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Abstract

Write buffers help unbind one level of a memory hierarchy from the next, thus write buffers are used
to reduce write stalls. Write buffers are used in write-through systems so that writes can occur at the
rate the cache can handle them, but write buffers don’t reduce the number of writes, or cluster writes
for block transfers. A write cache is a cache that uses an allocate on write miss, write-back, no allocate
on read miss strategy. A write cache tries to reduce the total number of writes (write traffic) to the next
level by taking advantage of the temporal locality of writes. A write cache also groups writes for block
transfers by taking advantage of the spatial locality of writes. We have found that small write caches can
significantly reduce the write traffic to the first write-back level after the processor’s register set. Systems
that would benefit from reduced write traffic to the first write-back level would benefit from using a
write cache instead of a write buffer. The temporal and spatial locality of writes is very important in
determining what organization the write cache should have.
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1 Introduction

One important cache design decision is whether a cache should be write-through or write-back [Smi82].
A write-through cache has writes go to both the current level and the next level of the memory hierarchy.
A write-back cache has writes go to the current level, and the data is only written to the next level when
forced by line replacement or flushing.

Write-back caches have advantages over write-through caches: 1.) write-back caches use less memory
bandwidth for writes; 2.) write backs occur in line size units which facilitate block mode transfers; and
3.) processor writes occur at the rate the cache can handle them, not at the rate the memory hierarchy
can handle them.

Write-through caches have advantages over write-back caches: 1.) a simpler operating system kernel,
since there is no need to determine when to flush dirty lines; 2.) no error-correcting circuitry is needed
on the first-level cache, because if a parity error does occur, a cache miss can be generated and the
data fetched from the next level; and 3.) stores can be made faster, resulting in less stalls due to cache
contention [FKH87].  However, as the data read buffering increases, unbuffered write traffic becomes
dominant (Figure 1). The amount of write traffic can become a limit to execution rate and can also
reduce performance by increasing the busy time of the next level, thus increasing the read miss penalty
(see Appendix A).
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Figure 1: Unbuffered Write Traffic vs Buffered Read Traffic

Write buffers help unbind one level of a memory hierarchy from the next, thus write buffers are used
to reduce write stalls. Write buffers are used in write-through systems so that writes can occur at the
rate the cache can handle them, but write buffers don’t reduce the number of writes, or cluster writes for
block transfers. In [FKH87], the authors mention that they modified the write buffer (one entry, 16 byte
length) to be a write-allocate cache, this was to reduce the write traffic from the write-through cache. We
call this class of modified write buffers write caches.

A write cache is a cache that uses an allocate on write miss, write-back, no allocate on read miss strategy,
with a single combined dirty/valid bit per byte (byte subblocks with no fetching). A write cache tries



to reduce the total number of writes (write traffic) to the next level by taking advantage of the temporal
locality of writes. A write cache also groups writes for block transfers by taking advantage of the spatial
locality of writes.

2 Write Cache Performance Tradeoffs

A write cache is different from ordinary caches in that ordinary caches have been added principally to
reduce the read access time of memory references (or miss penalty [Jou90]),  while a write cache is used
to reduce busy time of the next level, thus indirectly reducing miss penalty. A write cache differs from
most caches in that it does not allocate on a read miss since the goal is to reduce write traffic. To reduce
the write traffic, a write cache uses the same ideas that make regular caches work, temporal and spatial
locality of references. But ordinary caches are based on the temporal and spatial locality of reads to
reduce the read misses, while a write cache is based on the locality of writes.

Accessing patterns that sweep through a large memory space usually cause cache organizations to ex-
hibit anomalous behavior. Therefore, the benchmarks (see Appendix B) are separated into two groups,
depending on whether or not the benchmark is characterized by having data write references dominated
by sweeping through large structures. We call the benchmark set which is characterized by having write
references sweep through large data structures, the Sweep Benchmark Set. We call the other benchmark
set the Non-Sweep Benchmark Set.

Write caches have three causes for write traffic: compulsory, capacity, and conflict. The number of
unique byte locations written during the execution of a program is the compulsory number of bytes to be
written, but their spatial locality and the transfer size determines the compulsory write traffic. Capacity
write traffic results when there are more unique byte locations which are dirty and will be written to in the
future than there is capacity to buffer them. Conflict write traffic is due to the occurrence of unoptimal
mapping, such as when an active write area is mapped to the same location in the write cache as another
active write area even though there is currently an unactive area available.

Most of the control over the compulsory, capacity, and conflict write traffic is contained in the way
the algorithm and the compiler require/use data structures. The benchmark architecture is the MIPS
R2OOO/R3000  with compiler optimization. The register allocator does a relatively good job of reducing
loads and stores, especially to the run-time stack. Usually there is a high degree of temporal and spatial
locality in the references to the stack, so the results presented should be better for machines with fewer
registers or poorer register allocation.

Area is usually limited, so performance of caching schemes is usually capacity limited. As a result,
the architect is usually interested in organizations which reduce capacity misses and the miss penalty.
Some of the most important parameters of caches are the number of lines, transfer size, line size, and
associativity. In the next sections, we discuss how these parameters affect write caches.

2.1 Transfer Size

Transfer size, whether achieved with bus width or block mode transfers, is important. Increasing the
transfer size can reduce the miss penalty of capacity, conflict, and compulsory write traffic. (Write
traffic is the number of write transfers.) However the effectiveness of a larger transfer size is directly
proportional to the spatial locality that the write traffic exhibits. Increasing the maximum transfer size
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(ts) for the sweep benchmark set (Figure 2) results in a significant decrease in the write traffic, thus
the sweep benchmark set exhibits high spatial locality for writes. Also, note that increasing the write
cache size beyond one line had little effect, thus the sweep benchmark showed low temporal locality for
writes. Increasing the maximum transfer size (ts) for the non-sweep benchmark set (Figure 3) results in
some write traffic reduction, but not as significant as that for the sweep benchmark set. The non-sweep
benchmark set showed little locality, especially beyond 8 bytes; increasing the transfer size from 8 bytes
to 16 bytes had little effect. Unlike the sweep benchmark set, the non-sweep benchmark set showed
significant temporal locality for writes, as increasing the number of lines beyond one noticably  decreased
the write traffic.

As the number of lines in a write cache increases, the time an object remains in the write cache should
also increase. The longer an object remains in the write cache, it would seem more likely a spatially
adjacent object would also be written, thus increasing the spatial locality. The increase in spatial  locality
results in an increased importance of larger transfer size. If this were true, then the performance curves
for different transfer sizes should diverge. In Figure 3, the transfer size curve of 4 bytes diverges from
the 8 byte and 16 byte curves as the number of lines increase from 1 to 2, and the 16 byte transfer size
curve very slightly diverges from the 8 byte transfer size curve, as the number of lines increase from 1
to 8. However, the transfer size curve of 4 bytes converges to the other curves as the number of lines
increases above 2. The 16 byte transfer size curve approaches to the 8 byte transfer size curve as the
number of lines increase above 8. The transfer line curves converge (thus decreasing the importance of
a large transfer size), because the write misses are decreasing more than the spatial locality is increasing.

2.2 Transfer Scheme

In the previous discussion, only the valid/dirty bytes were written to the next level. A transfer size of 4
bytes would make 1 transfer if all the bytes were valid in the 4 byte unit, else it would transfer the bytes
one at a time causing several transfers thus causing increased write traffic. The 8 byte trasfer size would
transfer units in sizes of 1, 4 or 8 bytes per transfer, and the 16 bytes transfer size would transfer units of
1, 4, 8, or 16 bytes per transfer. So unless all the bytes in the transfer sized unit were valid/dirty when
replaced, excess write traffic would occur. If a more complex scheme that does not require smaller than
maximum transfer sized units can be used, then the write traffic should decrease. One way to do this is
to always send the valid bits along with the maximum transfer sized units, and use the valid bits as byte
enables (indicated as vbit in Figure 4). This more complex scheme made no write traffic reduction for
the sweep benchmark set, and little difference for the non-sweep benchmark set (Figure 4), except for
the 16 byte transfer size. However, as the write cache size increased, the number of misses decreased,
so the importance of efficiently handling misses decreased.

2.3 Line Size

From the results with varying the transfer sizes and number of lines, we conclude that for the sweep
benchmark set, the transfer size was important and the temporal locality wasn’t (at least for the sizes of
write caches we are looking at). Therefore, the effect of line size (1s) larger than the transfer size should
be minimal, and it is (Figure 5). Therefore, the line size should be no larger than the transfer size.

For the non-sweep benchmark set, the number of lines (capturing temporal locality) was more important
than transfer size, so decreasing the line size (1s) for a fixed number of lines causes a noticable increase
in the write traffic (Figure 6). However, comparing the performance of different line sizes with equal
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numbers of lines is unfair. They must be compared in terms of area requirements. In [MQF91] the
authors use the notion of register bit equivalent (rbe) as a unit of area to develop and validate area
models for register files and caches. We use this model (see Appendix C) to look at organization and
area trade-offs of write caches. Figure 7 compares various line sizes for a 4 byte transfer size for the
non-sweep benchmark set while using area in rbes instead of number of lines. Now when comparing
with an equal amount of area, the line size of 4 bytes outperforms the 16 byte lines. Figure 8 shows that
an 8 byte transfer and line size performs initially better than the 16 byte transfer and line size. Looking
at the line size tradeoffs, it does not seem profitable to have line sizes larger than the transfer size for
the small write caches we are investigating.

2.4 Associativity

Some of the write traffic is due to mapping conflicts. A common technique to reduce mapping conflicts in
caches is to use associativity. We attempt to reduce the conflicts by making the write cache four-way set
associative with least recently used (LRU)  replacement. LRU associativity is useful because it increases
the probability that an object with high temporal locality remains in the cache, however, there must be
objects which have high temporal locality. The sweep benchmark set has previously shown little temporal
locality, so as expected, four-way LRU associativity proved to have little value (Figure 9).

The non-sweep benchmark set exhibits temporal locality, and as expected benefited from the LRU four-
way set associativity (Figure 10). For few lines, the LRU four-way set associative write cache performed
worse. This is because there were more highly temporal objects active at one time than the number of
storage locations. A four-way set associative cache requires more in area than a comparable direct-mapped
cache. So when area verses performance is plotted (Figure 11, 12, and 13), direct-mapped is initially
better. The initial overhead and the anomolus behavior make the the LRU four-way set associative cache
a poor choice for a very small cache. However, as area increases the LRU four-way set associative
organization eventually outperforms direct-mapped for the non-sweep benchmark set.
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3 Consistency and Flushing

3.1 Flushing Interval

Previously we have been ignoring the effects of process switching; only at the end of the simulation of
an application would the write cache be flushed. Flushing can increase the write traffic because items
that would be written to again are no longer present, thus decreasing the effect of temporal locality. The
benchmark sets were simulated with a flushing interval of 1000 and 5000 writes. If flushing occurs every
1000 writes and if 10% of the instructions are writes, that corresponds to a process switch interval of
10,000 instructions. Ten thousand instructions is usually a small time slice, so any degradation due to
normal process switch flushing should be less. The flushing caused no performance loss for the sweep
benchmark set, since it had very little temporal locality. The flushing became noticable  for the non-sweep
benchmark set for sizes of 32 lines and above (Figure 14). However, the degradation was small, and
there was practically no degradation when the flush interval was more reasonably set to 5000 writes.

3.2 Enforcing Data Consistency

Like a write buffer, a write cache has to deal with data consistency conflicts that might occur between
reads and buffered writes. Part of the valid data for a read request may be in the write buffer or write
cache, so there must be some mechanism to insure that the correct results are returned to the read
requestor. Figure 15 and 16 show the probabilty that a data cache read miss is in the write cache. The
data cache is direct-mapped, write-through, no allocate on write miss, with 16 byte lines. The data cache
size of OK bytes represents the case when the write cache is between the processor and the data cache.
(This is useful when trying to reduce the write traffic to the first-level cache.)

A very simple scheme to insure data consistency would be to allow the reads to bypass the write cache.
If there were a conflict, the returning read results would be nullified, and the write cache would flush
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the the conflicting entries to the next level, and then the read request would be retried. However, as the
number of reads which are partially or entirely in the write cache become significant, the mechanism
to transparently insure consistency must must be made more complex, so handling of conflicts causes
little additional delay to prevent significant increase in the average read miss penalty. A slightly more
complex scheme would have the read results returned to the requestor, and then the write cache would
copy any conflicting entries to the read requestor. A more complex scheme might be one which merges
(with no additional delay) the requested results and any relavent data in the write cache, as the data is
being returned to the requestor.

The write allocation policy of the first-level data cache can have a significant effect on the number
of consistency conflicts. Figure 17 shows that changing the write policy in write-though caches from
no allocate on write miss to allocate on write miss will significantly reduce the consistency conflicts.
Consistency conflicts occur more often than expected because locations usually are written to (initialized)
before the first time they are ever read. So if the data cache doesn’t use a write allocate on write miss
policy, the chance for conflicts is higher.

Like write buffers, write caches have another data consistency problem; I/O register writes can have
side effects at other I/O register addresses. Therefore I/O register writes must complete in the order of
issue and before any I/O reads can be issued. Therefore, operating system device drivers must explicitly
wait for a I/O register write to complete before reading device registers. On the DECstation50  this is
accomplished by calling a wbFZush  routine to insure the write buffer is free of any I/O writes [Eng90].

11



1 0%

8%

Read Misses 6%

That Hit In The
Write Cache

4%

2%

0%

--

-- -‘- OKB

u 4KB

-*- 16KB

+ 64KB

0 1 2 4 8 16 32 64 128

Number Of Lines (16B)
Figure 15: Effect Of First-Level Cache Size On Hitting In The Write Cache (Sweep Benchmark Set)

50%

40%

Read Misses 30%

That Hit In The
Write Cache

20%

1 0%

0%

---------------

-- -------

-.- OKB

0 4KB

-*- 16KB

* 64KB

0 1 2 4 8 16 32 64 128

Number Of Lines (16B)
Figure 16: Effect Of First-Level Cache Size On Hitting In The Write Cache (Non-Sweep Benchmark
Set)

12



Read Misses
That Hit In The

Write Cache

25% ___________________________________
T /’

i

/

w’

w20% -__----__-_____-____----  __________
/

15%

1 0%

5%

0%

_-_e______---- n .

___-__-_____r

0 i 2 4 a 16 32 64 128

Number Of Lines (16B)

+ 4KB

0 4KB,  w allot

-*- 16KB

-0 16KB,  w allot

-*- 64KB

* 64KB, w allot

Figure 17: Effect Of First-Level Cache Write Allocation Policy On Hitting In The Write Cache
(Non-Sweep Benchmark Set)

13



4 Conclusion

Small write caches can significantly reduce the write traffic to the first write-back level after the processor’s
register set. Systems that would benefit from reduced write traffic to the first write-back level would
benefit from using a write cache instead of a write buffer. The temporal and spatial locality of writes
is very important in determining what organization the write cache should have. The organizational
observations are in the following Table 1.

Applications whose writes have
low temporal locality and high
spatial locality

Number Of Lines 1 line is sufficient

Line Size = Transfer Size
Associativity direct-mapped

Applications whose writes have Suggested General
high temporal locality Solution

most important, for approximately minimum of 4 lines
a 50% write traffic reduction (16-
32 lines with ts=4B, 4-8 lines with
ts=8B,16B)
important if don’t have enough 8B
lines, but > 8B has little benefit
unless use vbit transfer scheme
simple, unless have transfer size simple
> 8B and only a few lines
= Transfer Size = Transfer Size
direct-mapped, unless size be- direct-mapped
comes large enough that conflict
misses dominate capacity misses

Table 1: Summary Of Organizational Parameters For Write Caches
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A Write Traffic Penalties

The rate at which writes can be serviced in the memory hierarchy can become the upper bound on
performance. Assuming that writes take one access (or can be pipelined), Figure 18 shows the first
write-back level’s access time at which performance is limited by the rate of servicing write requests
(100% occupancy due to writes). As the writes per instruction or the issue rate increases the write service
request rate increases, and the access time of the first write-back level of cache (or main memory) must

-.- issue 1 instr/cycle

0 issue 2 instrIcycle

-*- issue 3 instr/cycle

+ issue 4 instr/cycle

decrease.

0.05 0.1 0.15 0.2 0.25

Writes Per Instruction
Figure 18: Access Time of the Write-Back Level of Cache (or Main Memory) Which Would Cause
100% occupancy

The write traffic can not only limit execution rate by causing the processor to stall because the write
buffers are full, but also by requiring read requests to wait for pending writes. As a result, the read miss
penalty ( = access time + transfer time + busy time ) will increase, further limiting performance. The
increase in the read miss penalty is shown in Figure 19. This is assuming that a read request can bypass
all pending writes except for the one in progress, and that if memory is busy with a write, the write is
halfway through an access. Thus the busy time due to writes equals occupancy x q.

Note that by reducing the write traffic, the occupancy due to writes will reduce. By reducing the
occupancy, the read miss penalty is also reduced.
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B Benchmarks

Trace driven simulation produced the presented results. The architecture simulated was essentially the
MIPS R2OOO/R3000.  Note that the R2OOO/R3000  does not have 64-bit floating point loads and stores, a
64-bit load or store is made by using two 32-bit transfers. The following C benchmarks were optimized
with the Ultrix 3.1 C compiler with optimization level 02. The code executed in the application code,
string routines, and printf routines was simulated, while the code executed in system calls, scanf routines,
and math libraries was not.

Name Description Instr. ( 106) % loads % stores
fft fast fourier transform - 1024x1024 2-D fft 10.1 41.6 17.1
lloops composite of the 14 Livermore Loops 0.09 16 42.9 17.3

Table 2: Benchmarks Whose Writes Were Dominated By Sweeping Through Large Structures (Sweep
Benchmark Set)

% loads % stores
23.0 13.3

23.4 13.1

23.7 13.0
18.5 13.3

22.5 15.0

43.7 13.7

22.6 15.9

Table 3: Benchmarks Whose Writes Were Not Dominated By Sweeping Through Large Structures
(Non-Sweep Benchmark Set)
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C Area Model

In [MQF91],  the authors developed and validated an area model for caches and register files. They also
used the area model to look at cache organization trade-offs as a function of area. Instead of making the
area unit technology dependent (by making the area unit a measure of square micrometers), the authors
had made the area unit technology independent. The area unit of measure is a register bit equivalent
(rbe). The rbe area unit equals the area of a register cell. The area models take into account the area
needed for data bits, tag bits, status bits, overhead logic (drivers and comparitors),  and consider the effects
of bandwidth requirements of memory cells.

Area for a set associative cache is:

area = control + data + tags + status

= 195 + 0.6 x overhead1  x sizeb  + 0.6 x overhead2 x tsbitsb  rbe

Where:

&eb = data bits in the cache

tsbitsb  = tag and Status bits in the cache = tsb x lines  = tsb x tags

i!sb =status  bits per line + tag bits per line

= (1 + dv x tunits + Zogz(  230wordsXassoc))JIzeb
n&a

Note: We are assuming the processor addresses 230 words. Also there was a mistake in the tsb equation
published in [MQF91],  the 32 && had been omitted.

dv = dirty and valid bits per transfer unit
tunits  = linesizeb

subblocksiaet,

tags = ‘%linesazeb

overhead1  = 1 + w + 6
linesizeb x assOc

overhead2 = I+ w + 6tsb x assoc

The area model is slightly modified for write caches.

tunits = linel[zeb since the subblock size is a byte.

tsb = (tunits + log2(  230wordeXasSoC))S,.ze.b
n?Eka

The authors of the model also say there is a single valid bit per line, in addition to the valid bits per
subblock. We think that is unneccesary, since there is a valid bit per transfer unit. The dv is 1, since
there is a single combined dirty/valid bit per subblock; in a write cache, reads are never allocated thus
the valid bit also acts as the dirty bit.

The area requirements for various write cache sizes and organizations is shown in Figure 20. For a frame
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of reference, a 32x32b,  2 read port, 1 write port register file occupies 3200 r-be. It is interesting to note
that as the number of lines increase, the overhead of associativity has less effect on total cache size.
However, for small caches, the overhead of associativity is significant.

18000  T----------------------------------

*a=l,Is=4B

0 a = 4, Is = 48

Area in Register
Bit Equivalents

WW

-*- a = 1, Is = 88

+ a = 4, Is = 8B

-A- a = 1, Is = 16B

* a = 4, Is = 16B

0 1 2 4 8 16 32 64 128

Number Of Lines
Figure 20: Area Requirements For Various Write Cache Sizes And Organizations
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