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Abstract

We describe  a timing analysis algorithm which can achieve the efficiency  of RC tree
analysis while retaining much of the generality of Asymptotic Waveform  Estimation.
RC tree analysis from switch level simulation is generalized  to handle piecewise  linear
transistor models, non tree topologies,  floating capacitors, and feedback. For simple
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efficiency vs accuracy through the selection of transistor models of varying complexity.
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Abstract

We describe a timing analysis algorithm which can achieve the efficiency of
RC tree analysis while retaining much of the generality of AWE. RC tree analysis
from switch level simulation is generalized to handle piecewise linear transistor
models, non tree topologies, and feedback. For simple switch level models the
complexity is O( n ). The algorithm is appropriate for variable accuracy switch
level simulation.

Topics of Interest: 1.3, 1.1

1 Introduction
Switch level simulators take advantage of the fact that the full generality of a cir-
cuit simulator is unnecessary for predicting the first order behavior of most digital
MOS circuits. In order to achieve increased simulation speed, switch level simulators
ver83]  decompose the circuit into small clusters, restrict the topology of clusters to
transistor-capacitor trees, and utilize a switched resistor transistor model. RC tree
analysis and the Elmore  delay m48,  RPH83, Hor83]  are used to estimate wave-
forms and delays. Because of these simplifications the analysis can be very fast; up
to three orders of magnitude faster than circuit simulation. Because the computa-
tional complexity of switch level algorithms is 0( n ) wor83], these simulators can
be applied to entire integrated circuits. Frequently, however, small portions of the
circuit must be simulated at the circuit level because the simplifications do not allow
the accurate prediction of their behavior.

Recently, Pillage and Rohrer(F’RBO]  invented Asymptotic Wa)efom  Evaluation
(AWE), which essentially extends the Elmore  Delay to allow arbitrarily accurate es-
timates of the response of any linear circuit. Unfortunately, the Tree-Link Analysis
used by AWEsim  for the computation of moments is not as efficient as RC tree
analysis for the particular case of RC trees. The complexity of Tree-Link Analysis
applied to RC trees is O( n2)  pD90]  rather than O( n ). Furthermore, RC tree anal-
ysis has been generalized [Chu88]  to handle multiple sources while retaining linear
complexity. Tree-Link Analysis is 0( 11 3 ) for this class of circuits.
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Our approach is to compute moments using an extension of RC tree analysis. We
extend it along two dimensions. First, we show that the tree analysis can be applied
even when transistor models are generalized from resistors to arbitrary piecewise
linear devices. For any particular circuit state the complexity remains O( 17).  Second,
we show that tearing can be used to handle non-tree topologies and feedback. If the
number of branches which need to be tom in order to get a feedback-free tree is small
and bounded, then even these more complex circuits can be analyzed efficiently. Thus
we have a timing analysis which is efficient for simple device models and topologies
but which retains much of the generality of AWE. It can be used for estimating
cluster delays for a variable accuracy switch level simulator. We expect its speed to
be comparable to switch level simulation for the simple switch level models required
by most circuits in a digital MOS IC. However the simulator should be able to
simultaneously simulate the more complex circuits with greater accuracy at the cost
of reduced efficiency for just those circuits.

2 Clusters in Switch Level Simulation
Switch level simulators partition the circuit into channel connected networks referred
to as clusters per83].  MOS gates constitute the inputs to a cluster while the outputs
are nodes which drive other gates. It is assumed that inputs and outputs are unidi-
rectional (a transistor’s gate affects its source and drain but not vice versa) and are
at most loosely coupled (there is no feedback). These assumptions alIow clusters to
be analyzed independently. The interactions between clusters are managed using a
selective trace algorithm.

A cluster’s response to an input transition is estimated using moment analysis.
Moment analysis is a two stage process involving, first, the computation of the
moments of alI circuit variables and second, the generation of waveform and delay
estimates from those moments[Hor83, PR90].  Moment computation is potentially the
most problematic because its complexity is a function of the cluster size.

3 Moment Computation
Moments 1 are computed through the repeated DC solution of a linear networkEChu88,
PR90].  To illustrate the mechanics of the procedure, consider the RLC network in
Figure 1. Let -UC, and -~.IL~  stand for the A%h  moments of the capacitor voltage
and inductor current, respectively. The lowest order moments, -UC-,  and L\i~-, ,
are defined to be the initial capacitor voltage and inductor current. In general the
LY + lth moments are computed from the kth moments by replacing the capacitor
with a current source of c’.Z ’1 ck amps and the inductor by a voltage source of LA14~,
volts and finding the DC solution of the resulting network. Once the DC solution is

‘Moments arc essentially the  coefficients
homogeneous portion of the response.

of the series expansion insofthe Laplace bTlnsfolm of the
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Figure 1: Transform circuit for moment computation.

k n o w n  -UC, +, is given by the voltage across the current source and .UL~+~  by the
current through the voltage source.

Thus, a crucial step in the implementation of any moment analysis is the efficient
DC solution of a linear network. In their work on AWE, Pillage, Rohrer et. al.
proposed the use of, first,  Tree-Link Analysis pR90]  and, later, Path Tracing [PD90].
The advantage of these methods is that they are general and can be applied to any
linear network However, both methods require the creation of the Loop/Cutset
matrix For the particular case of RC trees the LoopKutset  matrix has 0( 11~) entries.
Thus the complexity of these algorithms must be at least 0( )7  2 j2.

4 DC Solution of Leaky Resistor Trees
The earliest switch level simulators [Ter83]  modeled MOS transistors using resistors
and restricted the circuit topology to RC trees to allow efficient (0( n )) solutions. It
was observed that the topologies of most digital MOS circuits were, in fact, trees
driven by a single voltage source. Later, Chu [Chu88]  extended this analysis to
include RC trees driven by multiple sources (Figure 2). These topologies may

‘3

Figure 2: Leaky resistor tree.

continue to be viewed as trees if one redefines leaf nodes to be nodes connected to
one transistor terminal and either a grounded current or voltage source3.  The root

2Howcvcr, Path-Tracing does reduce the  numkr  of the most expensive operation, multiply, to 0 (n).
3We include nodes connected to current sourcs with 7~30 cumnt..
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node is arbitrarily selected from the non-leaf nodes (See Figure 3). We will refer to
such topologies as a leaky  trees.

Figure 3: Computing moments for leaky tree.

To review Chu’s approach4, consider the leaky tree in Figure 3 which results
when the capacitors are replaced by current sources for the purpose of computing
moments. The circuit has been redrawn to suggest its tree structure, with the leaf
nodes n 1, n4, and ns at the bottom and the root node n 2 at the top. The DC solution
can be found by making two passes over the network. The first pass starts at the
leaves of the tree and ascends to the root. The second pass starts at the root of the
me and descends to the leaves.

We begin the first pass with the resistors connected to leaf nodes (r 1, 7’3,  and
r4). For each resistor we compute the Norton equivalent seen looking into its upper
terminal. Once we have computed the Norton equivalents of all resistors descending
from a particular node (after the first iteration n3 becomes such a node) we can
combine them with the capacitor current sources to produce the Norton equivalent
seen looking out of the lower terminal of the (single) resistor ascending from that
node (for n3 this is r2). We record this aggregate Norton equivalent at the node for
use in the second pass. The first pass continues iteratively, replacing each ascending
resistor by the Norton equivalent seen looking into its upper terminal and, in turn,
computing the Norton equivalent seen by the parent node’s ascending resistor. The
iteration terminates when we have computed the Norton equivalent of all the resistors
descending lkom the root node.

4Chu’s tksis dcscriis  the analysis in tmns of “moving capacitors”.
slightly different perspective of Norton analysis applied to the network.

We present  his work from the
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The second pass starts by solving for the voltage at the root node. This is possible
because the root node has no resistors ascending from it and in the Crst pass we saved
for each node the Norton equivalent of all resistors (and capacitor current sources)
descending from that node. Once we know the root’s voltage, we can solve for the
voltage of its children by utilizing the Norton equivalent saved at each child. We
continue descending the tree until we’ve solved for all the voltages.

In summary, the process utilizes two mapping computations. In the first pass  (See
Figure 4) we are given yl, il, and g and need to find y2 and iz

Figure 4: Norton calculations.

919
Q2 = -

91+9
9i2 = il-

9 1  +  9

(1)

(2)

In the second pass we are given, in addition, t’P and we need to fmd I’,

(3)

Later, we will show that these two computations can still be performed even if resistor
g is replaced by a transistor modeled using piecewise linear functions.

5 PWL Transistor Models
Switch level simulators simulate the behavior of digital MOS circuits by replacing the
transistors with resistorsfrer83].  Experience with these simulators has shown that the
simple resistor model suffices to predict the behavior of most digital MOS circuits.

.
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However, it is not uncommon for a large chip to have a small  number of circuits
whose behavior must be verified using a more accurate simulator such as SPICE.
Furthermore there has been an increasing interest in the incorporation of bipolar
transistors into digital integrated circuits. The behavior of bipolar transistors, for
example in ECL circuits~S88],  cannot be adequately modeled using switched
resistors. In order to allow for more sophisticated transistor models we employ
piecewise linear models. In this context, the switched resistor is viewed as a simple
2-region piecewise linear device.

Piecewise linear models have been used by a number of simulators employing nu-
merical integration[vB87,  HPR87].  A piecewise linear function of n variables[vB87]
can be thought of as a list of linear5 functions, each of which has associated with
it a list of one or more linear inequalities which define the polyhedral region in ,h’ ’
in which that function applies. For example, the current through a simple piecewise
linear diode may be modeled by

{ CL+
-

7'- )/r&& 0 < 2'+
-

7'-
-

id& = Z',0 0 < - ( 2'+ - 2'- - I', ) (4)

We will examine interconnections of three terminal piecewise linear devices with
the initial restriction that the third terminal is connected to a voltage source. It is,
perhaps, surprising that many of the network analysis techniques which have been
developed for resistors apply to networks of these devices as well.

5.1 Leaky Trees of Three Terminal Networks
In order to compute the moments of a transistor-capacitor tree we need to find the
DC solution of a corresponding tree obtained by setting independent DC sources to
zero, replacing inductors with voltage sources, and replacing capacitors with current
sources. Furthermore, because we assume inputs are unidirectional and clusters can
be analyzed independently, MOS gates are considered to be driven by independent,
possibly exponentially time varying voltage sources. It can be shown that when
formulating the circuit to compute the k + lth moments, each time varying source
should be replaced by a DC source set equal to the k + lth moment of its waveform
(see Figure 5).

From the definition of a piecewise linear function we can see that for any particular
polyhedral region each piecewise linear device is equivalent to a linear network.
Assuming that each transistor remains in its present state, we group each transistor
with the voltage source driving its gate and represent the interface that the pair
presents to the network by the short-circuit admittanceparammers  of a three terminal
network~S65’J6  (Figure 6).

5more accurately, aftbe
6Note that this approach is taken by l?UCr0 modcling [HSV8  l]
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Figure 5: Transistor-capacitor tree.

04
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Figure 6: Three terminal network model.

The parameters are defined by extracting two voltage ports, one from each ter-
minal to ground[CL75j’.

[ j: ] = [ ;; g ] [ :; ] -I- [ ::; ] (5)

Figure 7 gives a physical interpretation of the six parameters of the admittance for-
mulation.

Figure 7: Circuit interpretation of admittance parameters.

In order to find the DC solution of leaky trees of these networks, we need to be

‘Note that it is not always posslbk  to extract two voltage p0rt.s  for a particular mo&l.  For example
admittance parameters cannot be cktermined  for a voltage source. Such devices must be handled as special
cases. However, to simplify the  discussion we will assume that tbc adminance  rcpnsentation  exists.
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able to do two things. If we replace resistor g in Figure 4 by the circuit in Figure 7
it can be shown that if gl and il are known then .q2 and j2 are given by

i2 = i,l + -‘12 (il - j.42)
,922  + Yl

(6)

Y12Y21
g2 = Yll - -

Y22 + Yl
(7)

If, in addition, z’P  is known then rc, is given by

91+Y22  .
I‘, = - 01 -

YlY22
is2 - 921+  > (8)

Thus it is possible to generalize the DC analysis of leaky trees of resistors to leaky
trees of three terminal networks. Because the above equations take a constant amount
of time to compute, the leaky tree analysis remains O(n) in the number of networks
in the circuit irrespective of the complexity of the models.

5.2 Series-Parallel Combination
The analogy with resistors goes even further. These three terminal networks are also
amenable to series-parallel combination. The admittance parameters of the parallel
combination of two networks can be found by simply sumrnin g their corresponding
parameters. The parameters of a series combination can be derived from the series
combination of two of the circuits in Figure 7. If we let superscripts of 1 and 2
distinguish between the parameters of the two circuits then

(9)

Y21 = - Yi* $1
42 + $1 (11)

Y22 = &-yyyf; (12)
22 11

i,l  = i'sl - yl $$ (ii2 + ifl) (13)

is2 = .2 22y2  l1
Is2 - y* flv2 (j32  + ‘51) (14)

’ 22 c 11

In fact, series combination for our three terminal networks is slightly more general
than for resistors because the the junction of the two series networks may also include
a third network to ground. Thus circuits such as the one in Figure 8 * (which is not
a leaky tree) can be solved via this generalized series-paralIe1  reduction.

*For the sake of clarity, we omit the third, pxmded,  terminal
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Figure 8: General series/parallel combination.

6 AC Analysis of Clusters
6.1 Regions of Linearity
The addition of piecewise linear devices complicates waveform evaluation because
we must detect when devices cross regions of linearity. Thus the algorithm for
waveform estimation becomes:

1. Using the current network state, compute device admittance parameters.

2. Compute waveform estimates for the linearized network.

3. Using the waveforms determine if and when each device changes regions of
linearity.

4. If no device changes regions of linearity we are done. Otherwise advance to
the time of the first region change and goto step 1.

Note that each of the inequalities in Equation 4 is of the form f ( x ) > 0 where f is
a linear function of the terminal voltages. Since the terminal voltages vary with time,
each function defines a time varying waveform, the “boundary” waveform. Since
each of these functions must remain greater than zero if we are to remain in the
current region of linearity, a change of the region of linearity is found by starting at
the current time and searching forward for the next root of each boundary waveform.

There are at least two different approaches for computing boundary waveforms.
One is to form the linear superposition of the terminal waveforms. However, the
resulting waveform will contain all the poles from alI of the terminal waveforms.
Instead, in order to reduce the order of boundary waveforms we first  compute their
moments by linear superposition of the moments of the terminal voltages. Separate
low order waveform approximations are then made from these moments.



6.2 Inter-cluster Waveforms
Another consequence of piecewise linear
piecewise exponential. For example

transistor models

v(t) =
{

OldTl og<t1

a2c -lt-tt)l3 t1 5 t < xj-

is that waveforms become

(15)

This is undesirable for cluster outputs because we would like to choose time steps
for different clusters independently in order to efficiently simulate stifl circuits, that
is circuits in which the time constants of different clusters vary widely.

However, moments are essentially the coefficients of the series expansion in 5 of
the Laplace transform. The Laplace transform for the entire transient can be com-
puted by summing the Laplace transforms of each of the pieces. Then, a continuous
multipole approximation can be computed from the sum. To illustrate, note that c’( t )
from our example can be expressed as the sum of time shifted exponentials

r(t) = alE-+l  u(t) - ~l~tl~-lt-(r--tl)~?u(t  - tl) + 02c-(t-tl)“‘2u(t  - tl) (16)

where u( t ) is the unit step and the 5-’s may be complex. But if F( s ) is the Laplace
transform of a time function f(t)u(t),  then the product t-“‘IF(s)  is the transform
of the delayed function f(t - tl)u(t - t 1). Thus the series expansion in s of the
Laplace transform of each time shifted exponential can be computed by multiplying
the expansion for the unshifted exponential

c {t-t”‘}  = * = 71 (1 - ST1  + (Cl)2  - (SQ +. ..)
T

by the expansion of E -“I

Because we only need lower order moments we need compute only the low order
coefficients. The waveform approximation is computed from the low order moments.

--St1 Ml j2
e

(St1  J3

=l++2,--. 3! +-**

(17)

(18)

6.3 Floating Capacitors
Switch level simulators am not able to deal with floating capacitors. Here, a float-
ing capacitor is treated as a bidirectionaZ  co@..ing  which requires the simultaneous
evaluation of both terminals.

As outlined in Section 3 the computation of the moments proceeds by replacing
capacitors with current sources. However, instead of inserting a single “floating” cur-
rent source we insert two “grounded” current sources (Figure 9). When computing
the k + lth moments, the current of an inserted current source becomes

i, = C( Mp,  - M,, ) (191
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C( M --Ii4
pk mk

) C(Mp<sMmk)

Figure 9: Floating Capacitor  connecting same cluster.

where .11,,  and -\lPlr  represent the k-th moments of voltages of the nodes connected
to the plus and minus capacitor terminals, respectively.

If both terminals are connected to the same cluster then the moment computation
proceeds as for grounded capacitors. However, if the capacitor links two otherwise
disconnected clusters (Figure 10) then the moments for both clusters must be com-

Figure 10: Floating capacitor connecting disconnected clusters.

puted in lockstep because the X- -t lth moments in each cluster depends upon the
capacitor current which, in turn, is a function of the Azh moments of nodes in both
clusters. Thus the -1th moments are computed for Cluster 1 and Cluster 2, followed
by the 0th moments for Cluster 1 and Cluster 2, etc. Lastly, if the capacitor connects
two clusters which are also connected via inputs and outputs (Figure 11) then not

Figure 11: Floating capacitor connecting connected clusters.

only must moments be computed in lock step, but we must compute the Ath moments
of Cluster 1 before computing the L?h moments of Cluster 2 because the unidirec-
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tional DC coupling causes the latter to be a function of the former. Note that in this
case, from the standpoint of event scheduling the gate terminal in Cluster 2 is no
longer treated as a cluster input.

In general we refer to a set of clusters coupled by floating capacitors as a group.
Inputs are considered to be directed edges between clusters and the group is repre-
sented by a directed graph9.  If the directed graph is cycle free then the correct order
for the evaluation of moments can be found via a topological sort of the graph lo. If
the directed graph has cycles then the group has feedback and no topological sort
exists. Feedback can be handled using tearing as described in a following section.

7 Relaxing Network Restrictions
In the preceding discussion we placed two restrictions on the network in order to
guarantee that it can be solved with complexity 0( n ): the topology must be a leaky
tree  and there must be no feedback However, many ICs contain circuits whose
operation depends crucially upon one of these restrictions. If those circuits are small
and if there aren’t many of them, it may be practical to handle just those circuits
using a more general, albeit less efficient, extension of the original algorithm. In this
section we will show that the circuit decomposition technique Imown  as tearing l1
can be used to to remove these two restrictions.

7.1 Non-Leaky Tree Topologies
Pillage and Dutta [PD90]  used branch tearing to find the DC solution of resistor
networks which are nearZy  trees. They point out that if the cotree  l2 size is bounded,
then the network may be solved in what is effectively linear time. We generalize  that
approach to solve nearly leaky trees of our more general three terminal devices.

Suppose we are given a circuit which is not a leaky tree. That circuit can be made
into a leaky tree by f?.nding a spanning tree and then disconnecting one terminal of
each of the devices in the cotxe. That is, we simplify the original network by tearing
out the piece of wire which cormects  one terminal of each cotree device. However,
rather than simply removing that wire, we replace it with an independent current
source (Figure 12). Note that this augmented circuit can be solved using leaky tree
ZUldySiS.

The solution of the original circuit can be found using multiple solutions of the
augmented tree. First the inserted current sources are set to zero and the network is
solved to find the voltages across each of them. Denote the resulting voltage across

9No~ that while a cluster’s graph is, by definition, connect4 a group’s directed graph may not he.
‘OA  topological sort can be performed by depth fir.rt seu&  with complexity O( 71)  [AI-KM].
“Circuit tearing was originally introduced by Kron@ro39].  A more recent paper by Rohru[Roh88]

presents a delightfully simpk and intuitive interpretation of t&g.
12Thc  cotnx of a graph is defined as the set of all edges  which a~ not rnembcrs of the  given spanning

m e .
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Figure 12: Tearing of non-1ea.Q  tree.

the kth inserted source by 1%  ,, , that is the response due to sources that were part of
the original network. Next, set all sources (original and inserted) to zero. Then for
each of the inserted sources, set only that source (let’s say it is the kth source) to
some nonzero constant i,, and solve the network for the voltages across each of the
inserted current sources. Denote the ratio of the voltage across the jth inserted source
to i,, by the transfer resistance r1 k. Then by superposition, the total response due
to the original sources and with arbitrary settings for the inserted sources is given by
(assuming n inserted souIces)

If we set I+ = 0 in the above equation and solve for i, we get the actual currents
flowing through the tom wires of the original circuit (ie before augmentation). Finally,
if we solve the augmented circuit with those currents we get the DC solution of the
rest of the original circuit. Note that although this procedure requires the LU factoring
of the n x n transfer resistance matrix, in general we expect n to be much smaller
than the total number of branches in the network.

7.2 Feedback
Feedback is handled using procedures analogous to those applied to non-leaky tree
topologies. Instead of tearing out edges to eliminate loops in a cluster’s (undirected)
graph, we tear out edges in order to eliminate cycles from a group’s directed graph
(Figure 13 (a)). The only additional complication arises when it is not possible to
replace the tom wire with a current source because such a current source would see
an infinite impedance. This commonly occurs when cluster inputs are only connected

13
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Figure 13 : Tearing of feedback.

to MOS gates. In this case we tear out the wire and drive the infinite impedance side
with a grounded DC voltage source. The analysis then proceeds as described above
except that operations on inserted current sources are performed on inserted voltage
sources as well.

8 Conclusions
We have described a timing analysis algorithm which can achieve the efficiency of
RC tree anatysis  while retaining much of the generality of AWE. The key problem
that needed to be solved was the efficient computation of the moments of a circuit.
While the Tree-Link analysis of AWEsim  is general, it is inefficient (0( n2)) for RC
trees. On the other hand while RC tree analysis is efficient (0( n ,) it only applies to
RC trees.

We present an algorithm derived from RC tree analysis which can handle piece-
wise linear transistor models connected in leaky tree topologies. For simple switch
level models the complexity remains 0( n ) for a given circuit state. Additionally, we
show that the algorithm generalizes to include non-leaky tree topologies and feed-
back, although the complexity is no longer O( n ) for those circuits. We intend to
incorporate this timing analysis into a variable accuracy switch level simulator. We
expect its speed to be comparable to switch level simulation for those portions of
the circuit which utilize simple switch level models. However, the simulator should
be able to simultaneously simulate more complex models and circuits with reduced
efficiency for just the complex circuits.
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