
LEADING ONE PREDICTION - IMPLEMENTATION,
GENERALIZATION, AND APPLICATION

Nhon Quach
Michael J. Flynn

Technical Report: CSL-TR-91-463

March 1991

This work was supported by NSF contract No. MlP88-22961.

Leading One Prediction - Implementation, Generalization, and
Application

bY
Nhon Quach and Michael Flynn

Technical Report: CSL-TR-91-463
Masch 1991

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

St anford University
St anford, California 94305

Abstract

This paper presents the concept of leading-one prediction (LOP) used
in most high-speed floating-point adders in greater detail and describes two
existing implementations. The first one is similar to that used in the TBM
RS /GO00 processor. The second is a distributed version of the first, con-
suming less hardware when multiple patterns need to be detected. We show
how to modify these circuits for sign-magnitude numbers as dictated by the
IEEE standard.

We then point out that (1) LOP and carry lookahead in parallel addition
belong to the same class of problem, that of bit pattern detection. Such a
recognition allows techniques developed for parallel addition to be borrowed
for bit pattern detection. And (2) LOP can be applied to compute the sticky
bit needed for binary multipliers to perform IEEE rounding.

Key Words and Phrases: Lea,ding one prediction, high-speed floating-
point adders, parallel addition, IEEE rounding, sticky bit computation, par-
allel implementation.

Copyright @ 1991

bY

Nhon Quach and Michael Flynn

Contents

1 Introduction 1

2 Leading One Prediction 2
2.1 Theory. 2
2.2 Implementations . 3
2.3 Modification for Sign-Magnitude Numbers 7

3 Generalization to Parallel Addition 9

4 Application to Sticky Bit Computation 10

5 Conclusion 11

. . .
111

List of Figures

1 How leading one prediction works: (a) Leading one detection and (b) Leading
prediction.. 1

2 A possible precharged implementation of leading one prediction 8

iv

List of Tables

1 Developing the logic equation for Cfine, the fine adjustment 6

1 Introduction

In floating-point (FP) addition, the result of a subtraction may require a massive left shift
during the normalization step [l]. To normalize, the straightforward way is to wait for the
arrival of the result to be normalized and then perform a leading one1 detection (LOD) by
counting the number of preceding zero’s or one’s in the result. This number is then used
to drive a shifter to produce the final normalized result. LOD is slow because detection of
the leading one or zero cannot begin until the arrival of the result.

Leading one/zero prediction (LOP) is a technique in which the number of preceding
zero’s or one’s in the result can be predicted directly from the input operands to within
an error of one bit, in parallel with the addition/subtraction step. The error comes from
the possible carry in. The amount of prediction will later be fine tuned when the carry
into that bit position becomes available. Fig. 1 illustrates the difference between LOD and
LOP. Many high speed FP units employ LOP [2, 3, 4, 51. With the exception of Hokenek
and Montoye [ii]. the description of LOP contained in these references, however, is at best
sket thy.

LOD

Left Shifter9 ‘j Left Shifter

t

(a) (b)

Figure 1: How leading one prediction works: (a) Leading one detection and (b) Leading
prediction.

In this paper, we attempt to supply “the missing pieces”, presenting LOP in greater
detail and describe two actual implementations. Our presentation is based on a more unified

lIn this paper, a leading one refers to the leading one that follows a beginning string of zeros in a positive
result to be normalized. Because this may be confused with the string of leading one’s preceding the leading
zero in a negative result, we will refer to the latt,er as the preceding one’s.

1

framework - that of bit pattern detection (BPD). Contrary to Hokenek and Montoye [5],
we believe that parallel addition and LOP belong to the same class of problem. Sticky
bit computation, which is needed for IEEE rounding in FP multipliers, also falls into this
category.

The remainder of the paper is organized as follows. In Section 2, we present LOP and
describe its implementations. In Section 3, we explain why LOP can be generalized to the
problem of carry-lookahead and in Section 4 how it can be applied to sticky bit computation.
We then summarize in Section 5.

In this paper, X2 denotes a string of X’s of length i. X* denotes a string of any number
of X’s (including the empty string). X*YZ*, for example, denotes a string that begins with
any number of X’s, followed by a single Y, and ended with any number of 2’s. a; and b;
are the ith bits of the input operands A and B, respectively. T; = ai $ b; (exclusive OR),
2; = a; V b; (NOR), Gi = aibi (AND), and Pi = a; V bi (OR). Our numbering convention
starts with zero and with the most significant bit (MSB) first; that is, the MSB is numbered
as bit zero. Unless otherwise stated, a string always starts from the MSB of the operands
‘4 and B. Examples of strings follow: for A = 11000 and B = 10001, the string is GTZZT
and for A = 1111110000 and B = 0000010000, is T5GZ4.

2 Leading One Prediction

2.1 Theory

Given the operands A and B represented in a 2’s complement form, how do we predict the
number of preceding zero’s or one’s in the result ? The key to this problem is to realize
that there are only a finite number of bit patterns that need to be detected for predicting
the position of the leading one or zero. Specifically, only the following two bit patterns will
produce a string of preceding zero’s:

and

The first case can only happen when denormalized numbers are allowed. The reader can
convince himself or herself by trying a couple of cases. Similarly, to detect a string of
preceding one’s, only the following two bit patterns need to be detected.

and
T*ZG*

Some FP units, such as the Intel 860 processor [6], use a magnitude comparator to
make sure that the result is always positive. For these units, only the bit pattern T *GZ*
need to be detected with an accompanying reduction in hardware. The following discussion
assumes the detection of all four bit patterns mentioned above.

2

LOP works as follows. At each bit position i, it detects and outputs a shift signal
SH; = 1 if any of the patterns are found. The logic equation for SH; is:

SHi = Zi v TiGZk v Gi v TtZG’”

where j and k are integer E [0, i - l] and j +k = i- 1. For N-bit operands A and B, the LOP
output is an N-bit vector - the SH; array - consisting of a possible one’s string followed
by a string of zero’s. The transition from one to zero indicates the location of the leading
one or zero. In some implementations, the SHi array may contain all zeros when none of
the patterns are found. In others, such as the RS/6000, SHo is always equal to 1; hence, the
array contains at least a 1. Alternatively, the output of LOP may be represented in a l-of-N
code, with the single one or zero indicating the location of the leading one or zero. These
two representations are easily interchangeable and is therefore a relatively minor issue. In
both cases, the shift amount contained in the SHi array may be off by one bit because of
the possible carry-in. Depending on the implementation of the exponent logic, the total
shift amount may be represented as

SHtotal = SHcOaTse + Cfine

or as

where S HcOarSe is the number of one’s in the SHi array and Cfine equals one if a fine
adjustment is needed. Note that in the first case, we always over-predict and in the second
case, always under-predict. This is achieved by appropriately wiring the input operands.

Developing an equation for Cfine involves a case-by-case analysis of the bit patterns of
the string and is highly implementation dependent. We postpone its description until the
following subsection.

2 . 2 Implementations

How do we implement a circuit that can detect the above bit patterns efficiently? As shown
in Fig. 1, the time for LOP is preferably equal to or less than the adder time. Obviously,
if the adder employs a parallel carry lookahead (CLA) scheme, then LOP must employ a
similar scheme. In this section, we describe two parallel LOP implementations. The first
scheme is similar to the RS/6000 one. The second consumes less hardware when multiple
patterns are to be detected at the same time as in the case of LOP. Both schemes have an
0 (log N) computation time.

In a parallel implementation, the string is partitioned into groups at the input stage. At
the second stage, these groups are in turn partitioned into blocks, and so on. Within each
group or block, information is processed independently. In general, the size of the group
(and therefore block) is implementation dependent. Fan-in of a logic family or a technology
though often dictates this group size, other factors may come into play depending on the
specific of an implementation.

The RS/SOOO method uses a group (and block) size of four. Each bit position has to
supply the 2, T, and G signals, which may be shared with the adder. In this method,

3

detecting the bit pattern Z* requires ANDing of all 2;‘s. Detecting the bit pattern T*GZ*
requires keeping account of three states: the N (not found) state, indicating that the G bit
has not yet been found in all the groups (or blocks) examined so far; the J (just found)
state, indicating that the G bit has just been found in the group (or block) being examined;
and the F (found) state, indicating that the G bit has already been found. The N and F
states correspond to ANDing of all the Ti and Zi bits, respectively, in a group (or block).
The J state corresponding to the following condition:

J = GZZZ v TGZZ v TTGZ v TTTG (1)

For the subsequent stages, ANDing two N states, NN, produces a (bigger) N state;
ANDing an N and a J state, NJ, a (bigger) J state; and ANDing two F states, FF, a
(bigger) F state. Any other combination causes SH; to be false. The logic equation at the
block level, for example, is

Jblock = JFFF V NJFF V NNJF V NNNJ (2)

Eqn (2) is similar in form to Eqn (1). Its implementation is much like the CLA tree
used in parallel adders, but is more hardware intensive because multiple carry trees may
be needed. The detection of the bit patterns Z* and T*ZG* can be performed in a similar
manner.

In the RS/GOOO method, SHtotal is represented as SHcOaTse - Cfine* There are at least
two ways to derive an equation for Cfine. The first method takes advantage of the fact that
at the first bit position where SH; = 0, we only need to know whether we are processing a
Z string or a G string. A T string will eventually turn into a Z or a G string, depending
on the ending literal. Hence, only a global variable need to be maintained to differentiate
these cases. Specifically, Cfine = C;-r for a Z string and Cfine = c;-r for a G string where
Ci-1 is the carry into the (i - l)th bit position.

A more intuitive approach would be to argue as follows. How far back in a string do
we have to examine at any bit position with SHi = 0 to know that we are processing a Z
or a G string ? The answer is two bits. So, when SHi = 0, we only need to examine the
the (i - 1)th and the (i - 2)th bits. Combining the above findings, we have the following
equation:

Cfine = (Gi-2Gi-I V Ti-2Zi-1 V Zi-2Gi-l)Ci-1 V (Zi-2Zi-1 V Tie2Gi-1 V Gi-2Zi-~)Cie~

Grouping, simplifying, and regconizing that we can substitute Ai- for G;-r and Xi-1 for
Z;-1, we obtain

Cf ine = Ci-1 PJ CT;-2 9 Ai-1)

or equivalently
Cfine = Ci-1 CD Z-2 CB k-1 (3)

In a sense, the RS/SOOO method requires the maintenance of a global state. For SHcOaTSe,
for example, we need to know which states (the N, J, and F states) we are in and for Cfine,
whether we are processing a Z or a G string. But there is a more distributed way. Given

4

that we have to detect the above patterns, how many bits do we have to examine before we
can declare a pattern found? Upon a moment’s reflection, we can conclude that only three
bits need to be examined in a group. To detect the above four patterns, for example, we
need to examine the following 3-bit patterns at each bit position.

Ui = Zi-zZi-lZi V Ti-2Gi-lZi V Gi-2Zi-lZi V Gi-2Gi-lGi V Ti-2Zi-lGi V Zi-2Gi-lGi

Grouping, we have

Ui = [(Zi-2 V Gi-2)Zi- I V Ti-2Gi-I] Zi V [(Gi-2 V Zi-2)Gi-1 V Ti-2Zi-l] Gi

or
Ui = (Ti-2 Zi-1 V Ti-2Gi-1) Zi V (Ti-2Gi-1 V Ti-2 Zi-l)Gi

Again substituting Ai- for Gi-r and zi-1 for Zi-1, we obtain

Ui = (Ti-2 $ Ai-l)Zi V (Ti-2 $ Ai-1)Gi

In addition, we need to account for the fact that SHi = 1 whenever Tim1 = 1 (as
explained below); hence, the equation becomes

Ui = Ti-1 V Ti-1 [(Ti-2 $ Ai-l)Zi V (Ti-2 $ Ai-l)Gi] (4)
The first occurrence of Ui indicates the location of the leading one or zero. Additional

(parallel) means must be provided to detect such an event. Note that as more and more
patterns need to be detected, this distributed scheme becomes more and more attractive
when compared with the first one.

In this distributed scheme, developing the equation for Cfine takes a bit more (concep-
tual) work. How do we know when we need to adjust ? This question can be answered by
examining all possible 3-bit patterns shown in Table 1. Patterns with a T in the middle
need not be examined because they always produce an SHi = 1. The reason is as fol-
lows. For Zi-2Ti-lXi (X represents don’t care), we know that the Zi-2Ti-1 bit pattern
would have already caused SHi-1 to be zero. What happens at bit position i really does
not matter. The same argument holds for the G ._ T.2 2 %-iXi patterns. Finally, Ti-2Ti-lXi
always produces an SHi = 1. Consequently, we can conclude that any 3-bit patterns with
Ti-1 = 1 need not be examined for fine adjustment because the coarse adjustment unit can
be designed to always output an SHi = 1 upon detecting these patterns.

Returning to the table, the first column contains the bit patterns of the string at the
(i - 2)th to the ith bit positions. The location of the leading one is (arbitrarily) assumed to
be at bit position i - 1 .2 The second and third columns are the sums of the bit pattern with
the carry into the ith bit equal to one and zero, respectively. The fourth column indicates
the condition of Ci under which adjustment is needed.

In ROW 1, we know we never need to adjust because Zi-2Zi-1 Zi can not produce an
SHi = 0. In the second row, when Ci = 0, the most significant non-sign bit is actually at

2This is possible by properly wiring the Ti, Z,, and G, terms.

5

Table 1: Developing the logic equation for Cfine, the fine adjustment

6

the ith bit position, requiring therefore a left shift of one more bit. Entries in the other
rows can be interpreted similarly. The equation for Cfine can be written from the table as

Cfind = (Zi-2Gi-1 V Gi-2Gi-1 V Ti-2Zi-l)TiCi V (Zi-2Zi-1 V Gi-2Zi-1 V Ti-2Gi-l)T;Ci

which can be rewritten as

Cf in.5 = [(Zi-2 V Gi-2)Gi-1 V Ti-2Zi-l] TiCi V [(Zi-2 V Gi-2)Zi-1 V Ti-2Gi-11 TiC;

and as
Cfine = (Ti-2Gi-1 V Ti-2Zi-l)TiCi V (Ti-2Zi-1 V Ti-2Gi-l)Tici (5)

Further, because patterns with Ti-1 = 1 never occur, we can substitute Ai- for Gi-r and
Xi-1 for Zi-1, obtaining

Cf ine = (Fi-2Ai-1 V Ti-2Ai-1)TiCi V (Ti-2Xi-1 V Ti-2Ai-l)T;C;

so that

Hence,
Cf ine = (Ti-2 $ Ai-l)TiCi V (Ti-2 $ Ai-l)Tici

Cfine = Z [Ci $ (C-2 CB &-I)] (6)

A possible precharged implementation of Eqns (4) and (6) has been given in Fig. 2.
This circuit is obtained from Kershaw et al. [7]. In this particular implementation, the
output of LOP is represented in a l-of-N code stored in the Li array. An E signal, which is
the logical NOR of all the Ei’s, indicates whether a one-bit fine adjustment is needed. The
top portion of the circuit is the Manchester carry chain for the adder and is not considered
part of the circuit. Initially, Fo is grounded, discharging Fi depending on the values of
the intermediate Ui’s. Note that in Eqn (6), TiCi can be replaced by Ci-1, saving some
hardware and obtaining a similar equation as Eqn (3):

Cf ine = ci-1 $ T’-2 $ Ai- (7)

The difference between Eqn (7) and Eqn (3) is important to note. The latter is derived
based on the assumption that SHtotal = SHcOaTse - Cfine and the former on the assumption
that SHtotal = SHcOarSe + Cfine. The Cfine’s should therefore differ.

2 . 3 Modification for Sign-Magnitude Numbers

The above presentation of LOP assumes that the input operands are represented in a 2’s
complement form. For sign-magnitude numbers as dictated by the IEEE 754 standard for
the format of the significands, the above schemes do not work. This is because when the
result is negative, it must be converted back to a sign-magnitude form with another addition
step, possibly changing the position of the leading one or zero.

There are (at least) two ways to solve this problem. The first method uses a one’s
complement adder. When the result is negative, it is simply bit-inverted. LOP in this case
is straightforward because bit inversion does not cause the position of the leading one or

7

Bi Ai

Ti

Fi

Vdd
Vdd Gi Ki Ti

lo 0
4

I
1

Precharge
- clock
- C i

I
EPrecharge

clock

t 1
Li Si

Fi+l

Ei

Figure 2: A possible precharged implementation of leading one prediction

zero to change. The LOP unit in this case must be able to detect both leading zero and
one. One might think that the use of a one’s complement adder will significantly slow down
the addition time because the end-around carry must be added. But the farthest distance
a carry has to travel in an N-bit addition is at most N-bits; hence, other than the fact that
the (end-around) carry has to travel a long distance from the MSB to the LSB, the penalty
in addition time is indeed negligible.

The second method is to always subtract the smaller operand from the larger one,
ensuring a positive result. This can be done by using a magnitude comparator and a
swapper as in the Intel i860. In this case, LOP is simpler because only the pattern T*GZ*
will produce a string of preceding zero’s. 3 The only complication arises from the logic for the
fine adjustment at the MSB because the result may have already been normalized, causing
the LOP unit to identify an incorrect leading one. The logic for Cfine needs to be modified
to account for this special case.

For FP adders that perform both A + B and A + B + 1 at the same time to avoid the
time penalty of the extra rounding step [l], LOP is slightly more complicated. The LOP
unit needs to know the correct Ci to examine for fine adjustment. Since LOP is only needed
when the operation is a subtraction and when the exponents of the operands differ by at
most one, one can observe the LSB of the smaller operand (i.e., the one to be shifted for
alignment) to determine the correct C; to observe. More detail can be found in the SNAP
FP adder described in Quach and Flynn [8].

3 Generalization to Parallel Addit ion

Though normally not thought of as such, parallel addition is also a BPD problem. In
parallel addition, to compute the final sum in a bit, we need to know whether or not the bit
pattern of the lower-order bits will produce a carry in. In other words, we need to detect
the following bit pattern:

T*G

or more precisely, the pattern
T*GX*

where X represents a don’t care. The difference between CLA and LOP is interesting to
note. In CLA, the problem is done once a G is found after a string of T’s and we don’t care
about what follows. In LOP, after finding the pattern T*G, we still have to make sure that
the following string is a 2 string.

Techniques developed for parallel addition may now be applied to BPD. The Ling’s
addition scheme [9, 10, 11, 121, for example, can be borrowed. The sole requirement for using
Ling’s scheme when detecting a bit pattern X*Y Z*, is that Y > X4 so that Yi = Xix. The
advantage of using Ling’s scheme comes from the hardware reduction at the input circuitry.5

3When denormalized numbers are allowed in the input, the pattern Z* also needs to be detected.
4 Y implies X.
5Here, we assume that the adder does not have to be implemented. When an adder and an LOP unit

need to be implemented at the same time, the advantage of Ling’s scheme is mostly in speed.

9

To detect the pattern P*GZ*, for example, Ling’s scheme allows the implementation of the
group generate function as

G - P(G.Z.ZZ v GZZ v PGZ v PPG)group - (8)

Eqn (8) is preferable to its un-factored counterpart because the leading P term can be
implemented at the lowest stage of the CLA tree as pointed out by Quach and Flynn
[la], resulting in a simpler group generate function. In LOP, since we are interested in
detecting T*GZ* and since G does not 1 G, Ling’s scheme can not be applied here. Another
optimization often used in CLA adders is to substitute P for T, which is both faster and
cheaper (in CMOS). The current generalization reveals that such an optimization is also not
possible because in CLA, a PPPGPP string will generate a carry out but will not produce
a string of zeros. In general, such a substitution requires that the ending string be a don’t
care string (i.e., an empty string).

In CLA, the group generate function is

Ggroup = Gi-3 V Pi-3Gi-2 V Pi-3Pi-2Gi-1 V Pi-3 Pi-2 Pi-1 Gi

Because this is simpler than Eqn (1) and because Ling’s scheme can be used to speed up
CLA, but not LOP, it is unlikely that LOP can be performed faster than CLA for a given
technology using a similar scheme.

It is generally believed that in LOP, information flows from the MSB to LSB and in
CLA, from the LSB to MSB. We believe that it is more general to think of information as
flowing from the MSB to LSB in both cases. But this could be a moot point.

4 Application to Sticky Bit Computation

In many high-speed multiplication algorithms, the partial products are generated in parallel,
followed by a summation step to reduce these partial products into two terms, sum and carry.
The lower-order bits (N-l bits for an NxN-bit multiplication) need to be added and then
examined to determine the sticky bit. Most implementations first add up these sum and
carry terms and then detect for zero. By recognizing that this is a BPD problem, we can
detect the trailing zero’s directly from the sum and carry terms. Specifically, we need to
detect the following bit patterns starting from the (N + 2)th bit position of the sum and
carry terms:

zN-1

and
TjGZ’”

where j + k = N - 2 and j, k are integer E [0, N - 21. In addition, we need to detect the
bit pattern P*GX*, which produces a carry into the higher-order N+l bits. Note that the
first bit pattern produces a carry-out=0 and the second a carry-out=l. The last pattern
is basically the carry lookahead chain used in a CLA adder. So, only three chains need to
be implemented, a considerable hardware savings over a design that does implement the
adder.

One of the advantages of using redundant binary multipliers is in the reduction in its
rounding hardware [13, 14, 151. The application of LOP to sticky bit computation in
conventional multipliers will definitely reduce this advantage.

5 Conclusion

In this paper, we have presented the theory of leading one prediction (LOP) in more detail
in the framework of bit pattern detection and described two possible implementations. The
first implementation is similar to the one used in the RS/6000 processor. The second one
is a distributed version of the first, consuming less hardware when multiple patterns are to
be detected. We have also shown how to adopt LOP for sign-magnitude numbers.

By treating LOP as a bit pattern detection problem, we show that both carry lookahead
in parallel addition and sticky bit computation share the same nature. Most of the materials
contained in this paper is not new, but we feel that the subject of LOP needs to be treated
more systematically in the framework of bit pattern detection.

References

[1] N. T. Quach and M. J. Flynn, “An Improved Floating- Point Addition Algorithm ,”
Tech. Rep. CSL-TR-90-442, Stanford University, Aug. 1990.

[2] F. A. Ware, W. H. McAllister, J. R. Carlson, D. K. Sun, and R. J. Vlach, “64 Bit
Monolithic Floating Point Processors,” IEEE Journal of Solid-State Circuit, vol. SC-
17, no. 5, pp. 898-907, Oct. 1982.

[3] W. P. Hays, R. N. Kershaw, L. E. Bays, J. R. Boddie, E. F. Fields, R. L. Freyman,
C. J. Garen, J. Hartung, J. J. Klinikowski, C. R. Miller, K. Mondal, H. S. Moscovits,
Y. Rotblum, W. A. Stocker, J. Tow, and L. V. Tran, “A 32-bit VLSI Digital Signal
Processor,” IEEE Journal of Solid-State Circuit, vol. SC-20, no. 5, pp. 998-1004, Oct.
1985.

[4] B. J. Benschneider, W. J. Bowhill, E. M. Cooper, M. N. Gavrielov, P. E. Gronowski,
V. K. Maheshwari, V. Peng, J. D. Pickholtz, and S. Samudrala, “A Pipelined 50-Mhz
CMOS 64-bit Floating-Point Arithmetic Processor,” IEEE Transactions on Computers,
vol. 24, no. 5, pp. 1317-1323, Oct. 1989.

[5] E. Hokenek and R. 1~. Montoye, “Leading-Zero Anticipator (LZA) in the IBM RISC
System/6000 Floating-Point Execution Unit,” IBM Journal of Res. and Dev., vol. 34,
no. 1, pp. 71-77, Jan. 1990.

[6] H. P. Sit, M. R. Nofai, and S. Kim, “An 80MFLOPS Floating-Point Engine in the i860
Processor ,” in Proc. of International Conference on Computer Design, pp. 374-379,
1989.

11

[7] R. N. Kershaw, L. E. Bays, R. L. Freyman, J. Klinikowski, C. R. Miller, K. MondaI,
H. S. Moscovits, W. A. Stocker, and L. V. Tran, “A Programmable Digital Signal
Processor with 32b Floating-Point Arithmetic,” in In Proc. of the IEEE International
Solid-State Circuit Conference, pp. 92-93, 1985.

[8] N. T. Quach and M. J. Flynn, “The SNAP Floating-Point Adder,” Tech. Rep. In
Preparation, Stanford University, 1991.

[9] H. Ling, “High Speed Binary Adder,” IBM Journal of Res. and Dev., vol. 25, no. 3,
pp. 156-166, May 1981.

[lo] G. Bewick, P. Song, G. DeMicheli, and M. J. Flynn, “Approaching a Nanosecond: A
32-Bit Adder,” in Proc. of International Conference on Computer Design, pp. 221-224,
1988.

[11] R. W. Doran, “Variants of an Improved Carry Lookahead Adder,” IEEE Transactions
on Computers, vol. C-37, no. 9, pp. 1110-1113, Sep. 1988.

[12] N. T. Quach and M. J. Flynn, “High-Speed Addition in CMOS,” Tech. Rep. CSL-TR-
90-415, Stanford University, Fab. 1990.

[13] N. T. Quach, N. Takagi, and M. J. Flynn, “On Fast IEEE Rounding,” Tech. Rep. CSL-
TR-91-459, Stanford University, Jan. 1991.

[l4] N. Takagi, H. Yasuura, and S. Yajima, “High-Speed VLSI Multiplication Algorithm
with a Redundant Binary Addition Tree,” IEEE Transactions on Computers, vol. C-34,
no. 9, pp. 789-796, Sep. 1985.

[15] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi, “Design of
High Speed MOS Multiplier Using Redundant Binary Representation,” in Proc. of the
gth Symposium on Computer Arithmetic, pp. 80-86, 1987.

12

