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Abstract

A systematic general rounding procedure is proposed for 
oating-point arithmetic op-

erations. This procedure consists of 2 steps: constructing a rounding table and selecting

a prediction scheme. Optimization guidelines are given in each step to allow hardware to

be minimized. This procedure-based rounding method has the additional advantage that

veri�cation and generalization are straightforward. Constructing a rounding table involves

examining the range of the result and the shifting possibilities during the normalization step

in an operation while selecting a prediction scheme depends on detail of the hardware model

used. Two rounding hardware models are described. The �rst is shown to be identical to

that reported by Santoro et al. [1]. The second is more powerful, providing solutions where

the �rst fails. Applying this approach to the IEEE rounding modes for high-speed conven-

tional binary multipliers reveals that round to in�nity is more di�cult to implement than

the round to nearest mode; more adders are potentially needed. Round to zero requires the

least amount of hardware.

A generalization of this procedure to redundant binary multipliers reveals two major

advantages over conventional binary multipliers. First, the computation of the sticky bit

consumes considerably less hardware. Second, implementing round to positive and minus

in�nity modes does not require the examination of the sticky bit, removing a possible worst-

case path.

A generalization of this approach to addition produces a similar solution to that reported

by Quach and Flynn [2]. Although generalizable to other kinds of rounding as well as

other arithmetic operations, we only treat the case of IEEE rounding for addition and

multiplication; IEEE rounding because it is the current standard on rounding, addition and

multiplication because they are the most frequently used arithmetic operations in a typical

scienti�c computation.
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1 Introduction

Not all real numbers are representable in a computer because of the limited precision in

hardware. Rounding is a many-to-one mapping that maps an unrepresentable number into a

representable one. This mapping process can happen during input/output of the data [3, 4]

and during computation. This paper deals with the latter. In particular, we consider the

mapping that was speci�ed by the IEEE committee [5] and for addition and multiplication

only. Rounding in the other operations is not as critical an issue because of their typically

much larger latencies. But the approach to be proposed can be used in these operations as

well.

In the IEEE 
oating-point (FP) format, a (real) number is represented as (�1)k�M �

2e+B where k is the sign, M the signi�cand, e the exponent, and B the bias. Bias is

a constant o�set needed for representing negative exponents. For a normalized number,

M 2 [1; 2) (i.e., 1 � M < 2). The number of bits N in the signi�cand depends on the

precision of the number. For double-precision N = 53, and for single-precision N = 24.1

In high-speed multipliers, multiplication is typically carried out by �rst generating many

partial products (PP) in parallel, followed by a reduction step reducing these PP to two

terms, sum (S) and carry (C) [6, 7]. The �nal summation is then carried out by a carry

propagate adder (CPA). The signi�cand of the product has 2N bits, requiring a rounding

operation to map it into an N -bit number and possibly a right shift for normalization. In

some high-speed multipliers, the operands are �rst recoded into a redundant binary form to

facilitate the PP reduction step. This type of multipliers, hereafter called redundant binary

multipliers (RBM), has been shown to be an interesting, viable alternative to conventional

binary multipliers (CBM) [8, 9].

The signi�cand in a sum of two numbers may have more than N bits, again requiring

a rounding and possibly a normalization operations.2 Normalization in this case is more

complicated. One has the possibilities of a right shift, no shift, and a left shift. The sum

has more than N bits when the smaller operand has to be right shifted to align with the

larger one before addition or subtraction. For subtraction, the operand to be subtracted

also needs to be 2's complemented. The �nal signi�cand addition step is then carried out

by a CPA. Note that in addition the signi�cands of the two operands play the roles of S

and C in multiplication. From rounding's point of view, however, there is little di�erence

between addition and multiplication other than the ranges of S and C.

For performance reasons rounding is preferably combined with the CPA step and done

in hardware because it is required in each operation. Past rounding works, on multiplication

by Santoro et al. [1] and on addition by Quach and Flynn [2], are rather ad hoc, incomplete,

and at too low a level, making their veri�cation and generalization di�cult and systematic

exploration of the solution space impossible. In this paper, we present a systematic rounding

procedure and give optimization guidelines to minimize the hardware used. Our procedure-

based rounding approach has the additional advantage that veri�cation and generalization

to other types of multipliers (e.g., RBM) are straightforward. Though applicable to other

1Including the hidden one bit.
2In the case of subtraction, the signi�cand may have less than N bits, but we consider trailing zeroes as

part of the signi�cand.
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more general forms of rounding, we shall restrict our treatment to the IEEE ones.

In Section 2 we review and discuss the issues surrounding the IEEE rounding modes.

In Section 3 we �rst illustrate our approach on CBM and then, in Section 4, generalize it

to RBM. RBM uses a special form of signed-digit representation [10, 11], called redundant

binary representation (RBR). We also review RBR in this section. In Section 5 we treat

rounding in addition. Section 6 is a summary.

1.1 Notation

For notational simplicity, we de�ne our binary point to be at the (N � 1)th bit of S and

C. The (N + 1)-bit integer portions are denoted SI and CI and the (N � 1)-bit fraction

portions SF and CF (Figure 1). Our numbering convention always starts with 1. Also,

R = S + C

RI = SI + CI

and

RF = SF + CF

where SI ; CI , and RI 2 [2N�1; 2N+1); SF and CF 2 [0; 1); and RF 2 [0; 2) for multiplication

and 2 [0; 1] for addition. This is because in addition, either SF or CF is equal to zero. W

denotes the logical OR of all the bits in RF below the most signi�cant bit (MSB). Q the

carry-out bit of an adder, and X:Y the Y bit of X . The least signi�cant bit (LSB) of RI ,

for example, will be denoted RI :LSB.

K

lsbmsb

: n+1 bitsKh : n-1 bitsK l

Rounding Point

Figure 1: Explanation of Notation. K represents S, C, or R.

2 IEEE Rounding Modes

Four rounding modes are dictated by the IEEE 754 standard [5]: Round to nearest

(RN), round to positive in�nity (RP), round to minus in�nity (RM), and round to zero

(RZ). Implementationwise, these 4 rounding modes can be reduced to 3: round up (RU)
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Table 1: Implementation of IEEE Rounding Modes

IEEE Positive Number Negative Number

Rounding Modes Treated As

RN RU with �x up

RP RI RZ

RM RZ RI

RZ RZ

with a �x up, round to in�nity (RI), and RZ, as shown in Table 1. Mathematically, for RU,

x =

(
dxe if x� bxc � 0:5

bxc otherwise,

x = dxe for RI, and x = bxc for RZ, where dxe and bxc are the ceiling and 
oor functions

[12], respectively. That RN can be implemented as RU with a �x up can be seen in Table 2.

In the table, L is the LSB of the result, G the guard bit, and s the sticky bit. G is the bit

of one-bit less signi�cance than the L bit while s is the logical OR of all bits beyond the G

bit. The x's in the table are the don0t care terms. The entries in the table are the values

of the rounding bit to be added to the result at the L bit position. From the table, we see

that RN and RU di�er in only one case, which can be �xed up by setting L = 0 without

generating a carry propagation.

Table 2: Comparison of Round to Nearest and Round Up

L G s RN RU

x 0 0 0 0

x 0 1 0 0

0 1 0 0 1

0 1 1 1 1

1 1 0 1 1

1 1 1 1 1

For IEEE rounding, we have to perform the following:

1. Compute R (and therefore C and S) to a precision of 2N bits. For addition, this

step is simpler because the non-shifted signi�cand has a precision of only N bits.

Consequently, the precision ofR depends on the number of bits in the right shift during

the alignment process and on the operation called for (i.e., addition or subtraction).

2. Normalize R if necessary by shifting it appropriately.
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3. Compute the L, G, and s bit. The L bit corresponds to the N th bit of R, and the G

bit to the (N � 1)th bit of R. The s bit requires ORing of the N � 2 lower-order bits

of R.

4. Denote the higher-order N bits of R as RH . Based on the rounding mode and the L,

G, and s bits, add a rounding \1" to RH when necessary.

5. If RH :Q = 1 as a result of rounding, right shift RH by one bit, and adjust the exponent

accordingly. RH is the signi�cand of the �nal result.

Note that RH in this case is di�erent from RI de�ned earlier. RH denotes the higher-

order N bits of R after the normalization step. Several implementational di�culties asso-

ciated with IEEE rounding can now be identi�ed. First, S, C, and R need to be computed

to a precision of 2N bits, requiring more hardware. Second, correct rounding in certain

modes depends on the s bit, requiring more time because R must �rst be computed and

then rounded using an extra addition step.

Rounding was not an issue before the establishment of the IEEE standard; few processors

support RP and RM, and RN was nonexistent. Rather, most processors only implement

RU. Even in this case, RU was not truly RU in the sense discussed above. In some high-

speed multipliers, for example, the product was only computed to a precision of N plus

a couple extra bits. RU is then approximated by adding a rounding \1" at the N � 1 bit

position | the G bit position | during the CPA step. Rounding in this case requires no

extra addition step.

A natural question is whether we can do away with the extra addition step in IEEE

rounding. In the following section, we show that such a rounding scheme is indeed possible

and shall establish a procedure for doing so. But for the moment, let's examine the above

rounding procedure again and consider the implications. To eliminate the rounding addition

step in step 5, it must be combined with step 1, where R is computed. Because the rounding

\1" (r(1)) is added to R at the N bit position, we must therefore compute RI and RF

separately, breaking R into two parts. Further, the computation of RF may propagate an

over
ow \1" (o(1)) into RI . This means that we have to compute RI , RI + r(1)=o(1), and

RI + r(1) + o(1) in parallel and select the correct one. Finally, because rounding is now

performed before normalization, an r(1) becomes an r(2) when a right shift is needed during

normalization; i.e., we now have to compute RI +r(2), instead of RI+1, for rounding. The

observation here is that the possible outcomes are small, making possible the rounding

scheme to be proposed below.

3 Rounding for Binary Parallel Multipliers

The rounding procedure has 2 steps: constructing a rounding table and selecting a valid

prediction scheme. Using RU as an example, we �rst explain how to construct this rounding

table and then describe a simple rounding hardware model before outlining methods to select

a valid prediction scheme. Finally, we present an improved model, which, unlike the simple

one, has the advantage that it provides a solution for all the IEEE rounding modes.
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3.1 Round Up

3.1.1 Constructing a Rounding Table

The number of columns in the table corresponds to the shifting possibilities in the normal-

ization process. For multiplication the result may require a right shift to normalize, giving

2 columns: no right shift (NRS) and right shift (RS). The number of rows in the table, on

the other hand, depends on both the rounding modes and the magnitude of RF . For RU,

RF 2 [0; 2) and four rows, called regions, are required. Each entry in the table corresponds

to the correction that must be performed to RI to obtain the �nal result, rounded properly.

A rounding table for the RU mode is given in Table 3.

Table 3: Rounding Table for Round Up in Binary Multipliers

Region Range of RF Normalization Shifts

No Right Shift Right Shift

1 0 � RF < 0:5 RI RI :LSB = 0: RI + f0; 1g

RI :LSB = 1: RI + f1; 2g
2 0:5 � RF < 1 RI + 1 RI :LSB = 0: RI + f0; 1g

RI :LSB = 1: RI + f1; 2g
3 1 � RF < 1:5 RI + 1 RI :LSB = 0: RI + f2; 3g

RI :LSB = 1: RI + f1; 2g
4 1:5 � RF < 2 RI + 2 RI :LSB = 0: RI + f2; 3g

RI :LSB = 1: RI + f1; 2g

We �rst consider the entries in Region 1. When RI is normalized, no adjustment of the

result is needed because RF < 0:5. When RI needs an RS to be normalized, we consider

two cases.

� When RI :LSB = 0: after shifting, RF 2 [0; 0:25), and the result needs no correction.

However, there is an optimization here. Because RI :LSB = 0 and it is to be discarded

after the shift, adding an equivalent \1" (e(1)) to RI would not change the result.

Thus, the possible correction digits are f0,1g, producing the RI + f0; 1g entry in the

table.

� When RI :LSB = 1: after right shifting, the e�ective RF 2 [0:5; 0:75). Either an r(2)

or an e(1) can be added to RI for correction; therefore, we have the RI + f1; 2g entry.

To obtain Region 2, because RF 2 [0:5; 1), an r(1) needs to be added to RI when the

result does not need an RS. The RS entries are obtained using a similar argument as that

for Region 1. To obtain Region 3, consider the NRS case. Because RF 2 [1; 1:5), an o(1)

needs to be added to RI , obtaining the entry RI + 1. In the case of RI needing an RS, we

again consider two cases. When RI :LSB = 0, the e�ective RF 2 [0:5; 0:75); hence, we can
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add either an r(2) or an e(3) to RI . When RI :LSB = 1, we can add either an o(1) or an

e(2) as indicated in the table since RF 2 [1; 1:25).

To obtain Region 4, we need to add both an r(1) and an o(1) to RI in the case of NRS.

The RS entries are obtained as follows. After the RS, RF 2 [0:75; 1). When RI :LSB = 0,

either an r(2) or an e(3) can be added to RI , obtaining the RI + f2; 3g entry. When

RI :LSB = 1, RF e�ective 2 [1:25; 1:5); hence, either an o(1) or an e(2) can be added,

hence yielding the RI + f1; 2g entry in the table. An intuitive argument might have yielded

an RI + f3; 4g entry because both an r(2) and an o(1) need to be added to RI . But such

an argument is incorrect.

Table 3 indicates at least three possible outcomes: RI , RI + 1, and RI + 2. They must

be computed in parallel and the correct one selected if speed is to be minimized as pointed

out earlier. A straightforward way to accomplish this is to use three adders. In any events,

because we are computing multiple outcomes in parallel, which MSB to observe for the

need of a right shift is an interesting question. Preserving event sequentiality is the issue

here. The over
ow \1" is added to RI before RS, and rounding comes later; hence, RF :Q

determines the correct MSB. In Regions 1 and 2, for example, RF :Q = 0 because RF < 1;

the MSB of the adder computing RI should be examined. In Regions 3 and 4, because

RF :Q = 1, it is the MSB of the adder computing RI + 1.

Methods to determine the minimum number of regions are also of interest because it

may e�ect the number of bits that we have to examine for prediction (as explained below).

Minimum number of regions is ensured by starting o� with as many regions as needed

and then coalescing them whenever possible. The necessity of a region is determined by

examining events that can happen in the range of RF and may e�ect RI . In this case,

rounding, over
ow, and RS are the events of signi�cance. Over
ow here means that the

value of RF exceeds 1.

Informally speaking, the goal of rounding is to implement the rounding table with as

little hardware as possible. Optimization is performed through judicious selection of the

correction digits, the optimization targets being the number of adders and the complexity

of the selection logic selecting the �nal result. Reducing the former saves hardware, and

reducing the latter improves speed. Reducing the former may have an adverse e�ects on

the latter; however, such an event is unlikely for current mainstream ECL and CMOS

technologies. High-speed parallel adders are area-intensive, and low-speed adders are time-

consuming. Besides this area and/or time savings, a smaller number of adders also means

less power consumption in ECL and less capacitive loading in CMOS. Both have a positive

e�ect on speed. Our �rst goal is therefore to reduce the number of adders.

The straightforward approach mentioned above is unattractive because of the number

of adders required. To reduce the number of adder, one obvious way is to reduce the

number of possible outcomes in a rounding table. But this is not possible because the

number of possible outcomes depends mainly on the rounding mode. Seemingly a hopeless

situation, but there is a way. High-speed adders generally employ some form of carry-

lookahead network for carry propagation. Prime examples of this type of adders are carry-

select [13, 14], carry-lookahead, and conditional sum [15]. For these adders, only the carry-

lookahead network needs to be duplicated for simultaneous computation of RI and RI + 1
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(denoted here asRI+(0; 1)).
3) Hence, adders computing adjacent results can be combined to

produce a so-called compound adder, reducing the number of adders needed to implement

a rounding table. This method is especially e�ective when coupled with the following

observations on Table 3.

1. To know exactly which columns (i.e., the RS or the NRS columns) RI is in requires a

full 2N -bit addition because we have to compute R.

2. To know exactly which rows RF is in requires an (N�1)-bit addition because we have

to compute RF . However,

3. To predict approximately which rowsRF is in requires only an examination of SF :MSB

and CF :MSB. This is illustrated in Table 4. When both MSBs are 0, we know that

RF must be less than 1, corresponding to Regions 1 and 2 (Group 1). Similarly when

one of the MSBs is 1, RF must be in the range of [0:5; 1:5), corresponding to Regions

2 or 3 (Group 2). Finally, when both MSBs are 1, RF must be in the range of [1; 2),

or in Regions 3 or 4 (Group 3).

Table 4: Predicting the Regions with the MSBs of CF and SF

SF :MSB CF :MSB Regions Group

0 0 1 or 2 1

0 1 2 or 3 2

1 0 2 or 3 2

1 1 3 or 4 3

Hence, rather than having to implement the whole rounding table, prediction allows us

to only implement a group. Within a group, the outcomes are computed by a compound

adder, and we select the correction digits such that all outcomes in the group are computable

by this adder. Di�erent groups may compute outcomes that are numerically di�erent. This

is resolved by a predictor, which predictively adds a �xed constant (usually the di�erence)

to SI and CI before sending them to the compound adder. A hardware model for rounding

emerges naturally at this point. We digress to present it because selection of a prediction

scheme depends on its detail.

3.1.2 A Simple Hardware Model

Figure 2 shows a simple hardware model for rounding. In this model, we have an (N+1)-bit

compound adder computing CI + SI + p+ (0; 1) where p 2 f0; 1g and is determined by the

predictor based on a certain prediction scheme (to be established later), a row of half adder

that produces an empty slot for later insertion of p at the compound adder, a selector that

3In fact, simultaneous computation of RI + (0; 1; 2) is possible as we shall see shortly.
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controls the �nal selection multiplexors selecting among the possible outcomes, an RF -adder

that computes RF , and some logic for determining the L, G, and s bits. The selector also

has to perform the implicit task of shifting the selected result as needed. The �nal selection

multiplexors may get unwieldy if the number of results is large, necessitating a two-step

multiplexing scheme at this time. The following discussion assumes a single-stage selection

scheme.

Selector

Predictor

S

C

lsb, gb, sb

Rh Rl

n+1-bit half adders

n+1-bit compound adder

Final selection mux

R  _Adderl

Figure 2: A Hardware Model for IEEE Rounding

In general, the selector needs to examine the appropriate RI :MSB bit, the RI :LSB bit,

the RF :Q bit, the RF :MSB bit, and the W bit to select the correct result. To know exactly

the region RI is in, we need the RF :Q and RF :MSB bits; and to know exactly the column

RI is in, we need the RF :Q and RI :MSB bits. This step is not optimizable because of

our inability to predict the future. The RI :LSB bit allows selection of the correct result

in the RS column. This step is optimizable in that it may be simpli�ed, or completely

avoided, through judicious selection of a prediction scheme and the correction digits. The

need to examine the W bit depends on the sizes of the regions in the rounding table and is

not always needed. But when it is needed, it is not optimizable. The size of the region in

Rounding Table 3, for example, is 0.5. The smaller the region, the more bits one potentially

has to examine. A single-point region requires an examination of all bits.

For RU, only the former 4 bits need to be examined. Normally, these bits are known at

approximately the same time with the exception of the RI :LSB bit, which is known much

sooner. A circuit-level optimization is possible here. The paths computing the RI :MSB bit

in the RI -adder and the RF :Q and RF :MSB bits in the RF -adder can be selectively sped

up for early determination of the column and region. After the correct result is selected,

the L, G, and s bits can then be determined. These bits are needed for the �x-up step in
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RN.

3.1.3 Selecting a Valid Prediction Scheme

The number of prediction schemes available to the predictor is an exponential function of

the number of regions in a rounding table. Not all of these prediction schemes are valid,

however, because selection of the correction digits under one has to satisfy the requirement

that outcomes in all groups be computable by the compound adder. Investigating possible

prediction schemes is an important issue because they a�ect the complexity of the selector

logic. The next goal of the design should be to reduce the complexity of this selector logic,

the general guideline being the avoidance of the need to examine the RI :LSB bit. The

complexity of the predictor logic, on the other hand, depends on the prediction scheme and

is relatively insigni�cant because of the small number of literals involved. But a simple

predictor logic | when happens to result | never hurts.

Using Table 3 as an example, because there are 4 regions, we have a total of 16 possible

prediction schemes, but only one is valid using the simple hardware model, as shown in the

prediction table (Table 5). In this particular case, the prediction scheme, which corresponds

to a simple ORing of CF :MSB and SF :MSB, can be easily guessed from Table 4 because

a prediction \1" needs to be added whenever we know that we may be in Region 3. In

general, an exhaustive search may be needed before a suitable predictation scheme can be

found. It is interesting to note that this prediction scheme is unique for the simple model

and corresponds to Algorithm 3 reported in [1].

Table 5: Prediction Table for Simple Model

SF :MSB CF :MSB Regions Predictor Action

0 0 1 or 2 RI

0 1 2 or 3 RI + 1

1 0 2 or 3 RI + 1

1 1 3 or 4 RI + 1

After a prediction scheme is chosen, we can now select the correction digits for Table 3.

Based on the prediction table, the allowable outcomes in Group 1 is RI + (0; 1); hence, the

digit \2" in Regions 1 and 2 must be discarded. Similarly, the digit \0" in Region 2 and the

digit \3" in Region 3 must be discarded because the allowed outcomes in this group are now

RI+(1; 2) as a result of prediction. The digit \3" in Region 4 also needs to be discarded for

the same reason, leaving only 3 pairs of selectable correction digits in the table. Table 6 lists

all 8 possible digit selections for the simple model. In the table, only the RS columns are

shown; all NRS columns are the same as those in Table 3. To simplify notation, the actions

corresponding to the cases of RI :LSB = 0 and RI :LSB = 1 are denoted as RI + c1=c2

where c1 and c2 are the selected correction digits. Digit selection scheme 8 does not require

examination of RI :LSB. Apparently, there is an advantage in using this scheme over the
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others.

Table 6: Possible Digit Selections for Round Up in Simple Model

Range of RF 1 2 3 4 5 6 7 8

0 � RF < 0:5 RI + 0=1 RI + 0=1 RI + 0=1 RI + 0=1 RI + 1 RI + 1 RI + 1 RI + 1

0:5 � RF < 1 RI + 1 RI + 1 RI + 1 RI + 1 RI + 1 RI + 1 RI + 1 RI + 1

1 � RF < 1:5 RI + 2=1 RI + 2=1 RI + 2 RI + 2 RI + 2=1 RI + 2=1 RI + 2 RI + 2

1:5 � RF < 2 RI + 2=1 RI + 1 RI + 2=1 RI + 1 RI + 2=1 RI + 1 RI + 2=1 RI + 2

3.1.4 Improving the Simple Model

Other solutions are possible if we relax the constraint that we can only compute RI +(0; 1)

in the compound adder as in the simple model. An improved rounding hardware model is

given in Figure 3. This model di�ers from the simple one in two ways:

� The compound adder is reduced by 1 bit. The inputs to the adder come from the

most signi�cant N bits of SI and CI , giving it the ability to compute RI + (0; 1; 2).

The outcome RI + 1 is accounted for as follows. When RI :LSB = 0, it is set to 1,

and RI is selected. When RI :LSB = 1, it is set to 0, and RI + 2 is selected. In either

case no carry propagation is generated.

Selector

PredictorFA

C

S

lsb, gb, sb

Rh Rl

R    Adderl_

hR  .lsb

n-bit half adders

n-bit compound adder

Final selection muxes

Figure 3: An Improved Hardware Model for IEEE Rounding
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Note that if one views the last element in the half adder array in the simple model as

an adder of length n (n = 1 in this case) and de�ne m as the length of the compound

adder, then we can compute RI + (0; � � � ; 2n) as long as n + m = N + 1. When

viewed in this light, another optimization reveals itself. A prediction \1" controlled

by a predictor can be added to the n-bit adder (n-adder). This option may seem

redundant for some rounding modes like RU. For others (e.g., RI), it is absolutely

necessary as we shall see.

� Additional logic must be used to generate RI :LSB. n is a major factor in determining

the complexity of this RI :LSB logic. For this reason, a small n is to be preferred. If

desired, the �x-up logic for RN mentioned in Section 2 can be incorporated into this

RI :LSB logic.

The advantage of this improved model is that it allows more possible outcomes in a

group, resulting in a greater degree of freedom in selecting a prediction scheme and the

correction digits. More important, it often provides solutions to a rounding table where the

simple model fails.

With this improved model, 8 prediction schemes are possible for Table 3, as listed

in Table 7. Some of these prediction schemes are more interesting than others. Prediction

schemes 3 and 5, for example, use CF :MSB and SF :MSB as the predictor while Prediction

scheme 8 uses no prediction at all. Other prediction schemes may yield a simpler selector

logic, however. Based on this prediction table, it can be easily shown that there are a total

of 576 ways to select the correction digits as opposed to 8 for the previous simple model.

Table 7: Possible Prediction Schemes for Round Up for the Improved Model

SF :MSB CF :MSB 1 2 3 4 5 6 7 8

0 0 RI RI RI RI RI RI RI RI

0 1 RI + 1 RI + 1 RI + 1 RI + 1 RI RI RI RI

1 0 RI + 1 RI + 1 RI RI RI + 1 RI + 1 RI RI

1 1 RI + 1 RI RI + 1 RI RI + 1 RI RI + 1 RI

3.1.5 Summary of Procedure

We summarize our procedure as follows.

1. For a particular rounding mode, identify the shifting possibilities in the normalization

step. Determine the ranges of RI and RF . This step may require a careful analysis

of the algorithm.

2. Determine the maximum number of regions needed by examining events that can

happen in the range of RF and can e�ect RI . Examples of such events are shifts

during the normalization step and rounding. Construct the rounding table, coalescing

the regions whenever possible.

11



3. Determine the number of bits in RF that need to be examined and construct a pre-

diction table.

4. Based on the rounding table, develop a rounding hardware model.

5. Using this model and the rounding and prediction tables, �nd all optimal solutions.

An optimal solution is one that uses the minimum number of adders and yields the

simplest selector logic. In general, more than one optimal solutions are possible.

Lesser constraints, such as the complexity of the predictor logic, can be used to further

discriminate these solutions.

3.2 Round to In�nity

To derive a rounding scheme for RI, we use the procedure developed earlier in Section 3.1.5.

In step 1 the range of RI is the same as that for RU, requiring 2 columns: NRS and RS.

In step 2 the range of RF is again the same as that for RU, but the rounding threshold is

now di�erent. For RU the rounding threshold is 0.5, and for RI it is 0. The range of RF

must be divided into three: RF = 0, RF 2 (0; 1], and RF 2 (1; 2). A rounding table for RI

is given in Table 8. The considerations for obtaining the entries in the table are similar to

those for RU. Table 9 is the prediction table for this rounding mode.

Table 8: Rounding Table for Round to In�nity in Binary Multipliers

Region Range of RF Normalization Shifts

No Right Shift Right Shift

1 RF = 0 RI RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

2 0 < RF � 1 RI + 1 RI :LSB = 0: RI + f2; 3g
RI :LSB = 1: RI + f1; 2g

3 1 < RF < 2 RI + 2 RI :LSB = 0: RI + f2; 3g
RI :LSB = 1: RI + f3; 4g

Several observations can be made in relation to Table 8. First, RF = 0 has it own region.

This has a speed implication because the selector logic now has to await full computation

of RF and determination of the G and s bits before being able to select the �nal result.

Second, in Regions 2 and 3 corresponding to Group 2 (Table 9), there are a total of three

possible outcomes: RI + 1, RI + 2, and RI + 3. Thus, there is no solution using the simple

model. Third, there are a total of 4 possible outcomes in the table; therefore, even with

the improved model, prediction is needed. Since we can only compute up to RI + 2 in the

compound adder, we need to add a prediction \1" to the n-adder as soon as we know that

we may be in Region 3. This corresponds to the condition of at least one of the MSBs of SF
or CF being true (Table 9). This prediction scheme is unique and corresponds to a simple

ORing operation. We have now completed steps 3 and 4 of our procedure.
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For step 5, there are a total of 16 di�erent solutions because of the freedom in selecting

the correction digits.

Table 9: Prediction Table for the Round to In�nity Mode

SF :MSB CF :MSB Regions Group

0 0 1 or 2 1

0 1 2 or 3 2

1 0 2 or 3 2

1 1 3 3

The number of possible outcomes, their spread4, and the sizes of the regions in a rounding

table are often an indicator of the degree of di�culty in implementing a certain rounding

mode. In this sense, RI is harder to implement than RN.

3.3 Round to Zero

A rounding table for RZ is shown in Table 10. Being a simple truncation, its table is the

simplest among the rounding modes. Only two regions are required. Both hardware models

have solutions, but the improved one has more because of the larger degree of freedom in

selecting the correction digits. Not much more can be said about this rounding table other

than the fact that if we select the digit \0" in Region 0 and the digit "1" in Region 1, then

the selector does not have to examine the RI :MSB. It only needs to right shift the result

when RI :MSB = 1.

Table 10: Rounding Table for Round to Zero in Binary Multipliers

Region Range of RF Normalization Shifts

No Right Shift Right Shift

1 0 � RF < 1 RI RI + f0; 1g

2 1 � RF < 2 RI + 1 RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

4Spread is de�ned here as the absolute di�erence between the maximum and the minimum outcomes. In

Table 8, for example, the minimum is RI and the maximum is RI +3. The spread is therefore equal to 3 in

this case.
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3.4 Timing and Hardware Expenditure for IEEE Rounding in Binary

Multipliers

It is informative to examine the sequence of events and the critical paths in the various

rounding modes discussed above. We assume use of the improved model and start at the

point when S and C arrive from the PP reduction hardware. The �rst three events are the

same for all rounding modes. They are:

1. The predictor determines p. For some prediction schemes, this step may not be needed.

In parallel, the RF -adder computes RF .

2. The half adder array computes SI + CI + p after the determination of the prediction

bit p.

3. The compound adder computes CI + SI + p+ (0; 1; 2).

The subsequent events will depend on the rounding modes. For RU, the events are:

4. Because the RF :Q and RF :MSB bits have been selectively sped up in the RF -adder,

these bits arrive sooner, waiting for the RI :MSB to select the �nal result.

5. The lower-order bits of RF become available at this time.

6. The RI :MSB bit becomes available, and the selector selects the �nal result.

7. The L, G, and s logic determines the bits, and the �x-up step begins. In parallel, the

RI :LSB logic determines the RI :LSB.

For RI, they are:

4. Because the RF :Q and RF :MSB has been selectively sped up, these bits arrive sooner.

But selection of the result cannot begin yet because Region 1 requires the full com-

putation of RF and then the W bit. Depending on the implementation detail, the W

bit may or may not be available at the same time as the RI :MSB. Hence, speeding

up the paths mentioned above may not be worthy for this rounding mode.

5. the W bit is known, and the �nal result is selected.

And for RZ, they are:

4. Because the RF :Q, RF :MSB, and RI :MSB bits have been selectively sped up, these

bits arrive sooner, and selection of the �nal result begins. The s bit and the G bits

do not have to be computed for this rounding mode.

Table 11 lists the critical paths for all the rounding modes, with CA denoting the

compound adder. In relation to the table, several observations can be made. First, for

RN, the RF :Q and RF :MSB paths in the RF -adder are not in the critical path. Since the

�nal selection multiplexors present a large capacitive load to the selector, using a two-stage

multiplexing scheme here helps because the load can be distributed between the stages and
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the RF :Q and RF :MSB bits can be used to select the multiplexors in the �rst stage. Second,

the L, G, and s bit logic represents only a small portion of the overall delay. Speeding it up

is not likely to matter a great deal. Third, the s bit is only needed for RN; RI needs the W

bit. There is a subtle di�erence between the two; the s bit is determined based on the W

bit after the selection of the �nal result. This means that the W path is more of a critical

path in RI than the s path in RN. Fourth, RI has two potential critical paths. Path 2 is

likely worse because RF has to be computed, making RI a possible overall worst-case path

in the multiplier. Finally, RZ has the fastest execution time because it is the simplest.

Table 11: Possible Critical Path in the IEEE Rounding Modes

RN RI RZ

Path 1 Path 2

Predictor Predictor RF -Adder Predictor

Half Adder Array Half Adder Array W Logic Half Adder Array

RI :MSB Path of CA RI :MSB Path of CA RI :MSB Path of CA

Selector Selector Selector

Multiplexors Multiplexors Multiplexors

L,G,s Logic

In terms of hardware expenditure, RU requires an (N � 1) bit adder for computing

RF , an additional carry-lookahead network for the compound adder, a selector, a predictor,

and some logic for the �x-up step. The latter two are relatively inexpensive because they

involve a small number of literals. The selector is only slightly more complicated logically,

but does have to drive a large number of multiplexors. Most of the hardware penalty for

IEEE rounding is in the RF -adder and in the (duplicate) carry-lookahead chain, with the

size of the latter roughly a quarter of that of the former. RI requires roughly the same

functionality, and therefore the same amount of hardware. RZ does not need to examine

the s and G bits, hence the simplest. For multipliers, there will be an additional item of

hardware expense coming from the PP reduction hardware, which may dominate all the

items discussed so far, depending on detail of the implementation | whether the design is

iterative or full tree.

4 Rounding for Redundant Binary Multipliers

4.1 Redundant Binary Representation

As noted earlier RBR is a special form of signed-digit number representation [10, 11]. In

this representation a digit is selected from the digit set f��; � � � ; 0; � � � ; �g, subject to the

constraint r > � � r�1
2

where r is the radix. For RBR, r = 2 and � = 1. The most

important property of this number system is its allowance for carry-free addition. The

one-time conversion cost from CBR to RBR and back can be more than o�set by the speed
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enhancement and/or hardware reduction that the RBR system brings. In RBR, each digit

in a number 2 f�1; 0; 1g and is represented with 2 bits. The fourth redundant state gives

rise to many possible encoding schemes. Table 12 gives 2 such examples. In the table, 1

denotes -1. In Scheme 1, Ti is used to represent the sign of a digit and in Scheme 2, the

negative digit itself. Scheme 1 corresponds to that reported in [8] and will be used for

the remainder of this paper. Using this notation, then, possible RBRs for 46 and -46 are

T = 00000 and D = 101110, and T = 101110 and D = 101110, respectively. Note that in

this particular encoding scheme, the conversion from CBR to RBR is free.

Table 12: Encoding Schemes for Redundant Binary Representation

Redundant Binary Scheme 1 Scheme 2

Representation Ti Di Ti Di

1 1 1 1 0

0 0 0 0 0

1 0 1 0 1

In [10] it was shown that totally parallel addition is possible for r � 3, and that carry-

free addition in RBR requires an examination of the neighboring lower-order bit. In RBR,

addition is performed in two steps. In the �rst step an intermediate carry and sum, ui and

vi, are computed, satisfying the equation

xi + yi = 2ui + vi (1)

where xi and yi are the i
th digits of the augend and addend, respectively. In the second

step the �nal sum zi is obtained by

zi = vi + ui�1 (2)

In Eqns (1) and (2), xi, yi, zi, ui, and vi 2 f1; 0; 1g. The key to carry-free addition in

RBR is to select ui�1 and vi such that they are neither all 1 nor all -1 in the �rst step

(Eqn (1)), thereby prohibiting a carry propagation in the second step (Eqn (2)). Table 13

shows the addition rule for the �rst step. In the �rst row, both xi and yi equal 1, a vi = 0

will prohibit a positive carry propagation into the (i + 1)th position in the second step

regardless of the values of xi�1 and yi�1. Similarly, when xi�1 and yi�1 are nonnegative

(i.e., 0 or 1), a vi = �1 will again prohibit a positive carry propagation into the (i + 1)th

digit position. Other rows can be obtained using a similar argument. ui and vi, therefore,

can be determined by examining only xi, yi, xi�1, and yi�1.

The �nal conversion from RBR to CBR can be done using the following equation:

A(=
n�1X
i=0

ai2
i) = A+(=

X
ai=1

ai2
i)� A�(=

X
ai=�1

jaij2
i) (3)
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Table 13: First Step Rule for Carry-free Addition in Redundant Binary Representation

xi yi xi�1yi�1 ui vi

1 1 || 1 0

1 0 Nonnegative 1 1

0 1 Otherwise 0 1

0 0 || 0 0

1 1 || 0 0

1 1 || 0 0

0 1 Nonnegative 0 1

1 0 Otherwise 1 1

1 1 || 1 0

where ai 2 f�1; 0; 1g and each digit in A+ and A� 2 f0; 1g. This conversion is typically

done by using a conventional binary adder. No special hardware is needed.

An example of carry free addition taken from [8] is given below. In the example, the

�nal conversion step is not shown.

Example: Adding 87 and 101

Augend: [10101001] ( 87)

Addend: [11100111]+ (101)

Intermediate Sum: [01001110]

Intermediate Carry: [11000101]+

Sum: [111000100] (188)







4.2 Redundant Binary Multipliers

Because of storage ine�ciency, RBR is mainly used to represent the intermediate results

in a computation. In RBM, for example, the binary operands are �rst encoded into RBR

during the PP generation and reduction steps and later decoded into CBR at the �nal CPA

step for external storage and compatibility to the binary world. Unlike CBM, the result of

the PP reduction step has only one term, but is represented with 2 bit vectors T and D

playing the roles of S and C in CBM. The �nal conversion step from CBR to RBR plays

the role of the CPA step in CBM. Using the notation introduced earlier for S and C, TF
and DF 2 (�1; 1), and TI and DI 2 (�2N+1; 2N+1). Like CBM, an RS may be needed
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during normalization in RBM.

The improved hardware model only needs to be slightly modi�ed for RBM. In the RI

path, the half adder array provides a convenient place for the RBR to CBR conversion.

Suppose we have a number VI represented in RBR with TI and DI . How do we convert

them into SI and CI such that SI + CI is equal or close to RI? Equation (3) provides a

basis for this conversion: we have to subtract the negative digits from the positive ones,

all weighted properly. If VIi (the i
th bit of VI) is equal to 1, we know that A+

i = 0 and

A�

i = 1. But to subtract A� from A+, we must �rst bit-invert A�; hence, A�

i becomes

0. Using the same argument, we have A+

i = 0 and A�

i = 1 for VIi = 0; and A+

i = 1 and

A�

i = 1 for VIi = 1. The �rst three columns in Table 14 summarize these �ndings. In the

table, we have used SIi and CIi for A
+

i and A�

i , respectively. The fourth column is similar

to the third one, but it allows a carry-in to be added, e�ectively simulating a full adder in

the improved model. Note actually that SI + CI = RI � 1 because we had not added a

complementation \1" during the conversion process. This fact can be used to advantage as

we shall see shortly.

Table 14: Conversion from RBR to Binary Sum and Carry Representation

VI TIi DIi CIi SIi CIi+1 SIi

1 1 1 0 0 0 0

0 0 0 0 1 0 1

1 0 1 1 1 1 0

| | | |

From the table, we obtain

SIi = DI i (4)

and

CIi+1 = TIiDIi (5)

The full adder logic is only slightly more complicated:

SIi = Cin �DIi (6)

and

CIi+1 = TIi(Cin _DIi) (7)

where Cin is the carry-in to the \full adder". In the equations, � is used for exclusive OR,

juxtaposition for logical AND, _ for logical OR, and overbar for logical inversion. These

conversion logics (Eqns (4)-(7)) are simpler than the half and full adder logics used in CBM,

showing an advantage of RBM.

In principle, the RF path can be left unchanged. The RF -adder converts TF and DF

into a 2's complement number, allowing the selector to select the �nal result. The L, G,

and s bits are determined in a similar fashion as in CBM. But there is a better way. In

18



CBM, the RF -adder sums up SF and CF for later determination of the s bit. In RBM,

this summation step is not needed because RF is represented in RBR with TF and DF . To

determine the equivalent of s for the �x-up step, we only need to know whether the number

represented in the lower-order (N�2) bits of TF and DF (denoted here as TDN�2) is equal

to 0 or is negative. Determining the former is easy; a simple ANDing operation su�ces.

Determining the latter requires the following recurrence. TDi is negative if and only if the

ith digit is negative, or if it is zero and TDi�1 is negative. Translating, we have for i � 1

Negi = Ti +DiNegi�1 (8)

where Negi indicates the condition of TDi being negative, and Neg0 � 0 (or false).

Eqn (8) is similar in form to the well-known carry recurrence

ci = gi + pici�1 (9)

where ci is the carry into the (i+1)
th bit, gi the bit generation, and pi the bit propagation

function. Note that both Ti and Di are simpler than gi and pi, respectively. Many parallel

techniques exist for solving this recurrence [16, 17, 18], and carry-lookahead serves as a good

example. In short, the RF -adder needs not be implemented in RBM, only the detection of

zero and negativity is su�cient for the �x-up step, saving hardware and improving speed at

the same time. In light of the previous discussion on RI being a potential worst-case path,

this advantage is especially important for RBM.

4.3 Round Up

A rounding table for RU in RBM is given in Table 15. The table is constructed in much

the same way as that for CBM. We consider the �rst row. In the NRS case, RI � 1 is

closer to the true result than RI ; hence, it is the desired result. In the RS case, when

RI :LSB = 0, the e�ective RF 2 (�0:5;�0:25). So, RI is closer to the true result. But

because RI :LSB = 0, RI + 1 is also a solution. Hence, we have the RI + f0; 1g entry in

the table. When RI :LSB = 1, the RF e�ective is (0,0.25). The closer result is again RI .

RI � 1 is also a solution because RI :LSB = 1 and changing a bit to be discarded will not

a�ect the result. The entries in other regions can be obtained in a similar fashion.

Prediction is slightly di�erent for RBM as shown in Table 16. When both MSBs of TF
and DF are 0, we know that RF must be (�0:5; 0:5) or in Regions 2 or 3. Other rows are

obtained similarly. As in the case of RU in CBM, at least three possible outcomes must be

computed in parallel: RI � 1, RI , and RI + 1.

For RU in RBM, eight prediction schemes are possible, but only 4 are valid as shown in

Table 17, where ZI = RI � 1. Schemes 2 and 3 use the inverse of TF :MSB and DF :MSB,

respectively, as the predictors. As an example, we select the correction digits based on

Prediction scheme 1 for the improved (modi�ed) model; others can be obtained similarly.

For this prediction scheme, because the allowable results in Group 1 (Table 16) are RI +

(�1; 0; 1), the digit \2" in Region 3 must be discarded and similarly for the digit \2" in

Region 4, leaving 6 pairs of selectable correction digits in the table. Hence, there are a total
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Table 15: Rounding Table for Round Up in Redundant Binary Multipliers

Region Range of RF Normalization Shifts

No Right Shift Right Shift

1 �1 < RF < �0:5 RI � 1 RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f0;�1g

2 �0:5 � RF < 0 RI RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f0;�1g

3 0 � RF < 0:5 RI RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

4 0:5 � RF < 1 RI + 1 RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

Table 16: Predicting the Regions in Redundant Binary Representation

TF :MSB DF :MSB Region Group

0 0 2 or 3 1

0 1 3 or 4 2

1 1 1 or 2 3

| | |
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of 26 solution for this prediction scheme. It can be easily shown that there are a total of

384 solutions for this rounding table using the (modi�ed) improved model.

Table 17: Prediction Table for Round Up in Redundant Binary Representation

TF :MSB DF :MSB 1 2 3 4

0 0 ZI ZI + 1 ZI + 1 ZI

0 1 ZI ZI ZI + 1 ZI + 1

1 1 ZI ZI ZI ZI

| | | | |

4.4 Round to In�nity

A rounding table for RI for RBM is given in Table 18. Table 19 is the prediction table.

From the tables, it can be seen that Group 1 places the most stringent constraint on digit

selection. Three possible outcomes are again needed: RI , RI +1, and RI +2 as in CBM. A

prediction \1" is always needed, corresponding to no prediction. This has a slight advantage

over CBM. The digit \3" in Region 2 must be discarded because RI +3 is not computable.

There are a total of 8 solutions for this rounding table using the (modi�ed) improved model.

Table 18: Rounding Table for Round to In�nity in Redundant Binary Multipliers

Region Range of RF Normalization Shifts

No Right Shift Right Shift

1 �1 < RF � 0 RI RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

2 0 < RF < 1 RI + 1 RI :LSB = 0: RI + f2; 3g
RI :LSB = 1: RI + f1; 2g

Another advantage of RBM can now be identi�ed. In CBM, the resolution of the regions

requires the computation of RF and the W bit. In contrast, only the RF :Q and RF :MSB

bits are needed in RBM; i.e., the W bit path is no longer critical.

4.5 Round to Zero

A rounding table for RZ is shown in Table 20. Again, we can select the digit \�1" in Region

1 and 0 in Region 2 to simplify the selector logic as in CBM. Another interesting observation

is that RI � 2 is among the possible outcomes. This outcome is hard to compute and is to

be avoided.
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Table 19: Prediction table for Round to In�nity in Redundant Binary Representation

TF :MSB DF :MSB Region Group

0 0 1 or 2 1

0 1 2 2

1 1 1 3

| | |

Table 20: Rounding Table for Round to Zero in Redundant Binary Multipliers

Region Range of RF Normalization Shifts

No Right Shift Right Shift

1 �1 < RF < 0 RI � 1 RI :LSB = 0: RI + f�2;�1g

RI :LSB = 1: RI + f�1; 0g
2 0 � RF < 1 RI RI :LSB = 0: RI + f0; 1g

RI :LSB = 1: RI + f�1; 0g

5 Rounding for Floating-Point Adders

5.1 Floating-Point Addition

For adding two FP numbers, a simple method has been given in [15]:

1. Exponent subtraction: Subtract the exponents and denote the di�erence d.

2. Alignment: Right shift the signi�cand of the smaller operand by d bits and adjust the

exponent accordingly. Denote the larger exponent Ef .

3. Signi�cand addition: Perform addition or subtraction according to the e�ective oper-

ation, Eo, which is the arithmetic operation actually carried out by the adder in the

FP unit.

4. Conversion: Convert to sign-magnitude representation if the result is negative. The

conversion is done with an addition step. Denote the result R.

5. Leading one detection: Based on R, compute the amount of left or right shift needed

and denote it En.

6. Normalization: Normalize the signi�cand by shifting R by En bits and add En to Ef .

7. Rounding: Based on the rounding mode and on the L, G, and s bits, add a rounding

\1" when necessary to the LSB of RH .
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8. Renormalization: If RH :Q = 1 as a result of rounding, right shift RH by one bit, and

adjust the exponent accordingly. RH is the signi�cand of the �nal result.

In this algorithm, the computation of the L, G, and s bits for IEEE rounding can be

performed at any time after the alignment step. Comparing the steps after the signi�cant

addition step in this algorithm with those in the rounding procedure presented in Section 2,

one sees an almost one-to-one correspondence. So, the rounding method presented earlier

for multiplication applies directly, with only a slight modi�cation in the improved hardware

model. The change is mainly in the predictor logic because either SF or CF is 0.

Assuming SF is the shifted signi�cand during alignment, the range of RF can be de-

termined as follows. For addition, the lower order bits of SF , hence RF , 2 [0; 1). For

subtraction, SF needs to be bit inverted and a complementation \1" needs to be added at

the 2N bit position; thus, RF 2 [0; 1].

5.2 Round Up

A rounding table for RU for addition is given in Table 21. Because normalization may

require a left shift (LS), the table has 3 columns and four rows even if the range of RF

is smaller (2 [0; 1]). Also, we now have the possibility of RI + 0:5. This outcome can be

accounted for as follows. If RF :MSB = 0, it is simply set to 1, and if it is 1, it is set

to 0 and the result RI + 1 is selected. In either case, no carry propagation is generated.

Consequently, an RI + 0:5 entry can be converted into an RI and an RI + 1 entries when

considering the possible outcomes in a group.

In Table 21, one sees that only two outcomes need to be implemented: RI and RI + 1.

This is in agreement with the observation reported in [2], in which it was stated that for

RU, the half adder array is not needed.

Some high-speed FP adders adopted a 2-path implementation. In the addition algorithm

presented above, observe that a normalization requiring a 1-bit LS can only happen when

the alignment step requires an RS of more than 1 bit. Conversely, a normalization requiring

a massive left shift can only occur when the alignment step requires no shift or a 1-bit RS.

Hence, the critical path is either an RS followed by a signi�cand add or a signi�cand add

followed by an LS, but never both. For this implementation, each path can be implemented

separately using a di�erent and usually simpler rounding table. The reader is referred to

[2] for a more detailed discussion on this 2-path implementation.

5.3 Round to In�nity for Addition

A rounding table for RI is given in Table 22. Three outcomes need to be implemented: RI ,

RI + 1, and RI + 2. A row of half adder array is needed for this rounding mode, again

in agreement with [2]. It is interesting to note that even for addition, RI requires mode

hardware than RU.
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Table 21: Rounding Table for Round Up in FP Adders

Region Range of RF Normalization Shifts

No Shift Right Shift Left Shift

1 0 < RF < 0:25 RI RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

RI

2 0:25 � RF < 0:5 RI RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

RI + 0:5

3 0:5 � RF < 0:75 RI + 1 RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

RI + 0:5

4 0:75 � RF � 1 RI + 1 RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

RI + 1

Table 22: Rounding Table for Round to In�nity in FP Adders

Region Range of RF Normalization Shifts

No Right Shift Right Shift Left Shift

1 RF = 0 RI RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

RI

2 0 < RF � 0:5 RI + 1 RI :LSB = 0: RI + f2; 3g
RI :LSB = 1: RI + f1; 2g

RI + 0:5

3 0:5 < RF � 1 RI + 1 RI :LSB = 0: RI + f2; 3g
RI :LSB = 1: RI + f1; 2g

RI + 1
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5.4 Round to Zero for Addition

A rounding table for RZ is given in Table 23. Not much more can be said about this table

other than the fact that RF = 1 is harder to predict than other regions.

Table 23: Rounding Table for Round to Zero in FP Adders

Region Range of RF Normalization Shifts

No Shift Right Shift Left Shift

1 0 � RF < 0:5 RI RI :LSB = 0: RI + f0; 1g

RI :LSB = 1: RI

RI

2 0:5 � RF < 1 RI + 1 RI :LSB = 0: RI + f0; 1g

RI :LSB = 1: RI

RI + 0:5

3 RF = 1 RI + 1 RI :LSB = 0: RI + f0; 1g
RI :LSB = 1: RI + f1; 2g

RI + 1

6 Summary

In 
oating-point addition and multiplication, the right shift needed during the normalization

step gives rise to many possible rounding schemes. In this paper, we have presented a

systematic procedure for selecting among these schemes. This procedure starts with the

construction of a rounding table and then uses prediction to reduce the number of possible

outcomes in the rounding table. Constructing a rounding table involves examining the

shifting possibilities during the normalization step in an operation and the range of the

result while selecting a prediction scheme depends on the detail of a hardware model. Two

rounding hardware models are presented. The �rst has been shown to be identical to that

reported by Santoro et al [1]. The second is more powerful, providing solutions where the

�rst fails. Both models compute all outcomes needed for a rounding table in parallel and

select the correct one. Optimization guidelines have been outlined in each step to reduce

the number of adders and the complexity of the selector logic.

Applying this approach to the four IEEE rounding modes for conventional binary mul-

tipliers reveals that round to positive and minus in�nity modes are more di�cult to im-

plement than the round to nearest mode in terms of the number of possible outcomes and

their maximum di�erences. Round to zero requires the least amount of hardware.

Generalizing this procedure to redundant binary multipliers [8, 9], we show that there

are two major advantages in using redundant binary number representation in rounding.

First, the logic for computing the sticky bit is simpler because only a carry chain is needed.

A lesser simpli�cation comes from the logic for the half adder array. Second, in round to

positive and minus in�nity modes, the W path is not a critical path as in conventional

binary multipliers.

We then generalize our approach to addition, obtaining a similar solution as that re-

ported by Quach and Flynn [2]. Though generalizable to other kinds of rounding and
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other arithmetic operations, we only treat IEEE rounding for addition and multiplication

in this paper; IEEE rounding because it is the current standard on rounding, addition and

multiplication because they are the most frequently used operations in a typical scienti�c

computation. Division, remainder, and square root are the other operations in the IEEE

standard not considered in this paper. We expect rounding in these operations to be sim-

pler because of their larger latency and because of the fact that normalization in these

operations does not involve a right shift.

In this work, we only consider methods for rounding at the �nal summation step. Other

possibilities exist. In multipliers, for example, it is possible to inject a constant into the

sum and carry terms during the partial product reduction step (e.g., into the Wallace tree).

We believe, however, that the methodology presented in this paper can be easily modi�ed

to handle these cases as well.
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