
EVENT PATTERNS: A LANGUAGE CONSTRUCT FOR
HIERARCHICAL DESIGN OF CONCURRENT SYSTEMS

David C. Luckham
Bennoit A. Gennart

Technical Report: CSL-TR-90-453

(Program Analysis and Verification Group Report No. 51)

November 1990

Research supported by the Air Force Office of Scientific Research under Grant
AFOSR83-0255, and by the Defense Advanced Research Projects
Agency/Information Systems Technology Office under the Office of Naval
Research, contract N00014-90-51232.

Event patterns : a language
construct for hierarchical

design of concurrent
systems

bY

David C. Luckham

Benoit A. Gennart

Technical Report CSL-TR-90-400
Program Analysis and Verification Group Report No. 50

November 1990

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

St anford University
Stanford, California 94305-4055

Abstract

Event patterns are a language construct for expressing relationships between specifications at
different levels of a hierarchical design of a concurrent system. They provide a facility missing
from current hardware design languages such as VHDL, or programming languages with parallel
constructs such as Ada. This paper explains the use of event patterns in (1) defining mappings
between different levels of a design hierarchy, and (2) automating the comparison of the behavior
of different design levels during simulation. It describes the language constructs for defining event
patterns and mappings, and shows their use in a design example, a l&bit CPU.

Key Words and Phrases: Event pat tern mappings, hierarchical design, concurrent systems,
discrete event simulat,ion, programming languages, design verification, consistency checking

Copyright @ 1990

bY
David C. Luckham, Benoit A. Gennart

Contents

1 Hierarchical designs 1
1.1 Structure of the paper . 2

2 Specifying the behavior of concurrent systems 3
2.1 Design entities, Actions, and Events . 4

-2.2 Entity Architecture . 6
2.3 Simulations . 7

3 Event pattern mappings 8
3.1 Defining refinements . 8
3.2 Mapping simulations between levels . 11

4 Comparative Validation 13

5 A language for event patterns 15
5.1 The event pattern construct 15
5.2 Pattern variables and Matching 16
5.3 Patternnodes. 16
5.4 Matching event templates 17
5.5 Patterns ... 17
5.6 Matching event patterns 18
5.7 A CPU instruction level constraint 19
5.8 The mapping for the action Load . 19

6 Conclusions and Continuations 20

A The example : the 16-bit CPU 22
A.1 Data types and operations 22
A.2 Statemodel ... 22
A.3 Instruction level specification 23
A.4 Register transfer level specification 25

A.4.1 Component interfaces 25

. . .
111

List of Figures

1
2
3
4
5
6
7
8
9
10

CPU design hierarchy 2 _
VHDL descriptions 3
CPU architecture 6
CPU simulations 9
Load action mapping 11 i
Use of mappings 12
Correspondences between CPU simulations 13
Debugger environment 14
Event pattern .. 16
Matching semantics 18

iv

1 Hierarchical designs

This paper presents new language features for expressing the hierarchical development of concurrent
systems. These features, called event patterns and pattern mappings, can be viewed as extensions of
current design and simulation languages, such as VHDL [6]. They provide a basis for implementing
new tools for automated analysis of design behavior. While our discussion here is biased towards
hardware systems, event patterns and mappings can be used to express hierarchical designs of
systems containing both hardware and software components.

The underlying thesis of this paper is that in dealing with designs of concu
are a necessary component of any facility for defining design hierarchy.

rrent sys terns, patterns

We begin with an informal discussion of design hierarchy.
A specification of a system (or component of a system) consists of (1) a set of actions (and

data parameters) by which the system communicates with other systems, and (2) a definition of
behavior by means of relationships between those actions, e. g., causal relationships between actions
and functional relationships between their parameters. A typical high level hardware specification,
for example, declares input and output ports (changing the values of which are special kinds of
actions), and defines a behavior by functions that map input data to output data.

Specifications of a system are made at different levels of abstraction. Levels shown in Figure 1
are commonly referred to in hardware designs. For us, a level is determined by a set of concepts
- i. e. data types and operations. If a specification (including the specification of its components)
assumes only concepts in a set associated with a level, then we say that the specification is made at
that level. For example, in Figure 1 at the instruction level, the concepts that are assumed include
the data type Integer and the set of arithmetic functions. At the gate level, the concepts are more
primitive operations such as the simple boolean functions (nand, nor, not), applied to the data
type Bit.

A design hierarchy consists of a number of specifications, each made a different levels. Each
specification assumes a different set of concepts, although they may have some common concepts.
Such specifications are of course related, and definition of those relationships is what concerns us
here.

A design process includes the following activities :

0 specification : the activity of specifying a system involves defining its observable behavior
by means of specifications. Note we use the word “specification” to describe both the activity
of specifying, and result of that activity, i.e. a specification of behavior.

0 refinement : In top down design methodology, a high level specification of a system is
refined step by step, new details being introduced by use of lower level concepts. The result
is a design hierarchy.

Figure 2 shows the structure of the VHDL descriptions corresponding to the instruction and
register transfer levels of a CPU design. The instruction level consists of the CPU entity
interface, and a behavioral specification. The register transfer level consists of the same
CPU entity interface, a structural architecture describing the connections between the CPU
components (REG, PLA, BUF and ALU), and for each component, a behavioral specification
(bhv).

1

/

reg/ster transJ&r /eve/
0w.s ry#Jw : wad, ..-

componenf fyp : s/u, rag, p/a, bug .--
number of camponenfs : 15 /

Figure 1: CPU design hierarchy

l comparative analysis : the designer must have the ability to analyse the consistency be-
tween levels of the design hierarchy, if possible in an automated manner. Analysis methods fall
into two categories : verification and validation. Formal verification is the process of proving
the consistency without actually executing a specification. Comparative validation is based on
executing specifications at different levels of abstraction and comparing the execution results.

Current high-level languages (hardware description and simulation languages such as VHDL [5]
and HSL-FX [3], and general purpose programming languages such as Ada [l]) provide abstraction
features that support the specification part of the design process. However none provide features
to define hierarchical relationships between specifications - they do not support the refinement
part of the design process. Consequently, comparative analysis tools are not provided.

The cost of formally specifying the hierarchical relationships between specifications is greatly
outweighed by the benefits : (1) existence of a documentation of the refinement process between
specifications ; and (2) the ability to completely automate the comparative analysis step of the
design process.

1.1 Structure of the paper

Section 2 describes language constructs entity, action, constraint and architecture for specifying
concurrent systems at different levels of abstracti’on. Our proposal for defining mappings between
specifications of concurrent systems assumes that a simulation produced by executing a specification
is a partially ordered set of events. The partial ordering of events (resulting from executions of
actions) is also described informally in section 2. Section 3 describes a mapping construct based
on event patterns, and how mappings are used to define design hierarchies. Section 4 shows how to

2

instruction
level

register
transfer
level

Figure 2: VHDL descriptions

implement comparative validation using event pattern mappings and describes the current status of
the research. Section 5 introduces the language for defining patterns of events in a partial ordering.
Appendix A presents a complete specification of the CPU example and its components.

The paper assumes some familiarity with VHDL. For the purpose of presenting examples with a
minimum of explanation, we use syntax that is based loosely on VHDL and Ada. Language features
that are not explained have the same semantics as similar constructs in VHDL. The treatment given
here is informal and incomplete, intended as an overview of concepts ; the full details are given in
forthcoming reports.

2 Specifying the behavior of concurrent systems

In this section we outline language features for specifying the behavior of a concurrent system. The
resulting behaviors are partially ordered sets of events.

In general, a concurrent system specification may have two parts : an executable part, and
a constraint bused part. Executable specifications are usually either programs that simulate the
behavior of a design, or networks that define dataflow between other executable specifications of
components. Constraint-based specifications define conditions - called constraints - that the
behavior must satisfy. Often a constraint-based specification can be satisfied by many behaviors.
These two parts (executable and constraint based) are separated into a declaration that may contain
constraints, and an architecture that is executable (see Figure 2).

The data types and operations that are assumed by a specification are called concepts of that
specification. Concepts are either imported from software libraries, or else they are predefined
types and operations of the formal language. The data type bit and the boolean operation “=n are
concepts that appear in many specifications.

Our discussion is based on an example, a 16-bit CPU, that will be introduced progressively in
the next sections. The example assumes the following concepts :

3

type bit is ('O', '1') ;
type Int2 is integer range 0..3 ;
type WordT is string (1..4) ;

-- hexadecimal 16 bit
type AddrT is string (1..3) ;

-- hexadecimal 12 bit
type OpcodeT is (Id, st, ex, id) ;

-- load, store, execute, idle
type AluOpT is (land, lor, lnot, lxor) ;
type InstrT (opcode : OpcodeT) is record

case opcode is
when Id I st => register : Int2 ;

address : AddrT ;
when ex => register1 : Int2 ;

register2 : Int2 ;
operation : AluOpT ;

when id => null ;
end case ;

end record ;

2.1 Design entities, Actions, and Events

l An entity declaration is a specification encapsulating (1) a set of actions by which the entity
communicates with other entities, and (2) a constraint-based specification of its behavior.

l actions. There are three kinds of actions. An out-action can be performed by an entity
and observed by other entities. An in-action of an entity is performed by other entities and
observed by the entity. An internal action is performed by an entity and observed by that
entity. Actions generalize language constructs such as VHDL ports and Ada task entry
declarations for communication between concurrent units.

design CPU is
-- ports
in action Clk ;
in action Instr (ins : InstrT ;

din : WordT) ;
out action Addr (d : AddrT) ;
out action Re (b : bit) ;
out action We (b : bit) ;'
out action Dout (d : WordT) ;

action Load (addrss : AddrT ;
reg : Int2 ;
data : WordT) ;

-- constraint
declare

?ins : InstrT ;
?din : WordT ;

pattern
when Instr (?ins, ?din) where ?ins.opcode = Id then

Load (?ins.address, ?ins. register, ?din) ;
before Clk -> Clk -> Clk -> Clk ;

end ;
end CPU ;

The CPU declaration has two in-actions, Clk and Instr, by which other entities can commu-
nicate with it. Since C l k has no parameters, it can only be used for synchronization. The
in-action lnstr has two parameters (ins of type InstrT, and din of type WordT). In-action pa-
rameters are set by other entities and read by the design entity. Thus lnstr is used to receive
an instruction ins and input data din.

The CPU can perform the out-actions Addr, with one parameter d of type AddrT, Re, with one
parameter b of type bit, We, with one parameter b of type bit, and Dout, with one parameter
d of type WordT. Addr is the address output of the CPU, Re its read-enable output, We its
write-enable output, and Dout its data output. Out-action parameters are set by the design
entity and observed by other entities.

The CPU can also perform the internal action Load which has parameters : (1) addrss, the
address in memory from which the CPU loads, (2) reg, an integer parameter that represents
abstractly the register component of the CPU in which the data is loaded, and (3) data, the
data word that is loaded. Internal action parameters are set and observed by the design
entity. An internal action can be observed only by the entity itself. Intuitively, it indicates
an internal change of state of the entity.

l An event is an instance of an action. An event results when an entity executes an action.

Load (“9C3”, 1 , “AFAO”)

This event is an instance of the action Load, with the addrss parameter bound to value “9C3”,
the reg parameter bound to value 1, and the data parameter bound to value “AFAO”.

l A constraint on behavior may also appear in an entity declaration. A constraint may be
an assertion about functional relationships between the parameters of events resulting from
in-actions and out-actions, or it may constrain the order in which events can be issued by
the design entity. Constraints may be parameterized using placeholders. Placeholders are
variables that are set when the actions in a constraint are matched to events. Mutching is the
process of replacing placeholders in expressions by values, so that the resulting expressions
are identical to event parameters in a simulation. If a placeholder occurs several times in
a constraint, all its occurrences must be bound to the same value in the same match. For
example, if the action description Load (?ins.address, ?ins.register, ?din) is matched to the
event Load (” 9C3”, 1, “AFAO”), the result of the match will bind the placeholder ?din to
value “AFAO”, the address field of placeholder ?ins to value “933”, and the register field of
placeholder ?ins to value 1.

5

Clk -

C

- D i n
'(0) (1) (2) (3)

--c Re
+ We

+ A d d r

-+ D o u t

Figure 3: CPU architecture

The constraint in the CPU example above expresses that whenever an event occurs on its
in-action Instr, with its ins parameter bound to a value corresponding to a load instruction
(?ins.opcode = Id), then the CPU must perform, within the next four clock events, an internal
action Load, with its first and second parameters bound to the value taken by the address and
register fields of the pattern variable ?ins, and its third parameter bound to the value taken
by the ?din pattern variable.

2.2 Entity Architecture

A separate entity architecture is associated with an entity declaration. Similarly to VHDL, the
architecture contains an executable description of the behavior of an entity. This may be defined
by an executable program, or by networks of lower level entities. A network connects an out-action
of a component to in-actions of other components, provided the actions have the same parameter
profile. If a component executes an out-action with certain parameter values, then events that are
instances of the in-actions to which it is connected, occur in other components. Figure 3 gives
a graphical representation of the register transfer level CPU architecture. It shows dependencies
between components, but for simplicity does not show all of the individual connections.

The CPU architecture is a network of register transfer level components. The CPU, at the
register transfer level, consists of five kinds of components : registers, two-output registers, buffers,
a logic unit, and a controller. We describe the interface of these components informally ; formal
interfaces are given in the Appendix.

l IR, the instruction register, and ACC, the accumulator, are registers. The register component
has four in-actions, Din (innut da,ta,). Ce (clock enable), Oe (output enable), and Clk (clock) ;

one out-action, Dout (output data) ; and two internal actions, Load and En. If the clock is
enabled (i. e. the value of the parameter of the last action Ce was ‘1’)’ the register loads
(stores internally) the value of its data input on each occurrence of the Cl k action. When the
register output is enabled (i.e. the value of the parameter of the last action Oe was ‘1’)) the
register outputs its internal state (i. e. the value of the parameter of the last occurrence of the
internal action Load) through its out-action Dout, and issues an En action with its parameter
bound to the value of register state.

. R(O), R(l), R(2), R(3) are two-output registers. The two-output register component has
five in-actions, D i n (input data), Ce (clock enable), Oel (first output enable), Oe2 (second
output enable), and Clk (clock) ; two out-actions, Doutl (output data), and Dout2 (output
data) ; and three internal actions, Load, En1 and En2. The behavior of the two-output register
is similar to the behavior of the register, with input Oel and Oe2 controlling Doutl and Dout2
respectively.

l DIB, DOB and AEB are buffers. The buffer component has two in-actions, Oe (output enable)
and Din (data in) ; one out-action Dout (data out) ; and one internal action En. When the
buffer output is enabled (i.e. the value of the parameter of the last action Oe was true), the
buffer outputs its input value (i.e. the value of the parameter of the last occurrence of the
in-action Din).

l A is a logic unit. The logic unit component has three in-actions, the two operands Opl and
0~2, and the operation selection Op ; and one out-action, Dout. The logic unit can perform
one of four operations (and, or, not, xor) on the two operands, depending on the operation
selection input.

l C is the CPU controller. The controller is a state machine. It has two in-actions, Input
and Clk ; twelve out-actions, Re (read enable), We (write enable), Roe1 (first register output
enable), Roe2 (second register output enable), Rce (register clock enable), lrce (instruction
register clock enable), lrrst (instruction register reset), Acce (accumulator clock enable), Acoe
(Accumulator output enable), Diboe (data in buffer clock enable), Doboe (data out buffer
output enable), and Aeboe (address buffer output enable). The controller promotes in-actions
of the other CPU components.

The flow of data in the CPU architecture is as follows :
R (2) , and R(3)) t

the bank of four registers (R(O), R(l),
s ores operands to be processed by the logic unit A ; an accumulator ACC stores

temporarily the result output by the logic unit, before it is transferred to the register bank ; two
buffers, DIB (data in buffer) and DOB (data out buffer), transfer data from the outside world to
the register bank, and vice versa ; an instruction register IR, stores an instruction (ins parameter of
the lnstr action) for the duration of that instruction ; an address buffer AE B, issues addresses to the
memory where from the CPU fetches data ; and ,finally a controller C promotes clock enable (Ce)
and output enable (Oe) actions on all the CPU component instances (for example, the controller
Acce action promotes the Ce action of the Act register).

2.3 Simulations

A simulation is a partially ordered set of events resulting from the execution of actions. To
express the ordering between events, a timestamp consisting of two integers is associated with

7

each event. The two numbers (lower-bound and upper-bound) define the time interval during which
an event occurs. Timestamp tl is smaller than timestamp t2 if tl.upper-bound is smaller than
t2.lower-bound. The notation for an interval is [lower-bound, upper-bound 1. If the lower bound
is equal to the upper bound, the interval reduces to a single timepoint. An event with a smaller
timestamp is said to have occurred before another event with a larger timestamp.

The ordering relationship expresses both causality (an in-action event causes a design entity to
issue another event by executing an out-action), and clock ordering. In other words, the existence
of an order between two events may indicate that one caused the other, or that one came before
the other (or both). The absence of an ordering between two events indicates that they happened
independently and concurrently in the simulation.

Notes : (1) Causality and clock order are assumed consistent. If an event causes another, its
timestamp cannot be greater than the event it caused. (2) For simplicity of presentation, our sim-
ulation model assumes a global clock. Similar partially ordered models of concurrent computation
can be given when each entity has a local clock and there is no global clock [2, 41.

Figure 4 shows parts of the simulations produced by executing the CPU at the instruction level
and at the register transfer level. In the figure, the numbers to the left of each simulation represent
increasing values of time on the global clock. Each event in the simulation is represented by (1)
a label (E or F followed by a number) for future reference (Section 3) ; and (2) the actual event
description, consisting of an action name and parameter values. To simplify the event descriptions
in Figure 4, the timestamps of events with a single timestamp are not shown.

For example, event El occurs at time 6, and is an instance of the CPU action Instr, with its
parameters bound to the values “C333” and “AFAO” ; event E9 covers an interval that goes from time
10 to time 40, and is an occurrence of action Load, with its parameters bound to values “333”, 1,
and “AFAO”. The ordering in the simulations can be determined by the timestamps. For example,
event E3 occurred be fore event E5 (E3’s timestamp is smaller than E5’s timestamp) ; event E4
occurred while event E9 was occurring (E4’s timestamp lower bound and upper bound both occur
within the interval defined by E9’s timestamp) ; and event F9 and FlO occurred simultaneously
(identical timestamp).

These two simulations, although different, are related : they are simulations produced by the
same design, for the same test data, but at different levels of the design hierarchy. The next section
shows how the relationship between these simulations can be expressed using event patterns.

3 Event pattern mappings

The problem we now address is to provide constructs to express the decisions made during the
refinement process - decisions that define relationships between the specifications at the various
levels.

3.1 Defining refinements

A mapping consists of an action name and formal parameters followed by an event pattern - the
body of the mapping. It maps a partially ordered set of events at one level of the design hierarchy
into one event at a higher level of the design hierarchy.

A mapping body consists of event templates, that will be matched to actual events of a
simulation, and relevant ordering relationships among them. Pattern expressions (described in

8

6 :: El : Instr((ld, 1, “333’7, “AFAO”)

j [. .

6 i’.

10: ‘. @zilc)

F6: IFLLoad(“C333”) _._._ . ..L......._..._..._._.

instruction level

::
20 i:...

D
R- C,k .._....................

33 ;. F6: C.State (Id) .

26 : ...

..30 ;. fyq..
. .

F15: R(l).Load(“AFAO”)

-f-g

register transfer level

Figure 4: CPU simulations

9

Section 5) permit ordering and concurrency as part of a mapping definition. A syntactic form of
the mapping construct is shown below :

m a p p i n g action name (formal_parameters)-
i s

pattern-body
e n d action name :

In the CPU example, the Load action (instruction level) is refined to a pattern of actions of
components at the register transfer level. Between three clock cycles defined by four clock events
(intuitively, clock edges), the following events must happen : between the first and the second
clock edge (first clock cycle), the controller C changes its state to the value if4, and the instruction
register loads an instruction ; between the second and the third clock edge (second clock cycle),
the controller C changes its state to the value Id, executes its read-enable (Re) action, the address
(AEB) and the data input (DIB) buffers are enabled (internal action En) ; between the third and
fourth clock edge (third clock cycle), the controller C changes its state to the value ifl, and one of
the registers in the CPU register bank loads the value output by the data input buffer. Note that
any one of the registers in the bank may take part in a Load instruction. This informal description
of the register transfer level pattern can be written as a pattern expression. We begin with a
graphical representation.

Conceptually, an event pattern is a graph in which each node is an event template, and directed
arcs between nodes indicate ordering relationships. The left part of Figure 5 shows the mapping
body defining this refinement of the Load action using placeholders. The event templates consist
of a label (P followed by a number), an action name (e.g. Cstate) and its parameter values. The
Load mapping event templates are :

l Pl, P4, P9, P12 : Clk ; four clock edges.
l P2 : C.State(if4) ; the controller C changing its state to value if4.

l P3 : I R.Load(?ins) ; the instruction register IR loading an instruction ?ins.

l P5 : C.State(ld) ; the controller C changing its state to value Id.

l P6 : C.Re(true) ; the controller C activating its read enable output.
l P7 : DIB.En(?data) ; the data in buffer DIB outputting value ?data.

l P8 : AEB.En(?addr) ; the address buffer AEB outputting value ?addr.

l PlO : C.State(ifl) ; the controller C changing its state to value ifl.
l PI1 : R(?reg).Load(?data) ; one of the CPU registers loading value ?data.

The ordering relationships between these event templates, as shown in Figure 5, are :
l Pl +P2 -+P4 : the controller C moves to state if4 during the first clock cycle (Pl before P2,

and P2 before P4).
0 P l --+P3 +P4 : the instruction register IR loads an instruction during the first clock cycle.
0 P4+P5-+P9: the controller C moves to state Id during the second clock cycle.
l P4--+P6--+P9: the controller C activates its Re output during the second clock cycle.

10

Figure 5: Load action mapping

l P4 +Pi’ +P9 : the data in buffer DIB is enabled and outputs value ?data during the second
clock cycle.

l P4 -+P8 +P9 : the address buffer AEB is enabled and outputs value ?addr during the second
clock cycle.

l P9 ---+PlO +Pll : the controller C moves to state if1 during the third clock cycle.

l P9 -+PlO ---+Pll : one of the CPU’s registers loads value ?data during the third clock cycle.

The mapping does not specify ordering relationships between P2 and P3, for example. This means
that P2 could occur before P3, P3 could occur before P2, or they could occur simultaneously.

The right hand part of Figure 5 shows an instance of the mapping for the CPU action Load with
pattern variables ?ins, ?addr, ?reg and ?data bound to the values “C333”‘, “333”, 1, and “AFAO”
respectively.

Similarly, the lnstr action (instruction level) is refined to a pattern of actions of components at
the register transfer level : both actions Din and Ins (register transfer level) must occur, but in any
order.

3.2 Mapping simulations between levels

Typically, a designer intends a high level action to be implemented by one or more patterns of
lower level actions. The designer’s intentions can be expressed by mappings, during the top-down
development of a design. Mappings, used in this way, are formal assertions about the relationship
between different design levels. They can be applied to implement various kinds of comparative
analysis. One form of comparative analysis is to map a lower level simulation to a higher level order-
ing of events, called a mapped simulation. The mapped simulation is then checked for consistency
with the higher level constraint specifications.

11

Figure 6: Use of mappings

Figure 6 gives a general idea of the use of mappings to relate simulation events at different
hierarchy levels. The top part of the figure shows a high level simulation. The bottom part of the
figure shows a simulation of the same entity specified at a lower level of abstraction. Simulation
events are represented as circles, and the ordering relationships as arrows. The three high level
events are defined as patterns of lower events by mappings. The lower level ordering induces an
ordering among the higher level events. Whenever the event pat tern body of a mapping matches in
the lower level simulation, the higher level action with parameter values (bound in the matching)
is mapped to the higher level simulation. In Figure 6, the shaded areas represent suborderings of
the lower level simulation that match the mapping body. The mapped high level events are shown,
and their correspondence with the lower level simulation is represented by vertical rays.

The ordering of mapped higher level events is determined by the ordering of lower events that
match the pattern. A full treatment of mapping-induced simulations is omitted here.

Very simple correspondences between higher and lower level actions, such as one-one equiva-
lence, are obviously expressed by trivial mappings. However, even every-day examples of hierarchi-
cal designs cant ain correspondences that involve patterns such as sequences of lower level actions
and nondeterministic choices between such sequences. Correspondences jumping over several lev-
els of hierarchical refinement can be quite complex. Pattern mappings provide a convenient and
powerful way to define design decisions made during the hierarchical refinement process.

Examples of correspondence between two specifications of the CPU design, are shown in Fig- ,
ure 7. The figure displays CPU simulations at the instruction and register transfer levels. The
simulations are exactly the same as in Figure 4. The events are described only by their labels.
It also depicts graphically the correspondences defined by the mappings for the instruction level
actions lnstr and Load. As explained in section 3.1, the instruction level event lnstr (El) corresponds
to the occurrence of register transfer level actions Ins and Din (F2 & F3) ; the & operator indicates
that the order of events F2 and F3 is not important. In other words, F2 can occur before F3, F3
can occur before F2, or their time stamp can be identical : all those situations will correspond to

12

10 13 20 23 26 26 30 33 36 40
register transfer level simulation

Figure 7: Correspondences between CPU simulations

the instruction level event El.
The instruction level event E9 corresponds to the more complex pattern, described previously

and consisting of events F4, F5, F6, F7, F8, F9, FlO, Fll, F13, F14, F15, and F17. In Figure 7, the
events that make up the Load mapping instance are given both their name, and the name of the
mapping event template they match. For example, F4=Pl means that event F4 is matched by the
Load pattern template Pl.

4 Comparative Validat ion

There are several ways to use event pattern mappings to implement comparative validation whereby
simulations of different levels of a hierarchical design are compared for consistency. A very straight-
forward and easily implemented method is a post-mortem comparison. Assume we have two spec-
ifications and mappings between them that define the actions of one specification as patterns of
actions of the other.

l execute the lower level specification and produce a simulation of low level events (ZOW level
simulation) ;

l use the mapping to translate the low level simulation into a partially ordered set of high level
events (mapped high level simulation) ;

13

VHDL / VAL+ specification

I \ f \ r \

stimulus - VHDL simulator - VAL+
d e b u g g e r -

hierarchy of
simulations

\ J L \ /

Figure 8: Debugger environment

l check that the mapped high level simulation satisfies the constraints of the high level specifi-
cation.

More sophisticated uses of mappings are also possible, including on-the-fly translation of, and
error detection in, very detailed large simulations.

To investigate the application of pattern mappings, a debugger has been implemented and used
in debugging gate level simulations. Using event pattern mappings, the debugger extracts, from
a VHDL gate level simulation, simulations at the register transfer level and the instruction level.
The three simulations, at the gate, register transfer and instruction levels are called the simulation
hierarchy. The designer specifies in VAL+ (an annotation language for VHDL) the actions each
component can perform. Examples of such actions are for the register transfer level entity the
action Oe (output enable), and for the instruction level entity CPU the action Load. The designer
also specifies in VAL+ a mapping between each action and a pattern of events at a lower level
of abstraction. For example, the register transfer level action Oe is specified as a pattern of gate
level events, and the instruction level action Load is specified as a pattern of register transfer level
events.

Figure 8 describes the debugger environment. The VHDL / VAL+ specification is compiled in
two programs, a simulator and a debugger. The simulator, compiled from the VHDL gate level
specification, takes as input a stimulus and produces a simulation at the gate level. The debugger,
compiled from the VAL+ specification, takes as input the gate level simulation, and produces
simulations at the register transfer and instruction levels.

Debugging the CPU design consists of (1) executing the VHDL gate level specification on a
VHDL simulator, and (2) generating the register transfer and instruction level simulations using
the simulation interpreter. The simulated CPU example had four levels of abstraction, gate level,
elementary register transfer level (one-bit buffer, one-bit register , . ..). register transfer level (mul-
tiple bit buffer, multiple bit register), and instruction level (the CPU itself). For a five instructions
stimulus, the gate level simulation consists of 8073 events, the elementary register transfer simu-

14

lation consists of 334 events, the register transfer level simulation consists of 73 events, and the
instruction level simulation consists of 5 events. These numbers show how well the event pat-
tern mappings help structure the gate level simulation. To understand the problem of browsing
through the gate level simulation, printing the gate level simulation, with as horizontal coordinate
the VHDL signals and vertical coordinate the timepoints, would require a rather unmanageable
page 4880 characters wide and 680 lines long.

The absence of one or more events, in the instruction level simulation, or the incorrect value of
an event parameter is the indication of an error in the register transfer level simulation. The error
can be traced to a missing or incorrect event in the register transfer simulation. The absence of
an event in the register transfer level simulation can be traced either to wrong connections in the
network of register transfer level components or errors in those components. This method allows
for fast bug detection and pinpointing.

The debugger helped find five bugs in the CPU gate level specification (including errors in the
logic of the clock enable circuitry of the registers, in the logic unit, and in connections between
components). Four out of five bugs were found inspecting the top level (instruction level) simulation.
The fifth bug was found inspecting the register transfer simulation, as a consequence of another bug
at the instruction level. Those bugs could have been found, however very difficultly, by inspecting
the gate level simulations, but the VAL+ simulation interpreter was of great help in pinpointing
rapidly the bugs.

The debugger was also used in debugging two other designs : (1) a string matching chip, with
specifications at the register transfer and chip levels ; and (2) a computer, consisting of two memory
boards, a central processing unit, and a data transfer bus based on the VME protocol [7]. The
register transfer level specification of the string matching chip is a systolic array that demonstrates
the ability of the pattern language to handle pipelined behavior. The computer was specified at the
board and system levels, and shows the benefit of using event pattern mappings in a asynchronous
design (the VME bus protocol is asynchronous).

5 A language for event patterns

In this section a simple language for defining event patterns, and its semantics, are described
informally. The main language features are (1) its simplicity (only four operators to express pattern
of events), (2) its ability to define both mappings and constraints on the behavior, and (3) its ability
to define context by means of guards.

5 .1 The event pattern construct

Events occurring in a simulation are called actual events to distinguish them from event patterns.
Figure 9 shows an event pattern in which A, B, C, and D are event templates. The pattern will

match any set of four actual events that are instances of A . . . D (as explained below) and whose
ordering in the simulation matches the graph.

An event pattern has three parts : (1) a set of declarations of pattern variables and their types,
(2) the set of event templates in the pattern (i.e., the nodes in the graph), together with guards
to be checked when a possible matching event occurs in a simulation, and a name (or label) for
each of the event templates, and (3) an ordering among the event templates of the pattern (i.e.,
the arcs of the graph).

15

Figure 9: Event pattern

declare
?pattern variable 1 : type 1-
?pattern-variable-2 :- type12
. . .

nodes
event template 1 ;- -
eventsemplate 2 ;-
event template 3 ;- -
. . .

pattern
pattern-descr ipt ion ;

end ;

;
;

5.2 Pattern variables and Matching

Pattern variables are placeholders for values. Pattern variables have a name and a type, and are
initially unset - i. e., have no value. Lexically, pattern variables identifiers always start with a ?,
in order to make pattern descriptions more readable.

A pattern variable is replaced by a value during the process of matching. The pattern variable
is then said to be set. A pattern variable cannot be assigned to, and cannot be subjected to the
standard value-changing operations of its type. After it has been set, its value can be read or
selected using the standard read-only operations of its type.

A pattern variable may occur in more than one event template of an event, pattern. When it is
replaced by a value during matching, all of its occurrences are replaced by the same value.

5.3 Pattern nodes

The generic form of a pattern node is :

name : event template-
where guard ;

Each event template declaration (or node) in a pattern describes a set of possible events in a
simulation. An event template declaration has three parts, some of which are optional.

16

1. name : each event template is given a unique name. Names are used to define where a
template occurs in the graph (ordering) of a pattern. An event template may occur more
than once in a pattern graph.

2. event template : an event template consists of the name of an action together with expres-
sions for values of the action parameters. These parameter expressions may contain pattern
variables as well as ordinary program variables. An expression may be evaluated only after all
of its pattern variables have been set. Parameter expressions in event templates are optional.

3. guard : A guard is a boolean expression that restricts the number of actual events that can
be matched by an event template by requiring that the boolean condition is true in order for
a match to be successful. Guards are optional.

5.4 Matching event templates

An event template matches an actual event if (1) the action names in the template and the event
are the same, (2) there is a replacement of pattern variables by values such that the template and
actual event are identical when all expressions in the template are evaluated, and (3) any (optional)
guard evaluates to true.

Examples of event templates and matches. Assuming ?data , ?ins and ?addr are pattern variables
the following are examples of event templates :

1. LD : Load.
parameter

This template
values.

matches any Load actual event in a simulation irrespective of its

2. LD : Load (“CCC”, 1, “AFAO”). This template does not contain any pattern variables. It
matches a Load actual event if the address parameter is “CCC”, the register parameter is 1,
and the word parameter has the string value “AFAO”.

3. LD : Load (“CCC”, 1, ?data). This template contains the pattern variable ?data. If the ?data
pattern variable is set to V, the template will only match simulation events Load(“CCC”, 1, V).
If the ?data pattern variable is unset, the template matches all Load events in a simulation
that have their first and second parameters set to “CCC” and 1 respectively, and sets the
?data pattern variable to the value of the data parameter of the actual Load event.

4. LD : Load (?addr, 1, ?data) where ?addr = ?ins.address. This template contains three pattern
variables, ?addr, ?data and ?ins. If the ?ins pattern variable is set to “3CCC”, and the actual
event Load (” CCC”, 1 , “AFAO”) occurs, the event template will match the actual event.
However, if the ?ins pattern variable is set to “3CCC” before the Load actual event occurs,
and the event Load (“334”, 1, “AFAO”) occurs, the event template will not match the actual
event.

5.5 Patterns

A pattern declaration consists of a sequence of expressions built up from the event templates and
the connectives -> (followed by), & (both of), 1 (either of) and when . . . then . . . before...

1. A -> B matches an actual A and the first actual B that follows it in the ordering of a simulation.

17

A1 - B1 - Cl- AZ- B2- C2

Figure 10: Matching semantics

2. A & B matches an actual A and an actual B provided they are not ordered in the simulation
(i.e. occur in parallel).

3. A 1 B matches an actual A or an actual B.

4. when A then B before C matches A followed by a B, provided no C occurred before B.
This construct is extremely useful to specify both constraints and mappings, as illustrated in
section 5.7 and 5.8.

For example, the pattern corresponding to graph (9) appears in the following example. This
pat tern will
which must
same D.

match any part of a simulation where an A occurs first, followed by both B and C,
themselves occur in parallel; these actual events B and C must then be followed by the

. . .
nodes

A : . . . ;
B : . . . ;
c : . . . ;
D : . . . ;

pattern
A -> (B & C) -> D;

end ;

5.6 Matching event patterns

An event pattern matches a partially ordered set of actual events if :
1. there is a replacement of pattern variables for values under which each of its template instances

matches one of the actual events. Each template is thus associated with an actual event. If
a pattern variable occurs several times in a pattern all its occurrences must be bound to the
same value.

2. the ordering of templates is the same as the ordering of associated actual events.

3. the pattern matches minimal intervals in the simulation (stingy matching).

18

The semantics of pattern matching adopted here is called stingy matching. This means, infor-
mally, that a pattern, say A -> B -> C, matches a set of actual events Al, B1 and Cr in a simulation,
if (1) the actual events have the same ordering as the templates A, B and C in the pattern, and (2)
the actual events occur in a time interval [Tl,T2] (Tl being the greatest lower bound of the actual
events timestamp’s lowerbounds, and T2 the least upper bound), and no other match of the pattern
occurs in a lesser time interval ([U 1, U2], with U 1 > Tl and U2 < T2. If several matches occur in
the same time interval, they are all reported as independent occurrences of the same pattern.

Figure 10 shows all occurrences of the pattern A -> B -> C in a simulation that has two
instances of event templates A, B and C. The pattern occurrences shown in solid lines satisfy the
stingy semantics. In the outlined pattern occurrences, although the actual events have the same
ordering as the pattern templates, the smaller interval requirement of the stingy semantics is not
satisfied. This semantics is admittedly restrictive, and other pattern matching semantics cnl~ltl be
adopted.

5.7 A CPU instruction level constraint

Constraints on simulations are also expressed using patterns. This provides a facility for specifying,
in an entity interface, properties that must be satisfied by any architecture for that entity. The
CPU constraint discussed in section 2.1, may be rewritten using template names as follows :

declare
?ins : InstrT ;
?din : WordT ;

nodes
IL : Instr (?ins, ?din) where ?ins.opcode = Id ;
Cl, C2, C3, C4 : elk ;
LD : Load (?ins.address, ?ins.register, ?din) ;

pattern
when IL then

LD
before (Cl -> C2 -> C3 -> C4) ;

end ;

This pattern indicates that whenever an lnstr action is executed with its ?ins parameter corre-
sponding to a load instruction (where ?ins.opcode = Id), then a Load action must occur within the
next three clock cycles. The Load action parameters must be respectively bound to (1) the address
field of the ?ins pattern variable ; (2) the register field of the ?ins pattern variable ; and (3) the ?din
parameter. The formal and informal description of the constraint match closely.

5.8 The mapping for the action Load

The mapping for action Load has been informally and graphically described in section 3.1. Here is
the text of this mapping in the pattern language.

mapping load (?addr : AddrT ;
19

?reg : Int2 ;
?data : WordT) i s

? i n s : WordT ;
nodes

Pl : Clk ;
P2 : C.State (if4) ;
P3 : IR.Load (?ins) where instF (?ins) = Id ;
P4 : Clk ;
P5 : C.State (Id) ;
P6 : AEB.Oe (?addr) where ?addr = ?ins (2..4) ;
P7 : D I B . O e (?data) ;
P8 : C . R e (‘1’) ;
P9 : Clk ;
PlO : C.State (ifl) ;
Pll : R(?reg) .Load (?data) ;
P12 : Clk ;

pattern
Pl -> (P2 & P3) -> P4

-> (~5 & P6 & P7 & P8)
-> P9 -> (PlO & Pll) -> P12 ;

end load ;

The pattern variables ?addr, ?reg, ?data are the parameters, of the mapping, and ?ins is a local
pattern variable. The templates and graph are shown in Figure 5. Templates P3 and P6 have
guards, indicating that, for template P3, the opcode field of the instruction (instF (?ins)) must have
the value Id, and that, for template P6, the address must correspond to the last three digits of the
instruction word (?addr = ?ins(2..4)).

The pattern defines the ordering relationships between the templates, that are shown graphically
in Figure 5, in a condensed form. For example, the part of the pattern Pl -> (P2 & P3) -> P4 is
equivalent to the four ordering relationships Pl -> P2, Pl -> P3, P2 -> P4, and P3 -> P4.

6 Conclusions and Continuations

We conclude that event pattern mappings, with at least the expressive power of the constructs re-
ported here, are essential to permit formal definition of the refinement relationships in hierarchical
designs of concurrent systems. We believe they are a mandatory foundation for automating consis-
tency checking of design levels of concurrent systems, design levels that may be several refinement
steps apart.

We have not investigated the application of pattern mappings to formal proof of consistency
of hierarchical designs, or to automated synthesis of a lower level specification from a higher level
one.

At present we are developing and refining the pattern language and mappings outlined in this
paper. More sophisticated pattern definition constructs are useful in the kinds of examples we
are currently experimenting with, for example, constructs for defining conditional and repetitive

20

patterns. We are also implementing the application of mappings to post-mortem comparative
validation of hierarchical designs in VAL/VHDL.

As stated previously, the full treatment of partial orderings induced by mappings is being under-
taken on the TSL-1.5 project. The application of pattern mappings as an abstraction mechanism
for computational modeling of distributed local-time systems is also being studied in the TSL-1.5
project.

References

[l] Reference Manual for the Ada Programming Language. U. S. Department of Defense, U. S.
Government Printing Office, ANSI/MIL-STD-1815A edition, January 1983.

[2] C.J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. A u s -
tralian Computer Science Communications, lO(1):56-66, February 1988.

[3] HSL-FX R fe erence manual. Nippon Telegraph Telephone, 1988.

[4] F. Mattern. Determining the Partial Order of Distributed Events. Technical Report SFB124-
28/87, University of Kaiserslautern, Federal Republic of Germany, 1987.

[5] VHDL Language Reference Manual. October ,1986. IEEE Preliminary Version 7.2.

[6] IEEE Standard VHDL Language Reference Manual. IEEE, Inc., 345 East 47th Street, New
York, NY, 10017, March 1987. IEEE Standard 1076-1987.

[7] VME bus specification manual Rev c. Signetics, Feb. 1985.

21

A The example : the 16.bit CPU

The previous sections explained the principles and use of event patterns and mappings, referring
to the CPU example. This section gives a more complete version of the example, the CPU utility
package, the CPU entity interface, and the CPU RTL component interfaces.

A.1 Data types and operations

All types and operations relative to the CPU are gathered in a package.
The bit type is an enumeration type with two literals, ‘1’ and ‘0’. The lnt2 type is an integer

whose range is 0 to 3. Types AddrT and WordT are arrays of 3 and 4 hexadecimal characters re-
spectively, representing 12-bit and 16-bit vectors. The instruction type OpCodeT is an enumeration
with four literals, Id (load), st (store), ex (execute), and id (idle). The instruction type InstrT is a
variant record : when the opcode is Id or st, the record has two fields, a register and an address ;
when the opcode is ex, the record has three fields, two registers (register1 and register2), and an
operation ; when the opcode is id, the record is empty. The type RegistersT is an array of 4 16-bit
vectors (WordT).

package cpup is
t y p e bit i s (‘O’, ‘1’) ;
type Int2 is integer range 0..3 ;
type AddrT is string (1..3) ;
type WordT is string (1..4) ;
type OpcodeT is (Id, st, ex, id) ;
type AluOpT is (andL, orL, notL, xorL) ;
function AluF (a, b : WordT ;

oP : AluOpT) return WordT ;
type InstrT (opcode : opcodeT) is record

case opcode is
when Id I st => register : Int2 ;

address : AddrT ;
when ex => register1 : Int2 ;

register2 : Int2 ;
operation : AluOpT ;

when id => null ;
end case ;

end record ;
type RegistersT is

array (Int2) of WordT ;
end cpu_p ;

A.2 State model

The behavior of the CPU depends on its past behavior. One way to take into account the CPU
past behavior is to store the relevant parts of that behavior in an internal state. In order to write
constraints on each of the CPU internal actions, it is necessary to declare the CPU internal state.

22

A special construct is required for that purpose, the state model declaration. In the CPU, the state
model is of type Registersi, that is, an array of four 16-bit vectors. Change in the state have the
same syntax as events. For example, assuming the state model declaration :

state model is bit ;

a change of the state to value ‘1’ is written State (' 1') . In the CPU, a change of state whereby
bit vector 2 takes the value “AFAO” will be written State (2) ("AFAo~~).

A.3 Instruction level specification

At the top level, the CPU is represented by its interface and its instruction set. The CPU can be
acted upon in two ways : the sequencing of its operation is controlled by a clock (elk), and it can
be fed an instruction. It can perform 4 out-actions. Re (read-enable) ; We (write-enable) ; Dout
(data output) ; and Addr (address). The CPU has also four internal actions, corresponding to each
of the four instructions the CPU can perform : Load, Store, Exec and Idle.

with CPU> ;

design CPU is
-- ports

in action Clk ;
in action Instr (instr : WordT ;

din : WordT) ;
out action Re (b : bit) ;
out action We (b : bit) ;
out action Dout (b : WordT) ;
out action Addr (a : AddrT) ;

action Load (addr : AddrT ;
reg : Int2 ;
data : WordT) ;

action Store (addr : AddrT ;
reg : Int2 ;
data : WordT) ;

action Exec (regl : Int2 ;
reg2 : Int2 ;
oP : AluOpT ;
opl, op2 : WordT ;
res : WordT) ;

action Idle ;

state model is RegistersT ;

declare
?ins : InstrT ;
?din : WordT ;

pattern
23

when Instr (?ins, ?din) where ?ins.opcode = Id then
Load (?ins.address, ?ins.register, ?din) &
State (?ins.register) (?din)

before Clk -> Clk -> Clk -> Clk ;
end ;
declare

?ins : InstrT ;
?din : WordT ;

pattern
when Instr (?ins, ?din) where ?ins.opcode = st then

Store (?ins.address, ?ins.register, State (?ins.register))
before Clk -> Clk -> Clk -> Clk ;

end ;
declare

?ins : InstrT ;
?din : WordT ;

pattern
when Instr (?ins, ?din) where ?ins.opcode = ex then

Exec (?ins.registerl, ?ins.register2,
?ins.operation,
State (?ins.registerl), State (?ins.register2),
AluF (State (?ins.registerl),

State (?ins.register2),
?ins.operation

State (?ins.register2) (AluF (State (?ins.registerl),
State (?ins.register2),
?ins.operation

before Clk -> Clk -> Clk -> Clk -> Clk ;
end ;
declare

?ins : InstrT ;
?din : WordT ;

pattern
when Instr (?ins, ?din) where ?ins.opcode = id then

Idle ;
before Clk ;

end ;
declare

?ins : InstrT ;
?din : WordT ;

pattern
when Instr (?ins, ?din) where ?ins.opcode = Id

-> Clk -> Clk then
Re ('1') &
Addr (?ins.addr) ;

before Clk ;
24

end ;
declare

?ins : InstrT ;
?din : WordT ;

pattern
when Instr (?ins, ?din) where ?ins.opcode =

-> Clk -> Clk then
We (‘1’) &
Dout (State (?ins.registerl)) &
Addr (?ins.addr) ;

before Clk ;
end ;

end CPU ;

st

Following the state model declarations, are constraints that define the behavior of the CPU.
For example, whenever an event occurs on the CPU in-action Instr, with the opcode field of its ins
parameter bound to the value Id, an internal action Load must occur within the next three clock
cycles, with its three parameters bound to the address field of the ?ins placeholder, the register
field of the ?ins placeholder, and the ?din placeholder respectively. The last constraint in the CPU
design states that, whenever an event on the in-action lnstr occurs, with the opcode field of its ?ins
parameter bound to the value st, followed by an event on the Clk in-action, followed again by a Clk
in-action, then an event on three CPU out-actions must occur before the next event on the CPU
Clk in-action : one on the action We, with its parameter bound to ‘1’) one on the action Dout,
with its parameter bound to the value of the ?ins.registerlth bit-vector of the State, and one on the
action Addr, with its parameter bound to the addr field of the ?ins pattern variable.

A.4 Register transfer level specification

Once the design specification is completed, the design is broken up in several components reflecting
the architecture of the CPU. Each component is specified using the same technique as the high level
design. The architecture also describes the flow of communication between the components. Textual
and graphical descriptions of the CPU register transfer level specification appear in section 2.2.

A.4.1 Component interfaces

The code for the architecture assumes the following components. The informal specifications given
in section 2.2, are completed by a state model and some constraints.

0 controller : The controller is a state machine. It has two in-actions, Input and Clk ; twelve
out-actions, Re (read enable), We (write enable), Roe1 (first register output enable), Roe2 (second
register output enable), Rce (register clock enable), lrce (instruction register clock enable), lrrst
(instruction register reset), Acce (accumulator clock enable), Acoe (Accumulator output enable),
Diboe (data in buffer clock enable), Doboe (data out buffer output enable), and Aeboe (address
buffer output enable). The controller state model is an enumeration type with eight literals : four
instruction-fetch literals (ifl, if2, if3, and if4), two execute (exl and ex2), one load literal (Id), and
one store literal (St). The controller sequences and promotes in-actions in other CPU components.
We describe on of the constraints on the CPU behavior. The constraint expresses that, whenever

25

there is an event on the Clk action, with the State equal
and there must be an event on out-action Irrst, with its
event on the action Clk.

to if2, then the State must change to if3
parameter bound to ‘1’) before the next

design CONTROLLER is
in action Input (opcd : OpcodeT ;

rl : Int2 ;
r2 : Int2) ;

in action Clk ;
out action Re (b : bit) ;
out action We (b : bit) ;
out action Roe1 (r : Int2 ;

b : bit) ;
out action Roe2 (r : Int2 ;

b : bit) ;
out action Rce (r : Int2 ;

b : bit) ;
out action Irce (b : bit) ;
out action Irrst (b : bit) ;
out action Acce (b : bit) ;
out action Acoe (b : bit) ;
out action Diboe (b : bit) ;
out action Doboe (b : bit) ;
out action Aeboe (b : bit) ;
state model is (ifl, if2, if3, if4, exl, ex2, Id, st) ;
pattern

when Clk where State = if2 then
Irrst ('1') ;
State (if3) ;

before Clk ;
end ;

end CONTROLLER ;

l registers. The register component has four in-actions, Din (input data), Ce (clock enable),
Oe (output enable), and Clk (clock) ; one out-action, Dout (output data) ; and two internal actions,
L o a d and E n . The state model is of type WordT. If the clock is enabled (i.e. the value of the
parameter of the last action Ce was true), the register loads the value of its data input on each
occurrence of the Clk action. When the register output is enabled (i.e. the value of the para,meter
of the last action Oe was ‘l’), the register outputs its internal state (value of the parameter of the
last occurrence of the internal action Load) through its out-action Dout, and issues an En action
with its parameter bound to the value of register state.

design REGISTER is
in action Oe (b : bit) ;
in action Ce (b : bit) ;
in action Clk ;
in action Din (value : WordT) ;

26

out action Dout (value : WordT) ;
action En (s : WordT) ;
action Load (s : WordT) ;

state model is WordT ;
declare

?data : WordT ;
pattern

when (Ce ('l')& Din (?data)) -> Clk then
Load (?data) &
State (?data) ;

before Clk ;
end ;
pattern

when Oe ('1') then
En (State) &
Dout (State)

before Clk ;
end ;

end REGISTER ;

l registers with two outputs. The two-output register component has five in-actions, Din
(input data), C e c oc enable), Oel (first output enable), Oe2 (second output enable), and C l k(1 k
(clock) ; two out-actions, Doutl (output data), and Dout2 (output data) ; and three internal
actions, Load, En1 and En2. The behavior of the two-output register is similar to the behavior of
the register, with input Oel and Oe2 controlling Doutl and Dout2 respectively.

design TWO-OUTPUT-REGISTER is
in action Oel (b : bit) ;
in action Oe2 (b : bit) ;
in action Ce (b : bit) ;
in action Clk ;
in action Din (value : WordT) ;
out action Doutl (value : WordT) ;
out action Dout2 (value : WordT) ;

action Load (s : WordT) ;
action En1 (w : WordT) ;
action En2 (w : WordT) ;

state model is WordT ;
declare

?data : WordT ;
pattern

when (Ce ('I')& Din (?data)) -> Clk
Load (?data) &
State (?data) ;

before Clk ;
end ;
pattern

when Oel ('1') then
En1 (State) &

27

then

Outpl (State)
before Clk ;

pattern
when Oe2 ('1') then

En2 (State) &
Outp2 (State)

before Clk ;
end ;

end TWO OUTPUT REGISTER ;- -

l logic unit. The logic unit component has three in-actions, the two operands Opl and 0~2,
and the operation selection Op ; and one out-action, Dout. The logic unit does not have a state
model. The logic unit can perform one of four operations (and, or, not, xor) on the two operands,
depending on the operation selection input.

design LOGIC-UNIT is
in action Opl (x : WordT) ;
in action Op2 (x : WordT) ;
in action Op (o : AluOpT) ;
out action Dout (x : WordT) ;
declare

?datal, ?data2 : WordT ;
?operation : AluOpT ;

pattern
when Opl (?datal) 6; Op2 (?data) & Op (?operation) then

Dout (AluF (?datal, ?data2, ?operation)
end when ;

end ;
end LOGIC UNIT ;

l buffers. The buffer component has two in-actions, Oe (output enable) and Din (data in) ; one
out-action Dout (data out) ; and one internal action En. The buffer does not have a state model.
When the buffer output is enabled (i.e. the value of the parameter of the last action Oe was true),
the buffer outputs its input value (i.e. the value of the parameter of the last, occIIrrmv of the
in-action Din).

design BUFFER16 is
in action Oe (b : bit) ;
in action Din (w : WordT) ;
out action Dout (w : WordT) ;

action En (w : WordT) ;
declare

?data : WordT ;
pattern

when Din (?data) -> Oe ('1') then
Dout (?data) &
En (?data)

28

end when ;
end ;

end BUFFER16 ;

design BUFFER12 is
in action Oe (b : bit) ;
in action Inp (a : AddrT) ;
out action Outp (a : AddrT) ;

action En (a : AddrT) ;
declare

?data : WordT ;
pattern

when Din (?data) -> Oe ('1') then
Dout (?data) &
En (?data)

end when ;
end ;

end BUFFER12 ;

29

