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Abstract

We studied three possible strategies to overlap the operations in a floating-point add
(FADD) and a floating-point multiply (FMPY) for implementing a multiply-add-fused
(MAF) instruction, whose result would be compatible with the IEEE floating-point stan-
dard. The operations in FMPY and FADD are: (a) non-overlapped, (b) fully-overlapped,
and (c) partially-overlapped. The first strategy corresponds to multiply-add-chained (MAC)
widely used in vector processors. The second (Greedy) strategy uses a greedy algorithm,
yielding an implementation similar to the IBM RS/6000 one. The third and final (SNAP)
strategy uses a less aggressive starting configuration and corresponds to the Stanford Nanosec-
ond Arithmetic Processor (SNAP) implementation.

Two observations have prompted this study. First, in the IBM RS/6000 implementation,
the design tradeoffs have been made for high internal data precision, which facilitates the
execution of elementary functions. These tradeoff decisions, however, may not be valid
for an IEEE-compatible MAF. Second, the RS/6000 implementation assumed a different
critical path for FADD and FMPY, which does not reflect the current state-of-the-art in
floating-point technology.

Using latency and hardware costs as the performance metrics we show that: (1) MAC
has the lowest FADD latency and consumes the least hardware. But its MAF latency is
the highest. (2) Greedy has an intermediate MAF latency but the highest FADD latency.
And finally (3) SNAP provides the lowest MAF latency at the expense of a small increase
in FADD latency over MAC and in area over Greedy. Both Greedy and SNAP have higher
design complexity arising from rounding for the IEEE standard. SNAP has an additional
wire complexity, which Greedy does not have because of its simpler datapath. If round-
ing for the IEEE standard is not a requirement, the Greedy strategy — and therefore the
RS /6000 — seems a reasonable middle ground for applications with a high MAF to FADD
ratio.

Key Words and Phrases: Floating-point multiply, floating-point add, multiply-add-
fused, IEEE rounding, high-speed floating-point unit, pipelined arithmetic unit, IBM RS/6000
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1 Introduction

As optimizations for floating-point addition (FADD) and floating-point multiplication (FMPY)
appear to have reached the point of diminishing return, hardware implementors are turning
to larger arithmetic primitives for further speedup. Multiply-add-fused (MAF) serves as a
good example. In MAF, FMPY is performed together with FADD without an intermediate
indirection step. Because FMPYs are often followed by FADDs in scientific codes, overlap-
ping or fusing them seems a viable way to further enhance the latency or throughput, or
both, of a floating-point (FP) unit.

Until recently, such a statistical correlation has mainly been exploited by chaining, or
indirecting the result of, the multiplier to the adder. The use of MAF was first reported in
the 1IBM RS/6000 processor, and much has been written about its benefit. The true benefit
of MAF, however, only comes when the following three conditions are satisfied:! (a) its
latency is no longer than the combined latency of a sequential FADD and FMPY. (b) its
implementation doesnt lengthen the latency of FADD considerably because FADDs dont
always follow FMPYs. And (c) its hardware penalty is not too severe; otherwise, this extra
hardware could be used to support other functions, such as division or square root.

In this paper, we investigate ways to implement efficiently an IEEE-compatible MAF
[1], which delivers the same result as a sequential FMPY and FADD does. Two observations
have motivated this study. First, in the IBM RS/6000 implementation, the tradeoff has been
made for high internal data precision [2, 3], which facilitates the execution of elementary
functions. These tradeoff decisions, however, may not be valid for an IEEE MAF.2 Second,
the RS/6000 implementation started with different assumptions on the critical paths of an
FP multiplier and an FP adder [2]. These assumptions do not reflect the current state-of-
the-art in FP technology (as explained below).

The remainder of this paper is organized as follows. Section 2 describes an implemen-
tation of a high-speed FP multiplier and an FP adder using a state-of-the-art algorithm.
This implementation serves as a baseline for later comparison. In Section 3, we examine
three possible methods to implement an IEEE-compatible MAF. In the first method, the
operations in FMPY and FADD are non-overlapped; in the second, fully-overlapped; and in
the third, partially-overlapped. We develop a delay and area cost model and then compare
these implementations in Section 4. Limitations of this study are addressed in Section 5.
Summary and Concluding remarks are given in Section 6. Unless otherwise stated, all im-
plementations described in this paper are in CMOS and assume an IEEE double precision
format. In this format, the significand of a number has 53 bits (including the hidden one
bit) and the exponent, E, has 11 bits.

! We assumed that the goal of MAF is to reduce the total latency of a multiply and an add operation.

2To be IEEE compatible, the RS/6000 implementation forces the user to perform multiply and add
separately. In other words, the multiply and the add instructions are both IEEE-compatible, but not the
MAF instruction.



2 Background

2.1 Floating-Point Multiplication

In a high-speed multiplier, partial products are first generated in parallel and then reduced
to two terms, sum (S) and carry (C), which are then added using a carry-lookahead adder.
This study is independent of the implementation of the partial product reduction (PR)
logic. The interested reader is nevertheless referred to Wallace [4], Zuras and McAllister
[5], and others [6, 7] for more detail.

T 353x53 Bit
PR .
Partial-Product
Reduction
. {s | K.
csa | csA | —
Y Y
Thdd l S+C+r+(0,1) H Round l
TSel [ Select
- ¥ axb

Figure 1: The process of multiplication (only the mantissa path is shown).

Figure 1 depicts this multiplication process. In the figure, only the significand path is
shown; the exponent path is omitted because it is not critical. For rounding, the carry-
save adders (CSA) add in a rounding constant r determined by a rounding logic before
the compound adder, which computes both results S+ C +rand S + C + r + 1 (denoted
S + C + r + (0,1)) simultaneously. These results are then selected by the rounding logic
based on the lower-order bits of S and C and on the LSBs and the overflow bits of the
results. For the IEEE round-to-infinity modes, for example, r may be equal to 2 and the
compound adder computes S + C 4+ 2 + (0,1). In this algorithm, only one addition step
takes place. This is to be contrasted with an algorithm in which S and C are first added,
the rounding information computed, and the result then rounded, requiring two addition



steps.

The key idea behind these fast rounding methods lies in the fact that one can pre-
compute all possible outcomes in parallel and then select the correct one [8, 9]. This ability
implicitly assumes that the number of possible outcomes are computable by a compound
adder and, more importantly, that we know in advance the bit position to add in r to
account for later rounding events. We shall refer to this bit position as the carry point. For
multipliers, the carry point is at bit 51 (the MSB is bit zero).

From Fig. 1, the latency equation for FMPY can be written as

Trmpy = Tpr + Tosa + Tssvadd + TR + Tarue + Tw(rmpY) (1)

where TR is the delay through the rounding logic and Tpr,, is the delay charging up
the final 53 selection muxes. Tw(FMPy) models the delay needed to drive the metal wires
between the components. Wire delay within a component is considered part of its latency.
Tpgr, for example, accounts for both the CSAs and the wire delay in the PR logic. In
general, T'w(Fmpy) is difficult to quantify because it depends on such diverse factors as the
technology level, the layout style, and the number of metal levels available in a process. We
shall assess its effects qualitatively in this study.

2.2 Floating-Point Addition

In a conventional FP adder, the critical path consists of an exponent subtraction step (ES),
a right shift step for alignment of the operands (RS), a significand addition step (SA), a
left shift step for normalization (LS), and a final rounding step (R) [10]. Note that R may
cause the result to overflow and requires an additional Ib renormalization right shift. In [11],
the author shows that the datafiow of an adder can be divided into two paths depending
on the absolute difference of the exponents. When the difference is less than or equal to
1, the RS step reduces from a full-width alignment shift to a simple muxing step. The
converse is true when the difference is more than 1; the result needs at most a Ib left shift
for normalization. Consequently, the critical path of an FP adder consists of either an RS
followed by an SA plus an R step or an SA followed by an LS step, but never both. This
eliminates a full-width shift from the critical path in the original algorithm, but an extra
rounding step is still required. In [12, 13], the authors show that for the IEEE standard,
the R step can be combined with the SA step.

Figure 2 depicts this addition process. The left-hand side corresponds to the shift-
add path and the right-hand side to the add-shift path. In the shift-add path, the ES
step computes the absolute difference of the exponents. The CSA step again adds in I as
needed, as determined by a rounding logic.

The shift-add path seems shorter but it needs to perform leading-one prediction (LOP),
which incurs a slightly larger delay than the addition step in the add-shift path. Hence, the
two paths have roughly the same delay. Using the shift-add path as the critical path, the
latency equation for FADD can be written as

Trapp = Tgs + Tsas s + Tosa + Tsabadd + Tr + 2Tmus + Tu(FaDD) (2)

3



where Ts3,_grs is the delay of shifting a 53b input by 53 bits, including the delay of the
decoder. Tw(FADD) plays a similar role as Tw(FMpy), modeling the delay incurred by
wires connecting the components. Because of the two path arrangement, Tw(FADD) is
typically larger than Tw(FMpy). The first Tas,, Selects between the results computed by
the compound adder and the second between the results in the two paths.3
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Figure 2: The process of FP addition.

3 Possible MAF Configurations

From the above discussion, there are several operations within FADD and FMPY. To fuse
them, we clearly must overlap their execution in a certain fashion. Since we are mainly
interested in overlapping operations that are relatively time-consuming, we represent the
critical path of FMPY as PR -~ Add and of FADD as ES - RS/Add — Add/LS. The goal
of fusing is to overlap these two critical paths to reduce the latency as much as possible
while minimizing the amount of hardware used. We have the following possibilities: the
critical paths are (a) non-overlapped, (b) fully overlapped, and (c) partially overlapped.

3 Although it is possible to combine these two muxing steps into a 4-1 muxing step to improve the latency,
this study ignores this possibility.



Figure 3 shows these configurations. In the figure, the lengths of the blocks correspond to
their latencies.* Fig. 3a shows the operations in FMPY and FADD before they are fused.
We consider their implementations as well as advantages and disadvantages in this and the
following sections.

(&) Multiply, Add

ES

PR | Add | Add | LS

(b) Multiply-Add-Chained

o5 RS Add
[ PR | Add Add | LS
(c) Greedy
e 233 N PR [P
s L ES] [_Rs hdd [ Is | les] [rs [ada [ 15 T R ]
Add_|_LS
(d) SNAP
PR Add |
s R & Adi| — [m el Aau
=) Add | IS

Figure 3: Possible configurations of multiply-add-fused.

3.1 Non-overlapped MAF (MAC)

This scheme is the simplest and is used by most FP units before the appearance of MAF.
Seemingly obvious, it has two important implications. First, when an indirection path is
provided between the multiplier and the adder (Fig. 3b), this configuration corresponds to
chaining widely used in vector processors, hence the name multiply-add-chained (MAC).
Second, because MAF needs not be supported, the adder and the multiplier can be sepa-
rately optimized, making MAC fast. This implication is important because an implemen-
tation of MAF puts additional loading on the adder and the multiplier.

*These latencies will be determined later.



From Fig. 1, the MAF latency equation for MAC can be written as:

TMAFyac = Trmpy + TFraDD
= Tpr+Tcsa+ Tsap_add+ Tr + Tafur +
Tgs + Tssv_rs + Tosa + Tsap_add + TR + 2Taue + Tymacy  (3)

where Tymac) = Tw(Fabpp) + Tw(Fmpy) and the FADD latency as

T.FADDuac = Trapp (4)

3.2 Fully-overlapped MAF (Greedy)

This scheme uses a greedy algorithm and has a potential speedup of a factor of 2. We
consider what it takes to fully overlap the two critical paths. First, only the RS — Add path
in FADD can be completely overlapped with the PR — Add path in FMPY. The Add — LS
path has to be delayed, giving rise to a PR/ES/RS — Add — LS configuration.

Second, to merge the RS — Add and the PR — Add paths, we must have provision to
shift ¢ either to the right or to the left before S and C arrive. The first case is needed when
E. < E,xp and the second when E. > E, 4. Alternatively, one can add 53 (the number of
bits in the significand) to E. so that ¢ will always be right shifted during alignment, as in
the IBM RS/6000 implementation. This implementation, however, requires a triple-width
shifter (i.e., 159 bits).

Finally, addition occurs only once in this configuration. This means that addition must
also perform rounding. To round for the IEEE standard, we now need to examine the
lower-order bits of S, C, and ¢ and have to compute additional possible outcomes (i.e., the
range of r is larger). Moreover, when c is left shifted to align with S and C, the carry point
is now a function of the shift distance and is no longer known in advance. Worse, the input
into the normalization shifter (in the LS step) is now also a function of the shift distance. 5
For these reasons, it is not possible to combine rounding with the addition step. This forces
us to add an additional rounding step, R, after the LS step, resulting in a configuration
that is similar to the RS6000 one: PR/ES/RS — Add — LS - R (Fig. 3c).

Figure 4 shows a possible implementation of this greedy strategy. In this implementa-
tion, F. has been incremented by 53 so that ¢ only needs to be right shifted for alignment.
A 106b shifter is used for this purpose. When the shift distance is greater than 106 bits, the
bits need to be accumulated for computing a rounding information. The shifted ¢ is then
added to the higher-order 53 bits of S and C in the CSAs. For subtraction, c or S and C
must be complemented appropriately according to the effective operation. During the sub-
traction step, the LOP unit determines the amount of left shift needed for normalization.
The higher-order 53b of the result is then rounded.

Even with an explicit rounding step, rounding for the IEEE standard is still not trivial
in this implement ation. One must compute three pieces of information: First, the 106b
right shifter must compute a rounding information from ¢ as mentioned above. Second, the
sticky bit logic must sum up the lower-order 53 bits of S and C. Finally, a third piece of

5The RS/6000 implementation has a similar problem when the shift distance is less than 53 bits.
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Figure 4: A possible implementation of the SNAP MAF



rounding information is needed from the lower-order bits of the output from the left shifter.
These rounding informations must then be combined appropriately for the IEEE rounding
modes.

From Fig. 4, the MAF latency equation for this Greedy implementation can be written
as:

T.MAFGreedy = TPr + Tecsa + TioebLopP + Tiosb_Ls + TR + Tinc + TrMuz t Tu(Greedy) (5)

where Tioes_Lop is the delay of a 106b LOP. Tg is again the latency of the rounding
logic and T is the delay of incrementing the 53b result. Tas,, is needed because the
incremented result may overflow, requiring a Ib right shift. Tw(G,eedy) plays the same role
as Ty(FADD) and Tw(FMmPY). These delays can also be thought of as modeling the wire
complexity of an implementation. Greedy has a simpler adder datapath than FADD, but it
has more wires because of the larger datapath. Hence, we have the following relationship:

T(Greedy) ® Tuw(rapD) t Tw(FMPY)

The FADD latency of the Greedy implementation is the same as its MAF latency. Hence,
we have:
T.FADDGreedy = T.MAFGreedy (6)

3.3 Partially-overlapped MAF (SNAP)

In this scheme, the operations in FMPY and FADD are partially overlapped, giving rise to
a PR/ES — (Add)/RS — LS/Add configuration (Fig. 3d). In this configuration, only the
Add step in the Add — LS path are combined.

Figure 5 shows a possible implementation. In this implementation, we need two 53b
shifters for shifting S and C. During FADD, these shifters are used to shift the operands
¢ and d; d is ignored during MAF. The shifters share the same logic for computing the
sticky bit. This is accomplished by creating a rounding mask, which is then AND’ed with
the lower-order bits of the outputs from the shifters. This rounding mask is also used to
produce a rounding constant of the correct weight. The operation of this implementation
essentially follows that of FADD except that rounding is now much more complicated.

Writing an MAF latency equation for SNAP is slightly more complicated. Because the
shift-add path needs the rounding result from the multiplier side, the MAF latency for
SNAP is

T.MAFsyap = Tpr+ Tcsa+ Tsav_add + T+
Tosa@-2) + Tsav_add t TR + 2TMuz + Ty(snaP) (M)

where T, snap)again models the wire delay or its complexity. The RS step is hidden in
the addition step in the multiplier side (i.e., the first T531,_Add) and is therefore not in the
equation. The 4-2 CSAs reduce S, C, ¢, and the rounding mask into two terms, which are
then summed up by a compound adder. Typically,

Tw(SNAP) > Tw(Greedy)



53x53 Wallace Tree

S& C

s C lc v S, C

Y Y | CSA

|_53b Shifter || 53b Shifier |

53b ComAdd ||  Round

Y LOP
4-2 CHA ,

# Y

| 535 ComAdd/Rounda  |=— “__33bShp |

‘i

| 53b Mux *I

l (axb)+/-c , c+1-d

Figure 5. A possible implementation of SNAP multiply-add-fused.



Again using the shift-add path as the critical path, the FADD latency can be written as

T.FADDsnap =Tgs + Tssb_rs + Tesaqa-2) + TR + 2Tz + Tw(SN 4P) (8)

Tgs is now exposed because the PR step is no longer performed. Only T¢s4(4—2) is in
the equation because Ts4 in the multiplier side is not in this critical path. In the following
section, we consider all possible combinations of F,«; and E. and show that it is possible
to round for the IEEE standard in all cases.

3.3.1 IEEE-Compatibility of Partially-overlapped MAF

We have to examine the cases listed in Table 1:

Table 1: Possible cases for IEEE rounding

Case Conditions
1 Effective Addition and F,«p > E,
Effective Addition and F,x; < E.
Effective Subtraction and F,yy — E. < 2
Effective Subtraction and F,x3 — E. > 2
Effective Subtraction and E. — E x5 < 2
Effective Subtraction and E. — E,y; > 2

o Ol AW N

In the table, the exponent difference differentiating the two paths is now 2, as opposed
to 1 in the FADD algorithm described earlier. This is because the summation of S and C
may overflow.

e Case 1. When E, 4 > E,, we have to right shift ¢ for alignment. S and C are added
in the multiplier side while c is being shifted. In essence, multiplication is performed
and rounded independent of the addition step. The MAF instruction allows the FP
unit to examine E. in advance and takes action accordingly. After c is shifted, it is
then added to the result from the multiplier side. Rounding in this case is similar to
that for a multiplier because there are only two shifting possibilities during alignment:
right shift and no right shift.

e Case 2: When F,4, < E,, Sand C have to be right shifted for alignment. As pointed
out before, the two 53b shifters actually span 106b, preserving the lower-order bits of S
and C. On the multiplier side, S and C are added and rounded as usual. The rounding
constant from the multiplier side rasy is now known. This rounding information is
passed on to the rounding logic in the adder side. Based on the shift distance, this
rounding logic creates a rounding mask, which consists of a string of 1~ followed by
a string of 07 The transition point determines the location of the carry point. This
mask is needed to compute a rounding constant ra4q of the proper weight for the
adder side because S and C are now shifted. rar, determines the number of masks
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to be applied. This aggregate rounding mask, S, C, and c are then added using a row
of 4-2 adders. Rounding in this case defaults to the first case and is therefore not a
problem.

e Case 3: When E,y; — E. < 2, ¢ needs to be shifted by at most 2 bits. This is just
a simple 3-1 muxing step. The shifted result is then passed on to the CSAs in the
multiplier side. Since c is at most shifted by 2 bits, rounding is not a problem because
these two bits can be examined and and action taken accordingly.

e Case 4: When E, 4, — E. > 2, both S and C have to be shifted by at least 3 bits. This
case is only slightly more complicated than case 2 because we now have to complement
S and C.

e Case 5: When E. - F,x; < 2, S and C have to shifted by at most 2 bit. This muxing
step happens at the CSAs in the multiplier side. Rounding in this case presents a
problem because S and C are not added and we therefore dont know if there is
to be an overflow to determine rpg,;. This information must be computed using a
carry-lookahead tree.

e Case 6: When E. — FE,xp > 2, both S and C have to be shifted. This case is
only slightly more complicated than Case 1 because we now have to account for
complementation. But as far as rounding is concerned, it can be treated as Case 1.

An interesting question is how many outcomes do we have to compute in each path for
correct rounding? In the path that S and C have to be shifted (by at least 3 bits), the
rounding mask can at most contribute a constant of 3 x 0.0625. This is because 1 pp, can
at most be 3 and S and C are right shifted by at least three bits. The sum of S and C
ranges [0,2). Thus, the range of the fraction is [0,2.1875). The integer portion of 2.1875
will overflow into the result and plays no part in rounding. In the round-to-infinity modes,
the fraction 0.1875 causes a rounding 1”to be added when the result does not need a right
shift during normalization or a rounding 2" when it does. Hence, we need to to compute
up to five outcomes: S + C + (0,4). The compound adder in this path must be of 51 bits.
In other words, the carry point must be at this bit position.

In the other path where ¢ has to be shifted by at most 2 bits, the sum of S and C again
ranges {0,2). ¢ contributes up to 0.75 (i.e., both LSBs of ¢ are 1). The range is therefore
[0,2.75). Again, this requires 5 outcomes to be computed and a compound adder of 51 bits.
The compound adder need not compute the 5 outcomes simultaneously. -, determined by a
rounding logic, is added to S and C in the CSA step. The compound adder only computes
the two results: S + C + + + (0,1).

4 Latency and Hardware Comparison

4.1 Delay Assumptions and Latency Comparison

Table 2 lists the latencies of the major components in the above implementations. These
latencies are based on estimates and actual simulation. All latencies are normalized with

11



complex gate implements 3 maxterms with at most 3 literals. The adder uses a conditional
sum algorithm for the local sum logic and a modified Ling scheme for propagating the global
carry [14].

An X-bit left or right shifter takes the same time as an adder of the same length.
Txs_rop is roughly ten percent slower than Txp_44q4. ES computes the absolute difference
of the exponents and is essentially an llb subtraction step, which has a delay of 0.67. Tcs4
takes 0.2T because it has two XOR gate delays, which is roughly equal to a complex gate
delay in the adder. TCSA(4_2) reduces 4 inputs into 2 with a hidden carry-in and a hidden
carry-out. Its gate delay is slightly larger than TCSA). Tr is the delay of the rounding
logics, which are assumed to be the same for all implementations.® The latency of an adder
increases logarithmically with size, allowing one to compute its rate of increase. But since
we are mainly interested in adders of sizes 53b, 106b, and 159b, there is a simpler way.
Because a 53b adder has a delay of 5 complex gates and a 106b one has a delay of 6, a 106b
adder has a 20% larger latency. Similarly, a 159b adder has a delay of 7 complex gates,
therefore Tis0p_adq = 1 AT53p_add.

Table 2: Delay Assumptions for CMOS Implementations

| Item Notation Delay
53b add Ts3b_add T
53b right /left shift T53b_R/LS T
53b leading-one prediction Ts3p_rop 1.1T
53b increment Trne 0.8T
llb exponent subtraction TEs 0.6T
53b mux selection TMuz 0.2T
3-2 carry-save add Tesa 0.2T
4-2 carry-save add Tcsa-2) | 03T
Round logic Tr 0.2T
53x53b partial product reduction | Tpgr 2.0T

Applying the delay information, Traspy in Egn (1) is:
Trmpy = (2+02+4+1+402402)T+ Tyrmpy)
= 3.6T + Tyrmpy)
and
Trapp = (06 t1t02t1t2t2x02)T + Tyrapp)
= 34T + Ty(rapD)

Note that since Ty (rapp) > Tw(rmpy), TFaDD = Trmpy . Table 3 lists the latencies of
the MAC, Greedy, and SNAP implementations obtained from Eqns (3)-(8). The latencies
for the IBM RS /6000 implementation are computed using the following latency equations:

“This assumption is likely to place an unfair advantage for the Greedy implementation.

12



T.MAFRsse000 = TPR + Tcsa + TisovLop + Tises s + TR + Trne + Thuz + Tou(rs/e000)

and
T‘FADDRS/SOOO = T-AMAFRS/GOOO

The following observations on Table 3 are interesting. First, MAC has the smallest
FADD latency; hence, for applications which have a high percentage of stand-alone FADDs,
MAC is not a bad strategy. Second, SNAP has the smallest MAF latency and is the
implementation to be preferred if latency is the main concern. Third, the MAF latencies
of RS/6000 and Greedy are only slightly better than MAC, but their FADD latencies are
considerably worse. Finally, Greedy is faster than RS/6000. The former is IEEE compatible
but the latter has higher internal data precision, which requires wider and therefore slower
datapaths. In short, we have:

T MAFsyap < T'MAFGreedy < T MAFpac < T-MAFRS/GOOO (9)

and
T.FADDMAC < T.FADDSNAP < T.FADDGTeedy < T-FADDRS/SOOO (10)

Table 3: Comparison of latency of the three MAF implementations

Design Item Latency

MAC MAF 7.07 + Tymac)
FADD | 34T + Tw(FADD)
Greedy MAF [ 59T + T\ (Greedy)
FADD 5.9T + TwLG"reedy)
SNAP MAF | 53T + Ty (snap)
FADD 3.5T + Tw(SNAP)
RS/6000 | MAF | 6.4T + T\ (rs/c000)
FADD 6.4T + Tw(RS/GOOO)

4.2 Area Assumptions and Hardware Comparison

For comparison, the hardware cost of each component has been listed in Table 4. The
cost is based on estimates and on actual layouts in a 3-metal CMOS technology. All im-
plementations are assumed to be static. All costs are normalized with respect to that of
a 53b compound adder. Since most high-speed adders use a conditional sum algorithm, a
compound adder doesnt use significantly more hardware than a regular one. Hence, we
assumed that Ass,_cra = Assp_ade = A. The area of a shifter is slightly more complicated
to determine because an X-bit shifter could mean either its maximum shifting distance is
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X bits or the shifter actually spans X bits.” The latency of a shifter is determined by its
maximum shifting distance while its area is determined by its span and to a lesser extent
by its shifting distance. In the SNAP implementation, for example, both right shifters shift
a 53b input by at most 53 bits. But the shifters have to keep the bits that are shifted
out for rounding, spanning therefore 106 bits. Thus, its latency is T53b_R/LS but its area is
Aq06s_Rr/Ls- Similar remarks hold true for the right shifter in the IBM RS/6000 implemen-
tation; the input of the shifter has 53 bits, but the shifter has to shift a maximum of 160
bits. Arpp is the area of an LOP circuit and Axy_rop = Axb_add- We assumed that the
area of an adder increases linearly with its size. This assumption is reasonable for the sizes
of the adders used in this study.

Table 4: Area Assumptions for CMOS Implementations

| Item | Notation | Area |
53b add A53b_Add A
53b carry-lookahead add Assb_oLA A
53b right/left shift Asz_r/Ls | 054
53b leading one prediction | Arop 0.54

Table 5: Total hardware costs in the three MAF schemes

Type MAC Greedy SNAP R 6000
Unit | Size(b) | Unit|Size(b) | Unit | Size(b) | Unit | Size(b)
Wallace tree 1 53 x 53 1 53 x 53 1 53 x 53 1 53
Right shifter 1 53 1 106 2 106 1 159
Left shifter 1 53 1 106 1 53 1 159
ComAdd (FADD) 2 53 0 Shared 2 53 1 159
ComAdd (FMPY) 1 53 1 106 0 Shared 0 shared
LOP 1 53 1 106 1 53 1 159
CLA (round) 1 53 2 53 2 53 1 53

Table 5 lists the hardware components in each implementation. The “Unit” columns
indicate the number of components used; a zero entry in this column means that the com-
ponent is shared between FADD and FMPY. In all implementations, a CLA adder is needed
to sum up the lower-order 53 bits of S and C for rounding.® The FADD of MAC requires
two compound adders because of the two-path arrangement. Greedy requires a 106b right

"It could also mean the size of the input to be shifted.
Though there are implementations which do not require CLA adders [8, 15], we ignored such a possibility
in this study.
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shifter and a 106b left shifter. The logic in the right shifter needed to compute the sticky
bit is ignored, as is the case with other implementations.

From Tables 4 and 5, the hardware costs of the implementations are computed and
listed in Table 6, where A, playing a similar role as the T,’s, represents the area occupied
by wires. From the table, we have the following relationship:

Apmac < AGreedy < Asnap < ARs/eo00 (11)

Table 6: Hardware cost comparison of the three MAF implementations

Design | Hardware Cost |
MAC | Apr + 554 + AyrapD) + AwFMPY) |
I Greedy | App+TAT Aicrecdn \
| SNAP | Apr t TA t Aisnap |
I RS/6000 | Apg +8.5A+ A,.(rs/6000 I

ASNAP > AGreedy because Ay, (snap) > Au(Greedy). Because of the higher internal data
precision, the IBM RS/6000 implementation consumes more hardware than the implemen-
tations considered in this paper, with MAC consuming the least. In terms of percentage,
however, the hardware increases in all implementations over MAC are likely small because
of Apgr, which dominates the overall hardware consumption.

Table 7 summarizes our findings with MAC used as a reference. The symbol plus
(+) means increase and minus (-) means decrease. Double pluses (++) means increase
significantly and likewise for double minuses (-). From the table, we see that MAC has
low FADD time and uses less hardware than Greedy and SNAP. But its MAF time is high.
Greedy trades FADD time, hardware, and rounding complexity for low MAF time. Finally,
SNAP has low MAF and FADD times at the expense of hardware and design complexity
— rounding and wire complexities. When rounding for the IEEE standard is not a goal (so
that rounding is no longer a complication), Greedy and RS /6000 seem a reasonable middle
ground for designs intended for applications with a high MAF to FADD ratio.

Table 7: Advantages and disadvantages of the implementations

Design |T.MAF T.FADD Hardware cost Wire Complexity Rounding Complexity

MAC = = = = =

Greedy - tt ~ tt

t
SNAP - =~ t tt tt
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5 Limitations

This study has several limitations. First, we assumed a particular implementation for FMPY
and FADD. This limitation is not as sever as one might think because the FADD and FMPY
algorithms used in this study can be shown to have a minimum number of operations.
Second, we used latency and hardware cost as the performance metrics. Another important
metric not considered in this paper is the throughput rate. This is to avoid the issue of
pipelining, in which, some of the latency in an operation may be hidden in a subsequent
operation. In the IBM RS/6000 implementation, for example, rounding is done in the
subsequent pipeline stage. A related issue is how to pipeline an implementation effectively.
A low latency implementation may be more difficult to pipeline than a higher latency one;
this latency advantage therefore may not show up after pipelining. Third, we did not
consider the effect of MAF on register and instruction bandwidths and on the complexity
of the FP unit controller. We believe, however, that this effect is likely small. Finally, we
assumed that the operations in FADD and FMPY are atomic. A finer-grain overlapping
strategy may produce a better result. It might be possible to design a partial product
reduction hardware that can shift and multiply at the same time.

Future studies should address these two open questions: (1) how much hardware increase
does an MAF instruction justify? and (2) what MAF (IEEE or RS/6000) — if at all — is
better?

6 Summary and Conclusions

Multiply-add-fused (MAF) provides a viable way to increase the performance of an floating-
point (FP) unit. The IBM RS/6000 implementation started with different assumptions on
the critical paths of an FP multiplier and an FP adder, resulting in a design that is sub-
optimal in MAF latency.

In this paper, we first presented a high-speed FP multiplier and an FP adder designs.
We then investigated three possible strategies to overlap the operations in these FP units:
(&) non-overlapped, (b) fully-overlapped, and (c) partially overlapped. The first strategy
corresponds to multiply-add-chained (MAC) used in vector processors. The second (Greedy)
strategy uses a greedy algorithm, yielding an implementation similar to the IBM RS/6000
one. The third and final (SNAP) strategy uses a less aggressive starting configuration.

We showed that (1) MAC has the lowest FADD latency and consumes the least area,
but its MAF latency is the highest. (2) Greedy has an intermediate MAF latency but the
highest FADD latency. And (3) SNAP provides the lowest MAF latency at the expense
of a small increase in FADD latency over MAC and in area over Greedy (Eqns (9)-( 11)).
Both Greedy and SNAP have higher design complexity arising from rounding for the IEEE
standard. SNAP has an additional wire complexity, which Greedy does not have because
of its simpler datapath. This additional wire complexity manifests itself mainly in the
form of higher area consumption and increased design complexity. If rounding for the
IEEE standard is not a requirement, the Greedy strategy — and the RS/6000 — seems a
reasonable middle ground for applications with high MAF to FADD ratio.
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