
AN IMPROVED ALGORITHM FOR

HIGH-SPEED FLOATING-POINT ADDITION

Nhon T. Quach and Michael J. Flynn

Technical Report: CSL-TR-90-442

August 1990

This work was supported by NSF contract No. MIP88-22961.

AN IMPROVED ALGORITHM FOR

HIGH-SPEED FLOATING-POINT ADDITION

by

Nhon T. Quach and Michael J. Flynn

Technical Report: CSL-TR-90-442

August 1990

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

This paper describes an improved, IEEE conforming
oating-point addition algorithm.

This algorithm has only one addition step involving the signi�cand in the worst-case path,

hence o�ering a considerable speed advantage over the existing algorithms, which typically

require two to three addition steps.

Key Words and Phrases: Improved
oating-point addition algorithm,
oating-point

hardware design, IEEE rounding

Copyright c
 1996

by

Nhon T. Quach and Michael J. Flynn

Contents

1 Introduction 1

2 A Brief Review of FP Addition Algorithm 1

3 The New Algorithm 3

3.1 General Ideas . 3

3.2 Logic Equation for Cin for the RTN Mode: 4

3.2.1 General Equation for Cin: . 5

3.2.2 Applying Cin to the Three Cases . 5

3.2.3 Merging Case 1 and Case 2 . 11

4 Summary 12

5 Acknowledgement 12

A Notation 13

B Cin for other rounding Modes 15

B.1 Round to 0 . 15

B.2 Round to +1 . 15

B.3 Round to �1 . 16

iii

List of Figures

1 Explanation of the General Approach for the RTN Mode. 4

2 Hardware for Round to Positive In�nity. 16

iv

List of Tables

1 Steps in Conventional FP Addition Algorithms. 2

2 Steps in the Present FP Addition Algorithm. 3

3 Truth Table for the Round to Nearest Mode 5

4 Truth Table for Determining Guard, Round, and Sticky Bits in Case 2a. . . 8

5 Truth Table for Determining Guard, Round, and Sticky Bits in Case 2b. . . 9

v

1 Introduction

Floating-point (FP) addition is one of the most frequent arithmetic operations in scienti�c

computing. Despite its conceptual simplicity, FP addition in most high-speed arithmetic

units today has roughly the same latency as FP multiplication. This is largely because most

existing FP addition algorithms require two to three addition steps involving the signi�cand

(as explained below), a relatively time-consuming operation. In this paper, we describe a

new FP addition algorithm. The algorithm has only one signi�cand addition step in the

worst case path, hence o�ering a considerable speed advantage over earlier algorithms. We

brie
y review these (existing) FP addition algorithms in Section 2 and present ours in

Section 3. Concluding remarks are given in Section 4. Appendix A is a collected review of

the notation used in this paper.

2 A Brief Review of FP Addition Algorithm

An FP addition operation consists of the following steps [1]:

1. Exponent subtraction (ES): Subtract the exponents and denote the di�erence jEa �
Ebj = d.

2. Alignment (Align): Right shift the signi�cand of the smaller operand by d bits. Denote

the larger exponent Ef .

3. Signi�cand addition (SA): Perform addition or subtraction according to the e�ective

operation, Eo, which is the arithmetic operation actually carried out by the adder in

the FP unit.

4. Conversion (Conv): Convert the result to sign-magnitude representation if the result

is negative. The conversion is done with an addition step. Denote the result Sf .

5. Leading one detection (LOD): Compute the amount of left or right shift needed and

denote it En. En is positive for a right shift and negative otherwise.

6. Normalization (Norm): Normalize the signi�cand by shifting En bits and add En to

Ef .

7. Rounding (Round): Perform IEEE rounding [2] by adding \1" when necessary to the

LSB of Sf . This step may cause an over
ow, requiring a right shift. The exponent,

Ef , in this case has to be incremented by 1.

The above algorithm (Algorithm A1) is slow because the composing steps in the addition

operation are essentially performed serially. We can improve the algorithm in the following

ways:

1. In Algorithm A1, the Conv step is only needed when the result is negative and can

be avoided by swapping the signi�cands. By examining the sign of the result of the

ES step, we can swap the signi�cands accordingly so that the smaller signi�cand is

1

subtracted from the larger one. In the case of equal exponents, the result may still be

negative and requires a conversion. But no rounding is needed in this case. Hence,

rounding and conversion are made mutually exclusive by the swapping step, allowing

us to combine them. Note that an associated advantage of swapping is that only a

shifter is now needed.

2. The LOD step can be performed in parallel with the SA step, removing it from the

critical path. This optimization is important when a massive left shift is required as

a result of signi�cand cancellation in the case of an e�ective subtraction.

3. So far, we have been able to reduce the number of steps down to: ES, Swap, Align,

SA k LOD, Conv k Round, and Norm (the symbol \k" indicates that the steps can

be executed in parallel). Algorithm A1 can be further optimized by recognizing that

the Align and the Norm steps are mutually exclusive. Normalization requiring a large

number of left shifts is needed only when d � 1. Conversely, alignment requiring a

large number of right shifts is needed only when d > 1. By distinguishing these two

cases, only one full length shift, either the alignment or the normalization one, is in

the critical path [3].

The steps in Algorithm A1 and this improved algorithm (Algorithm A2) are summarized

in Table 1. In Algorithm A2, the Pred step in the d � 1 path predicts whether a one-bit

right shift is needed to align the signi�cands. Note that Algorithm A2 increases the speed

by executing more steps in parallel, requiring therefore more hardware.

Table 1: Steps in Conventional FP Addition Algorithms.

Algorithm A1 Algorithm A2

d � 1 and E�ective Subtraction Others

ES Pred+ Swap ES + Swap

Align Align

SA SA k LOD SA

Conv Conv k Round Round

LOD

Norm Norm

Round select select

Algorithm A2 is commonly used, in one form or another, in today's high-performance

FP arithmetic units [4, 5, 6]. From the above discussion, we see that Algorithm A2 requires

2 addition steps involving the signi�cands in the critical paths in both the d � 1 and the

d > 1 paths (SA and Round).

2

3 The New Algorithm

3.1 General Ideas

The key ideas behind our approach can be summarized as follows.

� In Algorithm A2, the SA step requires one of the signi�cands to be 2's complemented

in the case of an e�ective subtraction. We observed that this complementation step

and the rounding one are mutually exclusive and can therefore be combined.

� In the IEEE round to nearest (RTN) mode, computing A+B and A+B+1 is su�cient

to account for all the normalization possibilities to be discussed below.1 By selecting

the results using Cin computed based on the lower order bits of the signi�cands,

complementation and rounding can be done simultaneously, saving one addition step.

Table 2: Steps in the Present FP Addition Algorithm.

The New Algorithm

d � 1 and E�ective Subtraction Others

Pred + Swap ES + Swap

SA k Conv k Round k LOD Align

Norm SA k Round
select select

Hence, the challenge is in deriving the equation for Cin. Since in FP addition, normaliza-

tion of the result may require a one-bit right shift, no shift, or a left shift which may be of as

many bits as the length of the signi�cand, Cin needs to account for all these normalization

possibilities, such that the �nal selected result will appear to be rounded properly.

Because the signi�cand is 53-bit and because a right shift of up to 52 bits may be needed

during alignment, a 105-bit adder is potentially needed. Since we are only concerned with

the higher order 53-bit, we use a 53-bit adder in the interest of hardware e�ciency. In the

case of complementation, a \1" needs to be added at the bit position 105. How far left into

the higher order bit this complementing \1" bit, Cc, propagates and whether it reaches the

adder, clearly depends on the lower order bits of the shifted signi�cand. When Cc does

reach the adder, it is added to the \L" bit position. The rounding \1" bit Cr, on the other

hand, is always added to the rounding bit position \R" (Fig. 1).

When the bit pattern of the shifted signi�cand is such that Cc reaches the real adder, the

guard bit G, the round bit R, and the sticky bit s, must all be zero; therefore, no rounding

is required. Hence, complementation and rounding, as far as the adder is concerned, are

1In the round to positive and negative in�nity (RTPI and RTNI) modes, it is necessary to compute not

only A+B and A+B + 1, but also A+B+ 2, making it harder than the RTN mode. A row of half adder

has to be used to add \2" to A+B. This case is discussed in more detail in the appendix.

3

mutually exclusive and can be combined. Table 2 lists the steps in the new algorithm. The

number of signi�cand addition step in both paths have been reduced to one.

While it is clear that this argument holds for the cases when the result of the SA step

needs a left shift and needs no shift, it is less so for the case when the result needs a one-bit

right shift, because rounding in this case requires adding \2", not \1", to A + B. The

explanation lies in the de�nition of the RTN mode.2 In the case of a one-bit right shift, it

is only necessary to add \2" to A + B when the L bit of A + B is \1" because after the

right shift, the L becomes the G bit. Hence, adding \1" to the L of A+B causes the carry

into the N (next to LSB) bit, to be true, equivalent to adding \2" to A +B.

Implementing the round to zero mode is easy because a simple truncation su�ces in

this case and no rounding is needed. For the RTPI and RTNI modes, the situation is more

complicated and we treat them in Appendix B to avoid digression. The logic equation for

Cin for the RTN mode, which is the default IEEE rounding mode, will be derived below.

d

Cin

MUX

. . . .

. . . .

n-bit compound adder

n-1a
0

a a n-2

n-1bn-2b0b b i-1 ibbi+1

Cc Cr

bi+2

sb1

Figure 1: Explanation of the General Approach for the RTN Mode.

3.2 Logic Equation for Cin for the RTN Mode:

To derive the logic equation for Cin, we di�erentiate 3 cases. Case 1 is when Eo is addition,

case 2 when Eo is subtraction and d > 1 and case 3 when Eo is subtraction and d � 1.

In the actual implementation to be described in the following section, cases 1 and 2 are

merged to form one path, controlled by gin (i.e., gin playing the role of Cin). Case 3 forms

another path controlled by lin (i.e., lin playing the role of Cin). In what follows, we �rst

derive a generic equation for Cin and then apply it to the three cases to arrive at the lin
and gin equations.

2The RTN mode rounds up a number in all cases except a tie, whence it rounds up when the LSB is odd
and truncates when the LSB is even.

4

3.2.1 General Equation for Cin:

As de�ned in Appendix A, Cr is the bit needed to perform rounding. It can be determined

from Table 3. From the table,

Cr = S _ L (1)

Table 3: Truth Table for the Round to Nearest Mode

L G S Cr

0 0 0 x

0 0 1 x

0 1 0 0

0 1 1 1

1 0 0 x

1 0 1 x

1 1 0 1

1 1 1 1

The equation for Cc can be written as

Cc = GRs

This is because only when the G bit, the R bit, and the s bit are all zero does Cc reach

the adder. Note that in the case of an e�ective subtraction, the equations for G, R, and s

have to be written with complementation taken into account.

The equation for Cin is simply

Cin = GCr _ Cc

3.2.2 Applying Cin to the Three Cases

1. Case 1: Eo is addition Since Eo is addition, no complementation of either operand is

needed; therefore, Cc = 0. We further di�erentiate two cases: result needing no right

shift (i.e., no normalization is needed) and result needing a one-bit right shift. In the

case of addition, only these two cases are possible because the value of a normalized

signi�cand ranges between [1,2).

(a) Result needing no right shift (NRS) This case occurs when there is no

carry-out from the g adder with carry-in=0. The logic equation is

NRS = Eog
0

out

The logic equations for L, G, and S are

L = an�1 � bn�1

5

S = R _ s = bn+1 _ s

G = bn

From Eq. 1, we have

Cr = S _ L = bn+1 _ s _ (an�1 � bn�1)

Cin in this case is

Cin = GCr = bn [bn+1 _ s _ (an�1 � bn�1)]

(b) Result needing one bit right shift (ORS) This case occurs when Eo is

addition and there is a carry-out from the adder. The logic equation is

ORS = Eog
0

out

Because the result needs a one-bit right shift, the equations for L, G, and S must

take it into account. We have:

L = an�2 � bn�2 � an�1bn�1

S = bn _ bn+1 _ s

G = an�1 � bn�1

So that Cr becomes

Cr = S _ L

= bn _ bn+1 _ s _ (an�2 � bn�2 � an�1bn�1)

and

Cin = GCr

= (an�1 � bn�1) [bn _ bn+1 _ s _ (an�2 � bn�2 � an�1bn�1)]

Using the identity (x� y)(z � xy) = (x� y)z and simplifying, we get

Cin = (an�1 � bn�1)(bn _ bn+1 _ s _ an�2 � bn�2)

2. Case 2: Eo is subtraction and d > 1: We again di�erentiate two cases: result

needing no left shift and result needing one left shift. Only these two cases are

possible because d > 1. The following example clari�es this point.

6

Example 1:

1.10000000000 1.00000000000
0.01111111111 0.01111111111

? ?

1.10000000000 1.00000000000
1.10000000000 1.10000000000

1 1+ +

11.00000000001 10.10000000001

(a) Result needs no left shift (b) Result needs one left shift

Examples 1(a) and 1(b) show what can happen to the signi�cands. The exponents

di�er by 2 and the signi�cand of the smaller operand has to be right shifted by 2 bits.

In both examples, the over
ow bit is ignored. The signi�cand in Example 1(b) needs

a one-bit left shift to normalize the result while that in Example 1(a) does not.

(a) Result needing no left shift (NLS) This case is similar to the addition case

with no right shift. There is a complication, however. The complication arises

from the complementation of the smaller signi�cand because Eo is subtraction.

The equation for G, R, and s can be written with the help of Table 4. The

columns in the table shows the bn, bn+1, and s bits after the alignment step,

the 1's complement step, and the 2's complement step. The 1's complement and

the 2's complement steps are required because Eo is subtraction. The meaning

of prop and kill are as follows. Recall the de�nition of the s bit, which is the

ORing of all the shifted bi bits; a \0" means that all the shifted bits are zero.

After 1's complementation, s means �rst complementing the bi bits and then

ORing them. The case of s = 0 after 1's complementation allows a carry-in to

be propagated and is denoted prop. Similarly, an s = 1 means that at least one

of the bit must be 1. After 1's complementation, this means that at least one of

the bits must be 0. This bit pattern does not allow a \1" to be propagated and

is denoted kill in the table. The \after 2's complement" column is obtained by

adding the complementing \1" to the \after 1's complement" column, creating

an extra column (Cc) in the process. During the 2's complement process, adding

\1" to a sticky bit turns it from a prop condition into a \0" and a kill condition

into a \1".

From Table 4, we know that Cc is only true when bn, bn+1, and s are all zero.

Hence,

L = Cc � an�1 � bn�1 = bnbn+1s� an�1 � bn�1

The equations for S and G can be written based on the same table. From the

table,

S = R _ s = bn+1 _ s

7

Table 4: Truth Table for Determining Guard, Round, and Sticky Bits in Case 2a.

After Shifting After 1's Complement After 2's Complement

bn bn+1 s bn bn+1 s Cc G R s

0 0 0 1 1 prop 1 0 0 0

0 0 1 1 1 kill 0 1 1 1

0 1 0 1 0 prop 0 1 1 0

0 1 1 1 0 kill 0 1 0 1

1 0 0 0 1 prop 0 1 0 0

1 0 1 0 1 kill 0 0 1 1

1 1 0 0 0 prop 0 0 1 0

1 1 1 0 0 kill 0 0 0 1

G = bn � bn+1s

From Eq. 1,

Cr = S _ L

= bn+1 _ s _ bnbn+1s� an�1 � bn�1

and

Cin = GCr _ Cc

= (bn � bn+1s)(bn+1 _ s _ bnbn+1s � an�1 � bn�1) _ bnbn+1s

= bn(bn+1 _ s) _ bnbn+1s(an�1 � bn�1) _ bnbn+1s

Simplifying, we have

Cin = bn _ bnbn+1s(an�1 � bn�1) (2)

This case occurs when NLS = Eo

h
(bn _ bn+1 _ s)g10 _ (bn _ bn+1 _ s)g00

i
. This is

because when the complementing \1" does not reach the adder (i.e., if bn_bn+1_s
is true), then g00 (the MSB of the result of the adder with carry-in=0) should

be examined; otherwise, g10 (the adder with carry-in=1) should be examined.

There is a potential confusion in the logic equations involving the bn�1 term

because of the complementation. If the an�1 � bn�1 term is obtained from the

adder circuitry, then there is no need to invert bn�1 because the adder control

logic has done so for us. If, on the other hand, the an�1 � bn�1 term is to

be implemented locally, then all bn�1 and bn�2 terms in the logic equations

need to be inverted. Throughout this paper, we assume that the bn�1 and bn�2
terms are obtained from the adder circuitry. To make it explicit, we denote

Sg1 = an�1 � bn�1 and Sg2 = an�2 � bn�2. The subscript g indicates that the

8

signal is obtained from the g adder (and subscript l from the l adder). Hence,

Eq. 2 becomes

Cin = bn _ bnbn+1sSg1

(b) Result needing one bit left shift (OLS) This case occurs when

OLS = Eo

h
(bn _ bn+1 _ s)g10 _ (bn _ bn+1 _ s)g

0

0

i

Table 5: Truth Table for Determining Guard, Round, and Sticky Bits in Case 2b.

After Shifting After 2's Complement Cr LCr _ Cc L� Cr

bn bn+1 s Cc G(>> L) R(>> G) s(>> S) Cin q

0 0 0 1 0 0 0 0 1 0

0 0 1 0 1 1 1 1 1 0

0 1 0 0 1 1 0 1 1 0

0 1 1 0 1 0 1 0 0 1

1 0 0 0 1 0 0 0 0 1

1 0 1 0 0 1 1 1 0 1

1 1 0 0 0 1 0 0 0 0

1 1 1 0 0 0 1 0 0 0

The equation in this case can be derived as in the previous case, but is conceptu-

ally more complicated because of the one-bit left shift. We develop the equation

for Cin using Table 5. The \After 2's Complement" column is obtained in the

same manner as that in Table 4. After a one-bit left shift, the G bit becomes the

L bit, the R bit becomes the G bit, and the s bit becomes the �nal S bit.

To perform rounding, Cr is obtained based on the values of the G and the S

bits (the original R and s bits). Recalling the de�nition of Cin, which is equal

to GCr _ Cc, after the one-bit normalization shift, it becomes LCr _ Cc.

Cin = LCr _ Cc = bn(bn+1 _ s)

The q bit is the bit that needs to be shifted in, in case of a left shift because we

have an adder of only 53-bit. Its logic equation is simply the mod 2 sum of the

Cr bit and the L bit (the original G bit).

q = L� Cr = bnbn+1s _ bnbn+1

3. Case 3: Eo is subtraction and d � 1: We again have 2 cases: result needing no

left shift and result needing many left shifts. The following example illustrates these

two cases.

9

Example 2:

1.11111111110 1.00000000000
0.11111100000 0.11111111111

? ?

1.11111111110 1.00000000000
1.00000011111 1.00000000000

1 1+ +

11.00000011110 10.00000000001

(a) Result needs no left shift (b) Result needs many left shifts

In both examples, the exponents di�er by 1 and a one-bit right shift is needed to align

the signi�cands. The over
ow \1" in both cases is simply discarded. In Example 2(a),

no normalization is needed while a 11-bit left shift is required for normalization in

Example 2(b), which shows that it is possible for a many-bit left shift to occur even

when there is a one-bit right shift during signi�cand alignment.

(a) Result needing no left shift This case is basically the same as the second case

(Case 2a) but can be simpli�ed because both bn+1 and s equal zero.

L = bn � Sl1

S = 0

G = bnl
0

0

Cr = S _ L

= bn � Sl1

and

Cin = GCr _ Cc

= l00bnSl1 _ bn

(b) Result needing many bits of left shift (MLS)MLS may occur in two cases,

as illustrated in Example 2. Case 1 is when the exponents are equal, which can

be predicted by examining the LSBs of the exponents (Eah0i and Ebh0i). Case

2 is when the exponents di�er by 1 and the signi�cand of the smaller operand

needs to be right shifted by one bit. The right shifted bit is called the bn bit. But

for Case 2, the Cc bit always reaches the adder independent of the bn bit. This

is because when bn = 0, Cc will reach the adder and when bn = 1, Cc reaches the

bn bit, causing the carry into adder to be true. Hence, all we need is to detect

the �rst case.

10

Cin = Eah0i �Ebh0i

We still need to derive the equation for the bit to be shifted in. The equation is

simply

q = bn

For an n-bit adder and a d-bit left shift, this bit will occupy the bit position n�d
(recall that our numbering convention starts from 0, so that the LSB is at bit

n� 1).

The equation for lin can be obtained by ORing Cases 3a and 3b,

lin = l00bnSl1 _ bn _ Eah0i �Ebh0i

3.2.3 Merging Case 1 and Case 2

From the preceding section, the equation for gin is

gin = (ORS)Sg1(bn _ bn+1 _ s _ Sg2) _

(NXS)
h
Eobn(bn+1 _ s _ Sg1)_ Eo(bn _ bnbn+1sSg1)

i
_

(OLS)bn(bn+1 _ s)

where

ORS = Eog
0

out

NXS = NRS _NLS = Eog
0

out _Eo

h
(bn _ bn+1 _ s)g10 _ (bn _ bn+1 _ s)g

0

0)
i

and

OLS = Eo

h
(bn _ bn+1 _ s)g10 _ (bn _ bn+1 _ s)g

0
0

i

Substituting and simplifying, we get

gin = Eo

h
g0outSg1(bn _ bn+1 _ s _ Sg2) _ g

0

outbn(bn+1 _ s _ Sg1)
i
_

Eo

n
bnbn+1s _ g00

h
bn(bn+1 _ s) _ bnbn+1sSg1

i
_ g00bn(bn+1 � s)

o

The �nal Cin, which selects between the results of the l and the g paths, is true when

Eo is subtraction and the true absolute di�erence of the exponent d is less than or

equal to 1. (Cin is true when selecting the l path.)

11

4 Summary

A new
oating-point addition algorithm has been presented. This algorithm has

only one addition step involving the signi�cand in the critical path while performing

full IEEE rounding. In
oating-point addition, 2's complementation of one of the

signi�cands is needed in the case of an e�ective subtraction. The key ideas presented

in this paper are: �rst, complementation and rounding are mutually exclusive and

can be combined. Second, for the round to nearest mode, pre-computing A + B and

A+B + 1 is enough to account for all the normalization possibilities (see Section 3).

round to in�nitymodes are more di�cult to speed up than the round to nearestmode;

they requires an extra row of half-adder to perform rounding correctly (see Appendix

B).

5 Acknowledgement

The authors would like to thank Naofumi Takagi for his valuable comments on an

early version of this paper.

References

[1] S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital Systems Design-

ers. New-York: Holts, Rinehart and Winston, 1982.

[2] The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street,

New York, NY 10017, USA, ANSI/IEEE Std 754-1985: IEEE Standard for Binary

Floating-Point Arithmetic, 1985.

[3] M. P. Farmwald, On the Design of High Perfromance Digital Arithmetic Units.

PhD thesis, Stanford University, Aug. 1981.

[4] B. J. Benschneider, W. J. Bowhill, E. M. Cooper, M. N. Gavrielov, P. E.

Gronowski, V. K. Maheshwari, V. Peng, J. D. Pickholtz, and S. Samudrala,

\A Pipelined 50-Mhz CMOS 64-bit Floating-Point Arithmetic Processor," IEEE

Transactions on Computers, vol. 24, no. 5, pp. 1317{1323, Oct. 1989.

[5] P. Y. Lu, A. Jain, J. Kung, and P. H. Ang, \A 32-MFLOP 32b CMOS Floating-

Point Processor," in In Proc. of the IEEE International Solid-State Circuit Con-

ference, pp. 28{29, 1988.

[6] M. Birman, A. Samuels, G. Chu, T. Chuk, L. Hu, J. McLeod, and J. Barns,

\Developing the WTL3170/3171 Sparc Floating-Point Coprocessor," IEEE Micro,

pp. 55{64, Feb. 1990.

12

A Notation

In alphabetical order, this is a list of the symbols used in this paper:

_ Logical OR. Lowest precedence.

� Exclusive OR (sum mod 2). Precedence higher than _, but lower than AND.

Juxtaposition AND. Highest precedence.

A = a0:a1a2 � � �a2n�1 Signi�cand of the larger (in magnitude) operand. a0 is the

hidden one bit. an = an+1 = an+2 = � � �= a2n�1 = 0 because no right shift of A

is needed.

Align The alignment step in the addition operation.

B = b0:b1b2 � � �b2n�1 Signi�cand of the smaller (in magnitude) operand. b0 is the hid-

den one bit. bn; bn+1; � � � ; b2n�1 may not be equal to zero after alignment. When

Eo is subtraction so that complementation of the smaller operand is needed, bi
(for i � n + 2) is before complementation.

Cc A bit needs to be added to the LSB to perform complementation.

Cin This signal selects between the results from the g path and the l path.

Cr A bit that needs to be added to the G bit to perform IEEE rounding.

d Magnitude of the exponent di�erence.

Eo E�ective operation. Eo = 0 for addition and Eo = 1 for subtraction.

Ea Exponent of the larger operand.

Eah0i LSB of Ea.

Eb Exponent of the smaller operand.

Ebh0i LSB of Eb.

Ef Exponent of the result operand.

En Amount of shifts needed during the alignment step. En is positive if the signi�cand

needs a right shift and negative otherwise.

ES The signi�cand addition step in the addition operation.

G Guard bit of the result to be rounded.

g0:g1g2 � � �g2n�1 The �nal sum result of the adder in the d > 1 path or when Eo is

addition. This path is denoted the g path.

g10:g
1
1g

1
2 � � �g

1
2n�1 The intermediate sum result of the adder with carry-in=1 in the

d > 1 path and when Eo is addition. This path is denoted the l path.

g00:g
0
1g

0
2 � � �g

0
2n�1 The intermediate sum result of the adder with carry-in=0 in the g

path.

gin This signal selects the result between g00:g
0
1g

0
2 � � �g

0
2n�1 and g10:g

1
1g

1
2 � � �g

1
2n�1.

g0out Carry-out from the g adder with carry-in=0.

13

L Least signi�cand bit of the result to be rounded.

l0:l1l2 � � � l2n�1 The �nal sum result of the adder in the d � 1 path.

l00:l
0
1l
0
2 � � � l

0
2n�1 The intermediate sum result of the adder with carry-in =0 in the d � 1

path.

l10:l
1
1l
1
2 � � � l

1
2n�1 The intermediate sum result of the adder with carry-in=1 in the d � 1

path.

lin This signal selects between l10:l
1
1l
1
2 � � � l

1
2n�1 and l00:l

0
1l
0
2 � � � l

0
2n�1.

LOD The leading one detection step in the addition operation.

LSB Least signi�cant bit.

MLS Indicate that a many-bit left shift is needed in the case of a subtraction.

MSB Most signi�cant bit.

N Next to LSB.

NLS Indicate that no shift of the result is needed in the case of a subtraction.

NRS Indicate that no right shift of the result is needed in the case of an addition.

NXS = NRS _NLS.

n Length of the signi�cand, equal to 53.

Norm The signi�cand normalization step in the addition operation.

OLS Indicates that a one-bit left shift is needed in case of a subtraction.

ORS Indicates that a one-bit right shift is needed in the case of addition.

Pred The prediction step in the addition operation. This step is used to align the

signi�cands in case of d � 1.

q The bit to be shifted in when a left shift is needed during normalization.

Round The rounding step in the addition operation.

R Round bit (or round bit position).

s = bn+2 _ bn+3 _ � � � _ b2n�1.

S Final sticky bit of a signi�cand to be rounded.

Sa Signi�cand of the larger (in magnitude) operand.

SA Signi�cand addition.

Sb Signi�cand of the smaller (in magnitude) operand.

SE Sign of the result.

Sf Signi�cand of the result operand.

Sg1 = an�1 � bn�1 from the g adder.

Sg2 = an�2 � bn�2 from the g adder.

Sl1 = an�1 � bn�1 from the l adder.

Sl2 = an�2 � bn�2 from the l adder.

14

B Cin for other rounding Modes

For all other rounding modes, the equations for Cin, ORS, NXS, and OLS are the

same as those for the RTN mode. Only the equations for gin, lin, and q di�er. In this

appendix, we develop the equations for the three other IEEE rounding modes.

B.1 Round to 0

gin = Eo(bn _ bn+1 _ s)

lin = Eobn

In case of a right shift during normalization, the q bit is

q = bn(s _ bn+1) _ bnbn+1s

or more concisely,

q = bn � (s _ bn+1)

B.2 Round to +1

Round to in�nity is much tougher to speed up than RTN. This is because when a

right shift is required, as in the case of an e�ective addition, one has the possibility

of adding 0, 1, and 2.3 A less e�cient way to implement this mode is to use three

adders, simultaneously computing the three results at the same time.

Referring back to Fig. 1, we recognize that

� One only has a problem when the LSB, L in Fig. 1, is zero because the case of

L = 1 can be treated in the same way as the RTN mode.

� In the case of L = 0, pre-computing A + B, A + B + 1, and A + B + 2 is

not a problem because the three cases can be reduced down to two: A + B and

A+B+2. The case of A+B+1 can be accounted for by incrementing the A+B

case, because L = 0 (so there is no carry propagation). To compute A+ B + 2,

one needs to use a row of half adder, as shown in Fig. 2. By modifying the logic

equation for gin slightly, the RTPI and RTNI modes can be implemented in a

similar manner as the RTN mode.

3Round to nearest does not have this problem because its de�nition a�ords a simple implementation, as

pointed out in the main text, Section 3.2.3.

15

n bit Half Adder

n bit Adder G,R,S,V

Figure 2: Hardware for Round to Positive In�nity.

Using a similar approach as that for the RTN mode and the above argument, we

arrived at the following logic equation for gin:

gin = (ORS)SE(an�1 � bn�1 _ bn _ bn+1 _ s) _

(NXS)
n
Eo(SE _ bnbn+1s) _Eo

h
an�1 � bn�1 _ SE(bn _ bn+1 _ s)

io
_

(OLS)(SEbn _ SEbnbn+1s)

where ORS, NXS, and OLS are as de�ned in Section 3.2.3 in the main text. SE is

the sign of the result. Similarly,

lin = SEl
0

0bn _ bn

The equation for the q bit is

q = SEbn _ SE [bn(bn+1 _ s)]

For the case of MLS, because bn+1 = s = 0, the equation reduces to

q = bn

B.3 Round to �1

Because this case is symmetrical about the sign to the case of RTPI, all we need to

do is to reverse the sign of SE in the equations for gin and lin.

The equation for the q bit, for example, is

q = SEbn _ SE [bn(bn+1 _ s)]

16

