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Abstract: We have developed techniques for obtaining and using type information during pro-
gram specialization (partial evaluation). Computed along with every residual expression and every
specialized program is type information that bounds the possible values that the specialized pro-
gram will compute at run time. The three keystones of this research are symbolic values that
represent both the set of values that might be computed at runtime and the code for creating the
runtime value, generalization of symbolic values, and the use of online fixed-point iterations for
computing the type of values returned by specialized recursive functions. The specializer exploits
type information to increase the efficiency of specialized functions. This research has two benefits,
one anticipated and one unanticipated. The anticipated benefit is that programs that are to be
specialized can now be written in a more natural style without losing accuracy during specializa-
tion. The unanticipated benefit is the creation of what we term concrete abstract interpretation.
This is a method of performing abstract interpretation with concrete values where possible. The
specializer abstracts values as needed, instead of requiring that all values be abstracted prior to
abstract interpretation.
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Introduction

A program specializer (also called a partial evaluator) transforms a program and a description of
the possible inputs of the program into a program specialized for those inputs. For example, a
two argument function could be specialized for its first argument being 2 and its second argument
being any value at all. Program specialization is an experimentally proven technique for creating
compilers and compiler generators [13], automatically rederiving important algorithms [8], speeding
up computations by two orders of magnitude [5], parallelizing scientific code [4], and optimizing
programs [6].

Program specializers operate by symbolically executing the program on the inputs. Expres-
sions that can be reduced are reduced, while those that cannot are left residual in the specialized
program.! A major goal of specialization is accuracy: getting as close to the most specialized pro-
gram as possible. The accuracy of program specialization, and the speed of specialized programs,
are both limited by the amount of available information used by the specializer. Program special-
izers often ignore or throw away information to either simplify their task or to achieve termination.
Obviously, the more accurate a program specializer is, the more useful it is, and the larger class of
programs that will benefit from program specialization.

This paper addresses the importance of type information to increase the accuracy of special-
ization. Type information bounds the possible values that will be returned by functions and ex-
pressions at runtime. (That is, when the specialized program executes.) The previous specializers
that have computed type information [10, 20] did not compute the types of specialized subpro-
grams, and [10] did not handle recursive types (for example, it was unable to represent a list three
elements long whose first element was the symbol a). Specializers that do not compute complete
type information lose accuracy, and therefore produce slower specialized programs. Programs can
be rewritten (restaged, in program transformation parlance [15]) in a continuation passing style to
avoid losing type information, and therefore avoid losing accuracy. Unfortunately, this can interfere
with extant unfolding strategies, and can result in very poor specialization. Our methods allow for
accurate partial evaluation of naturally written programs, without interfering with the unfolding
strategies that decide whether to unfold or specialize a given function call.

The paper considers the specialization of programs written in a Scheme-like eager untyped
functional programming language that operates over integers, booleans, procedures, and pairs. For
simplicity of exposition, we assume that the specialized program is first order, though this is not
a requirement upon the source program. Although this paper focuses on an untyped language, it
should become clear that our methods are also important for typed languages, such as ML. Many
programs are written using inductive types (e.g., lists) because they must operate on inputs of
unknown size. However, once the part of the input is supplied, the specialized program could use
tuples, which are more efficient than lists, or could at least compile away much of the runtime
type checking (nil versus a pair) and dispatching. Our system does compile away this extraneous
type checking and dispatching that even typed languages such as ML must defer until runtime.
(Correctly staged programs can get this benefit, as well as others, through arity raising. This
research offers this benefit for all programs, not just correctly staged ones.)

As an example of the kind of type information we wish to compute, consider a store represented
as an association list that binds names to values (Figure 1). The store is updated without the use of
side effects, and without changing its shape. The recursive function process-updates accepts a list
of updates and a store, and returns the store resulting from processing the updates. Our methods

1A note on terminology. We say that a program specializer specializes programs, or, alternatively, produces
specialized programs. We tend to apply the adjective residual to expressions, not to programs. Residual expressions
are the constituents of specialized programs.



will prove, for example, that the specialization of update-store on an unknown name and value,
and a store of the form ((a . <some-value>) (b . <some-value>) (¢ . (some-value)))
will return a store of the same form. Doing so requires reasoning about recursive types and residual
if -expressions. Similarly, our methods will prove that the specialization of process-updates on
an unknown set of updates and a store of the form (@ . <some-value>) (b . <some-value>)
(c . <some-value>)) will return a store of the same form. Doing so requires performing a fixed-
point analysis. The appendices present the operation of our program specializer on an interpreter
for a very simple language.

The three key mechanisms used to compute type information are: symbolic values that represent
a runtime value, and which consist of a type object that denotes of the set possible runtime values,
and a code expression indicating how to compute the value; generalizing two symbolic values to
create a new symbolic value representing the values of each of them; and the use of online fixed-point
computations for computing the return type of specialized recursive closures. Symbolic values have
been presented before to remedy other problems in program specialization such as code duplication,
type propagation, and overly strict interpretation of values versus code [24] ([5] uses placeholders,
which are very similar to symbolic values). The other two mechanisms are a novel contribution to
program specialization. We will see that the important new mechanism is generalization, and with
that in place, performing fixed-point iteration is straightforward.

This research allows for concrete abstract interpretation (CAIl). This is a method of performing
abstract interpretation with concrete values where possible. Whereas all values must be abstracted
prior to standard abstract interpretation, our specializer only abstracts values as needed to achieve
termination. This strategy allows data-dependencies to be considered during the interpretation.
For example, when the specialized program is first order, our specializer can be used without
change to perform strictness analysis. Only a minor change is needed to run the standard example
of computing whether a program manipulates 0, positive numbers, or negative numbers. And
because concrete values are allowed, where it can be shown the result is a concrete number (say, as
part of a list), that will be done. Performing strictness analysis for given arguments being positive
or negative numbers is another possibility. The termination of CAI is directly related to that of
the program specializer itself.

Binding Time Analysis (BTA), an important tool for constructing self-applicable specializers
(13, 19,9, 12], is related to our research. BTA uses abstract interpretation to prove global properties
of recursive programs to be specialized. These properties are exploited during specialization. BTA
is an offline analysis; it proceeds with little knowledge of the data values the program will be
specialized on. It derives what will and will not be known during specialization, and, in the case of
partially static structures [18, 9], the shape of the data. For example, on the store example above,
BTA will determine that the return result of process-updates is a list of pairs whose cars are
known and whose cdrs are unknown. However, because BTA is deprived of actual data values, it
is not as precise as our method, which does have access to actual data values.

This research is closely related to that of Young and O’Keefe [26], who created what they called
a type evaluator for an untyped functional, lazy dialect of Scheme. They created a system that
shared many features of a program specializer. The goal of their system was to determine, as
accurately as possible, the possible values that a function would return. Their type system differs
from ours in two ways. First, we operate in an applicative dialect of Scheme with finite types, while
they operated on a lazy language dialect of Scheme with infinite (circular) types. Second, we model
nearly the exact structure of the standard value domain, whereas their model of the st andard value
domain is richer than ours, and carries more information. For example, in our system, if one arm of
an if-expression returns a number, and the other arm returns a pair, we declare that the expression
returns T, which is the least upper bound of these values in the standard value domain. Their



(define (update-store store name new-value)
(if (eq? (caar store) name>-
(cons (cons (caar store) new-value) (cdr store))
(cons (car store) (update-store (cdr store) name new-value>>>>

(define (process-updates updates store)
(if (null? updates)
store
(process-updates
(cdr updates)
(update-store store (caar updates) (cdar updates) store))))

(define (lookup-in-store name store)
(if (eg? name (caar store))
(cdar store)
(lookup-in-store name (cdr store)>>)

Figure 1: Functionally Updating a Store. Unless information about the return values of residual
if -expressions and residual recursive functions is computed, a program specializer will lose vital
information when specializing either function for a partially or fully known store when the other
inputs are unknown.

system is capable of remembering that the value is either a pair or a number.

Our research effectively weds their type evaluator to a program specializer. The specializer
maps a program and the set of values the program will be applied to (the program3 domain)
into a specialized program and the range of the specialized program. This marriage helps both
the specializer, which becomes more accurate, and the type evaluator, which also becomes more
accurate. The same mechanisms that cause the specializer to terminate cause the “type evaluator”
to terminate. And, of course, the type information is synergistically used in the termination
strategies.

Haraldsson3 REDFUN-2 [10] was a redesign of [3] that was designed to compute and track
type information during partial evaluation. For each expression REDFUN would compute either
a set of concrete values that the expression could return at runtime, a set of concrete values that
the expression could not return at runtime, or a scalar type descriptor, such as SEXPR, INTEGER,
or sTRING. REDFUN-2 goes further than our system in maintaining sets of concrete values, but
its datatype descriptors, being only single markers, are weaker than ours, which are recursive. In
particular, our system is powerful enough to solve problems Haraldsson cites as future research.
Another important difference is that REDFUN-2 only automatically gets type information from
residual function calls in very restricted situations. Also, it is not fully automatic, as it relies on
programmer advice to carry out its operations.

Also of extreme relevance is the work of Schooler [20], who also propagated type information. His
partials are similar in spirit and structure to our symbolic values. The overlap in method is closest
in the handling of structured values and known values. However, there are several fundamental
differences. First, no automatically derived type information propagates out of if -expressions or
residual function calls. Second, partials are used for strict substitution of code, which results in
common subexpression introduction, a serious problem. Third, because of the textually substitutive
use of partials, his system resorts to exolicit environment manipulations to properly resolve variable



lookups. Our system, which resolves textual issues in a separate pass, moves the complexity out of
the specializer [24]. Finally, his -system is not automatic. Some of the complexity of his system is
due to delaying side-effects until runtime, which the system described in this paper does not have
to face.

This paper has 7 sections. We start by defining and discussing program specialization, and type
approximations. The second section defines the syntax and standard semantics of the language
whose programs will be specialized. The third section discusses symbolic values, which are the
lynchpin of our method (the result of partially evaluating an expression is always a symbolic value).
The specializer and generalization are presented in the fourth section. The fifth section outlines
the specializer3 termination strategies. Fixed-point iterations are presented in Section 6. Finally,
Section 7 discusses concrete abstract interpretation.

1 Program Specialization

The user of a specializer specifies the classes of values the program is to be specialized for. The
class can be as small as a single value, such as the number 5 or the pair (a . b); an entire class,
such as the integers; structured values that themselves contain classes, such as a pair that contains
5 and the class of integers; or the entire set of denotable values which we write as a-value, and
which others write as u. Different specializers allow different classes to be described, but they all
share the same approach: the domain? the program is to be specialized for is provided, and the
specializer creates a program specialized for that domain. We use symbolic values (Section 3) for
expressing domains and ranges.
We define a program specializer as follows.

Definition 1 (A Strict Program Specializer) Let f be the representation of a program in £, V be
value domain of £, T[] be a func tion mapping representations of consistent subsets of V into such
subsets, sarg be the representation of a subset of V, and let E[] map programs to their meanings.
A strict program specializer is a program SP mapping £ x sarg into £ such that

Va € T{sarg|(Elfla = E[SP(f, sarg)la)
whenever SP(f,sarg) is defined (terminates).

Definition 2 (A Lazy Program Specializer) Assuming the conditions of the previous definition, a
lazy program specializer is a program SP such that

Va € T[sarg](E[f]a C E[SP(f, sarg)la)

The only difference between the two definitions is the use of = versus C in the consequents.
Strict specializers produce specialized programs that terminate exactly when the original program
would terminate. Lazy specializers produce specialized programs that terminate more often than
the original program does. That is, they introduce lazyness into the program; computations that
would cause divergence are either excised because they are dead code, or they are moved from
applicative positions (arguments to functions) to non-applicative positions (arms of conditionals).
We will not rehearse the pros and cons of strict versus lazy program specializers. The specializer
described in this paper is lazy.

2This use of the term “domain” is with respect to the domain/range of a function, not semantic domains.



Our definition of program specialization subsumes that of Jones [11], who describes a partial
evaluator as a program that accepts part of a program3 inputs, and that of Launchbury [17]
who describes partial evaluation in terms of projections. Their definitions also stipulate that the
specialized program only require the ‘part of the input” that wasnt provided at partial evaluation
time. There is little fundamental difference between Launchbury3 approach and ours. We see
the distinction between our formulation and his the same as the distinction between the standard
formulation of Abstract Interpretation and the projections formulation of Abstract Interpretation
[23]. We simply find our approach more natural. When we consider Mixed Computation, the
differences will become more pronounced.

Our prior definition of program specialization assumed that the specialized program consisted
solely of code, i.e., was an expression. In this research, specialization produces both a code attribute
and a type attribute, so we need to extend the definition of program specialization. A typing program
specializer (TPS) produces specialized programs that have a code attribute and a type attribute.
Let the function SF,.4. return the specialized program3 code attribute, and the function SFiy,.
return its type attribute. Informally, a typing partial evaluator accepts a program and the domain
the program will be applied to, and returns both a specialized program and the range of the
specialized program.

Definition 3 (A Lazy Typing Program Specializer) Assuming the conditions of Definition 1, a lazy
typing program specializer is a program TSP mapping £ x sarg into £ x sarg such that

Va € T[sarg)( E[f]a T E[SFcose( TSP(f, sarg)))a)

zA strict typing program specializer is similarly defined, substituting = for C.
We define the safety property of a typing program specializer similarly to the notion of safety
in abstract interpretation [2] and to the definition of [26]:

Definition 4 (Safety of Typing Program Specialization) Assuming the conditions of Definition I,
a typing program specializer TSP is safe if

Va € T(sarg)(E[fla € T[SFiype( TSP(f,sarg))])

This definition states that the value produced by applying the original function to any known value
is within the type computed by the specializer. We state without proof that our specializer is safe.

2 Syntax and Standard Semantics

This paper considers a simple untyped eager functional programming language operating over
numbers, booleans, pairs, symbols, and nil. For simplicity of exposition we restrict functions to
accept only one argument. The abstract syntax of the language is:

i € Id Identifiers
e, body € Ezp Expressions

n € Num Numerals

b € t| £ Boolean constants

e = ilnlb]
(if el e2 e3) | Two armed conditional
(lambda i body) | Lambda Abstraction
(call el e2)| Function Application

(letrec (i e)* body) Mutually Recursive Definitions



(define (eval exp env)
(cond ((boolean? exp) exp) *
((nat? exp) exp)
((var? exp) (lookup exp env))
((if? exp) (if (eval (if-pred exp) env)
(eval (if-then exp) env)
(eval (if-else exp) env)))
((lambda? exp) (create-closure exp env))
((call? exp) (apply (eval (call-head exp) env)
(map (lambda (exp) (eval exp env))

(call-args exp))))
((letrec? exp) (eval (letrec-body exp)

(recursive-extend-env (letrec-bindings exp) env)))))

(define (apply f args)
(cond ((primitive-proc? f) (apply-primitive-proc f args))
((closure? f) (apply-closure f args))))

(define (apply-closure (cl-formals cl-body cl-env) args env)

(eval cl-body (extend-env cl-env cl-formals args)))

Figure 2: Evaluator fragment for the source Language. Our notation allows destructuring (pattern
matching) during binding.

The initial environment provides nil and all the primitive functions. Section 3 presents the

implementation of the primitive functions +, cons, and car. All other primitives are a variation of
these three.

The standard semantic domains and function types are

Nat = the flat domain of natural numbers
Bool = true + false
Pair = VAL x VAL
Nil = il
Fune = VAL~V A L
VAL = Nat + Bool+ Pair + Nil+ Func

Rather than provide semantic equations, we provide the skeleton of an interpreter based upon

the interpreters discussed in [1]. When we later present the program specializer, we will present a
variation on this interpreter.

3 Symbolic Values

Symbolic values represent both the object that will be produced at run time and the code to
produce the value (Figure 3). The result of partially evaluating any expression is a symbolic value.
Each symbolic value has a value attribute and a code attribute. The value attribute represents
a subset of VAL. We say that a symbolic value represents a known value, or, more simply, is a
known value, when the set it represents contains only one value. Any symbolic value whose value
attribute is a-value is called completely unknown or completely unconstrained. Besides representing



XBool = t + f+ a-boolean
XPair = SVAL x SVAL

Nil = nil
XFunc = exp X Env+ a-function

XVAL = XNum + XBool+ XPair + Nil+ XFunc+
a-value + no-value + a-list

sval € SVAL = XVAL x Code
Code = id Formal Parameter
+ id x Code* Residual Function Call
+ if X Code x Code x Code If expression
+ XVAL Known Value
Env = (id x SVAL)*
SC = id x SVAL* x SVAL Specialized Closure
cache € Cache = XFunc x SVAL* — SF + empty

Figure 3: Domains used by the program specializer when interpreting programs. Note that the
partial evaluator only manipulates the representation of objects, not the objects themselves. For
example, numbers are represented by Num, rather than Nat. A symbolic value (SVAL) contains an
element of XVAL and an element of Code. Code is either the name of a primitive, the name of a
specialized closure and arguments, or an XVAL. (The implementation differs from this description
on the structure of Code elements. In the implementation the subfields are all SVALs rather than
Code, but it is easier to describe the system using just Code elements. The implementation keeps
SVALs for the type information they encode; the code generator uses this information.) SC stands
for Specialized Closure; it consists of a name, the arguments the original closure was specialized on,
and the symbolic value representing both the body of the specialized closure and its return type.
The cache maps a closure C and a list of symbolic value into the specialized closure that C was
specialized into, if any. The marker a-list represents the generalization of nil and a pair.




a subset of V, the value attribute is also a value that is operated upon. For example, during partial
evaluation the car operation takes the car of value attribute of the symbolic value it is applied
to. We will notate a symbolic value using angle brackets, for example, a symbolic value with value
attribute v and code attribute ¢ will be written (v, c).

The code attribute specifies how the value represented by the symbolic value is computed from
the formal parameters of the procedure (or, when block structure is employed, procedures) being
specialized. The code specifying the creation of a value V only appears in the specialized program
when V itself must be constructed at runtime. For example, consider a cons-cell that is constructed
at partial evaluation time but is not needed at runtime. The instructions for constructing the cons-
cell will not appear in the specialized program. When a symbolic value represents a known value,
the code attribute is the value attribute. The code is expressed as a graph [24], so a code generator
is used to express the code in some particular programming language.

Example symbolic values include:

(4,4) The number 4
(a — natural, a) A number whose name is a
(((4,4).(a — natural, a)), (cons4a)) The cons of the above 2 items.

(((a — boolean, (car(f a))).(a — natural, (cdr(f a)))), (f a)) A pair that will be created by a
runtime call to f.
The subset of VAL represented by an XVAL, and by extension, a symbolic value, is given by
the function T:

Tla-natural]={0,1,2,...}
T[Num]={E[Num]}
T[a-boolean]|={true,false}
T[t]={true}
T[f]={false}
T[a-function]=Func
T[a-value|=Consistent elements of Val
T[no-value]={}
T[(v1, e1) X (v2, c2)]={a x bla € T[v1],b € T[va]}

We define T applied to a symbolic value to be T applied to the symbolic value? value attribute.

There is a parallel between the a-natural, a-boolean, no-value, and a-value, and the do-
main objects Tnat » Thooly LvAaL, and Ty 41, respectively. In each case, the marker represents
the downward closure (minus inconsistent elements that contain top or bottom elements) of the
corresponding top element.

The specializer is invoked on a program and a symbolic value. The user constructs symbolic
values using the unary function known-value, which is applied to numbers and booleans, the
niladic functions a-natural, a-value, a-boolean, and the binary function a-cons. 3 The symbolic
values so constructed have empty code slots. The specializer instantiates the symbolic values before
starting the symbolic execution. Instantiation initializes the code slots of the provided symbolic
values. Instantiation makes the code slots of unknown scalar values be the formal parameter the
symbolic value is bound to. For pairs, it operates recursively, making the code slots of the car and
cdr of a symbolic pair take the car and cdr of the symbolic pair itself. 4 Instantiation is also invoked
when computing the return value of residual function calls (Section 5).

3There is no provided function for building the equivalent of no-value. This value is created used by the specializer
as the initial approximation when computing fixed-points. If we were to specialize programs written in a lazy language,
it would be worthwhile to allow the user to specify no-value for performing strictness analysis (cf Section 7).

4Actually, the code slot is set to take the tc-car and tc-cdr of the parent pair. A description of the tc- functions
appears later.



(define pe-+
(lambda (x y)
(let ((x-val (sv-val x)) (y-val (sv-val y)))
(cond ((no-value? x) Xx)

((no-value? y) vy)

((and (xnum? x-val) (xnum? y-val))

(if (and (known-value? x) (known-value? y))
(known-value (+ x-val y-val))
(make-sv 'a-natural (make-code ’tc-+ X V))))

((and (possible-xnum? x) (possible-xnum? y))

(make-sv (join x-val y-val) (make-code ’+ X y)))

(else (type-error "Wrong type arguments to +"))))))

(define pe-cons
(lambda (x y)
(if (and (known-value? x) (known-value? y))
(make-sv (cons X y) (cons X Y))
(make-sv (cons x y) (make-code ‘cons X ¥)))))

(define pe-car
(lambda (x)
(cond ((no-value? x) Xx)
((pair? (sv-val x)) (car sv-val x))
((possible-pair ? (sv-val x)) (make-sv 'a-value (make-code 'car x)))
(else (type-error "CAR needs a pair.")))))

Figure 4: The code for +, car, and cdr. Predicates such as possible-xnat? return true if their
argument is an element of the domain, or higher up in the lattice. When handed a pair, car and
cdr always operate on the value attribute of their argument. They only produce new code when
handed a-value.

Primitive Functions

The primitive functions, such as +, cons, and cdr operate on symbolic values. Known values are
operated on, while other values cause the creation of a new symbolic value whose code slot indicates
the primitive function to be called at runtime. The primitive functions also perform type checking,
and create code at the appropriate safely level. For example, when + is handed a-value and 5, it
issues the + function, but when it is handed a-natural and 5, it issues the tc-+ (TypeChecked-+)
function (Figure 4). The tc- functions know that their arguments have been typechecked, and do
not perform redundant type checking.

The function cons always conses together its arguments. When known values are consed to-
gether, the code slot contains the pair, otherwise it contains instructions to cons together the
arguments at runtime. When handed a pair, both car and cdr simply return the car or cdr of its
value attribute, respectively.



(define pe
(lambda (exp env stack)
{cond ((constant? exp) exp)
((var? exp) (lookup exp env))
((if? exp)
(let ((pred (pe (if-pred exp) env stack)))
(cond ((true? pred) (pe (if-then exp) env stack))
((false? pred) (pe (if-else exp) env stack))
(else
(let ((then-sv (pe (if-then exp) env (mark-stack stack)))
(else-sv (pe (if-else exp) env (mark-stack stack))))
(generalize then-sv else-sv
(make-code ’if (list pred then-sv else-sv))))))))
( (lambda? exp) (create-compound-procedure exp env))
((call? exp)
(papply (pe (call-head exp) env stack)
(pe (call-arg exp) env stack)
stack))
((letrec? exp) (pe (letrec-body exp)
(recursive-extend-env (letrec-bindings exp) env))))))

Figure 5: The specializing interpreter. The variable stack is used for termination. The global
variable cache is not shown here. It is used to remember specialized closures. This interpreter differs
from the standard interpreter in the handling of if-expressions and the application of procedures.

4 The Typing Program Specializer

We now describe the interpreter used by the program specializer (Figure 5). There are two dif-
ferences between this interpreter and the standard interpreter. First is the presence of the stack,
which is used by the termination strategy. The stack and the cache (not shown) are only briefly
covered in this paper; they are discussed in detail in [25]. Second, and more importantly, is the
fundamental changes to the handling of if-expressions and call-expressions (Section 5).

The handler for if-expressions first evaluates the predicate. If it evaluates to either true or
false, then the appropriate arm is evaluated. Otherwise, a residual if-expression is created, and
the corresponding symbolic value represents (at a minimum) all values that could be returned by
either arm. The function generalize builds this symbolic value by generalizing the symbolic values
for each arm. Its code is the residual if-expression itself. Generalization is particularly useful when
structured values are returned.

For example, consider the following (artificial) code:

(lambda (x y z)
(let ((x (if O x y)
(list x y =z)
(1list x 2z y))))
(+ (car r) (caddr 1))))

10



(define (generalize <vi, cl> <v2, ¢2> code)
(cond ((eqv? cl c2) <vi, c1>)
((and (pair? vi) (pair? v2))
(generalize-pairs vi v2 code))
(else <(join vt v2), code>)))

(define (generalize-pairs (carl . cdrl) (car2 . cdr2) code)
(let ((new-car (generalize cari car2 (make-code tc-car code)))
(new-cdr (generalize pl-cdr p2-cdr (make-code ftc-cdr code))))
<(cons new-car new-cdr), code>))

(define (join xvall xval2)
(cond ((eqv? xvall xval2) xvall)

((bottom? xvall) xval2)
((bottom? xval2) xvall)
((top? xvall) xvall)
((top? xval2) xval2)
((and (xnnm? xvall) (xnnm? xval2)) @a-natural)
((or (xnum? xvall) (xnnm? xval2)) a-value)
etc . ..))

Figure 6: Code For Performing Generalizations. We have taken the liberty of using psuedo Scheme
code that performs pattern matching.

The specialized program produced for completely unknown inputs is

(lambda (x y z)
(let ((r (if O x y)
(list x y z)
(list x z ¥))))
(+# x (tc-caddr r))))

Where the elements of r can be deduced, they are used (the value of r3% car), and where they
cannot be deduced, residual code accessing the value is produced.

Generalization® maps two symbolic values sI and s2 ito a new symbolic value S representing
(at least) all the objects that sf and s2 represent. When s1 or s2 are scalars, S3 value attribute is
the join of the sf and s2’s value attributes, and the code attribute is determined by the operation
requesting the generalization (i.e., it is either a residual if-expression or a formal parameter).
When both s1 and s2 are pairs, their cars are generalized, their cdrs are generalized, and the code
slots of the resulting symbolic values take the tc-car and tc-cdr of S, respectively. Of course, this
process is recursive (Figure 6). Only two parts of the specializer call the generalizer, the handler for
if-expressions, and the termination strategy, which performs generalizations to reduce the number
of different values being manipulated by the specializer. Despite its simplicity, or maybe because

®A note on terminology. Turchin [22] introduced the term generalization for the process of losing information
about a value. Other researchers researchers also use this term. We prefer to use the term abstraction when a single
argument is mapped higher up in the lattice, (or to a simpler lattice). We reserve the term generalization for when
two arguments are mapped upwards in the lattice. Abstraction is a unary operation, while generalization is a binary
operation.
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(define papply
(lambda (f args stack)
(cond ((primitive-procedure? f) (primitive-apply f args))
((lookup-specialization-cache f args)
(make-residual-call (lookup-specialization-cache f args) args))
((specialize? f args stack)
(let ((stack-and-arg (generalize-argument f args stack)))
(let ((sf (specialize-closure f (car stack-and-erg) (cdr stack-and-arg))))
(make-residual-call sf args))))
(else (apply-closure f args stack)))))

;s The real version of this appears in a later figure.
(define specialize-closure
(lambda (cl arg stack)
(let ((sc (make-specialized-closure
(gen-name)
arg
(apply-closure cl arg stack))))
(cache! (cons cl arg) sc)
sc)))

(define apply-closure
(lambda (cl args stack)
(let (((cl-formals cl-body cl-env) cl))
(peval cl-body
(extend-env cl-formals arg cl-env)
(cons (cons cl args) stack))))

(define make-residual-call
(lambda ((sc-name Ssc-args sc-result) args)

(instantiate sc-result
(make-code sc-name args)))))

Figure 7: Application of compound procedures. Termination and specialization decisions are made
here. Though not discussed in this paper, our partial evaluator has excellent termination properties
[25], and terminates more often than other published methods.

of it, generalization is very powerful. Performing fixed-point iterations is straightforward once
generalization is in place.

5 Papply: Termination and Specialization

Termination in nearly all automatic program specializers is based upon some form of loop detec-
tion. Loops are detected when applying closures. A cache is maintained that keeps all specialized
closures indexed by the closure they were specialized from and the arguments they were specialized
upon. At each function call, the cache is checked; if there is a hit, a residual call is produced,
otherwise the closure is either unfolded or specialized (Figure 7). Program specializers have dif-
ferent strategies for deciding when to specialize a closure. Some specialize for all functions calls
(e.g., [14]), and some specialize only when recursive loops are detected (e.g., [25]). There is little
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difference between unfolding a closure and specializing it: in each case the closure is applied to its
arguments. When specialization-occurs, the resulting symbolic value, the closure3 arguments, and
a freshly created name are collected together into a specialized closure and placed in the cache. The
symbolic value represents not only the code for the specialized closure, but also the values that
could be returned by invocations of the specialized closure.

For program specialization to terminate, every possible combination of functions and arguments
must make it into the cache® and there must only a finite number of cache entries (otherwise an
infinite number of specializations will be generated) [11]. When there are an infinite number of
possibilities, this will not occur. Therefore program specializers resort to abstraction to reduce the
number of values generated during specialization. It is common to abstract values to just the one-
point domain unknown (which corresponds to our use of a-value). Loop detection and specialization
is then based upon the abstracted values, rather than the concrete values. The accuracy and
termination properties of a program specializer directly depend upon when and how abstraction is
done. Too much abstraction, and accuracy suffers, too little abstraction, and termination suffers
[25].

Our specializer remembers all active procedures and the arguments they were called on, as
well as the predicates of if-expressions that did not evaluate to true or false, to decide whether to
unfold or specialize a call. When it decides to specialize, it does so upon arguments that are the
generalization of the current call and some previous call such that the least amount of generalization
is performed (the least amount of information is lost). The code attribute of the generalized value
is the formal parameter of the function being specialized. The initial approximation to the return
value of the specialized closure is no-value (I).

6 Type Information from Specialized Closures

The major machinery for approximating the return results of recursive functions is already in
place, namely, generalization of symbolic values. All that remains is to perform a fixed point
iteration when creating a specialized closure. The fixed point is found in the usual way: The initial
approximation to the return result of a closure being specialized is no-value, and the closure is
reapplied until the returned symbolic value doesnt change (Figure 8). On each iteration, the cache
entry is updated with the latest approximation (symbolic value).

Theorem 1 (Termination of Fixed Point Iteration) Assuming that specialization terminates, then
the fixed point iteration does so as well.

Outline of Proof: At each iteration, the input to the closure being specialized does not change;
only the specialized closure changes. The specialized closure’ value attribute, which represents the
return type, is at most a constant factor larger than its code attribute. Therefore, assuming that
the specialized code does not grow on each iteration, the monotonicity of the iteration guarantees
termination of the iterations. We claim that any computation that would cause the specialized
closure to grow unboundedly would have caused the specializer to not terminate anyway. Remem-
ber that on each iteration the input does not change and the specializer goes through the same
steps each time; the only thing that changes is the approximation to the return type of residual
calls. Therefore, for the code attribute to continually grow, there must be some computation that
generates an unbounded amount of output regardless of the input. But such a computation would
be run during specialization, causing non-termination of the specializer. «

More precisely, only a finite number of occurences of them can escape being placed in the cache.
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(define *initial-closure-body* <no-value, no-value>)

(define (specialize-closure cl args)
(let ((sc (make-specialized-closure (gen-name) arg *initial-closure-body¥*)))
(cache! (cons cl args) sc)
(find-fixed-point cl args sc *initial-closure-body¥*)))

(define (find-fixed-point cl args sc approx-body)
(let ((new-body (apply-closure cl args)))
(set-specialized-closure-body! sc new-body)
(if (same-type? approx-body new-body)
SC
(find-fixed-point cl args sc new-body))))

Figure 8: Computing fixed points for the return values of specialized closures. A closure is respe-
cialized until its return type doesnt change.

Note that termination of the specializer on any given iteration does not guarantee termination
on subsequent iterations. On each iteration, a given function will see a different symbolic value,
and one of the symbolic values may cause the function to loop. For example, suppose that on one of
the iterations, is shown that a specialized closure returns a list containing 5 and an unkown value.
The known value 5 may cause non-termination on the next iteration. In practice, the fixed-point
is computed within 2 or 3 iterations.

The complexity of a naive implementation may be unnecessarily large for nested recursive
functions, because fixed-points would be exponentially performed. The problem is that within each
loop a new closure representing a subloop would be created, and we would lose the previously found
fixed-point because the cache is indexed by closures. If the complexity of finding fixed-points is too
large, one could resort to engineering fixes that would allow cache hits to occur and thereby avoid
recomputing fixed-points.

7 Concrete Abstract Interpretation

When the specialized program is first order, there is a strong relationship between specialization
as presented in this paper and abstract interpretation. The two major differences are: 1) abstract
interpretation is guaranteed to terminate (liveness) whereas specialization isnt guaranteed to ter-
minate, and 2) in abstract interpretation all concrete value are abstracted into the abstract domain
before abstract interpretation begins, whereas specialization only abstracts as necessary to achieve
termination. Therefore, if one were to bound the running of specializer to ensure termination (as
[26] does in its type evaluator), or always gave well behaved programs to the specializer, then, by
embellishing the type system as needed, what we term concrete abstract interpretation could be
performed: abstract interpretation that allowed for concrete values during abstract interpretation.

Consider the standard example of determining whether (a fragment of) a program returns a
positive number, 0, or a negative number. Concrete abstract interpretation can decide this, as well
as return a concrete value when possible. For example, consider the program P,
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(lambda (x y z)
Af &G x y)
(list x (+y -5 (+x 20) z)
(list 'y 9250))).

Assuming that the proper changes have been made to the primitive functions (e.g., +, =) and to the
type system, then the return ‘type” of (TSP P 5 (a-positive-natural) (a-negative-natural)
would be (a-positive-natural a-natural 25 a-nonpositive-natural) . Because data depen-
dencies are considered during concrete abstract interpretation, changing the meanings of > and <
to handle positive and negative numbers would be worthwhile.

Similarly, strictness analysis is performed by simply supplying a-values (possibly terminates)
and no-value (doesnt terminate) as arguments. If the result symbolic value is no-value, then
the function is strict in the argument that was no-value. (When using specialization for strictness
analysis, code generation could be disabled.)

Obviously, these ideas need fleshing out. For example, we have not indicated how a sticky inter-
pretation would fit in this framework. One future experiment we wish to conduct is performing an
extremely accurate binding time analysis using these ideas. Such an approach would automatically
perform a multivariant BTA [19], which is very important for maintaining accuracy in an offline
automatic program specializer.

8 Conclusions and Future Research

We have presented an online program specializer that uses symbolic values to both represent a value
and the code for creating the value. By introducing generalization, we were able to derive and use
type information from residual if-expressions. By iterating the creation of specialized closures, we
were able to derive and use type information about specialized recursive closures.

One benefit is more accurate specialization. A larger class of programs can now be written in
a natural style without the partial information losing information. A second benefit is concrete
abstract interpretation, which we have just begun to investigate.

On problem that needs solving is dead code elimination on data structures whose slots are not
accessed by the specialized program. Our methods cause some slots to become useless, but they
are still constructed at runtime. We want to investigate a combination of CPS conversion and
arity raising [21]. These techniques are important for further boosting the efficiency of specialized
programs. For example, the specialized program presented in Appendix C would be helped by
CPS conversion plus arity raising. This would eliminate those parts of the store that are no longer
needed, and disperse what3 left of the store into separate variables.

Those who want to experiment with the specializer (which we call FUSE) may FTP the file
ftp/dist/popl-fuse.tar from sid.stanford.edu. The implementation is, of course, more com-
plex than that described in this paper, but reproducing any of the examples in this paper should be
simple. If you take a copy of FUSE, please send email informing us (ruf Qdolores. stanf ord. edu,
daniel@mojave.stanford.edu) that you have done so.
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A MP Interpreter

The MP language is a simple imperative language with four commands ( : =, if, while, and begin).
Each program declares its inputs and local variables. At the start of interpretion., the input pa-

rameters are bound to the inputs, and the local variables are bound to nil. The result of an MP
program is the final store.

This code was derived from the code provided by Mogensen [18] who, in turn adapted it from
Sestoft. This interpreter differs from Mogensen3 in that his interpreter was written in CPS style
(possibly to avoid the specific problem that this research solves), whereas this code is written in a
direct recursive descent style. Another difference is that his interpreter has programmer annotations

for directing its partial evaluation (automatic termination methods do not yet handle the coding
style his interpreter was written in).

(define mp-interp
‘(lambda (program input)
(letrec
((INIT-STORE
(lambda (parms vars input)
(if (null? parms)
(map (lambda (x) (cons x *())) vars)
(let ((new-binding (cons (car parms) (car input))))

(cons new-binding (init-store (cdr parms) vars (cdr input)))))))
(MP-COMMAND

(lambda (corn store)
(let ((token (car corn)) (rest (cdr corn)))
(cond
((eq? token ’:=)
(let ((new-value (mp-exp (cadr rest) store)))
(update store (car rest) new-value)))
((eq? token *if)
(IF (not (null? (mp-exp (car rest) store)))
(mp-command (cadr rest) store)
(mp-command (caddr rest) store)))
((eg? token ‘'while) (mp-while corn store))
((eq? token 'begin)
(let begin-loop ((corns rest) (store store))
(if (null? corns)
store
(begin-loop (cdr corns) (mp-command (car corns) store)))))
:; when the program is overgeneralized, this is hit.

;3 we return the store rather than signal an error to make types work.
(’#t store)))))
(MP-WHILE

(lambda (corn store)
(if (mp-exp (cadr corn) store)
(mp-while corn (mp-command (caddr corn) store))
store)))
(MP-EXP
(lambda (exp store)
(if (symbol? exp)
(lookup exp store)
(let ((token (car exp)) (rest (cdr exp)))
(cond ((eq? token 'quote) (car rest))
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((eq? token ’car) (car (mp-exp (car rest) store)))
((eq? token ’cdr) (cdr (mp-exp (car rest) store)))
((eq? token ’atom) (not (pair? (mp-exp (car rest) store))))
((eq? token ’cons) (cons (mp-exp (car rest) store)
(mp-exp (cadr rest) store)))
((eq? token ‘equal) (eq? (mp-exp (car rest) store)
(mp-exp (cadr rest) store)))
(’#t ’error2))))))
(UPDATE
(lambda (store var val)
(let update-loop ((store store))
(IF (eq? (caar store) var)
(cons (cons (caar store) val) (cdr store))
(cons (car store) (update-loop (cdr store)>>>>)>
(LOOKUP
(lambda (var store)
(if (eq? (caar store) var)
(cdar store)
(lookup var (cdr store))))))
(let ((parms (cdr (cadr program)))
(vars (cdr (caddr program)))
(main-block (cadddr program)))
(mp-command main-block (init-store parms vars input))))))
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B (pp (graph->scheme (p np-interp (a-value) (a-value))))

This is the MP Interpreter specialized without constraint, which inlines both non-recursive and
recursive functions. For example, the lookup and BEG N loops have been moved to where they are
called. The delay and force expressions were introduced by the code generator when it hoisted
the conditionalized invariant expression (mp-exp-36.1 (cadr T59) store-18) out of a loop. The
delay is needed because although the expression is invariant, the code generator cannot prove that
its value will be requested during the loop.

(lambda (program-2 input-I)
(letrec
((mp-command-20.1
(lambda (corn-19 store-18)
(let
((T59 (cdr corn-19)))
(letrec
((update-loop-62.1
(let*
((T233 (car T59)) (T223 (delay (mp-exp-36.1 (cadr T59) store-18))))
(lambda (store-61)
(if (eq? (caar store-61) T233)
(cons (cons (caar store-61) (force T223)) (cdr store-61))
(cons (car store-61) (update-loop-62.1 (cdr store-61)))))))
(mp-while-44.1
(lambda (corn-43 store-42)
(if (mp-exp-36.1 (cadr corn-43) store-42)
(mp-while-44.1 corn-43 (mp-command-20.1 (caddr corn-43) store-42))
store-42)))
(mp-exp-36.1
(lambda (exp-35 store-34)
(if (symbol? exp-35)
(letrec
((lookup-40.1
(lambda (var-39 store-38)
(if (eq? (caar store-38) var-39)
(cdar store-38)
(lookup-40.1 var-39 (cdr store-38))))))
(lookup-40.1 exp-35 store-34))
(let* ((T106 (car exp-35)) (T93 (cdr exp-35)))
(cond
((egq? T106 ’quote) (car T93))
((eq? T106 ’car) (car (mp-exp-36.1 (car T93) store-34)))
((egq? T106 ’cdr) (cdr (mp-exp-36.1 (car T93) store-34)))
((eg? T106 ’atom) (tc-not (pair? (mp-exp-36.1 (car T93) store-34))))
((eq? T106 ’comns) (cons (mp-exp-36.1 (car T93) store-34)
(mp-exp-36.1 (cadr T93) store-34)))
((egq? T106 'equal) (eq? (mp-exp-36.1 (car T93) store-34)
(mp-exp-36.1 (cadr T93) store-34)))
(else ’error2)))))))
(let ((T73 (car corn-19)))
(cond
((eg? T73 ?:=) (update-loop-62.1 store-18))
((eq? T73 ’if) (if (tc-not (null? (mp-exp-36.1 (car T59) store-18)))
(mp-command-20.1 (cadr T59) store-18)
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(mp-command-20.1 (caddr T59) store-18)))
((eq? T73 ’while) (mp-while-44.1 corn-19 store-18))
((eq? T73 'begin) (letrec
((begin-loop-59.1
(lambda (corns-58 store-57)
(if (null? corns-58)
store-57
(begin-loop-59.1
(cdr corns-58)
(mp-command-20.1 (car corns-58) store-57))))))
(begin-loop-59.1 T59 store-18)))
(else store-18))))))))
(mp-command-20.1
(cadddr program-2)
(letrec
((init-store-8.1
(lambda (parms-7 vars-6 input-5)
(if (null? parms-7)
(letrec
((map-14.2
(lambda (1-13)
(if (null? 1-13)
'0
(cons (list (car 1-13)) (map-14.2 (cdr 1-13))))))
(map-14.2 vars-6))
(cons (cons (car parms-7) (car input-5))
(init-store-8.1 (cdr parms-7) vars-6 (cdr input-5)))))))
(init-store-8.1 (cdadr program-2) (cdaddr program-2) input-1)))))
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C (pp (graph->scheme (p np-interp np-conpare (a-value))))
The following is a comparison program written in the MP language.

(define mp-compare
’(program (pars a b) (dec flag out)

(begin
(:= flag ’#t)
(while flag
(if a
(if b
(begin (:= a (cdr a))
(:= b (cdr b)))
(begin (:= out ’a)
(:= flag JO>>>
(if b

(begin (:= out ’b) (:= flag *()))
(begin (:= out ’ab) (:= flag *ONNINN

On the next page is the specialization of the MP Interpreter on the MP- COVPARE program. Note
the presence of the TC functions in the main loop. These, and the lack of residual variable lookup
code, are possible because of the typing done by the specializer. Without this typing, this code
would not be nearly as efficient as it is. Note that the specialized program does not simply construct
the store and immediately pass it to the loop. Instead, it first does some of the work of the loop,
and then passes the store to the loop. The reason for this is that the original store binds both out
and fl ag to nil, so this extra information is exploited outside of the loop. The loop is specialized
for a store where none of the bindings are known.
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(lambda (input-I)
(letrec
((mp-while-10.1
(lambda (store-8)
(let* ((T60 (tc-cdr store-8)) (T87 (tc-cdr T60)))
(if (tc-cdar T87)
(mp-while-10.1
(let* ((Teé6 (tc-car store-8))
(T95 (tc-cdr T66))
(T62 (tc-car T60))
(T75 (tc-cdr T62)))
(cond
((tc-not (null? T95))
(if (tc-not (null? T75))
(list* (cons ’a (cdr T95)) (cons ’b (cdr T75)) T87)

(list* T66 T62 '((flag) (out . a)))))
((tc-not (null? T75)) (list* T66 T62 '((flag) (out . b))))

(else (list* T66 T62 '((flag) (out . ab)))))))

store-8)))))

(mp-while-lo.1

(let* ((T13 (car input-l))
(T6 (cadr input-I))
(T16 (cons ’a T13))
(T9 (cons ’b T6)))

(cond
((tc-not (null? T13))

(if (tc-not (null? T6))
(list* (cons ’a (cdr T13)) (cons ’b (cdr T6)) '((flag . #T) (out)))

(list* T16 T9 ’((f1ag) (out . a)))))
((tc-not (null? T6)) (list* T16 T9 '((flag) (out . b))))

(else (list* T16 T9 '((flag) (out . ab)))))))))
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