  to local ports). Otherwise,  assignments  to global ports are ignored
if there are explicit  I/O commands  made to the ports. Assignments  are illegal for inout global ports,
for which all accesses must be made with explicit I./O commands.

Example  6.1.1. To illustrate  the return value of a local port as the last assigned value in the
model, considea the model lastone.

procedu
out

.re example( result )
boolean result[4];

result = 1;
result = 2;
result = 3;
result = 4;
result = 5; /* last assigned value */

The output  local port result will return 5 to the calling model. Each assignment will not take a
control state during hardware execution time. 0

The return value of a function  is treated as an output  local port since it is not valid until  the completion
of the function.  Assignments  are made to the resewed keyword return-value, which has size equal to
the function model’s return size. The last assigned  value to return-value is the value that is returned to
the calling model.
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6.2 Explicit I/O Commands

I/O commands  explicitly  access the global ports for writing or reading (sampling).  An explicit  I/O
command immediately  reads or modifies the value of a given global port across the hierarchy. All I/O
commands consume one control state during hardware execution time (i.e. it is synchronous).  The three
I/O commands  that operate on global ports  are described  below.

6.2.1 Write Statement

A write statement writes a given value to the corresponding  out or inout global port Each write
consumes a control state, and reflects the assigned  value to the given port in the next cycle. Any value
written to a global port will be retained until  either the next write or free statement.  The formal syntax
of a write statement  is:

write port = expression;

where port can be either the entire global port, or specific subranges of the port. In the example below,
the out port c will generate a pulse:

write c = 0; /* port has 0 */
write c = 1; /* port has 1 */
write c = 0; /* port has 0 again */

6.2.2 Free Statement

A free statement sets the corresponding inout global  port to high impedance float value. For both free
and write commands,  the effect of the change  on the global port will take place exactly one cycle after
the statement  begins execution. Any write to a global  port that has been set to float state will overwrite
it with the new value. The formal syntax for the free statement is:

free port { , port }*;

where port can be either the entire port, or specific subranges of the port For example,  if d is an inout
global port, then the following code segment will force d to be 1, then high-Z,  then 1 again.

write d = 1; /* d has 1 */
free d; /* d has high-Z */
write d = 1; /* d has 1 again */

6.2.3 Read Statement

A read statement samples the corresponding  in or inout  global port into a register,  and returns the
output  of the sampling register. Execution  of a read statement will take one cycle to complete. The
formal syntax for read statement is:
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var = read ( port );

For example,

Y = read( x );
/* y is sampled version of x */

Example  6.2.1. Explicit I/o commands can be used to implement a given handshaking protocol.
In the function memory-read below, the model first waits until the request line (rq) goes low, upon
which it asserts the acknowledge line (a k) and writes the address onto the address lines (addr). The
data lines of the external memory (data) are then read in.

function memory-read(addr, data, ak, rq, val) return boolean[8]
out port addr[l6]; /* address line */
inout port data[8]; /* data line */
out port ak; /* request line */
in port rq; /* request line */
in boolean val[ 161; /* addr to read */

[
while ( rq ) /* wait */

<

write ak = 1; /* take line */
[

write addr = val; /* put address */
return value = read(data);-

3
>
write ak = 0;

1

Notice that the statements are executed in serial order ([ ] compound statement) to ensure that the
reading of the data lines takes place after the synchronization with rq. 0

7 Message Passing

HardwareC supports synchronous  blocking  send-receive message passing scheme. The medium of transfer
is called a channel. The size of a channel represents the number of bits that are communicated between
two models, and may be specified by the designer  in the channel declaration.  Synchronous message
passing suspends  the execution  of a model until the message is received or acknowledged. It provides a
simple yet powerful approach to interprocess  synchronization  and limited  data transfer without incurring
the cost of message buffering.

There are three primitive  operations in message passing:  send, receive, and msgwait. We describe
each operation  in turn.
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7.1 Send

The send statement transmits  a message on a given out channel. The current  model will wait and
synchronize
information

until the
will take

receiving model issues
place. For example, let

a receive on the given channel, whereupon the transfer of
out-channel be an output  channel of size n, then

send ( out-channel, message );

will send a message of size n on the channel our-channel. out-channel must refer to the entire channel,
i.e. sending  on a portion of a channel is not allowed.

7.2 Receive

A receive statement accepts a message from an in channel,  and will wait and synchronize  until a message
is sent on the given channel. For example, let in-channel be an input channel of size n, then

bufer = receive ( in-channel );

will receive a message of size n on the channel in-channel, and assign it to the variable buffer. in-channel
must refer to the entire channel, since receiving from a portion  of the channel is not allowed. Note that
a register is automatically  created to sample the incoming  message.

7.3 Msgwait

The mqwait command is a query that returns a scalar Boolean  flag indicating whether  the specified input
channel  has pending messages. Let in-chunnel  be an input  channel, then

jlag = msgwait ( in-channel );

will return a scalar flag depending  on whether there are messages pending from the given channel.

Example  7.1. An example illustrating  the message passing constructs is given below as a
producer-consumer  process interaction.

process Producer (A, B)
out channel A [8];
in channel B[4];

boolean data[81, buffer[4];

data = . . . .
send1 A, data ); /* send */
buffer = receive(B); /* receive */

1
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process Consumer(X, Y)
in channel X[8];
out channel Y[4];

boolean data[4],  item[81;

if ( msgwait(X) )

item = receive(X);
data = . . .;
send(Y, data);

1
else

/* producer not ready */

The producer generates  a data value,  then sends the information out to the consumer on the &bit
channel  A. It then waits and receives data from an input 4-bit channel B. In the consumer,  data is
received  from the input  channel  X, and information  is sent on the output channel Y. How the channels
are connected  among the processes determines  the interaction among the processes. 0

7.4 Channel Variables in Blocks

The flexibility of the message passing mechanism is largely due to the fieedom of the designer to
determine how the channels  are interconnected  among the models.  Such structural  interconnection  is
specified  at the block  level. To make possible  interconnection  among channels,  channel variables are
defined  in a block model  to describe the linkages  among the processes.

The formal syntax of channel  variable declaration  is:

channel channel ( , channel )*;

where channel is the name of the channel variable. The size of the channel  variable  can be optionally
specified,  the default  being scalar (size of 1). Note that channel variables arc not defined in processes,
procedures, or functions.

Example 7.2. We illustrate the use of channel  variables by extending the previous  producer-
consumer example to show how the channels  are connected  together.

block main( . . . )
<

channel wide[8];
channel narrow [ 41;

Producer (wide, narrow) ;
Consumer (wide, narrow) ;

>
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Note that it is important  to ensure an input  channel of one process is connected  to an output  channel
of another process.  •J

8 Control Flow

The control  flow statements of a language  specify the order the computations  are carried out. HardwareC
supports a single-in,  single-out control flow, similar to the Pascal programming language. This implies
that no gotos, bre& from loops, and returns are allowed  in the language. Such restriction  is appropriate
since by supporting  a single-in,  single-out  control  flow, the hardware  semantics of the language  is made
simpler, which  greatly aids in the correctness  verification  of programs.

An expression such as a = 3 or b + + becomes  a statement when it is followed by a semicolon,  as in

a = 3:
b++;

As in C, the semicolon is used as a statement  terminator,  rather than a separator  as in Algol-like
languages.  A statement can either be a variable assignment,  an if-then-else  statement, a switch statement,
a for statement,  a while statement,  an input/output  statement,  a message passing primitive,  or a compound
statement. A semicolon  by itself represents  a null statement.

8.1 Compound Statement

A compound statement is used to group variable declarations  and statements together  so that they are
syntactically  equivalent  to a single statement.  Hur&ureC supports  three types of compound  statements
- data-parallel, serial, and parallel compound  statements.  Data-parallel  compound statements  are encap-
sulated using  curly braces ({ and }), serial compound  statements  are encapsulated using square brackets
([ and I), and parallel compound  statements  are encapsulated  using angle brackets (< and >). The
differences  between  the different types are:

l Data-parallel  Compound  Statement  { } - The statements  within  a data-parallel compound  statement
can all execute in parallel, subject to the data-dependencies  that exist between the statements.  For
example,

variabledeclarations;

statementl;
statement2;

means that statement1 can be executed  concurrently with statement2 if the statements  are data-
independent.  The degree of parallelism  is determined by the synthesis system. A data-parallel
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compound statement  completes  execution  when the last statement  in the compound  statement com-
pletes execution.

l Serial Compound Statement  [ ] - The statements  within a serial compound  statement are guaranteed
to execute in serial order, starting from the first statement in the compound  statement. For example,
statement1 will always execute before statemenf2, regardless  of their data-dependencies.

variable&cliwations;

statement1 ;
statement;?;

1

Serial compound statement  allows the designer the ability to specify control  dependencies  between
otherwise data-independent  statements. A serial compound  statement  completes  execution when
the last statement  in the compound statement  completes execution.

0 Parallel Compound Statement  < > - The statements within  a parallel compound statement are
guaranteed to execute  in parallel. For example, statement1 will always execute  concurrently with
statement2. A parallel  compound  statement  is completed  when all statements  in the compound
statement have completed  execution.

<
variabledeclarations;

statementl;
statement2;

>

Since all statements  are executed in parallel,  a variable can be assigned  to at most once in the
compound statement. The values of the variables  that are referenced  inside  the compound statement
are variable values just before entering the compound statement.

Example 8.1.1. We illustrate  the differences  between  the data-parallel { } and parallel < >
compound  statements.  Consider  the swapping of two boolean  variables x and y. Let us make a fkst
pass on by using data-parallel compound  statements.

1
x = y;
y = x;
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Unfortunately, the code segment above will not perform the swap. The first assignment transfer the
value of y to x, so by the time the second assignment is executed, x already assumes the value of
y, and hence the second assignment is equivalent to assigning y onto itself. The reason lies in the
data-dependency that exists between the two assignments that forces them to be executed in series.

Let us try again, this time using an intermediate variable temp to temporarily hold the swapped value.

{
boolean temp;

temp = x;
x = y;
Y = temp; /* x swap y */

This time the code segment will perform the swap, which is analogous to the procedural semantics of
software programming languages. Let us now use the parallel compound statements to describe the
swap.

<
x = y;
Y = x;

>

The parallel compound statement guarantees that the two assignments will be carried out in parallel,
and that the right-hand side of the assignments refer to the values of the variables before entering the
compound statement. Therefore, the assignment x = y is semantically equivalent to x = previous
value of y, similarly, the assignment y = x is equivalent to y = previous value  of x. 0

8.2 If-Else Statement

Theif-else statement
Formally, the syntax is

is used to make branching decisions based on the value of a

if (expression)
statement-l

[ 1ese
statement-2 ]

expression.

where the else part is optional. If the expression is evaluated to be nonzero (or *‘true”), then statement-
2 is executed.  Othexwise, if the else part is specified, statement-2 is executed instead. The eqwession
must evaluate  to a one-bit  value, and can be either  a variable,  or any arithmetic, logical, and relational
expression.
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Example  8.2.1. An example of if-else statement is given below, where a is assigned either 0 or
1 depending on the value of the conditional  expression.

if ( ! b 6 chipselect )
a 0;= /* any statement */

else
a 1;= /* any statement */

8.3 Switch Statement

The switch statement is a multi-way conditional  that tests whether  a given expression  matches one of
a number of constant cases, and branches  accordingly.  The individual  cases in the switch statement may
be cascaded,  and are delimited through the use of break statements. The formal syntax of switch
statement  is given below, where the default case is optional:

switch (expression) (
case case-l:

statement-l
case case-21

statement-2
..a
default:

statement-D

The case value case-i must be a decimal, hexadecimal,  or binary constant. Break statements  are used to
identify the end of a particular  case. They are illegal in any other  contexts,  such as for premature exits
from while loops. Cascading and fall through  of the different cases are also supported.

Example  8.3.1.
based on a given

An example of the use of switch statement in selecting among a set of operations
codeopcode.

switch ( opcode 1 (
case 1:

result = a + b ;
break;

case 2:
result = a - b;
break;

case 3:
case 4:
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result =a& b;
break;

default:
result = 0;
break;

Note that for opcode equal to 3 and 4, the value of result is set to the logical-AND of the
operands. cl

8.4 Looping Constructs

There are two types of iterative  loop constructs  in HardwareC - for loopsand while loops. For
loops have iterations whose bounds  are known at compile time. A while loop  has iterations whose exit
condition  can be data-dependent,  and hence is in general unknown  at compile time.

8.4.1 For Loop

A for loop is a constant  bound iteration on a given integer  variable.  The formal syntax is:

for indexvar = value1  to value2 [ step value3 ] do
statement

for indexvar = value1  downto value2  [ step value3 ] do
statement

where valueI,  vak2, and value3 can be any constant  or integer  expression.  The step clause is optional,
and has a default  of one. The variable indexvar must  be an integer  variable.

8.4.2 While Loop

The while loop  is a data-dependent  iteration on a given Boolean expression The formal syntax of the
while loop  is as follows.

while ( expression
statement

where expression can be any variable or expression  that evaluates  to a scalar quantity.  The loop body
executes until expression evaluates to 0.

III addition,  a variant of the while loop executes  tbe body first prior to evaluating the loop exit
condition.  The formal syntax of the do-while loop is as follows.

do
statement

while ( expression );
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where expression can be any variable  or expression  that evaluates to a scalar quantity. The loop body
executes until expression evaluates  to 0.

Finally, a third variant of the datadependent  loop  is the repeat-until loop, where the loop body
executes repeatedly  until the expression  evaluates  to non-zero. The formal syntax of repeat-until loops
is:

.

repeat
statement

until ( expression );

9 Template Models

Very often two descriptions  differ in only very restricted ways. For example,  they are the same with the
sole exception  that the variable sizes are different,  as illustrated below for a four-bit  and a five-bit adder.

/*
* Four-Bit adder
*/

procedure adder4(a, b, c, tin, tout)
in boolean a[41, b[41, tin;
out boolean c[43, tout;

{
/* 4 bits add */

/*
* Five-Bit adder
*/

procedure adder5(a, b, c, tin, tout)
in boolean a[5], b[5], tin;
out boolean c[53, tout;

/* same as above, but for 5 bits */

It is much simpler and expressive if only one description  is given for the adder function  which  takes
an argument  specifying the size of the operation.  This approach offers the advantages  of (1) consis-
tency of descriptions,  (2) economy of code, which shortens  design time, and (3) reusability  of code
(polymorphism).

In HardwareC, the mechanism which supports  parameter&d  descriptions  is a template. A template
can be applied to any of the four types of models  (block, process, procedure,  or function). Templates are
similar  to generic packages in ADA, or generic  classes in several object-oriented  languages.  A template
takes one or more integer arguments as formal parameters. Given a particular mapping  of integer  values
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to the integer parameters,  a corresponding  instance of the template  can be obtained. A good analogy
can be made between templates  and module generation,  e.g. a template  is a form of high-level  module
generation.  The formal syntax of templates is given below for each model type.

l Block Template definition:

template  block name ( parameters )
with ( int-parameters )

parameter declurationr
bocry

l Process  Template definition:

template  process name ( parameters )
with ( int-parameters )

parameter declarations
WY

l Procedure  Template definition:

template [procedure] name ( parameters )
with ( int-parameters )

parameter declarations
body

l Function  Template definition:

template  function name ( parameters )
with ( int-parameters )
return boolean[size]

parameter declarations
bo4

The keyword template prefixes the name of the template,  and the keyword with separates the
Boolean-value  parameters  from the integer parameters. The int-parameters are the names of the integer
parameters,  and anz separated by commas (,) if more than one is present. These integer parameters  arc
scalar quantities,  and can be used in both parameter declaration  and the body of the template as integer
constants.  Specifically, assignment  to an integer parameter is not allowed.

Example  9.1. Let us consider  the description  of a template for the ripple-carry adder procedure.
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/*
* ripple carry adder
*/

template procedure adder(a, b, c, tin, tout) with (size)
in boolean a [size], b[size], tin;
in boolean c[size], tout;

I
int i;
boolean temp;

t-P = tin;
for i = 0 to size-l do {

c[i:i] = a[i:i] n b[i:i] * temp;
t emp = a[i:i] & b[i:i] 1

temp & (a[i:i] I b[i:i]);
1
tout = temp;

The template  model adder takes an integer parameter size corresponding  to the size of the operands.
The integer  variable i is used as the loop index in the description  of the ripple-addition  logic. The
sum is returned  via c and the carry-out in tout. 0

Templates can be used to describe library components  such as adders and multipliers.  In addition,
a model can call a template, or explicitly declare an instance of the template.  Calls to templates
are described  in Section 10, and explicit  instantiation  is described in Section 10.2. Templates must be
declared or defined before it can be called. Declaration  of template is analogous  to declaration of models
by prefixing the declare keyword before the header.

Example 9.2. We illustrate the declaration  of templates by declaring the adder procedure
template  in the previous  example.

declare template procedure adder(x, y, z, tin, tout) with (size)
in boolean x[size], y[size], tin;
in boolean z[size], tout;

Again, the actual names that are used as formal parameters  in the declaration  need not match the
names used as formal declarations  in the template  definition. 0

10 Calls and Instances of Models

A model may be called by another model, and indicates a request to execute  the functionality  of the
called model. The call is implemented by a particular instance of the hardware corresponding  to the
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invoked  model. Therefore, from the standpoint  of synthesis,  a model  can be treated as a resource that
is allocated and shared among the model calls. In particular,  a model  that is called is referred to as a
resource.

Example 10.1. To illustrate the analogy between models
of a model cascade that calls an udder model twice.

and resources,  consider  the description

cascade(a, b, r, tout)
in boolean a[8], b[8];
out boolean r[8], tout;

boolean tap:

adder(a[0:3], b[0:3], r[0:3], 0, temp);
adder(a[4:7], b[4:7], r[4:71, temp, tout);

In the final hardware implementation  of cascade, the two calls can be implemented  by either  (1) a
single adder, where the two calls are hound to the single adder, or (2) two adders, where each of the
two calls are bound to separate adders. Therefore, the adder can be treated as a resource that can be
shared among the multiple model calls. 0

There are two types of model calls - unbound  or bound calls, as described  next. A block model
describes  an interconnection  of models, and hence does not differentiate  between unbound and bound
model  calls. In particular,  a call in a block model indicates  the structural  instantiation  of the hardware
corresponding  to the called model (either a process or another  block model), and may not be shared with
the other calls in the model.

10.1 Unbound Model Calls

An unbound  call is a call made to a given model, where the particular instance of the model used to
implement the call is not specified, i.e. the call is not bound  to an instance. The synthesis system has
the freedom to implement  multiple  unbound calls by one or more hardware  resources.

An unbound  call involves  specifying the name of the model  to be called, along with the arguments
to the model separated  by commas and enclosed in parentheses.  The invoked  model must be declared
or defined before it can be called, otherwise the call will result  in an error. Template models can also
be called by supplying  in addition  the values of the integer  parameters in the template definition. The
formal syntax of an unbound  model and template call is:

modelnume  ( arguments );
templatename  ( arguments ) with ( int-arguments );

where arguments is a list of arguments matching one-to-one  to the formal parameters  of the called
model,  separated by commas, and int-arguments can be a list of any constant  or integer  expressions,  also
separated by commas. Block  models can call other block and process  models.
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Example  10.2. The following  code segment illustrates the use of unbound  calls. The first call
is made to a procedure model procA, and the second and third calls are made to an adder template
adder that takes an integer parameter corresponding to the size of the addition.

procA( a, b, c ); /* model call */

adder1 x, y, z ) with (5);
adder( i, j, k ) with (3);

/* template call */
/* template call */

The first template call is a S-bit addition,  and the second template  call is a 3-bit  addition.  0

10.2 Bound Model Calls

In some cases, however, the designer  may wish to invoke a specific instance of the called model in the
final implementation.  This is accomplished  by the use of bound calls. To specify the particular  instance
of the model  to invoke, an instance of the model is explicitly  declared within the description,  in a similar
manner as declaring a variable. The bound call then invokes the declared instance of the model, i.e.
binds the call to the instance.

There are several important advantages  in explicit  instantiation  of models. First, the designer  can
access not only behavior  through model calls, but also internal state information as well. This is analogous
to the capabilities  of abstract data type languages in software. Second, because a model instantiation  is
similar  to instantiating  a hardware  module,  resource sharing is supported  at the description  level. For
example,  two calls to the same instance  will share the instance in the final implementation.  Fiiy, the
designer  can completely specify the behavior  that is intended without relying on hidden  assumptions.  We
describe  first the explicit instantiation  of models,  followed by the use of instances in model calls.

Instance Declaration An instance of a model  (or template)  represents an object that encapsulates  both
behavior and state. In a similar manner, a Boolean  variable is also an object whose behavior is specified
by the language in terms of the semantics  of accessing and modifying  the variable. Instances can therefore
be treated as instance variables that are declared and used in the scope of its definition.  The syntax of
model (or template)  instantiation  is described below.

instance modelname instvar { , instuar  }*;
instance templatename with ( int-args ) instvar ( , instvar )*;

The keyword instance prefixes the name of the model or template, followed  by the names of the instances
to be created, separated by commas. The arguments to the integer  parameters in the template  instantiation
can be any constant  or integer expression,  and are separated by commas if there are more than one. The
instance variables  instvar can be scalar or vector, where a vector  of instances  denotes a set of instantiations
of a given model.
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Instance of models or templates  can be declared in any compound  statement,  and the scoping rules
for variable  visibility  also apply to instances. The model or template  that is used in the instance definition
must be previously  declared or defined.

Example  10.2.1. Consider  the example below, where adder is an addition  template, and
counter is a procedure  that increments an internal  variable each time it is called.

{
instance counter
instance adder with (4)

a; /* 4 bit counter */
04; /* 4 bit adder */

t
instance counter a, b;

a (...); /* new counter */
04 (...);

I

a (...I; /* old counter */

/* b is undefined here */

The instance a of model counter is different for each different nesting of the compound  statements.
Cl

Calling an Instance with the instances  explicitly  declared, we can invoke  a specific instance of a given
model by a bound model cuff. The formal syntax of a bound model  call is:

instancename ( arguments );

where arguments is a list of arguments matching one-to-one  to the formal parameters  of the called model,
separated by commas, and instancename is the name of the declared instance. If the instance is a vector
quantity, then instance-name should specify a single element  of the vector that is invoked.  For example,
consider  the example below with add-array  declared as an instance  of a given model adder.

/* instance declaration */
instance adder add_array[6];

add_array[3](  . . . 1;
add-array[O](  . . . );
add-array[S](  . . . );

/* call instance index [3] */
/* call instance index [O] */
/* call instance index [S] */

Example  10.3. We iIhrstrate theuse of boundcak in the following codesegment. LetprocA
and adder be the model and template  that is used iu the previous  example.  We now declare an
instance for each of the models,  aud invoke the iustauces.
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instance procA
instance adder with (3)
instance adder with (5)

inst of A;- -
inst of B size3;- - -
inst of B sizes;- - -

inst-of-A( a, b, c ); /* bound call */

inst of B size3( x, y, z ); /* bound call */- - -
inst of B sizeS( i, j, k ); /* bound call */- - -

Note that the name of the instance to be invoked is used in the bound model call. 0

Example 10.4. Resource Sharing. We illustrate now the use of bound calls and explicit
instantiation to perform resource sharing at the description level. The following counter example
increments or decrements the value a according to the value of upload, and contains three generic
calls to two S-bit adder templates. Initially, a is assigned to the sum of two variables x and y.

/* initially load */
a = adder( x, y ) with (5);

/* loop and count */
while ( ! reset )
t

if ( upload )
a = adder( a, 1 ) with (5);

else
a = adder( a, -1 ) with (5);

In the most simplistic case, each of the three calls can be implemented by separated hardware resources.
However, suppose we would like to use only a single adder resource in implementing the description.
To do so, we explicitly declare an instance of the adder template, call it ins t -adder, and make all
the calls to that instance. In particular,

instance adder with (5)

/* initially load */
a = inst-adder( x, y );

/* loop and count */
while ( ! reset )

inst-adder; /* declare */

if ( upload )
a = inst-adder( a, 1 );

else
a = inst-adder( a, -1 );
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All calls are instantiated, and refer to the same instance. Therefore, we have achieved resource sharing
at the description level. q

Motivation for Instances A major drawback with many languages is the inability to specify exactly
which instance of a given model is invoked in a model call. This restriction is reasonable for models that
describe only the functionality without internal state information. However, if a model has internal state
associated with it (through the use of static variables), such restriction severly handicaps the usability
and expressiveness of the language.  In fact, the such deficiency  can result in either inefficient or even
incorrect implementation, depending on whether the assumptions  made by the synthesis system matches
those made by the designer.

Example  10.2.2. Considex the description of a counter below.

/*
* each call to it increments by 1
*/

counter(value)
out boolean value[8];

static state[8];

state
value

=
=

state + 1;
state;

Every call to the counter module  will increment  the corresponding internal  state variable by one. If a
call is made to counter without specifying the particular instance that is to be invoked, then one of
two situations will arise.

1. Single instance assumption - If the synthesis system assumes that one and only one instance is
associated with a procedure, then a call to counter will always increment the same internal
state (corresponding to the single instance).
However, this approach is overly restrictive since one of the powers of synthesis systems is to
explore the spectrum of design tradeoffs between parallel and serial implementations, and by
always assuming one instance per procedure this exploration is not possible.

2. No assumption on the invoked instance - On the other hand, if no assumptions are made on
which instance a given call will invoke, the synthesis system will then have the flexibility to
either dedicate an instance to the call, or share several procedure calls onto the same instance.
However, if the procedure has internal state information, then the description can be incorrect
depending on the particular mapping of procedure calls to procedure instances.

The assumptions that are made by the synthesis system may not be what the designer had in mind
when writing the description.  For instance, in the code segment below, counter is calkd twice.
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counter( sum1 );

counter( Sum;! 1;

The designer can either  view the two calls as incrementing the same value twice. Alternatively,
the designer can view the two calls to he distinct, each incrementing  a value independent  of the
other. Through  instantiation  of procedures,  the designer can explicitly  specify the exact semantics
of a procedure  call. For example, if the designer wishes to increment  a single value twice, then the
corresponding code is given below.

I
instance counter value;

value(...);
value(...);

/* increment */
/* increment again */

On the other hand, if the designer wishes to increment two different values, then the code is as follows.

I
instance counter valuel, value2;

valuel(...) /* increment value1 */
value2(...) /* increment value2 */
valuel(...) /* increment value1 again */

cl

10.3 Arguments to Model Call

We describe  now the arguments to an unbound or bound  model call. Valid call arguments depend on the
particular class of the corresponding parameter  in the model definition.  Specifically, if a parameter of the
called model  is of type:

l Local port: For in local ports, valid argument includes  constant, integer  expression,  in port
(local or global), boolean or static variable and expression.  For out local ports, valid argument
includes  out port (local or global) boolean and static variable. No expression  is allowed.

l Global port: There must be one-to-one type correspondence  between the parameter type and the
supplied  argument in the case of global ports.  For example, if the type is in global port, then only
an in global port canbe used as argument. Likewise for out and inout global ports.

l Channels: Similar to global ports, there must be an one-to-one  type correspondence  between the
argument  and channel parameters. In particular,  only in channels can be arguments to an in
channel  parameter. Likewise for out channels.
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11 Constraints

There are two categories  of design  constraints  that are supported  by HardwareC - timing and resource
constraints. Timing  constraints  associate  tags with statements, and define upper and lower  bounds on the
time separation  between  the tags. Recall that we refer to models that are called as resources  that can be
allocated and shared among the calls. Resource  constraints  specify the number  of resource  components
available, and partially bind model calls to a specific instances of the resource  pool.

11.1 Timing Constraints

There are three forms of timing  constraints,  which define the minimum or maximum  time between two
statements, and the delay of a particular statement. To identify which statements  the constraint  refers to,
fags are associated  with statements.

Tags can be associated  with any statement  in the language by prefixing  the statement  with the tag
name, followed  by a colon (:) as delimiter. Tags can be scalar or vector, and must be explicitly  declared
in a totally  analogous  fashion as Boolean  variables. Tags are valid only in the scope of their definition.
The formal syntax of tag definition  is:

where the keyword tag indicates  tag definition,  and luutte is the name of the tag. Tags can be scalars or
vectors.

With the tags defined, the timing  constraints  are defined  as:

constraint  mintime fkom tag-src to tag&t  = nun {cycles~units};

constraint  maxtime  fkom tag-src to fag-&t  = nwn {cycleslunits};

constraint  delay  of tag-src = num {cyclesluuits};

Note that tag-src and tag-&t  are single-bit  tag quantities, and mm is a positive  constant  or integer
expression. The unit of the timing constraint  can be in the number of cycles (cycles), or arbitrary units
whose interpretation  is up to the designer (units). Constraint statements  can appear anywhere in the
description,  as long as the tags that are referenced are defined.

Example  11.1.1. An example of tag declaration and use is given below.

tag labell, label2, labelvec[3];

labelvec[O]:
labelvec[l]:
labell: label2:

send( channelA, msg 1;
write port = value;
Y = read(x);
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There arethreetags in theexample: label1 and label2 are scalar tags, and labelvec isa3-
element tag vector. Note that multiple tags can be associated to a given statement by putting multiple
sets of tags followed by colon before the statement, as in the case of “label1 : label2 : ". 0

11.2 Resource  Constraints

Resource  constraints  specify the number of available resource  in the final implementation.  The resource
utilization constraint describes  the number of instances  of a given model.  The formal syntax of resource
utilization  constraints  is:

.

constraint  resource-usage modelname  rum;
constraint  resourcexsage templatename with ( int-arguments ) mm;

where num is the number of instances of the corresponding model  or template. The constraint  can appear
anywhere in the description. The partial binding of operations to resource components is already made
possible through bound calls to instances of a given modeL

Example  11.2.1. We illustrate the use of explicit instantiation  as resource constraints.  Let
model~ be an arbitrary model that needs to be called 5 times. If the calls are all unbound, then
the synthesis system is free to implement the 5 calls with up to five resources corresponding to the
hardware implementing model modelA. Suppose for high-level considerations only one instance of
the model is feasible in the final implementation. This constraint on the resource utilization is achieved
by explicit instantiation of the model, followed by bound calls to the instance. Specifically,

instance modelA inst modelA; /* declare instance */

instmodelA (...);
instmodelA (...);
inst_modelA  (...);
inst modelA (...);-
instmodelA (...);

/* same instance */
/* same instance */
/* same instance */
/* same instance */
/* same instance */

Bound model calls allows resource sharing at the description level. The designer can specify the
particular instance to which one or more operations are to be bound •I

Another  form of resource constraints is the binding  of calls to specific instances of the called model.
This is supported through bound  model  calls, as described  in Section 10.2.

12 Attributes

The designer can also embed arbitrary attributes  by encapsulating  the information in double quotes. The
information  is described as arbitrary strings. The formal syntax of an attribute  is:

attribute  “arbitrary-string”;
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This capability  allows the high-level  design  description  to capture information that are not immediately
used by the behavioral  synthesis  tools, but pass the detailed constraint  information to later synthesis steps
that can fully utilize them.

Example 12.0.2. The following  are examples of attributes:

attribute "comment = this is a comment";
attribute "constraint power = 25";
attribute "this is very interesting";

13 Miscellaneous

HardwareC  relies on the C preprocessor  during parsing to handle  macro definition  (#define)  and file
inclusion  (#include) facilities. The designer  is free to use any C preprocessor commands in the description.
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Appendix

Four detailed  examples of hardware  description  using HardwareC are described  below. The first is a four
bit carry look-ahead  adder. The second is a counter  process that uses the four bit adder. The third is the
traffic light  controller  described in the Mead-Conway  book. The fourth is the greatest common divisor
example.

The examples illustrate  the various  modeling  aspects of HardwareC, and does not necessarily represent
complete  designs. For example, the adder model needs to be invoked by other models as part of a larger
design.
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Four-Bit Adder

procedure add4bit( a, b, carryin, result, carryout )
in boolean a[43;
in boolean b[4];
in boolean carryin;
out boolean result[4];
out boolean carryout;

1
int i;
boolean P[4], G[4], new;

/*
* calculate propagate and generate
*/

for i = 0 to 3 do
P[i:i] = a[i:i] xor b[i:i];

for i = 0 to 3 do
G[i:i] = a[i:i] & b[i:i];

/*
* calculate carryout
*/

carryout = G[3:3] I (P[3:31 C G[2:2])
I (P[3:33 C P[2:23 61 G[l:lJ)
I (P[3:31 C P[2:2] & P[l:l] C G[O:O])
I (P[3:31 & P[2:21 & P[l:l] C P[O:O] C carryin);

/*
* calculate sum
*/

new = carryin;

for i = 0 to 3 do {
result[i:i] = P[i:i] xor new;
new = G[i:il I ( P[i:i] & new );

Counter

process counter{ run, loadflag, updown, data, sum )
in port run, loadflag, updown, data[4];
out port sum[4];

I
boolean temp[5];
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while ( run ) {
if ( loadflag )

temp = data;
else {

if ( updown )
add4bit(temp, 1, 0, temp[0:31, temp[4:4]);

else
add4bit(temp, Oxf, 0, temp[0:31, temp[4:4]);

1
sum = temp[0:3];

Traffic  controller

/*
* Mead/Conway Traffic Light Controller
*/

# define HIWAY-GREEN  0
# define HIWAY-YELLOW  1
# define FAR-GREEN 2
# define FAR&-YELLOW 3

# define GREEN 1
# define YELLOW 2
# define RED 3

# define TRUE 1
# define FALSE 0

process traffic ( run, Cars, TimeoutL, Timeouts,
HiWayL, FarmL, StartTimer  )

in port run;
in port Cars, TimeoutL,  Timeouts;
out port HiWayL[2],  FarmL[2], StartTimer;

I
static state[2];
boolean newstate[2];

while ( run )

/* combinational logic to determine nextstate */
switch (state) {
case HIWAY GREEN:-
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case

case

case

HiWayL = GREEN;
FarmL = RED;

if (Cars & TimeoutL) {
newstate = HIWAY YELLOW;-
StartTimer = TRUE;

) else {
newstate = HIWAY GREEN;-
StartTimer = FALSE;

1
break;

HIWAY YELLOW:-
HiWayL = YELLOW;
FarmL = RED;

if ( Timeouts ) {
newstate = FARM-GREEN;
StartTimer = TRUE;

} else {
newstate = _FARM YELLOW;
StartTimer = FALSE;

1
break;
FARM-GREEN:
HiWayL = RED;
FarmL = GREEN;

if ( ! Cars I TimeoutL ) (
newstate = FARM YELLOW;-
StartTimer = TRUE;

) else {
newstate = FARM-GREEN;
StartTimer = FALSE;

I
break;
FARM YELLOW:-
HiWayL = RED;
FarmL = YELLOW;

if ( Timeouts ) {
newstate = HIWAY GREEN;
StartTimer = TRUE;

} else {
newstate = FARM YELLOW;-
StartTimer = FALSE;
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1
break;

1
state = newstate;

GCD The GCD (Greatest Common  Divisor) example is derived fi-om an VHDL description  in the
High-level  Synthesis  Workshop benchmark  suite. The routine calculates  the greatest  common  divisor  of
two positive  numbers.

#define SIZE 8 /* size of number */
process gcd (xi, yi, rst, ou)

in port xi[SIZE], yi[SIZE]; /* input numbers
in port rst; /* restart input
out port ou[SIZE]; /* result output

*/
*/
*/

/* sampled input values and temporary variable */
boolean x[SIZE], y[SIZE];

/* set output to zero during computation */
write ou = 0;

/* sample input numbers */
if ( rst )
<

X= read(xi);
Y = read(yi);

>

/* gcd just for positive numbers defined */
if ((x != 0) & (y != 0))

/* using euclid's gcd algorithm */
repeat
1

/* let x become the remainder of x divided by y */
while (x >= y)

X = x - y;

/* x should be less then y now, so exchange x and y */
<

x = y;
Y = x;

>
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/* end if y (= former remainder x) is zero */
until (y == 0);

/* if any number is zero, output shall become zero too */
else

X = 0;

/* write result (gcd or zero) to output */
write ou = x;
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