
Implementing a Directory-Based Cache
Consistency Protocol

Richard Simoni

Technical Report No. CSL-TR-90-423

March 1990

This research has been supported by DARPA contract NOOO14-87-K-0828.

Implementing a Directory-Based Cache Consistency Protocol

Richard Simoni

Technical Report: CSL-TR-90-423

March 1990

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 943054055

Directory-based cache consistency protocols have the potential to allow shared-memory
multiprocessors to scale to a large number of processors. While many variations of these
coherence schemes exist in the literature, they have typically been described at a rather high
level, making adequate evaluation difficult. This paper explores the implementation issues of
directory-based coherency strategies by developing a design at the level of detail needed to
write a memory system functional simulator with an accurate timing model.

The paper presents the design of both an invalidation coherency protocol and the associated
directory/memory hardware. Support is added to prevent deadlock, handle subtle

consistency situations, and implement a proper programming model of multiprocess
execution. Extensions are delineated for realizing a multiple-threaded directory that can
continue to process commands while waiting for a reply from a cache. The final hardware
design is evaluated in the context of the number of parts required for implementation.

Kev Words and Phrasa: Directory-based cache consistency, cache coherency, scalable
shared-memory multiprocessors.

Copyright 8 1990

bY

Richard Simoni

Table of Contents
1. Introduction
2. System Assumptions -
3. Command Messages
4. Avoiding Deadlock

4.1. Cache Deadlock
4.2. Directory Deadlock
43. Transit Deadlock

5. Traffic Cop Problem
5.1. Message Queueing
5.2. Multiple Threads
53. Routing
5.4. What Causes the Traffic Cop Problem?

6. Command Definition
6.1. Replies
6.2. Subtle Cases

7. Model of Parallel Execution
8. Directory Controller

8.1. Which Directory Organization?
8.2. Command Fields
8.3. Datapath
8.4. State Machine

8.4.1. Deciphering the Transition Table
8.4.2. Transition Table Highlights

8.5. Implementing Multiple Threads
9. Dir, NB
10. Technology Options

10.1. Directory Memory
10.2. Directory Controller
10.3. Queues

11. Conclusion
12. Acknowledgements
13. References

1
2
2
3
4
5 _
6
6
7

10
11 .
11
11
12
12
17
19
19
20
21
23
23
25

2’;
30
30
31
31
32
32
33

iii

Figure 2-1:

Figure 4-1:

Figure 5-l :
Figure 5-2:
Figure 5-3:

Figure 5-4:
Figure 5-5:

Figure 5-6:

Figure 6-1:

Figure 6-2:

Figure 6-3:

Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:

List of Figures
The basic system. Each node consists of a processor (P), cache (C), main
memory (MM), and interconnect controller (IC).
Deadlock situation that demonstrates why a cache must not wait for a reply
to the C+MM command it has sent before processing received MM+C
commands.
Overview of the traffic cop problem.
A solution to the traffic cop problem.
A modified configuration that replaces the arbiters on the inputs to the cache
and directory controllers with separate input queues.
Highlighting the parts of the system with asynchronous signals.
Our final solution to the traffic cop problem includes separate queues on the
input to the directory controller for replies and commands.
The solution to the traffic cop problem is simpler if the system has only two
resources that must communicate on each node.
The situation that occurs when two processors write a block at the same time
that they both have cached. Here, node 1 gains exclusive access first. Node 2
eventually receives a return data reply instead of the usual exclusive
acknowledge reply.
Another tricky situation. Node 2 reads a block that is dirty in node l’s cache.
But before the directory can issue a copyback command to the cache, the
cache writes the block back to memory. Now when cache 1 receives the
copyback command, it no longer has the block; the block is stuck in the
command queue at the input to the directory.
A series of commands in the queue that demonstrate why the writeback
command must be discarded.
A directory entry for the Dir, NB scheme.
The format of each message in the queues.
The datapath of the directory controller.
The queued commands that will cause the problem.
The revised datapath includes three comparators so the determination of
whether to send an exclusive acknowledge or return data reply can be made
auicklv when an exclusive command is received.

2

5

7 _
8
8

9 .
10

12

14

15

16

20
21
22
26
28

iv

List of Tables
Table 3-1: Initial version of command messages.
Table 6-1: Command messages and their replies.
Table 6-2: Command messages revised to handle subtle cases.
Table 7-1: Final version of the command messages, revised to include the waihowait

condition needed for the parallel model of execution.
Table 8-1: State transition table for the directory controller. An “x” indicates a “don’t

care” condition, and a “*” means the field should remain unchanged from its
previous value.

Table 8-2: Modifications to state transition table to handle problem occurring in Diri NB
protocols.

Table 9-1: Modifications to state transition table for Dir, NB scheme.
Table 10-l: Parts needed to implement the datapath for the directory controller,

assuming 256 or fewer processors.

4
13
17
19

24 _

29

30
31

Implementing a Directory-Based Cache Consistency Protocol

Richard Simoni
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

1. Introduction

Directory-based cache consistency schemes have the potential to scale shared-memory multiprocessors to a large
number of processors [1,4]. For this reason, we are interested in taking a closer look at the advantages and
disadvantages of this class of protocols. But it is difficult to draw any certain conclusions about these schemes with
only a vague notion of how they function and are implemented in a real system. The purpose of this paper is to
clarify these notions by presenting a reasonably detailed design of the hardware needed to implement a directory-
based cache consistency protocol.

We have chosen to approach the design at a level of detail that will allow a functional simulator with an accurate
timing model to be written. Towards this end, our design shows every necessary piece of hardware in the datapath,
but ignores controller details when it is apparent how one wouId go about designing the controller. In addition, we
formally define the consistency protocol by identifying the states and their corresponding actions, including both
messages that must be sent and state changes within the directory. The resulting “action table” could then define a
simulator’s functionality, while the detailed hardware specification can be used to derive an accurate timing model.

Because we would like the reader to understand our design decisions, we have chosen to not simply present the
final design, but rather step the reader through the design process. We start in the next section by stating the
assumptions we make about the system in which our protocol will operate. We then enumerate the types of
messages required to implement consistency, and identify the conditions that must be satisfied to avoid deadlock.
These conditions help us design a strategy for communication between the hardware units within a node. Once this
is done, we know enough about how messages are handled in a node to further refine the message definitions to
handle several subtle cases correctly. We then add the necessary support for a model of parallel execution, such as
strong ordering or weak ordering. Once the protocol definition is complete, we design the directory hardware itself,
including a precise definition of the contents of a directory entry, the hardware necessary to implement the directory
and the messages required by the protocol, and a state transition table for the directory controller. Finally, we
examine the size of the resulting hardware.

This is a revised edition of an unpublished report of July, 1988.

1

2. System Assumptions

In order to have a starting point for our design, we must make some assumptions about the system for which the
directory-based consistency scheme is intended. First and foremost, we assume the system is a shared-memory
multiprocessor that uses a large number of high-performance CPUs. We assume that each processor is paired with
its own cache. And finally, we assume that main memory is distributed across the processors. That is, part of the
globally-shared main memory is physically local to each processor/cache pair. Therefore, the minimum latency to
memory for a processor request is lower if the request is to a location that happens to be local than if the request is to
a remote location. This system configuration is shown in Figure 2-l. We further assume the directory bits for each
chunk of main memory are located with that chunk, i.e., the directory bits are distributed across the processor nodes
along with main memory.

node 0

Interconnection Network

Figure 2-l: The basic system. Each node consists of a processor (P), cache
(C), main memory (MM), and interconnect controller (IC).

A wide variety of networks satisfy our assumptions about the interconnect. We assume the network has only
point-to-point capability, i.e., there is no hardware mechanism to implement broadcasts efficiently. Each message
on the network is sent with a source and destination processor node number. We assume that messages between any
two given nodes are delivered in the same order that they were sent. The interface at each node to the network is
called the inferconnect controller (IC). We assume it provides its node with reliable communication to and from the
other nodes in the system.

3. Command Messages

The basic mechanism by which consistency is maintained in a directory-based protocol is the passing of
commands in messages between the caches and the directories associated with main memory. A typical sequence

2

begins when the cache cannot satisfy a processor request without communicating with memory; an example is a
cache miss. In this case the cache will send a command to a directory instructing it to supply the missing block.
The directory may be able to do this directly, or it may need to take other action before responding, such as sending
a command to another cache directing it to return its dirty copy of the block

Thus, we have two varieties of messages. The first type is cache-to-main-memory (abbreviated C-+MM)
commands, which are initiated by a cache any time it cannot immediately satisfy a processor’s request. The second
type is main-memory-to-cache (abbreviated MM+C) commands, which are issued by a directory to instruct caches
to take some action before it can respond to a C+MM command it has received.

A quick perusal of the possible cache events that can occur [13 shows that we need four different C--+MM
commands:

l readlnon-exclusive (readlnon-ex).
of the block from main memory.

The cache issues this command on a read miss in order to get a copy

l readlexclusive (readlex). In the case of
copy of the block from main memory.

a write miss, the cache uses this command to get an exclusive

l exclusive (ex). When the cache encounters a write hit on a clean block, it must ask the directory for
exclusive access to this block; it will then be the single cache with the dirty copy of the block.

l writeback. This command is used by the cache to
example, it is replacing the block with another one.

As previously mentioned, a directory may need to have
commands is received. The three MM-4 commands are as

write back a dirty block to main memory if, for

other caches
follows:

take action when one of these C-+MM

l copyback. This command tells the target cache to copyback the indicated block to main memory. The
block need not be invalidated, however, This command is required when there is a read miss in a cache
on a block that is dirty in another cache.

+sh. A cache receiving this command should copy the specified block back to main memory and
invalidate the block. This case occurs when a cache has a dirty copy of the block and there is a write
miss on the block in another cache.

l invalidate. This command should cause the receiving cache to invalidate the indicated block It is
issued when another cache requests exclusive access to a block, either through a readlex or ex C+MM
command

These C-+MM and MM+C commands are summarized in Table 3-l. Note that many of the commands require a
reply, e.g., to return a block of data. We will modify and refme these commands and precisely define their replies
later.

4. Avoiding Deadlock

There are several conditions that must be satisfied in the system to avoid the possibility of deadlock. A typical
situation we must take care to avoid is one in which two nodes simultaneously send a message to each other and
cannot continue until they receive a reply; neither node can reply because each is stuck waiting for a reply that will
never come.

The key to avoiding these situations is to remember the worst-case sequence of transactions that can occur on a
given block: a cache issues a C+MM command, and the directory has to issue multiple MM-X commands (to

3

C-+MM commands

read/ex
read/non-ex
ex
writeback

MM-C commands

copyback
flush
invalidate

Table 3-1: Initial version of command messages.

caches other than the one that initiated the sequence) as a result; the target caches may then need to send replies back
to the directory, which finally responds to the cache that issued the original request. We must ensure that there is no
possibility of deadlock at each of the resources used in this worse-case scenario. In particular, we must make sure
no messages become stuck (1) at a cache, (2) at a directory, and (3) in transit between a cache and a directory. We
will examine each of these cases independently.

4.1. Cache Deadlock

Notice that when a cache receives a MM+C command (i.e., copyback, flush, or invalidate), the cache never
needs to issue another command to complete the requested action. That is, the actions required to carry out a
MM+C command are self-contained in the destination cache. So the conditions sufficient to prevent deadlock at a
cache degenemte to those necessary to ensure the cache eventually begins processing all commands it receives. In
practice, there are only two reasons the cache might delay processing a command. First, if the CPU is accessing the
cache, then the command must wait; however, the CPU will eventually complete its access, so this delay will not
cause deadlock. Second, the cache may have issued an unrelated C-+MM command command and awaits a reply.
This situation is more dangerous.

Consider an example, shown in Figure 4-l. There are two nodes, node 1 and node 2, and two data blocks, block
A and block B. The directory information for blocks A and B resides in nodes 1 and 2, respectively. Block B is
dirty in cache 1, and block A is dirty in cache 2. Now suppose processor 1 performs a read to block A, and at the
same time, processor 2 performs a read to block B. Each cache sends an read/non-exclusive C+MM command to
the appropriate directory and waits for the directory to return the data in a reply. Each directory issues a copyback
MM-K command to the other node. But if these caches must put off the copyback until they receive the reply to
the read/non-exclusive commands they sent, then they will wait forever, because neither reply can be returned by the
directories until the copyback commands have been completed.

We can therefore state the condition that must be satisfied to prevent deadlock in the caches:

l A cache controller cannot wait to process and respond to a MM+C command until after it has received
a reply from a pending C+MM request that it has issued.

4

node 1 reads A node 2 reads B

Interconnection Network

Figure 4-1: Deadlock situation that demonstrates why a cache must not wait for a reply to the
C+MM command it has sent before processing received MM-4 commands.

4.2. Directory Deadlock

Referring back to the the worst-case sequence of transactions, there are two distinct processing phases a directory
must deal with to fully complete a request. First, the directory must handle the C+MM command request, which
may include sending MM4 commands to caches. Second, the directory must process the replies from those
caches, which may include sending a reply to the cache that sent the original C+MM command. Once access to the
directory is gained, both of these processing phases are completed without blocking at the directory. We therefore
need only ensure that all C-+MM commands and replies to MM4 commands attain directory access.

Commands and replies from caches compete solely with each other for the directory resource. Replies from
caches can always be handled immediately; however, there can be constraints on the C-+MM commands. For
instance, a command for an address cannot be executed in the directory if a transaction is already pending for that
address; otherwise, cache consistency will be compromised. The directory may therefore block on some C-+MM
commands. It must be ensured that this blocking does not prevent replies to MM+C commands from accessing the
directory, since these replies are required to release the blocked command. We can state this condition as follows:

l A directory controller cannot delay processing replies to a MM+C command until after processing a
C+MM command command that cannot be immediately processed.

5

4.3. Transit Deadlock

Now that we have specified conditions sufficient to prevent deadlock at the cache and the directory, we need only
assure that messages between them do not deadlock in transit. The route taken by a message includes both the
channels of the interconnection network between nodes and the intra-node communication paths. Since the
messages in the system are the only users of these communication resources, we can prevent deadlock by
guaranteeing that no messages permanently block other messages. The network, for instance, must not be built so
that a C-+MM command holds the link between the cache and directory if this may prevent a resulting MM-X
command to a different cache from reaching its destination. In our design we assume that all replies to a command
require a separate transaction on the interconnection network. Not only is this assumption safe in terms of avoiding
deadlock, but also consumes less network bandwidth since the network is not tied up needlessly during command
processing. l

Within a node, the directory controller should either not see arriving MM-K commands at all, or should be able
to forward them to the cache regardless of the current state of the controller. Otherwise, deadlock may occur if each
directory on two nodes sends a MM+C command to the other node, for the commands may be blocked from the
destination cache by the local directory. We can generalize the above concepts into a condition sufficient to prevent
transit deadlock:

l The interconnection network must be non-blocking, and each hardware unit within a node cannot block
messages intended for another unit in the same node.

5. Traffic Cop Problem

An important problem to solve is how to efficiently pass data between the major subsystems within each node.
For our purposes we will consider three subsystems. The directory controller (DC) maintains the contents of the
directory bits. The interconnect controller (Ic) implements the interface between the node and the interconnection
network. For our design we can view it abstractly as a mechanism that reliably sends and receives C+MM and
MM-42 commands. The cache controller (CC) maintains the internal cache directory (comprised of tags, valid
bits, dirty bits, etc.) and satisfies memory requests from the processor.

Figure 5-l shows the communication paths that must be supported within a node to transfer commands (and
replies) between the controllers. The cache controller issues C+MM commands, which may be directed to either
the local directory or to a remote directory via the interconnect controller. Similarly, the MM-4 commands Erom
the directory controller may go to the local cache or to remote caches. Finally, commands arriving at the node
through the interconnect controller may go to the cache or the directory, depending on the command type (C+MM
or MM-X). We call the problem of directing each of these messages to its destination efficiently the trafic cop
problem.

‘However, this assumption does result in a longer command latency since arbiuation for the interconnect link must occur twice, once for the
command and once for the reply. However, this additional arbitration &lay will be small compared to the total latency, and should therefore
have negligible effect on the system performance.

6

Figure 5-l: Overview of the traffic cop problem.

5.1. Message Queueing

Because we do not want to halt a producing resource just because the consumer happens to be momentarily busy,
we begin our design by placing a FIFO queue at the input to each of the controllers. This has additional benefits, as
we will see shortly. Also notice that some sort of arbitration is needed on the input to these queues, since each
queue is fed by two sources. For example, the directory controller must accept C+MM commands from both the
local cache and the interconnect controller. The resulting system is shown in Figure 5-2.

Let us further consider the arbitration on the input to the cache and the directory. Say the cache controller in a
node prepares a command for the directory in the same node. It then gains access through the arbiter to the directory
input queue since the interconnect controller currently has no commands for the directory. But as soon as it begins
to transfer data into the queue, a C-+MM command arrives at the interconnect controller. Now the interconnect
controller cannot transfer the command to the directory input queue until the cache has completed moving its own
command into the queue. There are several design options for the interconnect controller when this situation is
encountered. The interconnect controller could abort the message, causing it to be sent again later. This is
obviously not an attractive alternative since additional network traffic results from an operation that should be fairly
innocuous, i.e., the transfer of data from a cache to the directory within a node. Another option is to buffer the
incoming message locally in the interconnect controller, perhaps in its own FIFQ queue. While this seems to be a
reasonable design choice, it does add delay as well as some hardware complexity since incoming messages should
be buffered in the interconnect controller only if the desired queue input is busy.

Our proposed design solves the problem as follows. Rather than try to implement buffering in the interconnect
controller, we provide a separate input queue at the cache and directory for each of the input sources. This
arrangement is shown in Figure 5-3. Note that the arbiters on the cache and directory queue inputs are eliminated,
so commands to these controllers can be latched into the input queue immediately. Of course, the arbitration
problem has really just been moved from the input of each queue to the output. But the problem is much simpler
there, since neither of the arbitrating parties require “instant” processing as the interconnect controller does when an
incoming command arrives. At the output, the consumer simply chooses to pick the next command from one queue
or the other based on the queue empty/full information.

7

1

-

-

, 4

IC

b
A

Ill-

Figure 5-2: A solution to the traffic cop problem.

Figure 5-3: A modified configuration that replaces the arbiters on the inputs
to the cache and directory controllers with separate input queues.

Note that we have left the arbiter for the interconnect controller input queue in the design, rather than replace it
with two queues as well. This is because the two sources driving the arbiter, namely the cache and directory
controllers, should be able to wait for the queue to become free without significant additional hardware complexity

8

or performance penalty. If it is found that this is not the case, then the double-queue solution can be used here as
well.

Another benefit comes from providing the cache and directory with separate queues to accept incoming messages
from the interconnect controller. A likely implementation technology for the queues are the catalog FIFO memories
based on fast static RAM technology. One feature of these parts is that there are separate data pins for the queue
input and output, and the input and output ends of the queue can be controlled asynchronously with respect to each
other. We can use this feature to our advantage if the interconnect in the system is asynchronous relative to the
internal node, as is often the case. The FIFO memories can then provide the required asynchronous interface
between the interconnect and the node. In other words, the interconnect controller would gate the data from the
network directly into the directory and cache input queues rather than an internal buffer. Figure 5-4 shows the
design again, highlighting the sections that are asynchronous relative to the processor clock.

synchronous

Figure 5-4: Highlighting the parts of the system with asynchronous signals.

Unfortunately, the solution to the traffic cop problem shown in Figure 5-3 has a deadlock problem. Recall the
section about preventing directory deadlock (Section 4.2). The condition for avoiding deadlock is that the directory
cannot block replies from caches simply because a C+MM command is blocked. As we noted, the directory cannot
proceed with a command if there is already another transaction pending for the same address. If this happens, the
logical action for the directory is to temporarily stop pulling commands from the queue, i.e., block the queue. But if
the queue is blocked, then the directory can receive no replies and the pending transaction that prevents the directory
from proceeding will never complete. Blocking the queue violates the condition necessary to prevent directory
deadlock.

In order to allow reply messages to bypass the blocked queue, we will provide two special reply queues on the
input to the directory controller where replies are routed. Our revised (and final) solution to the traffic cop problem
includes these extra queues for the directory controller as well as the original two command queues and is shown in

9

Figure 5-5. The mechanism works by encoding a reply bit in each message that indicates whether it is a command
or a reply to a previous command. When a message arrives for the directory controller from the cache or
interconnect controllers, it is gatedinto the corresponding command or reply queue depending on the value of the
reply bit.

cc DC IC

4
A

arb - II/--

Figure 5-5: Our final solution to the traffic cop problem includes separate
queues on the input to the directory controller for replies and commands.

Finally, we must decide what should be done if a message arrives at a node for a queue that is full. One option is
to let the message back up in the network by holding the communication link until the queue can accept input. This
is feasible only if the network continues to allow other messages to get through to the node; otherwise, we have
violated the condition for avoiding transit deadlock (see Section 4.3). An alternative strategy is aborting the
message, allowing it to be sent again later. Since the queue will become full infrequently, the mechanism we choose
to handle this case has negligible performance implications. We should implement whatever option is easiest, given
the particular interconnection network in the system.

5.2. Multiple Threads

An issue we have not considered up to this point is single-threaded versus multiple-threaded directory controllers.
A single-threaded controller can have the transactions for no more than one C-+MM request pending at a given
time. This restriction is not placed on multiple-threaded controllers. The advantage of multiple threads is that the
directory can proceed with other C+MM requests while waiting for caches to respond to MM-X commands the
directory issued for a different block. Although our design assumes a single-threaded directory controller, Section
8.5 will discuss the additional protocol and hardware support needed to implement multiple threads.

Let us again consider the reply queues of Figure 5-5 in the context of multiple threads. At first glance it appears
that the reply queues are not necessary to prevent deadlock, because the directory does not stop processing
commands from its input queue while it awaits a reply; therefore, a reply in the queue should eventually reach the

10

directory. Unfortunately, this argument is not entirely correct. While a multiple-threaded directory need not block
its input queue whenever any transactions are pending (as does its single-threaded counterpart), it still must block
the queue if any transactions for thesame address as a new C-+MM command are pending. Hence, deadlock is still
possible, since a reply pertaining to a given address may get stuck in the queue behind an unrelated C-+MM
command for the same address.

As before, we can solve the deadlock problem by adding the reply queues to the multiple-threaded directory, and
that may be the most desirable solution. Relative to the analogous case in a single-threaded controller, however, the
directory input queue will block far less frequently. Perhaps commands and replies could use the same queue by
having the directory discard the offending C+MM command rather than block it. The directory would then send a
message to the slighted cache instructing it to retry its command. If this situation occurs infrequently then there
should not be a noticeable effect on performance; furthermore, less hardware is required since we no longer need the
reply queues.

.

5.3. Routing

We have now defined the buses used to move messages between the subsystems in each node. Each subsystem
receives its messages by gating them into its input queue from the bus. Message header bits are decoded to drive the
control inputs of these queues. Queues receiving messages from the interconnect controller use a bit indicating
whether the message is intended for the cache or the directory, and a bit that is set if the message is a reply (the
aforementioned reply bit). Messages originating in the cache controller or directory controller may be intended for
the local node or a remote node. The processor number from the message header must therefore be compared with
the local processor numbe?-; if they match, the local directory or cache queue latches the message data. Otherwise,
the message is intended for a remote node, and the interconnect controller must enqueue the message.

5.4. What Causes the Traffk Cop Problem?

As an aside, we note that the traffic cop problem is a manifestation of the system assumptions behind our design.
Because the directory controller and cache controller are grouped together in a node, there are three resources per
node (the cache controller, directory controller, and interconnect controller) that must communicate with each other.
This implies that each controller must accept input from two sources; this is the cause of the traffic cop problem.
Consider a system in which the memory and directory are not distributed across the processor nodes but instead
communicate with all caches via the interconnection network. In such a system there are only two resources per
node that need communicate with each other; the solution to the resulting traffic cop problem is much simpler and is
shown in Figure 5-6. The simplicity in this system comes from the fact that no arbitration between two resources
need occur within a node: all arbitration is handled at the interconnection network

6. Command Definition

Earlier, we defined the commands necessary to implement directory-based cache consistency (see Table 3-l).
This section will refine the defmition of the commands to include the possible replies, to handle several subtle cases
that occur, and to allow the proper implementation of a programming model of parallel execution.

2The local processor number can either be held in a software-writable register or set by DIP switches.

11

cache unit: memory unit:

reply command

Figure 5-6: The solution to the traffic cop problem is simpler if the system
has only two resources that must communicate on each node.

6.1. Replies

In Table 6-l we have modified the earlier table of commands to also show the possible replies to each command.
The two C+MM read commands, reudlexclusive and read/non-exclusive, expect a block of data back from
memory, so the appropriate reply is return data (retdata). The exclusive command is issued by a cache that already
has a clean copy of the block and needs to inform the directory that the block is about to be written. No data is
returned in this case, so there is no reply to this command. Since the cache can proceed immediately after a
wtiteback command, there is no need for a reply to be sent.

When a directory issues the MM+C copybuck orflush commands, it expects to receive a block of data back from
the cache; this data is carried in the copybuck data (cbduru) reply. Since no data need be returned by the cache when
it receives an invalidate command, no reply is necessary.

6.2. Subtle Cases

We must further refine our commands and replies to handle several less obvious cases. The first of these can
occur when a block sits clean in several caches, and two processors try to write the block at the same time. Both
caches proceed by issuing an exclusive command to the directory in charge of the block. It is clear that we only
want one of the writes to proceed without intervention, i.e., the write corresponding to the first exclusive command
to reach the directory. So we must not allow a write to a clean block to proceed in a cache until an acknowledge
reply to the exclusive command has been received from the directory. We will call this reply exclusive acknowledge
(exuck).

I2

C+MM commands Possible Replies

read/ex
read/non-ex
ex
writeback

retdata
retdata
(no reply)
(no reply)

MM+C commands Possible Replies

copyback
flush
invalidate

ClXbta
Cbdata

(no reply)

Table 6-1: Command messages and their replies.

We now know what happens in the first cache to reach the directory with its exclusive command. It will receive
an exclusive acknowledge reply, and proceed with the write. But what happens in the other cache that also issued an
exclusive command? Before the directory gets around to processing the second cache’s exclusive command, it will
have sent this cache an invalidate command on the block, since the first cache was granted exclusive access. Now
when the directory finally gets around to processing the second exclusive command, it must recognize from the dirty
bit saved in the directory that the block now resides dirty in another cache. The appropriate action for the directory
to take is to get the block back from the first cache (with a flush command) and to return the data to the second
cache with a return data reply, as if the second cache had issued a readlexclusive instead of an exclusive command.
This sequence of events is shown in Figure 6-l. So from a cache’s point of view, whenever it issues an exclusive
command, it may receive either an exclusive acknowledge reply or a return data reply. If it receives a return data
reply, it is because the cache no longer contains the block due to an invulidute command it received between the
time it issued the exclusive command and received a reply.

The second subtle case we must handle correctly is as follows. Say a cache issues a read command
(readlexclusive or read/non-exclusive) on a block that is dirty in another cache. This read command is put in the
input command queue for the appropriate directory. Now the cache that currently has the block dirty decides to
replace the block to make room for another by issuing a writebuck command, which is also put in the directory’s
input command queue. Eventually the directory processes the read command from the input queue. It sees that the
line is dirty in a cache, and so it sends a flush or a copybuck command to that cache. The directory is now
deadlocked, for it is waiting for a cache to reply with a block of data that the cache can no longer supply since it has
written the data back already. The block of data that the directory needs is stuck in the input queue. This situation is
shown in Figure 6-2.

There are several approaches to solving this problem. The most obvious is to code all C+MM writebuck
commands as replies (even though they are not sent in response to another message) by setting the reply bit in the
command encoding. This method causes all writebacks to enter the reply queue at the input to the directory instead
of the command queue. Thus, when the directory issues the copybuck orflush command, the block of data will be in
the correct place (the reply queue) even if the writeback was initiated by the cache before it receives the copybuck or
flush.

This approach to solving the problem has some drawbacks. Because all writebucks now enter the reply queue,
whenever the directory is awaiting a reply to any command it must be prepared to “wade through” and process any

13

node 1 writes A node 2 writes A

6

Interconnection Network

Figure 6-1: The situation that occurs when two processors write a block at the same time that
they both have cached. Here, node 1 gains exclusive access first. Node 2
eventually receives a return data reply instead of the usual exclusive acknowledge
reply.

writebucks that were queued prior to the true reply. These writebucks will be typically be blocks other than the
block the directory is currently processing. The implication is that the directory controller will not only need
multiple address registers, but will also have to delay addressing main memory until it has received the reply it is
looking for, since the memory needs to be available until that time to handle writebucks. A multiple-threaded
directory must already satisfy these conditions, making this an attractive solution for those systems.

For our single-threaded design, we choose a solution that uses a different strategy in the cache. We simply adopt
the policy that when a cache initiates a writebuck command, it must not invalidate that line in its cache until it has
received an acknowledgement from the directory. We call this acknowledgement a writebuck acknowledge (wbuck)
reply. Now if the directory issues aflush or copybuck command for a block that has already been written back and
is stuck in the command queue, the cache can still supply the line in a reply to the directory.

There are two disadvantages to this technique. First, network traffic is increased for the case when a cache
initiates a writeback. Hopefully, the caches in the system should be large enough so that cache-initiated writebacks,
which are caused by interference in finite-sized caches, are relatively infrequent. Second, the cache issuing a
writebuck cannot proceed with its replacement operation until it has received the writebuck acknowledge from the
directory. However, there is nothing preventing the cache from sending the C-MM command to request the
replacement block; in most cases we expect the writebuck acknowledge to arrive at the cache before the new data
anyway. 3 Therefore, this solution should not significantly increase the average amount of time it takes a cache to

3The cache cattroller must buffer the new data if it returns before the writeback acknowkdge, however. It is insufficient to simply leave the
data in the cache input queue because this will block the write&k ucbwwfedgc from reaching the cache.

14

node 1 writes A back node 2 reads A

Interconnection Network

Figure 6-2: Another tricky situation. Node 2 reads a block that is dirty in node l’s cache. But
before the directory can issue a copybuck command to the cache, the cache writes
the block back to memory. Now when cache 1 receives the copybuck command, it
no longer has the block; the block is stuck in the command queue at the input to
the directory.

replace a dirty block.

The only remaining issue is the writebuck command that can get stuck in the queue. If the directory sends a
copybuck or flush command and receives the block directly from the cache in a reply message, then the previously-
issued writebuck command in the queue is no longer needed. So what should happen when the directory eventually
services that command when it reaches the head of the queue? It is obvious that ignoring the command (i.e., taking
no action) results in correct operation. But this strategy will require some special hardware to distinguish the
writebuck commands that should be ignored from those that should be processed by the directory. It would be easier
to simply always execute writebuck commands in the directory, since the situation in which they can be ignored is
infrequent. Unfortunately, this results in incorrect operation, as demonstrated by an example. There are three
caches involved, A, B, and C, and cache A contains a dirty block. Cache B has a write miss on the block, resulting
in a read/exclusive command to be queued at the directory. Cache C has a read miss on the block; the directory
input queue receives a readlnon-exclusive command. At this point cache A needs to replace the block, so it sends a
writebuck command to the directory. Figure 6-3 shows the state of the directory input queue at this point. Here is
the sequence of events that occur as the directory processes each of the commands that is queued:

l reud/exclusivefiom B. The directory sends a MM+Cflush command to cache A. Cache A, which has
not yet invalidated its copy of the block since it has not received a writebuck acknowledge, returns the
block to the directory in a copybuck data reply. The directory in turn supplies the block to cache B in a
return data reply. Cache B then completes the write that caused the write miss. At this point the block
is dirty in cache B.

15

I DC I

Figure 6-3: A series of commands in the queue that demonstrate why the
writebuck command must be discarded.

l read/non-exclusive from C. The directory sends a MM-+Cflush command to cache B. Cache B returns
the block to the directory in a copybuck data reply. The directory sends the block to cache C in a return
data reply and writes the block into main memory. At this point the block is clean and main memory
will supply the block to any caches that miss on it.

l writebuck from A. This is the so-called “stale” writeback that was stuck in the queue when the directory
needed the block. The data accompanying this command does not include the changes made in cache B
when the write was completed. This writebuck command must be ignored by the directory; otherwise,
main memory will supply stale data to the next cache that misses on the block.

Ail of the information needed to determine whether a given writebuck command should be discarded exists in the
directory bits. Any cache performing a writebuck should have the block in a dirty state. When the directory
controller receives the command, it should verify with the directory information that the processor that issued the
writebuck is indeed supposed to have the block, and the block is indeed supposed to be dirty. If either of these
conditions does not match, then the command should be ignored, since the data may be stale.

In another approach to solving the writeback problem of Figure 6-2, a cache would simply notify the directory if
the cache receives a copybuck orflush command for a block it does not contain. The directory would then reply to
the cache that requested the data, instructing it to resend its readlnon-exclusive or readlexclusive command. When
the resent command reaches the directory, the writeback command will have completed and the retdutu reply can be
sent, assuming no other cache has claimed an exclusive copy by then. Although in general we prefer for efficiency
reasons protocols that do not rely on resending messages, this particular solution is promising since we expect the
situation depicted in Figure 6-2 to occur infrequently.

In order to handle the subtle cases presented in this section, we have added several replies to our command
definition. Our current list of commands and possible replies to each command is shown in Table 6-2. In order to
resolve the case where multiple caches request exclusive access to a block simultaneously, we have added two
possible replies to the exclusive command: exclusive acknowledge and return data. And to allow directories to
access blocks that have already been sent back in a writebuck command but are stuck in the input queue, we now
require all caches to wait for a writebuck acknowledge reply before invalidating a block after replacing it via a
writebuck command.

16

C--+MM commands Possible Replies

read/ex
read/non-ex
ex

writeback

retdata
retdata
exack
retdata
whack

MM+C commands Possible Replies

copyback
flush
invalidate

Cbdata
Cbdata

(no reply)

Table 6-2: Command messages revised to handle subtle cases.

7. Model of Parallel Execution

In any multiprocessor with cacheable shared data, an effort must be made to provide the programmer with a
reasonable model of parallel execution and cache consistency. Several possible models have been proposed [3,2],
e.g., strong ordering, weak ordering, release consistency, etc. Though a full treatment of this topic is beyond the
scope of this paper, we will discuss how to add the necessary support to the memory system for a processor to
implement a fence. A fence is a mechanism to “delay the issue of certain accesses until other accesses have been
performed,” [2] and is the basic operation used to enforce a particular model of execution.

Although each programming model requires slightly different fence semantics, the resulting hardware varies at
the processors, not in the memory system. For all models the memory system must be constructed in a way that
allows a processor to know when STORE accesses have been performed and LOAD accesses have been globully
performed [3,2]. By definition, a STORE is performed when a LOAD to the same address by any processor will
return the value of the STORE. A LOAD is globally performed when issuing a STORE to the same address cannot
affect the value returned by the LOAD, and the STORE that is the source of that value has been performed.

Later when we examine the state transition table for the directory controller we wilI see that the directory blocks
all accesses to a newly-written value until alI of the invalidations associated with that write have completed. The
new value is therefore not visible to any processor until it is visible to all processors. It is guaranteed, then, that any
LOAD to a block by a processor will be globally performed when it completes.

We also need a means for a processor to know when STORE accesses have been performed. In the context of an
invalidation-based protocol, a STORE access is performed at the time when all of its related invalidations have
completed in their target caches. We must modify the command definitions in our protocol so that a processor can
be notified of this condition.

The strategy we adopt is to first have the directory determine when alI of the invalidations it has sent have
completed in the target caches. To accomplish this we will now have caches acknowledge each MM-4 invalidate
command with an invalidate acknowledge (invuck) reply. The cache is allowed to send this reply at the point in time
when it is clear that the cache will not satisfy another processor reference until after the block is invalidated in the

17

cache. For instance, if the cache always gives the command input queue priority over the processor, then the
invalidate acknowledge reply could be sent as soon as the invulidute command is latched into the input queue. But
the simplest implementation of the-cache controller will probably not send the invalidate acknowledge reply until it
begins to process the invalidate command.

Note that for Diri B and for most simple implementations of Diri NB it is possible for a cache to receive an
invalidate command for a block not currently stored in the cache. The reason is obvious for broadcast schemes: all
caches receive broadcast invalidate messages. For protocols without broadcast, this situation is possible because
caches typically replace clean blocks by simply invalidating them, without notifying the directory. Thus, the
directory information may show that cache contains a clean copy of a block when in fact the cache has replaced it
with another block. This is not a problem; if a cache receives such an invalidate command, it should simply send a
invalidate acknowledge reply so that the directory can continue with the assurance that the cache does not have a
copy of the block.

Now the commands are in place for the directory to know when all of the invalidate commands it has sent have
been completed. We also need a mechanism for communicating this fact to the cache that sent the reudlexclusive or
exclusive command that caused the invalidations. One option is to have the directory delay sending its reply to the
read/exclusive or exclusive command until the invalidations are complete. This scheme has the advantage that no
additional messages need be sent; the disadvantage is that the latency seen by the cache is increased since the
directory will frequently be able to supply the data before the invalidations have completed Since this penalty can
be significant, our design instead sends a separate command to notify the cache that the invalidations are complete.
The new MM-X command is called invalidates done (invsdone) and no reply from the cache is necessary.

We do not want to indiscriminately send invalidates done commands back to the cache for every read/exclusive or
exclusive command it issues, because it is not necessary for several common situations. If a cache issues a
read/exclusive command and the block in question is dirty in another cache, then the reply cannot be sent until the
block has been written back anyway. For either a reudlexclusive or exclusive command, the block may not exist in
any other caches (e.g., if the block is non-shared data). For these situations, we do not want to send invalidates done
commands that tie up the network and the target caches needlessly. However, the cache cannot know u priori
whether or not its command will cause invalidations to occur. To solve this problem we include an extra bit in the
encoding of every reply to a C+MM command This bit indicates one of two situations: wait, in which an
invalidates done command will be forthcoming from the directory, or nowuit, in which no invalidates done
command wilI be sent. This is the last modification we need to our commands in order to implement a directory-
based cache consistency scheme. The final set of commands in our design is shown in Table 7- 1.

An example of an execution model that can be implemented using these commands is strong ordering [3]. Under
this model, a fence operation must occur before issuing a memory reference. The fence delays the reference until all
previous LOADS and STORES by that CPU have been globally performed and performed, respectively [2]. The
processor actions needed for implementing this restriction are straightforward Whenever a cache receives a reply
indicating the wait condition, then no more references from the processor can be issued until an invalidates done
command is received.

The same fence mechanism could instead be used to implement weak ordering [3]. In this case, a fence is not
required before each reference, but rather immediately before and after each access to a synchronization variable [2].
Before any references can be issued after the fence, it must be known that no more invulidutes done commands are
expected from directory controllers. A simple way to ascertain this condition is to use a hardware counter at each
cache whose value at any time is the number of expected invalidates done commands not yet received. This counter
is incremented each time the cache receives a command indicating the wait condition, and decremented each time

18

C-MM commands Possible Replies

read/ex

read/non-ex
ex

writeback

retdat.a/wait
retdata/nowait
retdata/nowait
exack/wait
exack/nowait
retdat&iowait
whack

MM+C commands Possible Replies

copyback
flush
invalidate
invsdone

Cbdata
Cbdata
invack
(no reply)

Table 7-1: Final version of the command messages, revised to include the
wuitlnowaif condition needed for the parallel model of execution.

the cache receives an invalidates done command. Once a fence condition has occurred, further references must be
halted until the value of the counter is zero.

8. Directory Controller

Since the purpose of the directory controller is to process C+MM commands, we could not design it until those
commands were defined. Now that the command definitions are complete, we can use them as the design
specifications for the directory controller. In this section we lay down a basic design by presenting the particular
directory organization we focus on, the fields contained in each command, a suitable datapath for the unit, and the
state machine that controls the unit.

8.1. Which Directory Organization?

Up to this point in the paper, we have easily avoided deciding what information is stored in each directory entry.
This demonstrates that as far as hardware complexity is concerned, the choice of a directory organization really only
affects the design of the directory controller itself.

The design we wilI present is an implementation of Dir3 NB (3 * 3 pointers per directory entry, NB + no
broadcast invalidate messages are needed since the number of simultaneous cached copies of any block is limited to
3 [l]). This scheme was chosen primarily because it is a realistic example in the sense that it might be considered
for use in an actual machine. We use enough pointers per entry (3) to sufficiently demonstrate the hardware
complexity of managing multiple pointers, and the lack of broadcast capability is an accurate reflection of most
point-to-point interconnection networks.

For the sake of completeness, let us mention a constraint that would be important if a directory scheme with
broadcasts (Dir; B) were used. The broadcast mechanism must have “all but one” broadcast capability. By “all but

19

one” we mean the network must support some means of sending a broadcast message to all nodes except for one,
where the one exception is not necessarily the node sending the message. This is necessary in the case that two
caches issue an exclusive command on the same block simultaneously. If the directory has to issue a broadcast
invalidate command, then the cache that obtained exclusive access must not invalidate its copy, but the other cache
must honor the invalidate. Since the caches have no way of knowing Q priori if they will obtain exclusive access
when they ask for it, they must honor any broadcast invulidute messages that they see. Therefore, the broadcast
mechanism itself must allow the directory to indicate a cache that should not see the message.

In a Dir, NB protocol, each entry contains the information shown in Figure 8-1. There are four fields, namely
three pointers and the state. The pointers contain the processor numbers of the caches that contain the data
corresponding to this directory entry. The number of bits in each pointer is that required to encode a processor
number. The state field is comprised of three valid bits and a dirty bit. Each valid bit indicates whether or not the
corresponding pointer currently stores a processor number for a cache that has a copy of the block. The dirty bit is
set if exactly one cache contains the data, and it is dirty in that cache. For our design we will assume that any one of
the three pointers may contain the valid processor number when a block is in the dirty state.

.

pointer0 pointer 1
1

pointer2 VVVD

state

Figure 8-l: A directory entry for the Dir3 NB scheme.

8.2. Command Fields

Each command must contain several fields of information. Note that some commands may not require all of the
fields. The fields are as follows:

l command. This field indicates which command is being sent. A useful command encoding will
probably be one in which separate bits are used to indicate whether it is a C+MM or MM+C message,
whether or not the message is a reply (the reply bit mentioned earlier), and for replies to C+MM
commands, whether or not there is a forthcoming invalidates done command (the aforementioned wait
or nowait condition).

*processor number. The contents of this field depend on whether the command is at the sending or
receiving node of the command. At the sending node, this field represents the processor number to
where the command will be sent.
sent the command.

At the receiving node, the field contains the processor number that
Of course, on the network the message will contain the node numbers of both the

sender and the receiver, but it is expected that the interconnect controllers will add or remove its own
processor number to or from the message immediately before it is sent or after it is received. The
processor number may be eliminated altogether from arriving reply messages if the directory is single-
threaded because the directory will be expecting all replies.

l address. This field contains the address of the block to which this command applies. In a single-
threaded directory implementation, this field need not be included in replies, since a reply always
pertains to the same block as the command that prompted the reply.

l data. This field contains the data words accompanying the command Since a data block is not
transferred in every command, this field is not needed in all of the commands.

20

Each command is therefore made up of several words that contain these fields. The word size is set by the width

of the interconnection network paths and the width of the queues. Assuming that the command word size is 32 biti

(as well as the addresses and data words in the system), a reasonable command format is shown in Figure 8-2. This
defines the ordering of the fields within the command as it passes over the interconnection network and as it sits in
the queues. The first word contains the command and processor number fields. The second word contains the
address. Subsequent words carry the block of data if the command type warrants it. If each data block is four words
long, then commands that carry data will be six words long, and other commands will be two words long.

processor # command unused

address

data word 0

data word 1

data word 2

data word 3

4 32 bits

Figure 8-2: The format of each message in the queues.

In some implementations it may be worthwhile to make the command word wide enough to accommodate both
the command field and the address field. The advantage of this is that the memory read cycle for the directory state
and pointer bits (which must occur regardless of the command) can begin without delay since the address is known.
A memory cycle can also begin immediately in main memory proper if the implementation allows the specification
of whether it is a read or a write cycle to occur later, and if the cycle can be aborted later if it is found that no
memory access is necessary. This may be possible since DRAMS first require the row address to be latched (with

the RAS signal) before the data read or write cycle occurs; the ease of implementation will partially depend on the
interface with the DRAM controller.

8.3. Datapath

We are now ready to lay down a possible datapath for the directory controller. Looking back at Figure 5-5, the
directory simply accepts a stream of commands from one port and produces a stream of commands on another port.
We will call these the in port and out port, respectively. Our datapath represents logic within the block labeled
“DC” in this figure. Though our controller does indicate whether the next command should be removed from a
command or reply queue, it does not indicate which of the command or reply queues. The logic used to implement
this simple arbitration will depend on the specific nature of the empty/full information provided by the FIFO queues.

21

The basic datapath is shown in Figure 8-3. Memory is shown abstractly as a “black box” with address and data
ports. All data transfer to and from the directory controller occurs on the in and out ports. Keep in mind that all of
the fields associated with a command will not appear simultaneously on the in or out port, since the fields sit in
different words in the queue. It is the responsibility of the controller to clock fields from the input queue onto the in
port in the same cycle that the logic that needs to see those fields is “watching” the in port Similarly, the controller
must ensure that the logic drives the out port in such a way that the fields are queued in the correct order at the target
queue.

in port -

out port -

1
address

1 1
b proc # I command

data

main
memory addr .- addr directory

memory

state

Figure 8-3: The datapath of the directory controller.

Addressing the directory bits and main memory is simple; a single register latches the address from the in port and
drives the address ports of the memories. Data blocks are written into memory directly from the in port and read
from memory directly onto the out port. The state machine controlling the datapath needs to see both the incoming
command type (which is latched in a register) as well as the current state of the addressed block. The state machine
also generates the outgoing command type and the next state to be saved in the directory.

A register is included to latch incoming processor numbers. This register should only latch a new processor
number on incoming commands, i.e., the register should ignore incoming replies. There are two reasons for this
policy. First, as we will see in the state transition table, the processor number from a reply is never needed by the
controller. Second, the register must continue saving the processor number from the original C--+MM command so
that the directory can issue the reply to that command.

22

The processor number in the incoming command can also be compared against that stored in a pointer. The
purpose of this comparator is twofold. First, as discussed before, this comparison is needed to determine if a
writeback command should be performed or discarded. Second, when the directory sends invalidate commands in
response to a C+MM exclusive command, the comparator is used to avoid sending an invalidate to the cache that
issued the exclusive.

Outgoing messages can be sent to either the cache that sent the original C-+MM command (using the processor
number saved in the register) or to the cache indicated by a pointer. The transceiver is needed to isolate the
incoming processor number register from the pointers when the comparator is being used.

8.4. State Machine

A rough state transition diagram for a state machine to control the directory datapath is shown in Table 8-l. The
diagram is “rough” in the sense that no allowances have been made for timing considerations, such as the number of
cycles necessary to access the directory bits. All of the necessary flow of data is indicated, however. Some
incoming commands result in multiple outgoing commands; these are denoted with multiple lines in the output side
of the table.

8.4.1. Deciphering the Transition Table

The table shows four inputs to the state machine. The first two are the current state and the incoming command
type. Another input is the directory state bits for the block specified by the address in the incoming command.
Some of the conditions listed in this column are not directly encoded into the state bits (which, recall, consist of
three valid bits and a dirty bit) but are easily derived from them with simple combinational logic. These conditions
are:

l fp. This stands for free pointer. The condition is true if there is at least one unused pointer, i.e., if one
of the valid bits is 0.

l zero. The condition is true if no caches contain the block, i.e., if all of the valid bits are 0.

l one. The condition is true if exactly one cache contains the block and the block is clean in that cache,
i.e., if exactly one valid bit is 1 and the dirty bit is 0.

l many. The condition is true if more than one cache contains the block, i.e., if more than one valid bit is
1.

The final input column (W = dirty ptr?“) indicates whether or not the processor
command matches the single valid directory pointer in the case when the block is dirty.

number in the incoming

The first output in the table is the outgoing command type for commands and replies sent by the directory
controller. The processor number to which the message should be sent is indicated as well. Due to space
constraints, the codes in this column are rather cryptic; we now explain them:

l in. This indicates the processor number saved in the incoming processor number register.

l rptr. This stands for replacement pointer. The processor number saved in the pointer that is about to be
replaced is to be used. The determination of which of the three pointers this refers to depends on the
pointer replacement policy.

l dptr. This is an abbreviation for dirty pointer. The processor number saved in the single pointer that is
valid when the block is dirty is to be used. In our design this could be any of the three pointers; the

23

inputs: outputs:

state

1 idle
2 idle
3 idle
4 idle
5 idle
6
7 1
8 idle
9 2
10 idle
11 idle
12
13
14
15 3
16 4
17 5
18 idle
19 6
20 idle
21 idle
22 7
23 idle
24
25
26 8
27 9

incoming dir
command stateP -

writeback dirty
writeback dirty
writeback -Arty
rea&honex Airty A fp
readjnonex -dirty A -lfp

invack X

read/nonex dirty
&data X

read/ex zero
read/ex one v many

invack
invack
invack
readjex
&data
ex
ex
&data
ex

X

X

krty

X

one
dirty
X

many

invack X

invack X

P# =
dirty
ptr?

Y=
no
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

outgoing
command

whack
whack
whack
retdatajnowait
retdata/nowait
inValidate

copyback
retdata/nowait
retdata/nowait
retdata/wait
invalidate
invalidate
invalidate

invsdone
flush
retdata/nowait
exackjnowait
flush
retdata/nowait
exack/wait
invalidate
invalidate

invsdone

dir
P# state--

in zero
in *
in *
in (add)
in
rpD *

*
dptr (add)
in *
in dirty
in
P@O
Ptrl
ptr2 dirty

*
*

in *
dptr dirty
in *

dirty
:ptr dirty
in *
in
PtrO
ptr2 dirty

*
in *

free
ptr
*
*
*
in

in*
in*
in

in*
*

next next other
queue state actions, comments

comm
comm
comm
comm

reply
COlTWl

reply
comm
comm

idle memorytdata
idle don’t write back data!
idle don’t write back data!
idle supply data

supply data
1
idle
2
idle memorytdata, supply data
idle supply data

supply data

only send invs for valid ptrs
reply 3
reply 4 1st invack
reply 5 2nd invack
comm idle 3rd invack
reply 6
comm idle supply data
comm idle
reply 7
comm idle supply data

only send invs for valid ptrs
reply 8 don’t send inv to in P#!
reply 9 1st invack
comm idle 2nd invack

Table 8-l: State transition table for the directory controller. An “x” indicates a “don’t care”
condition, and a “*” means the field should remain unchanged from its previous
value.

valid bits must be examined to make the determination.

l ptro, ptrx, ptr2. These refer to the processor number saved in one of the three pointers, point&,
pointer 1, and pointer2

The next output in the table is the new directory state that should be stored in the directory entry for the block.
The only cryptic notation in this column is (add), which means the valid bit corresponding to the pointer that is
becoming valid should be turned on (“added”) in the existing state. The next output, “free ptr,” shows when the
processor number in the incoming command should be saved in a pointer that is free or has been made free by some
action taken by the directory controller.

The queue from which the next command should come, either the command queue (abbreviated comm in the
table) or the reply queue, is indicated. Finally, the next state is listed along with other actions that should be taken.

24

8.4.2. Transition Table Highlights

There are several points of interest in the transition table, including the subtle cases we presented earlier. In lines
2 and 3 of the table are the cases in which the directory has received a “stale” writeback, i.e., a writeback command
that must be discarded. In line 2 the writeback command comes from a different processor than the processor that
currently has the dirty copy of the block as indicated by the directory bits. In line 3 the directory shows the block as
clean, so the received writeback command must be stale. In both of these cases the command should be ignored and
discarded, as discussed earlier.

The other special case we spoke of is when a cache tries to obtain exclusive access to a block with an exclusive
command, but the block is invalidated in the cache before it receives a reply due to another cache performing the
same operation. This situation is shown in lines 21-22 of the state transition table. The directory receives an
exclusive command but the directory indicates the block is aheady dirty, which can only mean another cache
obtained exclusive access before this one. The proper action for the directory controller is to flush the data from the
cache that has the dirty copy and to send the data back in a return data reply to the requesting processor.

.

The cases that may force the directory to send multiple invalidate commands are when a cache requests exclusive
access to a block with either a read/exclusive or exclusive command. These cases are shown in lines 11-17 and
23-27 of the transition table. Although it would be simpler for the state machine to send each invalidate one at a
time, always waiting for the invalidate acknowledge reply before sending the next invalidate, this serializes the
process, causing it to take much longer than necessary. From a performance standpoint it is obviously preferable to
send alI of the invalidate commands with no delay between them and then wait for the invalidate acknowledge
replies to arrive. This is the strategy shown in the transition table. Although the table shows the invalidate
commands that would be sent if all of the pointers were valid, note that invalidate commands must be sent using
only the pointers that are valid. Also, for the exclusive command (lines 23-27) an invalidate command must not be
sent to the processor that issued the command, although that processor number wilI be saved in one of the pointers.
The comparator in the datapath is used to detect the pointer corresponding to the processor number in the command;
the invalidate command is suppressed for this pointer. In the example shown in the table, the exclusive command
came from the processor stored in pointer 1; therefore, invalidates are only sent using pointers 0 and 2. Again, this
assumes pointers 0 and 2 are valid.

There are two special cases involving the readhxlusive and exclusive commands that allow a slight optimization
to be made in the protocol. If a readlexclusive command is issued for a block that exists in no caches, then there is
no need to return the data with the wait condition and then later send an invalidates done command. Since no
invalidations need be sent, the data can be returned with the nowait condition. Similarly, when an exclusive
command is issued for a block that only exists in the cache issuing the command, exclusive access can be granted
immediately with the nowait condition since no invalidations are necessary. These optimizations are shown in lines
10 and 20 of the state transition table. Though they may seem insignificant, these refinements optimize the
performance of the memory system for non-shared data, and may be worthwhile for this reason.

Finally, there is one very interesting case that occurs in any directory-based cache consistency scheme that limits
the number of cached copies of a block to a given number at a time. This is true for any Dir; NB scheme (such as
our Dir, NB scheme) where i is less than the number of nodes in the system. The situation happens when aII of the
pointers are valid, i.e., three caches contain copies of a block, and a fourth wants a copy as welI to service a read
miss. The fourth cache issues a read/non-exclusive command. This case is unique because it is the only instance in
which a read access by a processor forces an invalidate command to be sent. The purpose of the invalidation, of
course, is to limit the number of cached copies to three so that the caches’ processor numbers can be stored in the
three pointers. But does the reply to the read/non-exclusive command need to include the wait condition and be

25

followed by a invalidates done command ? The answer is no; it is fine to leave a fourth cached copy of a block
valid, as long as we ensure that the block is invalidated in the cache by the time we send an invalidates done
command after an exclusive command is later issued. This is easily accomplished in a single-threaded directory by
simply waiting for the invalidate acknowledge reply to the invalidation command before processing the next
command from the input queue. In this way we guarantee that the invalidation has completed before any exclusive
command is seen by the directory. Therefore, as shown in lines 5-7 of the state transition table, the correct action to
take in this situation is to return the data with the nowait condition, send an invalidate command and wait for the
invalidate acknowledge reply. No invalidates done command need be sent.

Unfortunately, this situation in which an invalidate must be sent to keep the number of cached copies down to
three causes a problem similar to the case we studied before when two caches simultaneously issue exclusive
commands. The problem is easily demonstrated by means of an example. Say three caches, A, B, and C, contain
clean copies of a block. Now a fourth cache, D, has a read miss on the block and sends a read/non-exclusive
command to the directory. Then cache A wants to write the block, and so it sends an exclusive command to the
directory. The commands are now queued for processing by the directory controller as shown in Figure 8-4. The
directory first takes cache D’s readlnon-exclusive command from the queue and decides to invalidate cache A’s
copy of the block. The directory sends an invalidate to cache A, cache A invalidates the block, and the directory
receives the invalidate acknowledge reply from cache A. Now the directory controller takes cache A’s exclusive
command from the queue. Unfortunately, cache A no longer has a copy of the block.

.

Figure 8-4: The queued commands that will cause the problem.

This situation was easy to detect in the case where two caches issue exclusive commands at the same time,
because in that case the directory shows the block as dirty when the second exclusive is processed; the directory then
knows to return the data rather than simply acknowledge exclusive access. But when cache A’s exclusive command
is processed by the directory after its copy has been invalidated, the directory shows the block sitting valid in three
caches, just as if there were no problem. The only way to detect the problem at the directory is to compare the
processor number of the incoming exclusive command with each of the stored pointers for that block. If there is no
match, then the correct reply from the directory is return data rather than exclusive acknowledge.

We now present three solutions to this problem; these solutions vary in their trade-off between performance and
hardware complexity. Perhaps the simplest solution using the existing datapath is to delay the reply to exclusive
commands until all of the invalidate commands have been sent. As each pointer is read to send an invalidate

26

command, the comparator is used to see if the pointer has the same value as the processor number in the exclusive
command (this comparison is performed anyway to prevent an invalidate from being sent to the cache that issued
the exclusive command). If no match is found after going through all of the pointers, then the directory replies with
a return data command; otherwise the usual exclusive acknowledge reply is sent. The obvious drawback of this
technique is that the performance of the most frequent case (returning an exclusive acknowledge) has been
compromised to ensure correct operation in the infrequent case.

A second solution is to make the cache “smarter” to recognize the situation when it occurs. In this variant the
directory immediately sends the exclusive acknowledge reply before performing the invalidations. As the invalidate
commands are sent, the comparisons against the processor number in the exclusive command are performed, as in
the first solution. If no matches occur, the directory then sends a second reply to the exclusive command; this reply
is return data. The cache has to check its tags again whenever it receives an exclusive acknowledge reply; if the
cache no longer contains the block, it ignores the reply and waits for the inevitable return data reply that will follow.
Again, this solution degrades the performance of the frequent case (though not as badly) because of the additional
hit detection that must occur in the cache.

.

We have chosen the solution with the highest performance at a slightly greater hardware cost. The idea here is to
add comparators to the datapath so that the processor number of the exclusive command can be compared against all
of the pointers simultaneously. The decision of whether to send an exclusive acknowledge or return data reply can
therefore be made immediately, and the directory can send the reply before the invalidations. The revised datapath
needed to implement this solution is shown in Figure 8-5. A side benefit of this method is that the comparisons with
each pointer have already occurred by the time invalidations must be sent so the extra delay time at each pointer
before sending the invalidate command is avoided.

Using the multiple-comparator solution we modify lines 23-27 of the state transition table as shown in Table 8-2.
The new input indicates whether or not the processor number in the incoming command matches any of the pointers.

8.5. Implementing Multiple Threads

Up to now we have assumed a single-threaded directory controller for our design. Let us briefly describe the
modifications necessary to implement multiple threads. For the most part, the operation of the directory is exactly
the same as for a single-threaded implementation, with one important difference. The single-threaded design takes
advantage of the fact that the controller sits idle while waiting for a reply by leaving the state needed to complete the
processing of the reply in the registers of the datapath and the state machine. With multiple threading, however,
those registers must be free to process C+MM commands even while the directory waits for a reply. Our task is to
identify the state that must be saved when a MM4 command is sent so we can process its eventual reply, and
decide how to save that state.

When a reply from a cache arrives, the directory usually needs to send a reply to the original C+MM message
that started the entire transaction. For instance, if the original C-MM message was a request for a block dirty in
another cache, and the directory receives the reply from the cache with the data, then a return data reply must be
sent to the original requesting cache. In order to do this, we need the processor number and address from the
original command. This state is easily maintained by simply encapsulating it in the MM-S commands that are
sent, with the understanding that the receiving caches will simply echo the state back in their replies. An extra bit
must be added to the directory entry as well to indicate that a transaction is pending so that unrelated C+MM
messages for that address will not be processed until the pending transaction is complete.

27

inport -

out port -

data

main
memory addr IC--

.

I I t

p t r o ptrl ptr2

addr directory
memory

I machine

Figure 8-5: The revised datapath includes three comparators so the determination of whether
to send an exclusive acknowledge or return data reply can bc made quickly when
an exclusive command is received.

The only state that cannot be maintained in this manner pertains to the case where the directory must count
invalidate acknowledge replies so that it can send an invalidates done reply at the appropriate time. This count can
be kept only at the directory since the invalidate acknowledge replies are collected there. The count could be
maintained by adding bits to each directory entry, or by keeping a “counter cache,” a memory containing the counter
value for each address in a corresponding tag store. In both cases, the counter value would be incremented when an
invalidate command is sent, and decremented when an invalidate acknowledge reply is received. A comparator is
also needed so it is known when the counter value reaches zero.

An alternative to using storage dedicated to keeping this count is to simply use the pointer valid bits in the
directory entries themselves. The obvious solution of clearing the valid bit of the pointer corresponding to the
received invalidate acknowledge reply until the valid bits are all zero is slightly flawed. In some cases all cached
copies of a block are invalidated (e.g., lines 11-17 in Table 8-l), but in others all but one cached copy is invalidated

28

inputs: outputs:

P# = P# =
incoming dir dirty any outgoing dir free next next other

state command State ptr?ptr? command p# E E queuestate actions, comments

23 idle e x many x Yes exacldwait in
24 invalidate PQO
25 invalidate ptr2 dirty in
26 8 invack X X X * *
27 9 inv ack X X X invsdone in * *
28 idle ex many x no retdata/wait in
29 invalidate PtrO
30 invalidate P@l
31 invalidate ptr2 dirty in
32 10 hack X X X * *
33 11 inv ack X X X * *
34 12 back X X X invsdone in * *

only send invs for valid ptrs
reply 8 don’t send inv to in P#!
reply 9 1st hack
comm idle 2nd invack

lines 29-34 same as 12-17
only send invs for valid ptrs

reply 10
reply 11 1st back
reply 12 2nd hack
comm idle 3rd hack

Table 8-2: Modifications to state transition table to handle problem occurring
in Dir; NB protocols.

(e.g., lines 23-27). A scheme that increments as invalidate commands are sent and decrements as invalidate
acknowledge replies are received is probably easier to implement. This is still possible using the pointer valid bits,
simply by clearing them before sending the first invalidate and either setting one bit for each invalidate or using two
of the bits as a counter that can contain the values 0 through 3 (for a Dir, NB scheme).

The extra support we have added for multiple threading can also be used to implement a more efficient solution to
the writeback problem we discussed earlier (see Figure 6-2). Because the multiple-threaded directory is built to
handle requests while some are already pending, writebacks are easily handled at the directory with no additional
hardware. This eliminates the drawbacks of the scheme we mentioned that encodes writeback commands as replies
by setting the reply bit in the command encoding. All writebacks will then enter the reply queue at the directory,
preventing them from blocking and allowing the directory to reply to a processor that requests the data. The state
identifying the requesting processor is contained only in the header of the resulting copyback or flush command,
however, so the receiving cache must send back a reply even if it has already written the data back. A new reply
type would indicate that the cache no longer contains the data. When the directory receives this reply with the
necessary header state, the writeback command will have already completed, and the directory can forward the data
from memory to the requesting processor.

9. Dir, NB

Only slight modifications are necessary to our Dir, NB design if a DirN NB4 consistency scheme is used instead.
Whereas the pointers in Dir, NB are fields that contain a processor number, the pointers in DirN NB are
implemented as a bit vector with N valid bits, one for each node in the system. Two additional pieces of hardware
are required in the datapath to handle the bit vector operations.

‘N is the number of nodes in the system.

29

First, a unit is needed that accepts the vector of valid bits and produces a stream of processor numbers
corresponding to the bit positions in the vector where the bits are set. This unit is used to generate the processor
number field for the stream of invalidate commands that must be sent by the directory in response to some
read/exclusive and exclusive commands. Again, we must avoid sending an invalidate command to the cache that
sent the exclusive command; therefore, as in the Dir3 NB design, this unit must include a comparator to detect the
case when the processor number generated from the bit vector is the same as the incoming command processor
number register.

Second, hardware must be provided to set a single bit in the valid bit vector in the bit position corresponding to
the processor number of the current request. The other bits in the bit vector are either cleared or left unmodified,
depending on the operation. This functionality is used when a cache loads data with a read/exclusive or
readlnon-exclusive command.

.

Because N cached copies can coexist in D’fN NB, the situation from the Dir3 NB scheme where an invalidate
command must be sent in response to a read/non-exclusive command does not occur. We therefore modify lines 4-7
of the state transition table (Table 8-l) as shown in Table 9-l. Note that it no longer makes sense to have the “free
pointer” condition as one of the inputs to the state machine.

inputs: outputs:

incoming dir
state command State---

P#=
dirty outgoing dir free next next other
ptr? command p# $a& pt-r queue state actions, comments

4 idle read/nonex -dirty
5

X retdafatnowait in (add) in comm idle supply data

6
7

(these lines no longer
needed)

Table 9-1: Modifications to state transition table for DirN NE3 scheme.

10. Technology Options

Now that we have completed a basic design for the directory controller, it is possible to evaluate some of the
technology options available for implementing the different parts of the system, including the directory memory, the
directory controller itself, and the FIFO queues. The goal is to get a feel for the number of parts and amount of
board area required for the design.

10.1. Directory Memory

The basic decision to be made for the directory memory is whether to use static or dynamic RAM chips. Static
RAM is obviously desirable for speed and simplicity reasons, but it may not be feasible due to its lower density.
The amount of directory memory, board area trade-offs, and power considerations will determine whether or not a
static RAM directory is practical in a particular system.

30

Let us look at one sample system configuration, a 256-processor system with 16MB of main memory on each
processor node. The caches use l&byte blocks; therefore, each processor node requires a directory with a million

entries. In the Dir3 NB scheme, 4-bits of state plus three pointers of 8 bits each adds up to 28 bits per directory
entry. The directory is therefore made up of 3.5 MB of RAM and will occupy roughly 20% of the total board area
used for storage if DRAM is used. For this system configuration, each additional pointer costs about 1.1 MB worth
of extra RAM in the directory. For this example, it is clear that the directory cannot be feasibly built using faster but
lower-density SRAM.

10.2. Directory Controller

Let us now consider the options for implementing the directory controlIer. One possibility is to implement the
datapath of Figure 8-5 with standard catalog parts and use PALS for the control. As shown in Table 10-1, this
datapath requires 12 standard parts (6 registers, 3 comparators, and 3 transceivers), not counting the directory
memory. Though we have not explicitly enumerated the state machine’s inputs and outputs, the datapath will
probably require no more than 3 to 5 PALS to generate the control signals.

unit bits/unit parts/unit # of units total parts

address register 32 4 1 4
processor # register 18 1 1 1
command register C8 1 1 1
comparator S8 1 3 3
transceiver 18 1 3 3

total 12

Table 10-l: Parts needed to implement the datapath for the directory controller,
assuming 256 or fewer processors.

Another possibility for constructing the directory controller lies in semi-custom devices such as gate arrays,
programmable gate arrays, etc. The directory controller will probably map nicely onto these devices since the unit is
relatively self-contained with a manageable number of inputs and outputs (well under 100). In such an
implementation, the datapath and control would be combined on the same part. If it is found that the design does
not fit on a single part meeting the speed requirements, a bit-slice approach can be used with several parts.
Bit-slicing is a clean way of partitioning the design since the only interaction between the bits lies in the
comparators, and these are small enough that they would probably not have to be split across chip boundaries.

103. Queues

As earlier mentioned, the FIFO queues in the system are probably best implemented using standard catalog FIFO
RAM parts. Since these parts are typically 8 or 9 bits wide, each queue wilI require 4 parts, assuming a 32-bit
command word The seven queues shown in Figure 5-5 will therefore require 28 chips. While this number may
seem large, this covers all of the queueing required in the system, not just that needed by the directory controller.
Since we count the queue cost here as part of the directory scheme, the design of the cache and interconnect

31

subsystems is correspondingly simpler since they need not implement any queueing.

11. Conclusion

Starting from a few basic system assumptions, we have worked through a detailed protocol and hardware design
of a directory-based cache consistency scheme. We began by focusing on the types of messages in the protocol and
the flow of data between the memories and caches. We found that the protocol must be designed in concert with the
message delivery mechanisms to remove the potential for deadlock. In particular, the strategy for queueing
messages at the input to the directory controller must be carefully planned. By identifying sufficient conditions for
preventing deadlock of messages at the cache, at the directory, and in transit, we were able to refine our protocol and
hardware to resolve the deadlock problem.

With the basic consistency operations in place, we then added support for a model of parallel execution, such as
strong or&ring or weak ordering. This provides a reliable programming model even in the face of uncertain
latencies for consistency-related operations. To implement such a model, the caches need a way of executing a
fence, and we show that the directory can support this mechanism by counting acknowledgements to invalidations
and including a waitlnowait bit with each reply to the caches. Using these directory techniques as a foundation, the
cache designer can easily implement a fence operation with the appropriate semantics for the desired execution
model.

We then took a more detailed look at the directory hardware, including the datapath required to receive and reply
to messages, and the state machine controlling the datapath. Focusing on a system with a limited number of pointers
per directory entry, we identified a problem unique to this directory organization that can occur when a memory read
causes an invalidation in order to free a pointer. The problem is similar in nature to the more commonly discussed
case in which two processors write the same data block at roughly the same time. Several solutions are presented
that trade-off performance and hardware complexity differently. We use our final design to approximate the parts
count for the major hardware units in the directory.

We have demonstrated that a directory-based protocol is a feasible way of implementing cache consistency across
an arbitrary interconnection network. While the resulting protocol is perhaps not simple, it is certainly tractable. In
addition, the hardware needed to implement such a protocol is quite reasonable for the scale of machine in which it
is likely to be used. Having put concerns about feasibility of implementation to rest, we can now focus on
performance issues. The design contained herein should help drive some of these efforts by providing a realistic
hardware model for both simulations and analytic models.

12. Acknowledgements

Thanks go to Helen Davis for her good-humored patience and helpfulness in reviewing and discussing this paper.
Thanks also to Mark Horowitz for many helpful discussions about the ideas contained herein as they evolved. Dan
Lenoski, Mike Johnson, and Kourosh Gharachorloo provided insightful commentary on the first unpublished edition
of the paper. Anoop Gupta suggested the technique of counting invalidation acknowledge messages by turning off
the corresponding pointer valid bits in the directory entry. This research has been supported by DARPA/ONR under
Contract NOOO14-87-K-0828.

32

-

13. References

[ll Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz.
An Evaluation of Directory Schemes for Cache Coherence.
Proceedings of the 15th International Symposium on Computer Architecture , June, 1988.

m Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Anoop Gupta, and John Hennessy.
Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors.
Proceedings of the 17th International Symposium on Computer Architecture , June, 1990.

[31 Christoph Scheurich and Michel Dubois.
Correct Memory Operation of Cache-Based Multiprocessors.
Proceedings of the 14th International Symposium on Computer Architecture , June, 1987.

[41 Wolf-Dietrich Weber and Anoop Gupta.
Analysis of Cache Invalidation Patterns in Multiprocessors.
Third International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS) , April, 1989.

33

