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Abstract

Self-calibration refers to the use of an uncalibrated measuring instrument and
an uncalibrated object called an artifact, such as a rigid marked plate, to
simultaneously measure the artifact and calibrate the instrument.  Typically,
the artifact is measured in more than one position, and the required
information is derived from comparisons of the various measurements. The
problems of self-calibration are surprisingly subtle. This paper develops
concepts and vocabulary for dealing with such problems in one and two
dimensions and uses simple (non-optimal) measurement procedures to
reveal the underlying principles. The approach in two dimensions is
mathematically constructive: procedures are described for measuring an
uncalibrated artifact in several stages, involving progressive transformations
of the instrument’s uncalibrated coordinate system, until correct coordinates
for the artifact are obtained and calibration of the instrument is achieved.
Self-consistency and transitivity, as defined within, emerge as key concepts. It
is shown that self-consistency and transitivity are necessary conditions for
self-calibration. Consequently, in general, it is impossible to calibrate a two-
dimensional measuring instrument by simply rotating and measuring a
calibration plate about a fixed center.
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Introduction

The purpose of this paper is to develop concepts for a theory of two-
dimensional self-calibration and to derive some basic principles stating

conditions under which self-calibration is possible.”  Self-calibration
procedures are described, but the procedures are not optimized. Emphasis is
placed on developing straightforward procedures that can be analyzed easily
to reveal fundamental issues of self-calibration and to demonstrate
fundamental principles. The problems of self-calibration are surprisingly
subtle, and | have found it convenient to introduce a special vocabulary for
dealing with them. The glossary, therefore, is an important part of the paper.
To make the ideas of the paper accessible in more than one way, | have made
the figures and the glossary somewhat self-contained. The principal sections
are:

. Preliminary Examples and Definitions

. Self-Calibration Illustrated in One Dimension
o Self-Calibration in Two Dimensions

. Summary, Conclusions, and Exercises

d Glossary

Preliminary Examples and Definitions begins by defining calibration
and discussing the dual relationship of calibration and measurement. Three
examples of calibration and measurement are given to contrast standard
calibration problems with self-calibration problems and to illustrate the
concept of transitivity. At least on the face of it, the two kinds of problems
appear to be very different. The concept of self-consisfency is introduced. Ball
plates and Coordinate Measuring Machines (CMM), well-known devices in
metrology, are used to illustrate two-dimensional problems. They are
described briefly, and references are supplied for readers who are unfamiliar
with them. Axioms regarding coordinate systems are formulated, and
coordinate patches are defined.

Self-Calibration Illustrated in One Dimension presents more new
vocabulary in the simplest context, namely, on the line and on the
circumference of a circle. Simple examples of the use of self-consistency and
transitivity are given. The concepts of determinacy, and indeterminacy are
introduced.

Self-Calibration in Two Dimensions, the main section of the paper,
uses examples of ball plates and Coordinate Measuring Machines to develop a
theory of two-dimensional calibration. The problem posed is whether it is

1 ltalics are used to introduce terms that are either new or of special importance in the
exposition. Most of the italicized terms are defined in the text and in the glossary and may also
be defined in the figure captions.




possible to calibrate a two-dimensional measuring instrument by measuring a
rigid pattern of points in various placements on the measuring plane of the
instrument, if the pattern is not known or is known imprecisely. The main
result is a formulation of the fundamental principle of self-calibration, which
states that self-calibration is possible only if the measurement procedures are
transitive.  Constructive procedures are explained for deriving a calibration
from appropriate self-calibration procedures.

The Summary, Conclusions, and Exercises summarizes the results of
the paper, suggests some future directions, as, for example, calibration in
three dimensions, and proposes exercises that extend the theory. It also
describes briefly some connections with Raugh (1985).

The Glossary gathers into one place the terms that have been italicized
in the text. Many of the words have been given new meanings, which may
cause difficulty on first reading. To alleviate confusion, the glossary contains
definitions and cross-references so that the reader may see how the new terms
are interrelated. Many of the more important terms are repeatedly defined in
the text or footnotes and in the figure captions.

Preliminary Examples and Definitions ;
To calibrate means to assign physically meaningful and correct numerical
values or coordinates to the graduations of a measuring device, as for
example on a ruler or a thermometer. As viewed in this paper, calibration
goes hand-in-hand with measurement -- they are dual operations.
Ordinarily, measurement standards are used to calibrate a measuring device.
Conversely, calibrated measuring devices are used to measure objects. Thus,
measurement and calibration problems are chicken-or-egg. This is what
makes the problem of self-calibration, i.e., the problem of using an
uncalibrated measuring device to measure an uncalibrated object, so
interesting and challenging.

When we speak of measuring an object, such as a pattern of grid points
or VLSI-circuit features, we mean either finding coordinates for points of the
object in a well-defined coordinate system or else determining the shape of
the object by some other means, as for example measuring the angles, or the
lengths of the legs, of all the triangles that can be drawn between any three
points of the object. For example, measurement of a two-dimensional pattern
of grid points can mean either determining all the internal angles of the
object or determining coordinates for the grid points in an orthonormal




coordinate system.2 To measure an object accurately, ordinarily a calibrated
measuring device must be used.

Conversely, when we speak of calibrating a measuring instrument, we
have in mind a device that can assign coordinates to the points of a measured
object, but the coordinate system of the device is systematically inaccurate.
Usually the measuring instrument will contain some unknown curvilinear

component of distortion.3 For example, in two-dimensional metrology
using, say, a metrology tool or an electron beam lithography system, laser
interferometers are used to track the motion of a measurement stage on
which the object to be measured is mounted, or to track a probe that moves
over the object from point to point. But, because of the typical imperfections
of machinery, such tracking mechanisms do not yield precisely orthonormal
coordinates. To underscore the fact that raw instrument coordinates contain
systematic error, | sometimes refer to them as coordinate markers. They are
akin to the graduations of an uncalibrated thermometer or measuring stick,
and they need to be calibrated. So, by calibration of the instrument, | mean a
process of determining a transformation of the instrument’s coordinate
markers to a well-characterized coordinate system, in effect eliminating the
distortion. In this paper, such a corrective transformation is called a
calibration function, or calibration mapping (or, simply, calibration); here it is
assumed that the effect of calibration is to transform an instrument’s
coordinates into an orthonormal coordinate system. (See Figure 1.) To
calibrate an instrument, we need to compare the instrument’s coordinate
system with an accurately measured object.

There are many approaches to calibration, which superficially seem to
be quite different but on deeper analysis are all similar. Three examples
follow. The first is actually an example of measurement that highlights the
intimate relationship between measurement and calibration. The second
example illustrates a classical calibration problem, which | refer to as the
standard problem. The first two examples illustrate transitivity, which,
conceptually, involves the direct or indirect comparison of all lengths and
angles of an object to one another. More precise definitions will emerge later
in the paper. The third example illustrates the problem of self-calibration. A
theme developed in the paper is that, even in self-calibration, the all-

2By orthonormal coordinate system, | mean the kind of coordinate system used in classical
analytic geometry familiar to anyone who has studied calculus, namely the Cartesian method
for handling euclidean geometry in a systematically algebraic and numerical way. See
Glossary.

3In other words, if a straight line, or grid of equally-spaced straight lines, half of which are
oriented at right angles with respect to the other half, is measured on the measuring
instrument, and the coordinate markers are plotted out on orthonormal graph paper, then some
or all of the straight lines will be plotted as curved lines, and the curves will no longer
necessarily be equally spaced or cross each other at right angles.
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Figure 1. Calibration interpreted as a mapping. Two coordinate systems are used to
illustrate the problem of calibrating a measuring instrument. An uncalibrated object to
be measured by an uncalibrated instrument is shown at the upper left. The (v, v)-
coordinate system at the upper right refers to actual machine measurements, i.e., the
coordinates that the machine itself assigns to the points of the measurement plane. When
an object such as the rectangular grid on the upper left is measured and its image plotted
on orthonormal graph paper as shown in the Machine Coordinate Space at the upper
right, the image of the object is distorted by the non-orthogonality (or curvilinearity)
of the instrument’'s coordinate system. The distorted measurements are represented
symbolically by the mapping D. The plotted image is all you can see -- you cannot see
the true shape of the object. The problem of calibration is to find a mapping C that
transforms the instrument coordinates (u, v) into coordinates, say (X, y), which, when
plotted on orthonormal graph paper, yield a non-distorted image of the object, as in the
Machine Calibration Space at the lower center. Calibration, in the sense employed here,
allows that the size, position, and orientation of the image at the lower center may differ
from the original object, but the shape must be the same.




embracing self-comparison, i.e., transitivity, is a necessary feature of valid
calibration procedures.

First Example of Calibration: Topographical Surveys. Surveyors measure a
topographic domain using calibrated instruments when they determine
accurate coordinates, such as longitude, latitude, and elevation, for a subset of
the natural features of the land or for an array of benchmarks on the land. By
forming a chain of interlocked triangles and determining coordinates for each
vertex throughout a domain, they can reference all points of interest to
known vertices. The land thus surveyed becomes a sort of calibrated
instrument in the sense that future local surveys can use the original
benchmarks for interpolating coordinates for additional features of the land.
The process of surveying is one of derivation of coordinates from
triangulation measurements. It is important to note that in this process, the
surveyor carries with him surveying tools to serve as accurate standards of
length and angle against which to measure local features. For example, the
surveyor may use a theodolite to measure vertical and horizontal angles and
a laser-ranging instrument to measure distances, or a tachymeter, which
performs all of these functions in one device. Thus an angle or length at one
station on the land can be compared with an angle or length at another
station through the mediation of such portable instruments. When multiple
instruments are used by cooperating surveying parties, even the transits,
theodolites, and tachymeters themselves must be compared, either one to
another, respectively, or each to an appropriate standard, to ensure mutual
consistency. The instruments, in other words, must be calibrated. This
process of comparison through the mediation of calibrated instruments
makes use of the logical principle of transitivity, namely, the fact that “two
guantities equal to a third are equal to each other.” The example shows how
each measurement depends upon the use of some previously calibrated tool.
Through additional examples, we shall see that implicit or explicit mutual
comparison is universal in calibration problems.

Second Example of Calibration: Standard Calibration. A measuring
instrument is known to distort measurements and we wish to calibrate it. A
measurement standard, i.e. an accurately measured grid plate or other artifact,
is used such that, for example, each point of the grid is referenced to an
orthonormal coordinate system with a degree of accuracy exceeding the
reproducibility of the instrument. The measurement standard may have
been obtained from the National Institute of Standards and Technologies
(NIST). How it was made is of no concern; we just need to know that the
given coordinates are accurate. Suppose that the standard grid plate is
fastened to the measuring plane of the measuring instrument, and a least-
squares method is used to fit a mapping function of the measurements to the
known coordinates of the grid. The function determined in this way is a
calibration mapping. In this example the grid itself serves to convey a
measurement standard to each local region of the instrument’s measurement



domain. In a sense, the grid does for the instrument what the surveyor and
his portable measuring instruments do for uncharted territory. The analogy
goes deeper inasmuch as the standard grid was probably made and measured
by a process strictly comparable to the surveyor’s method, using tools such as
rulers and protractors (or more precise equivalents) that were moved through
the “territory” of the grid to determine the angular and length relationships
among the grid points. Thus, the principle of transitivity is involved in the
mutual comparisons of lengths and angles, respectively, that are implicit in
the measurement process.

Third Example of Calibration: Self-Calibration. We want to calibrate an
instrument for which there is neither a convenient measurement standard
nor a convenient means of conveying a standard to each local portion of the
instrument’s measurement domain. This problem exists, in particular, in
high-precision lithography, wherein VLSI circuits are printed on a scale of
precision for which no correspondingly accurate standard grid can be
manufactured at this time. The problem seems to be quite different from the
first two examples. It appears that the only means of testing measurement
accuracy for this kind of problem is to measure a rigid, complex pattern, such
as an uncalibrated grid, in more than one position on the measuring plane,
and to compare the results. Hopefully, we can deduce both a calibration for
the instrument and accurate determination of Cartesian coordinates for the
rigid pattern directly from the measurements. This approach to calibration is
called self-calibration because the instrument is used to calibrate itself.
Actually, it is more correct to say that the instrument and the unmeasured
pattern are used together to calibrate and measure each other simultaneously,
illuminating the duality of calibration and measurement. It is this kind of
problem that concerns us in this paper.

The third example of calibration, self-calibration, appears to be different from
the second example of calibration because it does not use an accurately
measured standard to test the performance of the instrument to be calibrated.
Nevertheless, the multiple measurements of the pattern used in the third
example can be compared to one another. In fact, in the absence of a
measurement standard, these self-comparisons can serve to make the pattern
itself a substitute for a measurement standard. This gives rise to the notion of
self-consistency, as defined below. It will turn out that self-consistency and
transitivity are the kev concepts in self-calibration.

Self-Consistency and Machine Coordinate Space. The idea of self-consistency
arises in the following way. Suppose that we have a calibrated two-
dimensional measuring instrument that gives correct Cartesian coordinates
for measured points. Suppose, then, that we use the instrument to measure a
distinctive pattern of points on the surface of a rigid plate. For example, let
the points be arranged in the shape of a cat. If we plotted each of the



measured points on orthonormal graph paper, we should expect to see an
undistorted image of the cat, although the image may be of a different scale,
either larger or smaller than the original. Furthermore, if we moved the
rigid plate to another position on the instrument’s measuring plane,
remeasured it, and plotted the new set of points, we should expect to see a
second image of the cat on the graph paper, identical in size and shape to the
first image but in a different position. Likewise, if we continued to move the
rigid plate to various positions on the measuring plane, remeasured the
points and plotted them, we should see various identical images of the cat in
correspondingly various positions. The point of all this is that, if the
measuring instrument is calibrated, then various images of the same object
should all be congruent to each other. In other words, all the images of the
object would be of identical size and shape. Self-consistency is the term | use
to say that a specific set of images of a measured artifact are all congruent to
one another, without regard to the shape of the original pattern of points.
Thus self-consistency is a necessary property of a calibrated measuring
instrument, so it is natural to ask whether self-consistency among a specific
set of images of a measured object is also sufficient to determine that the
measuring instrument is calibrated. This is the key question of the paper.
Before taking it up, | want to discuss self-consistency in more detail.

Note that the term self-consistency is used with respect to a
combination of factors, namely, 1) a specific measuring instrument and its
coordinate system, 2) a specific artifact to be measured by the instrument, 3)
specific procedures for measuring the artifact in a finite number of positions
on the instruments measuring plane, and 3) the resulting measurements and
plots of the measurements on Cartesian graph paper. For example, suppose
that the artifact is a pattern of points spread out randomly on a rigid grid
plate. First, let the grid be fastened in some position on the instrument’s
measuring table and the points of the pattern be measured in a specified
order. Let the coordinates of the machine be denoted by (u,v), and denote the
actual measurements for the n points by (ul. , 0, ), where i runs from 1to n.

The measurements thus obtained can be thought of as the image of the
pattern in the machine coordinate space of the measuring instrument. The
image can actually be depicted on orthonormal graph paper, as follows,
although in general the result will be a distortion of the true shape of the
rigid pattern if the measuring instrument is uncalibrated. Let the coordinate
axes of the graph paper also be designated by (u,v). For each measured point
(u;,v.), plot the graph-point (u;, v.). Second, remove the rigid plate and

reposition it in some approximately known position on the measuring table.
Now, once again measure the pattern points in the same specific order as
before, then project the image of the pattern onto the same graph paper
exactly as before. This same process of repositioning the pattern plate,
remeasuring the pattern points, and projecting the points onto the (u,v)-
image plane, can be repeated as often as is practicable. In general, the



resulting pattern images will all differ in size and shape from the original
pattern. And, of course, their orientations will be as varied as were the
orientations of the rigid pattern in its various placements on the measuring
table. But the deciding question is whether all of the pattern images are of the
same size and shape as each other, i.e., whether they are all congruent to each
other. If so, | say that the machine’s (u,v) coordinate system is self-consistent
with respect to the given set of measurements. Remember, we are asking
only whether the images are congruent to one another, not whether they are
congruent to the original pattern!

It is important to note that self-consistency is an observable
phenomenon, whether or not the measuring instrument is calibrated. We
only have to compare the plotted pattern images with each other, without
regard to the original pattern. As noted above, if the measuring instrument is
calibrated, then any set of measurements will be self-consistent. But if we are
using an uncalibrated measuring instrument, we cannot observe whether the
plotted images are of the same shape as the original pattern because the
instrument gives distorted coordinates. Therefore, a useful theory of self-
calibration must enable us to know under what conditions a self-consistent
coordinate system may be known to project images of correct shape, i.e., to
know whether the coordinate system is calibrated. (See Figure 2.)

To restate the definition, self-consistency of the coordinate system
(with respect to a set of measurements) means that the images of the pattern
in the machine coordinate space of the instrument all have the same shape
(when plotted on orthonormal graph paper), though indeed they may be
oriented at a variety of positions corresponding to the variety of positions of
the pattern on the measuring plane. Note that a calibrated coordinate system
must exhibit self-consistency not only with respect to the given pattern and its
various placements in the measurement plane but for arbitrary patterns in all
conceivable placements. But the converse is not necessarily true. As we shall
see, it is possible for an uncalibrated system to project a set of self-consistent
images.

Self-Consistency and Machine Calibration Space. We need to take the
argument one step farther. Suppose that we have an uncalibrated measuring
instrument, an uncalibrated artifact to be measured by the instrument, and a
series of placements and measurements of the artifact on the measuring
plane, as described above. Moreover, suppose as above that each set of
measurements of the artifact are imaged on Cartesian graph paper, but the
resulting images are not self-consistent. In this case, we might be able to find
a transformation C of the machine coordinates, in other words a mapping
from the (u, &coordinate system to another Cartesian coordinate system (x,
y) such that the images in the (x,y) system are self-consistent. | call this new
coordinate space machine calibration space. (See Figure 1 again.) The crucial
guestion is to determine whether there are conditions under which self-
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Figure 2. Self-consistency illustrated by cats. The pattern of points on the left, in the
figure of a cat, is measured by a measuring instrument in three separate placements on
the instrument’'s measuring plane. Each set of measurements is plotted on Cartesian
graph paper as illustrated, respectively, on the right, resulting in three images that are
located in different positions but are all identical in size and shape. That is to say, all
the images are congruent to each other. When this situation arises for a given series of
measurements of an object in various positions, in which the resulting images are all
congruent to one another, the measurements are said to be self-consistent. It is
important to note that if the measuring instrument is calibrated, then the various
images on the right that are all congruent to one another will also be of similar shape to
the original object on the left but may be of different size. However, if the measuring
instrument is uncalibrated, then the images may be of different shape than the original
object, as in the illustration. The problem of self-calibration boils down to determining
conditions under which self-consistency is a sufficient condition for calibration.
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consistent mappings in this sense are necessarily correct calibrations, and; if
so, whether it is possible to use the raw measurements to derive such a
calibration mapping C. The answer is that practical procedures can be
implemented to derive a valid calibration, but, as hinted earlier, the
procedures must satisfy transitivity criteria that will be developed in later

sections.4

The Local Linearity of Machine Coordinates. We turn now to consider the
way in which a measuring instrument assigns coordinates to points in space.
Suppose that we have. a two-dimensional measuring instrument. Flat objects
may be placed upon the measuring plane of the instrument, and machine
coordinates may be obtained for any point designated on the flat object. The
calibration problem arises when the exact nature of the coordinate system is
unknown. It has been said that we wish to have orthonormal coordinates but
that the machine departs from this ideal in some unknown curvilinear way.
Without real loss of generality, | suppose that the coordinate function, i.e. the
mapping that assigns coordinates to points of the measurement plane, is a
suitably smooth, one-to-one invertible mapping of the plane (e.g.,
continuously differentiable with non-singular jacobian). In that case, the
coordinate function may be regarded as linear to first order in a small
neighborhood of each point.> This local linear function may vary from place
to place. Generally, the local linear coordinates will not be orthonormal. For
the sake of simplicity, | idealize the situation by supposing that at each point
the coordinate system is exactly linear, at least within a small neighborhood
of the point, and that there exists a practical means of transforming the local
linear coordinates to orthonormal coordinates. In other words, | will assume
as axiomatic that each point is contained in a small neighborhood throughout
which we can obtain a perfectly orthonormal coordinate system. There is
little loss of generality because it is theoretically possible to take a
neighborhood small enough so that our calculations will be

4Vocabulary adapted from mathematics is introduced throughout the paper. At aopropriate
locations an explanation for each adapted term is given, accompanied by refererce to its
mathematical usage, as for example the word transitivity, the meaning for which will be
refined in later footnotes.

SNote that such a coordinate function, or mapping of points of the plane to points of a ccordinate
space, implies that the points of the plane may be represented in terms of some "correct"
underlying coordinate reference system. Because we generally assume that we operate within
a euclidean universe, we may suppose that the underlying reference frame is crthonormal.
Note, however, that such a reference frame is a purely theoretical construct. In fact, if we
had an explicit representation of the machine coordinates as a transformation of ccordinates
from such an orthonormal frame to the coordinate space, there would be no need of calibration
-- the inverse of the coordinate transformation would provide a calibration functicn. Now,
regarding the coordinate function as such a transformation, we see that the lccal linear
approximation to the coordinate function is given by the differential of the transformation
(Buck 1965, 263). The linear transformation so obtained is also referred to as the tangent
linear transformation, andits coefficients are given by the jacobian matrix of the
transformation (Protter and Morrey 1964, 505-507).

10
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Figure 3. Magnified view of three Coordinate Patches. IT represents the measurement
plane of a two-dimensional measuring instrument. Three local regions are shown, in
each of which it is assumed that the machine’'s coordinate system yields linear
coordinates that are not necessarily orthonormal but can be made orthonormal as shown
in Figure 3 by a process described in the text. The coordinate system in each such local
region is called a Coordinate Patch (CP). It is assumed that the local coordinate systems
vary from place to place on the measurement plane in some unknown way. And the
relative scales of the various axes, angles of inclination of the various axes to each
other, and positions of the origins are unknown. This is a simplified representation of
an instrument-coordinate system that is curvilinear in an unknown way.
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as accurate as need be. | refer to such a neighborhood as a coordinate patch
(CP).8 (See Figure 3.

Ball Plates. We are now nearly finished with the preliminary examples and
definitions and will soon embark on the development of a theory of self-
calibration. This is a good place to pause for a moment and reflect on where
we are heading. The basic ideas and principles of self-calibration will be
developed in a progressive series of examples. We will start in the next
section with the simplest examples in one dimension. The examples are
trivial, but they allow us to easily illustrate the importance of self-consistency
and transitivity. Afterwards, in the following section, we will turn to the
more challenging problem of calibration in two dimensions. For the latter
case, | had to make a choice. | could have used flat plates with various kinds
of patterns of points on them to illustrate the problems. Such an approach
would be the most straightforward mathematically. But | decided instead to
use the more concrete examples of ball plates. The nature and calibration of
ball plates, and Coordinate Measuring Machines (CMM) used by metrologists
to measure ball plates, has been treated in early papers by Reeve (1974) and
Hocken & Borchardt (1979). | recommend these papers to readers who are
unfamiliar with these devices. | hope that this choice enables the reader to
more easily imagine practical procedures in the discussion of self-calibration
in two dimensions. Before proceeding, I want to give a brief introduction to
ball plates and outline some of the mathematical issues concerning their use
in calibration.

A ball plate consists of very accurately turned and well-matched small
spheres mounted securely on a dimensionally stable plate. For my purpose, |
assume that each ball is small enough to lie entirely within a coordinate patch
of the Coordinate Measuring Machine that will be used to measure it. | also
assume the following. The ball plate can be mounted on the stage of a
Coordinate Measuring Machine, whereupon the spheres can be probed and
measured. The multiple measurements taken at the surface of each sphere
can then be used to determine and correct the metric properties of the
Coordinate Measuring Machine in the locality of the particular sphere. There
are subtle problems in using such local measurements to rectify local
coordinates. | assume that by probing the circumference of a perfect circle, or
the surface of a perfect ball, a nearly perfect orthonormal coordinate system

can be derived for a small neighborhood around the ball.7 This assumption

6The term coordinate patch is borrowed from the theory of surfaces, where it is used to
designate a local coordinate system (Protter and Morrey 1964, 604).

7Assuming that the coordinate system is strictly linear in the neighborhood of a point, this
could be done in two dimensions by measuring a small number of points on an arc of a circle. As
few as five such points can be used to determine a transformation of the local coordinate
system to an orthonormal coordinate system. This fact may be deduced from the polar
decomposition theorem, which states that any linear transformation is equivalent to a rotation
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may or may not be practical for real calibration, but I assume it as axiomatic in
order to examine the fundamental issues. Furthermore, although a ball plate
extends into three-dimensional space, | assume that the elevation is relatively
slight enough that the three-dimensional coordinates obtained for the surface
of each ball can be projected onto the two-dimensional plane without loss of
accuracy. By this assumption, | regard a Coordinate Measuring Machine as
essentially a two-dimensional measuring device. (See Figure 4.)

Self-Calibration Illustrated in One Dimension

The Line L and Circular Arc C. Our objective is to understand self-calibration
in two dimensions. Several key concepts can be illustrated easily in one
dimension. Consider the examples of an infinitely long straight line L and
the circumference C of a circle centered at P. We begin with the observation
that there are two basic motions of a rigid object: translation and rotation.
Accordingly, we imagine translations of L (or subsets of L) upon itself and

rotations of C (or subsets of C) about a center 7.

Self-Calibration on L and C. There are two distinct approaches to calibration.
The classical approach to calibration is to compare the object to be calibrated
with a well measured object. The first two examples discussed above in the
section Preliminary Examples and Definitions are of this kind. For example,
in the case of the straight line, one could imagine successive translations of a
standard unit interval, both right and left, beginning at an arbitrary starting
point designated as the origin, and successively marking off the positive and
negative integer points, respectively. Likewise, one could move a standard
interval progressively around the circumference of the circle, marking off the
cumulative measure at each step. Equivalently, the standard interval could
be held fixed, and the object to be calibrated could be translated (if L) or rotated
(if C) by steps of unit length and marked at each step.

Self-Consistencv _and Transitivitv. The second approach to calibration,
self-calibration, uses an object to calibrate itself without the aid of a
measurement standard. This corresponds to the third example discussed in

followed by stretching of the coordinates along a set of mutually orthogonal axes; the stretch
factor may differ for each of the axes (Halmos 1974, 169; Segel 1977, 184). The same fact
is known as a property of the infinitesimal strain tensor, which can be decomposed into a pure
rotation and a pure stretch along orthogonal axes (Sokolnikoff 1956, 21). Similarly, for the
three-dimensional case, as few as nine points measured on the surface of a sphere can be
sufficient to determine a transformation of a general linear coordinate system to orthonormal
coordinates. Thus by probing each ball of a ball plate a small number of times, it is possible to
deduce an orthonormal coordinate system for the coordinate patch of each ball plate. Note that
there is no canonical orthonormal system for any of the coordinate patches. Scale, orientation,
and placement of the origin in each case is essentially arbitrary.
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Figure 4. Top view of a random ball plate. A ball plate is a rigid plate on which small
spheres are mounted securely. It is assumed that, when a ball plate is properly fastened
on the measurement plane of a Coordinate Measuring Machine, the Coordinate Measuring
Machine is capable of probing the exposed surface of each sphere. Furthermore, it is
assumed as axiomatic that each sphere is small enough to lie within a coordinate patch of
the Coordinate Measuring Machine, and that the measurements of each sphere can be used
to rectify the linear coordinate system of the local coordinate patch, i.e., to transform
the linear coordinates into orthonormal coordinates. We make no claim yet as to the
relative scales, orientations, and origins of such derived orthonormal coordinate
systems; in fact, the problem of calibration boils down to relating all such local
coordinate systems to a common coordinate framework.
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the section Preliminary Examples and Definitions. For example, consider the
line L, and suppose that L already contains coordinate markings located at
intervals known to be at least approximately equal. Suppose that by some
means we were able to adjust the markings so that they were self-consistent
in the following sense. If a copy of L, call it L', were shifted upon L to the
right by exactly the length of the first interval, and it turned out that all the
coordinate markings of L and L’ exactly coincided, then we would say that the
coordination of L is self-consistent with respect to the procedure of shifting by
one unit. Here we avoid the question of how to adjust the original markings
to achieve self-consistency. We only observe that, if we could achieve self-
consistency, then by a simple argument of mathematical induction we could
conclude that the intervals are all of an equal length. The idea is that the first
interval is compared directly with the second interval, the second is
compared directly with the third, the third with the fourth, and so on.
Similar comparisons can be made leftward. Thus, by induction and logical
transitivity, a sort of cascade of implicit comparisons is made of each interval
to every other interval, both left and right of the first interval. The result is
that we obtain a pattern of points of verifiable structure. (See Figure 5.)

By the term calibration of a structure, | mean the determination of its
geometric shape without regard to its scale. In one dimension, the shape is
determined by knowing the relative sizes of the various intervals between
points on a line. But it is not necessary to know the length of any interval in
terms of a standard scale. In order to completely determine the structure, all
that is needed is to measure one interval against a standard scale, which
would then allow us to relabel the coordinates in the scale of the standard
unit. In this paper, we do not regard scaling as part of the calibration process
but rather think of it as something that can be accomplished after the shape of
the coordinate markers has been determined.

Indeterminacy. In the example of L above, self-consistency allowed us
to infer the correct structure of the coordinate markers. | call this the
determinate case. It is important to note that self-consistency does not always
lead to determinacy but may lead to indeterminacy. Again, let this be
illustrated on the line L. Suppose that, in the example above, we had begun
by shifting the line, call it M this time, two intervals rightward instead of one
interval. (See Figure 6 again.) In that case, the even-numbered intervals
could be compared to one another, and the odd-numbered intervals could be
compared to one another. But the odd- and even-numbered intervals could
not be cross-compared. In this case, the procedure partitions M into two
disjoint sets of intervals. Self-consistency of the shift-by-two procedure allows
only the conclusion that all the even-numbered intervals are of one length
and all the odd-numbered intervals are of one length. But we cannot
determine the relationship between the two separate lengths. This is an
indeterminate case. Similarly, a self-comparison procedure based upon any
other single, integral shift of more than one interval (leftward or rightward)
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Figure 5. lllustration of self-consistency in one dimension. A line L is marked at
intervals such that when a copy L' is shifted one interval rightward, the marks line up
as shown. An obvious induction argument shows that all the intervals must be of equal
length. Similarly, a line M is marked and a copy M’ is shifted by the combined length of
two consecutive intervals as shown. Coincidence of the marks for M and M’ implies that
the shorter intervals are all of equal length and that the longer intervals are all of equal
length, respectively, but we are unable to compare the two lengths. In this case, self-
consistency does not imply that all the intervals are of equal length.
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leads to indeterminacy. A single shift-by-n leads to a partition of M into n
distinct equivalence classes of intervals, in any one of which the intervals are
all of one length, but it is impossible to cross-compare the lengths of intervals
in any two different equivalence classes. This also is an indeterminate case if
n is greater than 1.

These same ideas carry over to the circumference C. Suppose that on
the circle we have set down a. finite number of coordinate markers at
approximately equal intervals around the circumference. Imagine rotating
the circle about its center P. We sometimes refer to this center of rotation as a
pivot point or rotational fixpoinf. As in the case of the line, if we could adjust
these markers in such a way as to ensure self-consistency with one rotation of
the circle through an angular width of one interval, then we could
inductively show that all the markers are equally spaced. Thus we would
have an exactly ordered set of coordinate markers spread out at equal
intervals around the circumference. This would constitute a calibration. As
before, the scale could then be adjusted to a standard unit by an additional
operation of comparing the length of one of the intervals to a standard scale,
i.e., by measuring one interval with a standard measuring device.

Instead of comparing C with itself rotated by one angular interval, we
could pick some other angle, say an angle equal to the combined width of the
first two angular intervals. If the total number of intervals were even, then
this procedure would allow us to implicitly compare the even-numbered
intervals among themselves. Likewise, we could compare the odd-numbered
intervals among themselves. But we could not cross-compare an odd-
numbered interval with an even-numbered interval. Thus if we have self-
consistency we could conclude only that the even-numbered intervals were
all of one length, and that the odd-numbered intervals were of one length,
but we could not compare the two sets of intervals. In fact, the relative
lengths of the two kinds of intervals would be indeterminate, and accordingly
we say that the measurement procedure itself is indeterminate. Once again
we see that self-consistency may not be sufficient to calibrate the coordinate
markers.

Rristamportant to know the kinds of procedures for which self-
consistency allows us to derive a valid calibration, such procedures being
called determinate, and also to know when calibration procedures are
indeterminate. In the examples above we described two different kinds of
procedures for self-comparison of a coordinate system. In the determinate
kind we could (implicitly) compare all intervals to one another. In the
indeterminate kind we wound up with disjoint subsets of intervals, in any
one of which we could make implicit comparisons, but we could not make
cross-comparisons between the subsets. Since mutual comparability is a
crucial concept, let us introduce a term to identify a set of comparable
intervals. By the orbit of an interval with respect to a given set of procedures,
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Figure 6. A radially symmetric ball plate. The ball plates examined in this paper are
all approximately radially symmetric for some particular center of rotation and angle of
rotation. Whatever angle of symmetry is chosen, it is assumed that it is possible to
rotate the ball plate through that angle about one center point any number of times and to
fasten it properly on the instrument’s measuring plane. The balls may be of differing
radii, and we assume that the radii are unknown.

18




I mean the set of all intervals that can be compared to that interval, directly or

indirectly, in the manner illustrated above.* For a shift-by-n procedure on L
there are n distinct orbits. It is useful to note that the situation on C is slightly
more complicated. If on C there are a total of m intervals, and a rotation-by-n
procedure is used, then there is exactly one orbit if and only if m and n are
relatively prime, a fact that is easily proved by elementary number theory. A
similar case can arise on L if instead of one shift, the self-comparison
procedures are based upon two different shifts, say shift-by-m and shift-by-n.
When self-comparison procedures yield precisely one orbit, then the
procedures are said to be transitive. Alternatively, procedures that give rise to
multiple orbits are said to be nontransitive. A basic principle of self-
calibration can now be stated simply.

Principle of Self-Calibration: The One-Dimensional Case. Calibration can be
deduced only from transitive measurement procedures; calibration cannot be
deduced from nontransitive procedures.

The principle is easily seen to be correct for the simple one-
dimensional examples given above. We will now proceed to show that the
same principle holds in more complex two-dimensional problems.

Self-Calibration in Two Dimensions

General Considerations. Self-calibration in two dimensions will be illustrated
using ball plates. The examples are used to show the limits inherent in
efforts to self-calibrate by rotating a ball plate around a fixed pivot point. It
will be seen that the self-calibration problem can be solved by rotating the
plate around more than one pivot point. Each of the ball plates in the
examples is assumed to be radially symmetric about its center, at least to first
approximation. (See Figure 6.) Various degrees of rotational symmetry are
considered. | do not assume that the radii of all the balls have been accurately
determined by some prior measurement before attachment to the plate. |1 do
assume, however, that the spheres are perfectly spherical so far as our
Coordinate Measuring Instruments are concerned.

8In the earlier discussion, the mutually comparable intervals were referred to as an
equivalence class. | prefer to use the term "orbit" because it arises naturally in the group-
theoretic approach to calibration that we will take up in Part Il. The orbits discussed here are
comparable to orbits of points under the action of a rigid motion group (Armstrong 1988, 91-
93; Jacobsen 1974, 69-78). | have also adopted the term "transitivity" by virtue of its
similar use in the theory of group actions, yet there is an important difference. A group action
on a set is said to be transitive if the orbit of an element is the entire set. When used in the
group-theoretic approach to self-calibration, | do not require transitivity to be so stringent; |
only require that the orbit be dense in the set. Thus my use of "transitivity" is more like
"metric transitivity" as the term is used in ergodic theory (Halmos 1974, 25; Petersen 1983,
42). | will take up this issue in a sequel.
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The question | raise is whether it is possible to calibrate a Coordinate
Measuring Machine and simultaneously determine the configuration of the
balls on a plate, merely by deductions based upon repeated measurements of
the plate in various positions. In particular, is it possible to calibrate the
Coordinate Measuring Machine by simply rotating the plate and remeasuring
it any number of times about a fixed center? | conclude that, in general, the
answer is no although there are simple exceptions!  And | show why, in
general, self-calibration can be achieved by rotating the plate about more than
one center. The fundamental concepts that arise from the analysis here, as in
the one-dimensional case, are self-consistency and transitivity. In the two-
dimensional case transitivity refers to a property of calibration procedures
such that each coordinate patch of a ball plate is compared, implicitly or
explicitly, with every other CP of the ball plate. We shall see that transitive,
self-consistent procedures enable calibration, non-transitive procedure do not
enable calibration even if self-consistent.

For the sake of demonstrating principles, | will assume that at the
outset we know only the approximate configuration of the ball plate, not the
precise configuration. Also | assume that we can control manipulations of
the ball plate well enough to rotate the plate around a perfectly fixed center.

Assumptions about Ball Plates and Coordinate Measuring Machines’.
Let us suppose that we have an arbitrary ball plate and that it can be set down
and measured upon the measuring plane of a Coordinate Measuring
Machine. When the ball plate is first positioned on the measuring plane, we
will refer to this as the ball plate’s primal position. As explained in the
section Preliminary Examples and Definitions, we can use measurements of
the ball plate in its primal position to establish orthonormal frames of
reference for subsequent measurements.

To be specific, suppose that the balls are labelled B, where i runs

through some index set, for example 0, 1, 2, 3, etc. Occasionally, B, will also be

used to refer to the center of the i pall. | assume that the following is

possible. The first placement of the plate may be used to set up local
orthonormal coordinate systems, one for the neighborhood of each ball. |
refer to these coordinate systems as Coordinate Patch 1(CP1) for the one

surrounding B ;, and Coordinate Patch 2 (CPZ) for the one covering the
neighborhood of B,, and so on, respectively. (See Figure 3 again.) Henceforth,
when we refer to measurements being made in CP, we will mean
measurements made by the Coordinate Measuring Machine in the region of
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the measuring plane that was occupied by B, in its primal position.9 So, even
if the ball plate is moved, CP; remains fixed on the stage, and measurements
taken in CP, are assumed to be represented in the orthonormal coordinate
system that was established by the initial probing and measuring of B. in its

primal position. Later on, when we have deduced the location of the center
of rotation with respect to each CP, we will again modify the local coordinate
system by translating its origin to the respective center of rotation. The
alleged orthonormality is an idealization. My intention is to allow some
large and small motions of the plate in ways such that each ball will land
within a well-defined local coordinate patch. I assume, to first
approximation, that each patch is small enough that our assumptions of local
linearity are reasonably correct. Since | am only discussing principles here, |
also assume that measurement error and round-off are negligible.

Gross Rotations and Fine Rotations. | will deal only with ball plates
that are radially symmetric to first approximation. | assume that by some
means the ball plate can be rotated about a fixed center on the stage very close
to the supposed center of symmetry of the plate. | then imagine two kinds of
rotation of the ball plate: 1) gross rotations through an angle approximately
equal to the angle of symmetry of the ball plate, and 2) fine rotations, to be
defined below. In either case, | assume that each ball will fall within one of
the coordinate patches, and | assume that all such rotations are taken about
the same fixed rotational center. So, for example, fine rotations will move
each ball along a circular arc entirely within its coordinate patch, and all such
circular arcs will be centered at the fixed rotational pivot point. A gross
rotation, also centered at the same fixpoint as that for fine rotations, will
move each ball out of one coordinate patch and into some other coordinate
patch, except perhaps for a ball that could be located in a patch that contains
the center of rotation. These ideas apply generally to any number of balls (two
or more) arranged symmetrically about a central point. To be specific,
imagine three balls arranged at the vertices of an equilateral triangle, with

each ball lying within its primal CP. A gross rotation of approximately 120°
about a point located approximately at the center of the triangle would move
each ball from its primal CP into another CI? (See Figure 7.) Once the primal
CPs are determined, they remain fixed in the measurement field of the
Coordinate Measuring Machine. The ball plate can then be rotated in any
way, through fine angles or gross angles, with the sole restriction that each
ball must settle within some coordinate patch or other.

Procedures for Locating the Origin of a Coordinate Patch. Two fine
rotations (i.e., three placements of the plate arising from one original
placement and two rotations about a fixed center) are sufficient to determine,

Swe could say that the Coordinate Measuring Machine is "locally calibrated" within each CP
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Figure 7. Fine and gross angles. A ball plate with three balls centered at the vertices of
an approximately-equilateral triangle is measured in four positions obtained by
rotations around a fixed pivot point 7r located at the approximate center of the triangle.
The dashed lines represent the ball plate in its initial position, where the initial
measurements were made. Two fine rotations about the pivot point were made, yielding
two additional positions for measurement as indicated by the two extra small dotS in each
CP. Next, the plate is rotated about m through a gross angle of approximately 120°,
where it is measured a fourth time. These procedures are not optimal for self-
calibration, but they make it easy to compute the center of rotation w in the local
coordinates of each coordinate patch, to compare the scales of all three coordinate
patches, to determine the exact shape of the dashed triangle, and, finally, to conform the
three coordinate patches into one consistent Cartesian system --  in other words, to
calibrate the measuring machine on the union of the three coordinate patches, as
explained in the text.
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in terms of each local coordinate system, the center and radius of the circular
arc traced by each ball within its respective coordinate patch. This is a simple
consequence of the fact that three points on the circumference of a circle
determine the circle. Thus by taking measurements of a ball in three
placements (i.e., primal position plus two fine rotations) within a coordinate
patch, we can determine the center of rotation, referenced to the local CP
coordinate system (although this computed center may lie far outside the
“range” of the local CP), and we can also compute the radius and respective

angles of rotation within the respective CI?10 Since we can do this for each of
the balls, we can determine the center and radius of rotation for each ball in
the respective local coordinate system. Having done so, we translate each
local coordinate system so that its origin coincides with the local rotational
fixpoint as computed within that local coordinate system. Henceforth, we
shall assume that the local coordinate system in each CP is orthonormal and
centered at the center of rotation.

Procedures for Determining a Common Scale. To sum up the
situation, we now have a radially symmetric array of distinct coordinate
patches (one corresponding to each ball, three in the example). Each is
coordinated by an orthonormal coordinate system, and each such system has
its origin lying at the unique center of rotation of the ball plate. But the
relative scales and orientations of these coordinate systems is, as yet,
unknown. In order to calibrate the Coordinate Measuring Machine, or rather
to calibrate the subset of the Coordinate Measuring Machine covered by the
given set of coordinate patches, we must relate each of these local coordinate
systems to one another. We shall achieve this goal in several steps. The first
step is to make a gross rotation, moving each ball into a neighbor coordinate
patch. In the new coordinate patch we can remeasure each ball. A
comparison of the radius of the ball B, computed in the first coordinate patch

and the radius computed in the second coordinate patch permits us to rescale
the second coordinate patch to match the scale of the first.11 Note that if B,

has moved from CP lto CP2 , and B2 has moved from CP2 to CP3 , then we

1 OBecause the ball plate is rigid, the respective rotation angles as computed in the various CPs
must be equal; the corresponding radii of rotation, however, may vary from CP to CP since the

ABIB2 33 is not necessarily exactly equilateral, the rotation point is not necessarily exactly at

the center of the triangle, and each CP may have a different scale relative to the other CPs. As
an idealization, it has been assumed that each local CP coordinate system is perfectly
orthonormal and that there is no measurement error or roundoff; however, in a practical
application of the ideas of this analysis one would have to take into account departures from the
ideal. For example, the center of rotation as estimated from the measurements within each CP
should be expected to vary quite sensitively as a function of the errors.

1T instead of comparing the radius of a ball as measured in each of two CPs, we could just as
easily compare the distance of the center of the ball from the center of rotation of the ball plate
as measured in each of the two CPs.
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can also indirectly compare the scales of CPI and CP; , and so on. So it is quite

possible to achieve a cascade effect, in which one gross rotation permits
inductive comparison and equilibration of the scales of all the coordinate
patches within the entire cascade. For example, if the ball plate consists of n
balls arranged at the vertices of a regular polygon, then one gross rotation
approximately equal to the symmetry angle of the polygon can allow a
comparison and equilibration of all the coordinate patches. This procedure is
transitive in the sense defined above -- the procedure of rotating the plate
once and remeasuring allows implicit comparison of the scales of all the CPs
by application of the principle of logical transitivity.. Note, however, that if
one additional ball were positioned outside the regular polygon of the first n
coordinate patches, for example at the center of the polygon, the procedure
would not be transitive, because no comparison could be made between the
odd-ball and the polygonal ones. This will be explained more fully below.
For now, assume that the scale of each of the three CPs is adjusted to equal the
scale of CP,.  Thus, henceforth we may assume that all three CPs are

orthonormal and share a common origin and scale. Next, we would like to
determine the relative orientation angles of the three CPs.

Examples of Orbits. At this point, I want to introduce another useful
term. Above | referred to the notion of a cascade. More precisely, consider a
particular ball, say B'; in CP. and observe where it moves under a particular

gross rotation, say of angle 6. Suppose that B, moves into the coordinate
patch CP]. previously occupied by B]. , which in turn moves to, say, CP,

previously occupied by B, , and so on. It is this sequence of coordinate

k l
patches that | meant to imply by the term “cascade.” Notice that, for a ball
plate with coordinate patches all lying at the vertices of a regular polygon, a
cascade must eventually turn back upon itself, because the number of
coordinate patches is finite. A cascade is a closed, linked list of coordinate

patches, which we refer to descriptively as the orbit of B, generated by the

gross rotation through angle 6. Also notice that if a plate undergoes a gross
rotation, then each coordinate patch will belong to one and only one orbit;
thus the orbits generated by that rotation partition the coordinate patches into
distinct, disjoint orbits. As already mentioned, an orbit generated by a single
rotation consists of a sequence of coordinate patches that lie approximately at
the corners of a regular polygon centered at the center of rotation. But other
procedures can give rise to different kinds of orbits. For example, suppose
that the ball plate consists of four balls arranged at the vertices of a square, and

that the procedure is to measure the plate, then rotate the plate through 180 °
and remeasure. This procedure yields two orbits -- each consisting of two
diametrically opposed CPs. For another example, suppose the ball plate
consists of eight balls, four disposed on the vertices of a small square, and four
at the vertices of a larger concentric square. Now, if the procedure were to
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rotate the plate once through 180 ° there would be four orbits: two at the
inner square and two at the outer. (See Figure 8.) If, instead, the procedure

were to rotate the plate once through 90°, there would be two orbits. If we
added a central ball to this configuration, the first procedure would yield five
orbits and the second would yield three orbits.

It is obvious now that we can compare scales among coordinate patches
lying within an orbit. It is also true, but perhaps not so easy to see, that inter-
orbital comparisons are impossible without additional procedures. Thus
transitivity exists only within an orbit, not between distinct orbits. This fact
will be illustrated in the examples below. It is important enough to give it a
name.

Principle of Self-Calibration: The Two-Dimensional Case. Procedures
for self-calibration can relate only coordinate patches that fall within an orbit.
The distance relationships and angular orientations between distinct orbits
are indeterminate (for an interesting variation, see Exercise 4 below)? Full
calibration can only be achieved with transitive procedures. In particular, it is
impossible to calibrate a general ball plate without rotating the plate around
more than one pivot point, since a procedure of rotations about a single pivot
point cannot be transitive, except for the very special case in which all balls lie
on the vertices of a regular polygon. In general, transitivity (and hence
calibration) can only be obtained by rotations about more than one pivot

point.’3 This principle is demonstrated in the examples that follow.

The Three-Ball Plate. We will progress through this section by stages. Our
objective is to determine the precise configuration of a three-ball plate by

12|n two dimensions, we say that the configuration of a ball plate is "determinate" if the
internal angles (see glossary) between all the ball centers are well-defined by the measurement
procedures. Note that these angular relationships determine the shape of the configuration, but
they do not determine the scale. If the measurement procedures do not determine all internal
angles unambiguously, then the ball plate is said to be indeterminate. By extension, the
measurement procedures themselves may be said to be determinate or indeterminate,
depending upon whether they do or do not determine the shape of the ball plate. Finally, the
coordinate system of the Coordinate Measuring Machine is said to be determinate or
indeterminate, depending upon whether the procedures used to measure the ball plate are
likewise determinate or indeterminate. To state it succinctly, procedures for measuring a ball
plate on a Coordinate Measuring Machine are indeterminate if two differently configured ball
plates (i.e., ball plates with distinctly different internal angles) measured on two different
CMMs with two different coordinate systems can yield identical sets of measurements;
procedures are determinate if they are not indeterminate.

1350 far we have only allowed rotations of a ball plate around a single fixpoint. In this case an
orbit is comparable to a regular polygon centered at the fixpoint. However, if more than one
rotational center is allowed, orbits may be more complicated collections of coordinate patches.
Because transitivity is a desired feature of self-calibration procedures, we should in fact want
there to be exactly one orbit embracing all the coordinate patches.
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Figure 8. Procedures can yie/d multiple orbits. The unlabeled centers of eight balls are
shown, one within each of eight coordinate patches. The bails (and CPs) are arranged in
a pattern of 90°-rotational symmetry. A fixed rotation point = near the center of the
pattern is shown. Each ball is measured in its given position, then the plate is rotated
counterclockwise about = through approximately 180°in such a way that each ball lands
within an existing CP, where it is remeasured. This procedure results in four distinct

orbits: CP, 5, CP, ., CP.,, and CP, , where CPi_]. denotes CP, and CP]. :

13 24" 5
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taking measurements as the plate is rotated about a single pivot point and to
determine a satisfactory Cartesian coordinate system for the union of the
three associated coordinate patches. To achieve the latter we must deduce the
geometric relationships among the three coordinate patches. We will, in
effect, set each of the coordinate systems of the three CPs, respectively, into a
single Cartesian framework. | refer to this process as conforming the three
coordinate systems. The resulting Cartesian coordinate system will be
referred to as the conformed coordinate system. Note that, in the previous
discussion, we have made a start in this process by translating the origin of
each CP to the center of rotation of the ball plate and rescaling each of the CPs
to match the scale of the first CP. Here we are using an orbit of three CPs as an
example, but the ideas apply as well to all the CPs in an orbit of any size.

Special Assumptions. | assume that the balls lie centered at the vertices
of a triangle that is nearly equilateral and that the pivot point lies near but not
necessarily at the center of the triangle. (See Figure 7 again.) | assume also

that the stage of the Coordinate Measuring Machine permits 120 O-rotations of
the plate. These restrictions are made to ensure that, as the triangle is rotated
about the fixed pivot point, the three vertices will traverse arcs of a circle, or

of three concentric circles of nearly equal radii, and that the 120 O-rotations will
result in near-overlays of the triangle upon itself. Two sets of rotations and
measurements will be employed. First, the three balls are probed and
measured in the primal position of the plate in order to establish the
orthonormal coordinate system for each respective CI? Second, two fine
rotations are made about the fixed rotational center; after each such rotation,
the balls are re-measured to determine coordinates for the center of rotation
referenced within the coordinate system of each CP, respectively. The
rotations are made small enough to ensure that each ball remains within its
respective CI? At this point, | have made nine measurements for the centers
of the three balls -- three center positions for each ball. Finally, one gross

rotation of approximately 120 ° is made, and each ball’s new position and
radius is measured in its respective new local CP.14

The Deductions thus Far. Let’s take stock of what we know from the
initial measurements of the balls, i.e., the measurements taken before we

make the 120 ° rotation. We have assumed that each CP has its own

1 4The first three positions of the ball in its primal coordinate patch were sufficient for
determining the center of rotation and the distance from the center of the ball to the center of
rotation within the coordinate system of that CP. Thus, when the next move is made, namely,
the gross rotation that swings each ball out of its primal neighborhood into an adjacent
coordinate patch, we can compute not only the distance of the ball from the center of rotation in
the local coordinate system, thereby obtaining a radius that can be compared with the radius
calculated in the primal position, but also an angle with respect to the center point of rotation
between the current position of the ball occupying the coordinate patch and the first position of
the previous ball in the same coordinate patch. (See Figure 9.)
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orthonormal coordinate system. The three measured centers of the local ball
are then sufficient to determine, within each respective coordinate system,
the center of rotation, the two fine angles of rotation, and the radius of the
circular arc on which the ball has rotated. These factors are thus known
within the local orthonormal coordinate system of the local CP. The same is
true for each ball in its primal coordinate patch, respectively. As already
mentioned, we translate the origin of each local coordinate system to the
respective center of rotation within that system. Until we are able to compare
the three scales, we can’t know the three radii relative to each other, but in
any case we do know that the center referenced in each of the coordinate
systems is the one identical center of rotation of the ball plate. Moreover,
because the plate is rigid, we know that the corresponding fine angles of
rotation are equal from one patch to the next. Thus far, each ball has
remained within its own coordinate patch.

Now let’s see what we gain from the gross rotation of 120 °. Note first
that each ball has moved from its original coordinate patch into a different
patch. By measuring each ball’s radius in the new coordinate system, we are
now able to compare the scale of the new CP to the scale of the original CP.
Since the procedure yields a single orbit containing all three CPs, we are
therefore able to compare (and equalize) the scales of all three CPs. We make
this comparison and further modify each of the three local coordinate systems

so that they all conform to the same scale.’® Thus we now know the precise
relative distance of each ball from the sole center of rotation. Let us express
these radii in a common scale as Ty Ty and r;, where

T = radius from center of plate to center of B, , for i=123.

Equations for Determining Shape. To determine the precise shape of
the triangle formed by the centers of the three balls, consider the fact that a
straightforward application of analytic geometry can be used to compute the
angular offset that each ball (after the gross rotation) makes from the original
position of the ball that previously occupied the same CI?, measured as a
counterclockwise angle of rotation about the fixed center of rotation. (See
Figure 9.) We refer to these angular offsets, measured in the
counterclockwise sense, as:

1 SHenceforth, we assume that the three CPs have coordinate systems that are 1) orthonormal,
2) originate at the center of rotation of the ball plate, and 3) have uniform scale. What we have
not determined yet are the relative orientations of the three coordinate systems, but that will
follow directly once we determine the shape of the triangle formed by the centers of the three
balls, respectively.
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Figure 9. Variables used to determine the shape of a ball plate. Three CPs are shown,
centered approximately at the vertices of an equilateral triangle. A rotation point 7« lies
near the center of the triangle. A ball plate with three ball centers is shown in each of
two positions. Each center B1 , B2 , and B3 is shown in its first position (with radius
from the center of rotation 7t illustrated as an unbroken line) and in its second position

after a counterclockwise rotation of angle 6 =120 ° (with radius from 7 illustrated as a
broken line). For each pair of balls, say B, in its first position and Bi in its second

position, shown within a given CP, the angle of offset measured in a counterclockwise
sense from Bl. in its first position to B}. in its second position is 51.].. Note that the shape

of the triangle with vertices BI , 82 , and 33 is determined by the center =, the radii

r and I, and the internal angles )B12 , ,323 , and ﬂ31 .

10 T2
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J,; - measured angle of offset from old B, to new B, in CP,
S, - measured angle of offset from old B, to new B, in CP2 )
J;, = measured angle of offset from old B; to new B, in CP,.

Recall now that the ball plate is a rigid object, and let

ﬁu = angle from center, from Bz to Bz,,
ﬁ23 = angle from center, from B, to B,
,831 = angle from center, from B, to B,
6 = angle of gross rotation of plate (approximately 120°7).

Because the ball plate is a rigid object, we deduce the four equations:

Bis+ Bogt Bsy = 360°,

Biz+ 854 = 0,

B2zt 93, = 6,

Bss + 93 = 6. ‘

These equations are easily solved for 6, ﬁIZ : [323 , and [331 in terms of

613 ! 821 '

r., 7, and rs, permits us to determine the precise shape of the triangle AB,B,

and 632. This information, combined with knowledge of the radii

B, and the angle 6 through which the triangle was rotated from the first to

the last position. | leave this as an exercise for the reader. Moreover, we can
now easily place the three local coordinate systems into a common
framework. For example, we could transform coordinates for CPZ and CP3 to

conform with the coordinates of CP;. Let us refer to this common coordinate
system as the CPI/CPZ/CPS conformed coordinate system, or simply as

CPp.3 -'°

18 To obtain a conformed coordinate system, let ¢i refer to the counterclockwise angle made
by the center of Bi from the X-axis in its original position in CPi , for i = 1,2,3, respectively.

Let d)i' be the counterclockwise angle that Biah_Qu_Lq_make with the X-axis, if CP/‘ were
conformed to CP, , for i = 23 respectively. Note that

¢ = ¢ + By
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Note that, by the act of conforming the three coordinate systems, we
have simultaneously calibrated both the ball plate and the Coordinate
Measuring Machine, at least within the union of the corresponding
coordinate patches.

Role of Self-Consistencv _in Deriving Orbital Coordinate Svstem. We
were able to link the three coordinate patches together because we were able
to compare the three scales and use the rigidity of the ball plate to deduce the
shape of the triangle, and this was because the three coordinate patches fell

within a single orbit.'” It is instructive to consider how self-consistency
played a role in the derivation. By the hypothesis that we are operating in a
euclidean universe, we assert that there is essentially only one way to
coordinate a single artifact with Cartesian coordinates, at least so far as
measuring its true shape is concerned. Although the particular Cartesian
reference frame may be chosen any number of ways, the difference in image
between any two such frames must simply be a matter of uniform scale, a
rotation, and a translation, but the shape of the object must be identical for all
such frames, no matter where we place the object to be measured. In our
derivation of a conformed Cartesian reference system, we used the methods
of analytic geometry to proceed constructively from the assumption that we
were dealing with a rigid object and showed that the procedures were
sufficient to determine the shape of the object from the given measurements.
Thus we may say succinctly that we used self-consistency and the euclidean
axiom to derive the shape of the ball plate directly from the measurements.

A Four-Ball Plate, Used to Illustrate Indeterminacy. At this point we will
examine the effect of introducing an additional ball at the rotational center of

¢ = ¢ + B+ By

It follows that conformation of CP2 to CP1 requires a counterclockwise rotation of CP2

coordinates of magnitude ¢2 b ¢2 . and conformation of CP5 to CP, requires a

counterclockwise rotation of CP3 coordinate of ¢3 - (253. These counterclockwise rotations

of coordinates are equivalent to equal clockwise rotations of coordinate axes for each
respective CP.

1 7We have worked out the shape of a regular polygon formed by three balls, but the same
reasoning would allow us to work out the shape of a regular polygon formed by any number of
balls. In such a case, we would have had to make a gross rotation equal to the symmetry angle
of the polygon (120° in the case of a three-ball plate). And we would have deduced equations
similar to those above but there would have been n+1 of them, with n+7 unknowns, where n
is the number of vertices of the polygon. An interesting exercise that the reader may use to
test understanding of the ideas thus far, would be to work out the case of a two-ball plate (n =
2) as the simplest example. Don't assume that the center of rotation lies precisely on the line
between the two points.
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the three-ball plate. With the additional ball, the same procedures as before
will give rise to two orbits rather than just one. We will show that by virtue
of the additional orbit, the problem becomes doubly indeterminate: We can
not determine the relative scales of measurement between the two orbits, nor
can we determine the relative orientation between the two orbits. The
dilemma will be seen to be a very general one that applies to comparison of
any two distinct orbits.

To obtain the four-ball plate we add a central ball and coordinate patch
B, in CP, , respectively. It seems intuitive that we cannot compare the scale

of the central coordinate patch with the scales of the three outer CPs, nor
could we have determined the relative orientation of CP, and the

conformed CP,, . coordinate system, derived as in the three-ball plate in the

preceding section. Although this may seem self-evident, it requires proof.
Before giving the proof, let’s be explicit in what it means to say that the four-
ball plate consisting of B., for i =0,1,2, 3 is of indeterminate shape. | mean

that it is possible for two ball plates of distinctly different shapes to be
measured by two different measuring devices and yet to obtain identical
measurements for the two ball plates.

Shape Defined more Carefullv. First, let’s be more specific about what
is meant by the shape of an object. In plane geometry two triangles are said to
be similar if their corresponding angles are equal. If the two triangles are also
of equal size they are said to be congruent. | say that two triangles are of the
same shape if they are similar but are not necessarily congruent. The classical
test for congruence of two triangles is to move the one through space to see
whether it can be superposed exactly on the other. Another way of testing for
congruence is to measure the two triangles in a Cartesian coordinate system
and see whether the coordinates of the vertices of the one triangle can be
transformed into the coordinates of the vertices of the other by a rotation and
translation of coordinates. Similarity of two triangles requires that there be a
rotation, translation, and uniform scaling that carries the one set of vertices
into the other. The same ideas carries over to more general geometric figures.
Thus we can test two geometric objects for congruence by testing whether the
one can be moved rigidly into perfect coincidence with the other, or we can
measure the objects in a Cartesian coordinate system and see whether there is
a rotation and translation that transforms the coordinates for the one object
into the coordinates of the other. To test for similarity of the two objects, we
allow not only rigid motions (rotation and translation) but also uniform
scaling of objects. For two-dimensional patterns of points, there is a
convenient way for us to determine whether two different patterns of points
have the same shape: simply compare the corresponding infernal angles.
The internal angles of a pattern of points is the set of all the angles of the
triangles formed by any three points of the pattern. If the points of two two-
dimensional patterns of points can be put into correspondence with one
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another in such a way that the corresponding internal angles are equal, then
the two patterns are similar. If such a correspondence is impossible, then the
patterns are not similar.

What | want to do now is show that if the measurement procedures for
a four-ball plate are as above, then we cannot determine the shape of the ball
plate. Moreover, the same is true even if additional measurements are made
of the ball plate by rotating the ball plate around the one fixed center of
rotation and remeasuring it. There are different ways to show this, but
perhaps the simplest and most direct way is to demonstrate that we can
change the shape of the given ball plate and the coordinate system of the
given Coordinate Measuring Machine in such a way that, for any rotation of
the one ball plate about its center and the same rotation of the other about its
center, the new ball plate will yield the same measurements on the new
measuring machine as the given one does on the given machine. What this
means in practice is that, given one such ball plate and Coordinate Measuring
Machine, there is no way to determine from just the measurements which
ball plate we are examining.

Constructive Demonstration of Indeterminacy. To begin, assume that
we are given a four-ball plate and that it has been measured on a given
Coordinate Measuring Machine by the series of fine rotations and gross
rotations described above for the three-ball plate, and that we have derived a
conformed coordinate system, call it CP, , ., for the outer orbit. Assume also

that we have gone through the steps described previously to render the inner
orbit CP, into Cartesian coordinates, that we have computed the center of

rotation in terms of CP,, and that we have translated the origin of CP, to

that center. Finally, assume that the ball plate is fastened to the Coordinate
Measuring Machine in an initial position, with each ball resting in one of the
four coordinate patches. Now, we can modify any portion of the ball plate
that we choose. Let us modify just the portion in the outer orbit by anchoring
it at the center of rotation, scaling it up (or down) uniformly by any factor s >

0 and rotating it counterclockwise by any angle ¢. We do all of this while
keeping the inner orbit fixed. At the same time that we modify the outer
orbit of the ball plate, let us also correspondingly modify the coordinate
system of CP by increasing the scale by the factor s and rotating the axes

1-2-3
counterclockwise by the angle ¢. We leave the coordinate system of cp,

unchanged. The net effect of these modifications of the given ball plate and
Coordinate Measuring Machine is that the new measuring machine will
assign the same coordinates to the new ball plate that the original machine
assigned to the original ball plate. Moreover, if the original ball plate is
measured again after rotating it through any angle about the center of
rotation, such that each ball remains in one of the four coordinate patches,
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then the same measurements will be obtained by the new machine after the
new ball plate has been rotated through the same angle. (See Figure 10.)

Note that our modifications of the ball plate by stretching and rotating
one orbit with respect to another has allowed us to change the shape of the
ball plate. The corresponding modifications of the Coordinate Measuring
Machine have produced a machine that will give the same measurements as
the original machine for comparable rotations of the original ball plate.
Without additional information, we cannot simply observe the
measurements of one of these two machines and know which one it is. It is
in this sense that | say that the shape of the ball plate is indeterminate. By
extension | say also that the measurement procedures themselves are
indeterminate. It is clear that this same construction can be applied to other
radially symmetric ball plates and measurement procedures that entail
multiple orbits and rotations about only one fixed center.

A Non-Constructive Demonstration Based on Self-Consistencv. The
demonstration of indeterminacy given above is constructive. It shows how
to actually make a ball plate of different shape than the original that yields
identical measurements. There is another approach that reveals
indeterminacy more directly in the light of self-consistency. We ask, given a
radially symmetric ball plate, a measuring machine, and a set of
measurement procedures entailing multiple orbits and rotations about only
one center, can there be more than one shape of ball plate that is consistent
with the measurements? In other words, does self-consistency allow us to
determine the shape? It is sufficient to consider just two orbits. Suppose that
by some means each of the two orbits has been conformed into a Cartesian
coordinate system, respectively. The invariance of the euclidean metric
under rigid motions implies that the images in machine coordinate space of
the balls in each orbit will be consistent for any rotation that keeps the balls in
the appropriate orbit. But what about the images of subsets of the balls that
span the two orbits, say for example, one ball center P in the outer orbit and
one ball center Q in the inner orbit? Is there a unique scaling factor s and

unique angle of rotation ¢ for the inner orbit to conform it to the outer orbit,
such that all inter-orbital images are self-consistent? The negative answer
follows directly from the invariance of the euclidean metric. Let E(P,Q))be
the distance between points P and Q. where the points are represented in

Cartesian coordinates. Let the expression sQ(¢) denote multiplication of the
coordinates of Q by s followed by counterclockwise rotation of the coordinates

through the angle ¢ about the fixed center of the ball plate. For P and Q fixed

in the ball plate, and fixed factors s and ¢, E(P, sQ(¢)) is invariant under rigid
motions, in particular under rotations about the rotational center of the ball

plate. But the argument sQ(¢) can be interpreted two ways. It can either

represent a point different from Q but obtained from Q by the scaling and
rotation of coordinates described above, or it can represent the coordinates for
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Figure 10. /llustration of indeterminacy. An (approximately) radially symmetric ball
plate BP, consisting of six balls arranged in two concentric triangles, is mounted on the
measurement plane of a Coordinate Measuring Machine. The centers of the balls are
shown surrounded by their respective coordinate patches, unlabeled. BP is measured in
that position, rotated, and measured again, repeatedly, using a strategy of fine rotations

and gross rotations as described in the text. All rotations are about the pivot point ©
located approximately at the center of the ball plate and are such that each ball falls
within one of the illustrated coordinate patches. As explained in the text, procedures of
this kind permit determination of the precise shapes of the two triangles, but if the
procedures involve only rotations about one point &, then it is impossible to determine
the relative scales and orientation angle between the two triangles. As illustrated by
BP’, a different ball plate composed of two triangles similar to the ones in BP but scaled
and oriented differently about z’, and measured by a Coordinate Measuring Machine with
appropriately rescaled and re-oriented coordinate patches, could yield exactly the same
measurements as those obtained from the procedures for measuring BP. In fact, any
arbitrary rescaling and re-orientation of the two triangles about 7 could be made to
yield the same set of measurements for the same set of procedures by employing a
correspondingly altered Coordinate Measuring Machine. Thus it is impossible to derive
and verify the correct shape of BP from such measurements alone. For this reason, the
prescribed measurement procedures are said to be indeterminate. The indeterminacy
arises because the prescribed procedures are non-transitive, i.e., they give rise to more
than one orbit of coordinate patches, namely the inner three CPs and the outer three CPs,
respectively, in this example.
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Q in a Cartesian system that is obtained from the Cartesian system in which Q
is represented, by scaling the coordinates of Q by s and rotating Q by ¢. The

first interpretation implies that the expression for E(P,sQ(¢)) is invariant
under rotations of the ball plate, so it is invariant according to either
interpretation. Under the latter interpretation, the invariance of E(P,sQ(¢))
under rotations of the ball plate shows that self-consistency holds between the
inner and outer orbits for any arbitrary scaling and rotation of the inner orbit
relative to the outer. Thus, the measurement procedures do not permit a

unique determination of s and ¢.

Before turning to the next example, let us observe again where self-
consistency was used in calibrating the three-ball plate. We used self-
consistency implicitly in the assumption that the three-ball plate is a rigid
object. The presumed invariance of shape under rotations was used to set up

the equations for the s, Bs, and 6.

Multiple Orbits Illustrated by A Seven-Ball Plate. To the three-ball plate
considered above, add one ball near the center of the equilateral triangle.
Also, at a radius much greater than r ,r,, and r,, add three more balls on the

vertices of another equilateral triangle. Let the outer equilateral triangle be
centered near the center of the inner triangle, i.e., close to the center of the
innermost, central ball. Call the inner ball B, , and the outer three balls, B4,

B. , and B, , respectively. Now apply the same fine and gross rotations that
were applied in the previous example. Note that the orbit of CP, is itself, that
CP, ,CP, , and CP, comprise an orbit, as before, and that CP, CP, , and CP,

constitute a distinct new outer orbit. Exactly as before, the configuration of
B Bz , and B3 can be accurately determined in a common coordinate frame

1 4
conforming CP, ,CP, , and CP, . Similarly, B,,B., and B, can be

determined within a common coordinate frame conforming CP, ,CP5 , and
CP,. But the relative scales of these two outer orbits is indeterminate. And so
is the relative relationship of scales compared to CP,, since the three orbits are

pairwise disjoint. Not only the scales of the three orbits but also the relative
orientation angle of each orbit with respect to the others is indeterminate, as
argued in the previous example. In particular, the internal angles of the
pattern of ball centers are ill-defined. We conclude that these rotations about
a single pivot point are inadequate to determine the configuration of the
seven-ball plate. Measurement procedures that involve rotation of a ball
plate around one pivot point are indeterminate, in general.

It is interesting now to reflect on the situation. Within each orbit, the

shape of the pattern of ball centers is well defined. But the scale and angular
relationships between the patterns in distinct orbits are indeterminate. Hence
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the shape of the overall pattern of ball centers is indeterminate. The orbits
are concentric about the rotational fixpoint, but their relative distances from
the fixpoint are ill-defined. The orbits may be thought of as wheels-within-
wheels, and the relative orientation of each wheel to the one surrounding it
is ill-defined.

Rotations about More than One Pivot Point. An orbit generated by a single
rotation includes only coordinate patches that lie approximately on the
vertices of a regular polygon. Similarly, an orbit around some other point
would be another “polygon,” with a different center. If two such polygons
happen to overlap at a coordinate patch, then the two orbits would merge
into one. Thus, when measurement procedures involve rotations about
more than one pivot point, the resulting orbits need not correspond to
regular polygons. Such an expanded orbit, generated by two rotations, can be
considerably more extensive than a single-centered orbit and may in fact
include all the coordinate patches of the ball plate. In that case, the techniques
demonstrated in the foregoing examples may be extended to conform all the
coordinate patches to obtain an accurate determination of the shape of the
entire ball plate and a calibration of the measuring instrument, at least on the
union of the coordinate patches. An exhaustive analysis of all the
possibilities would carry us beyond the scope of this paper, but see the
exercises in the next section. We will return to the subject in a later paper.

Summary, Conclusions and Exercises

Summary. We have made a discursive tour of some basic concepts of self-
calibration. The purpose has been to suggest vocabulary and a framework for
discussing problems in two dimensions, without going into the group-
theoretic arguments of Raugh (1985), and to illuminate the importance of
self-consistency and transitivity in self-calibration procedures. Emphasis was
placed on exposing the basic principles of self-calibration, not upon
optimization of procedures to calibrate a measuring instrument. Some one-
dimensional problems were discussed to illustrate determinate and
indeterminate measurement procedures and to introduce self-consistency
and the complementary concepts of orbit and transitivity in the simplest
settings. Next we turned to the more subtle problem of self-calibration in two
dimensions. To stay on ground that is familiar to students of metrology, the
two-dimensional problems were formulated in terms of ball plates and
Coordinate Measuring Machines. | took the liberty of idealizing problems by
assuming, among other things, that a Coordinate Measuring Machine could
be adjusted to yield orthonormal coordinates in local coordinate patches and
that there was no measurement error. | also assumed that the balls on a ball
plate were perfectly spherical and that a ball plate could be rotated more than
once about one perfectly fixed point. | did not assume that all the balls of a
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ball plate were of identical diameter or that the relative diameters were
known beforehand.

Conclusions. The major conclusion is that self-consistency and transitivity
are necessary conditions for self-calibration. In particular, each coordinate
patch must be compared either directly or indirectly with every other
coordinate patch in order to determine relative scales, relative orientation
angles, and a common positioning of the origin. An important result is that
the shape of the pattern of balls that fall within a given orbit can be
determined by appropriate measurement procedures, but the relative scales
and orientation of distinct orbits is indeterminate; thus, a ball plate that is
measured only by rotations about a single point can be thought of as a pattern
of “wheels within wheels,” so that each wheel (i.e., orbital pattern) is well
defined, but the relative radii and orientation angles between the “wheels”
are unknowable. (A variation of this theme is given in Exercise 4 below.)

A Brief Comparison with Raugh (1985). The approach taken in this
paper is very different from that of the earlier paper (Raugh, 1985). That
paper will not be reviewed here. But | want to sketch some connections
between the methods of this paper and the methods of the earlier one. The
earlier paper introduced the concept of a fixpoint laffice. By appealing to
group-theoretic arguments, it was shown that self-consistent measurement
procedures give rise to a lattice of points that can be calibrated correctly by
those measurement procedures. It turns out that there is only one fixpoint
for procedures that involve rotation about a single pivot point, hence it was
shown that self-calibration is impossible for that case. It was also shown that
measurements of a grid plate in three positions that involve rotations about
two distinct pivot points can yield a correct calibration. The reason given in
the earlier paper relates to the fact that the fixpoint lattice is dense throughout
the measurement space. In a sense that will be explained in a later paper, the
fixpoint lattice corresponds to the orbits of the present paper, and a dense
lattice corresponds to transitive measurement procedures. In the current
paper, the procedures for self-calibration of each separate orbit involved
measuring the ball plate first in each of four distinct placements (involving
two fine rotations and one gross rotation around a single pivot center). A
simple exercise is suggested below to show that transitivity can be effected by
rotation about a second center and that full calibration can be attained by
repetition about the new center of the same procedures that were used with
respect to the original center of rotation. Accordingly, if the first four
placements were followed by additional similar rotations about a second
center, then a total of eight distinct placements of the ball plate would be
required for calibration. These procedures are straightforward, but they are
certainly not optimal. An interesting practical problem would be to
determine the smallest number of placements necessary to calibrate various
kinds of ball plates.
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The earlier paper used self-consistency in a direct, coordinate-free way
to derive necessary and sufficient conditions for self-calibration. The use of
Cartesian coordinates was brought in only at the very end, to solve the
practical problem, not to develop the theory. The conclusions of the current
paper are weaker, but they have the advantage that they were derived using
constructive methods and Cartesian coordinate systems in ways that are, for
the most part, quite straightforward. Sufficient conditions for self-calibration
of radially symmetric ball plates were demonstrated. Both transitivity and
self-consistency were shown to lie at the heart of all such methods. The role
of self-consistency was illustrated explicitly in the one-dimensional examples.
The most direct way to deal with self-consistency is to compare two
geometrical objects by superimposing one on the other; if the two objects can
be moved rigidly into perfect coincidence then they are congruent. This is the
approach used in classical Euclidean geometry for determining congruence,
and it is the approach used in the earlier paper. In this paper, however, we
have dealt with the shapes of objects by representing their images in two-
dimensional Cartesian coordinate systems, where the mechanisms for
comparison are analytical. But self-consistency is still involved in an
important way. Recall that in the example of the three-ball plate we used the
rigidity of the triangle formed by the three balls to deduce the relative scales,
orientations, and origins of the respective coordinate patches. In other words,
we derived a Cartesian coordinate system in which the images of the ball
plate in each of its placements on the measuring plane were congruent to one
another. Having assumed the axiom that we are operating in a euclidean
space, the process of derivation itself was tantamount to demonstrating that
any other shape of the ball plate would have been inconsistent with the given
measurements and measurement procedures. The reason for this is that the
euclidean axiom asserts that the measured image of an object measured in
one Cartesian reference frame must have the same shape as the image
measured in any other Cartesian reference frame. The use of Cartesian
coordinates is convenient because it places the arguments in a definite and
familiar setting, and it leads to constructive procedures, but their use may
obscure the role of self-consistency. Similar trade-offs are common in
applications of mathematics. For example, vectors and tensors afford
coordinate-free methods that can reveal the underlying nature of a physical
process, whereas the use of a specific coordinate system, while possibly more
practical, can obscure the underlying process.

A simple exercise involving balls arranged at the vertices of a square
lattice is suggested below to show that by rotation about two distinct pivot
points, it is possible to arrange that all the balls will fall within a single orbit.
In other words, rotations about as few as two pivot points can yield transitive
procedures. Although we did not demonstrate procedures for conforming
coordinate patches that lie in an orbit generated by rotations about more than
one pivot point, it should be clear that the methods demonstrated in the
paper extend naturally to such cases. As shown in the earlier paper, such
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simple rotation procedures can be quite practical. Although practical
techniques were not the immediate point of this paper, it is easy to see how
careful attention to errors could allow one to translate the idealizations
employed here into practical procedures. The practical implications will be
examined in a subsequent paper.

I plan to discuss these and related ideas more fully in later work. This
paper is the first part of a projected series. Part Il will treat self-calibration
from the perspective of rigid-motion groups and provide more insight into
the relationship between the theories developed here and in Raugh (1985).
Orbits and transitivity will reappear there in the mathematical context of
groups acting on sefs (Armstrong, 1988; Gilbert, 1976; Jacobsen, 1974). Part Il
will discuss practical implementations and empirical results, and Part IV will
discuss calibration in three dimensions.

Exercises. Finally, | would like to suggest some exercises that extend the
theory developed in this paper and that allow the reader to test his or her

grasp of the concepts.

1) We began with an assumption that each ball of our ball plate was
perfectly spherical, but we disallowed knowledge of the radius of each one --
leaving determination of relative radii to the measurement process. It is
interesting to note that if the radii of the balls had been known, then there
would be no ambiguity of scale. The scales of the various orbital coordinate
systems would be well-defined with respect to one another. | leave it to the
reader to show that in that case, we would at least know the relative size of
each wheel-within-a-wheel, but the relative angular orientations between
orbits would remain indeterminate.

2) Go back to the example of the three-ball plate, and note the
exercise using a two-ball plate suggested in the footnote. The two-ball plate
can be simplified even further. |nstead of a two-ball plate, consider a two-
point grid, i.e., two points marked on the surface of a flat plate. A modified
exercise is to show how to use the two-point grid to calibrate two coordinate
patches. Don’t assume that the rotational center is necessarily on the line
connecting the two points.

3) Consider a square ball plate in which the balls lie approximately
on the vertices of a square lattice centered and aligned parallel to the edges of
the ball plate. The ball plate can contain any number of balls, so long as the
number is a square integer. Suppose that two pivot points are selected, one
each at the centers of adjacent squares located near the center of the plate.
Now let the plate be measured in its first position in the Coordinate
Measuring Machine. For the second set of measurements, rotate the plate
counterclockwise through ninety degrees about one of the pivot points and
measure again. Finally, rotate the plate counterclockwise ninety degrees
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about the other pivot point. It is an interesting exercise to show that this set
of procedures is transitive, i.e., it gives rise to exactly one orbit. Prescribe
procedures for calibrating a Coordinate Measuring Machine using fine and
gross rotations around two distinct centers. Note that if the ball plate is
radially symmetric about the first center, then it is not quite radially
symmetric about the second center, and some of the balls on the *“outside
edge” will swing beyond the extant coordinate patches. How does this effect
the calibration process?

4) Rigid motion of an object, in this paper, refers to continuous
motions, and, hence it excludes isometries of the object obtained by reflection.
Reversal in one and two dimensions refers to such a reflection. It can be
thought of as flipping the object over. For example, reversal of a two-
dimensional artifact means placing the artifact bottoms-up on the measuring

plane and measuring it from above? To illustrate reversal in self-
calibration procedures, suppose that we have an artifact marked with a
radially symmetric pattern of points similar to the ball plates considered in
this paper, and that the artifact is transparent in the sense that the measuring
instrument can “see” the pattern through the bottom of the artifact. Now,
imagine measuring the artifact right-side-up using fine and gross rotations
about a single center of rotation, as described in the paper. Suppose that these
procedures give rise to more than one orbit of coordinate patches and that
each orbit has been conformed by techniques like the ones described in the
paper. Next, reverse the artifact on the measuring plane so that each mark of
the pattern falls within a coordinate patch of the same orbit (but not
necessarily within the same coordinate patch) as before, when right-side-up,
and so that the center of rotation is positioned as before. Finally, measure the
reversed pattern in that position. Show that the information obtained from
the reversal can be used to determine the relative orientation angles among
the various orbits. What does this imply about the definition of transitivity?
Can reversal be used to determine the relative scales among various orbits?

5) Show how to combine reversal, as illustrated in the previous
exercise, with rotation about a second center of rotation to completely
calibrate a square grid pattern like the one in Exercise 3.

6) Suppose that our Coordinate Measuring Machine operated in
three dimensions and that we have somehow constructed a “cubical” three-
dimensional ball plate, such that the balls are deployed on the vertices of a
cubical lattice. Corresponding to the three-dimensional array of balls is a
family of coordinate patches lying within the three-dimensional volume of
the measurement domain of the Coordinate Measuring Machine. Show that

1 8 Another way to think of reversal is to imagine that the object is represented by a pattern of

points in a Cartesian coordinate system. Reversal of the pattern occurs when the coordinates
of all the points are multiplied by an orthonormal matrix of negative determinant.
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transitive procedures can be defined for these coordinate patches using just
two pivot points.
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Glossary

Most of the terms that are italicized in the text are gathered here with
definitions for easy reference. Those marked by an asterisk are ones that |
have used in a novel way, most of which have been adapted from
mathematics. Cross-references are indicated by italics within the definitions.
I will be interested in comments concerning the appropriateness and utility of
these terms.

artifact. Any special object that has been constructed for the purpose of being
measured, as for example a calibration artifact constructed for the purpose of
calibrating a measuring instrument. In two-dimensional calibration these
artifacts are usually planar. Grid plates and ball plates are examples.
However, strictly speaking, a ball plate is a three-dimensional object, but
when estimating point positions we assume that the XYZ coordinates can be
projected without significant loss of accuracy onto the XY plane.

ball plate. A rigid artifact used for calibrating two-dimensional coordinate-
measuring instruments. It consists of a flat plate with an array of small
spheres mounted on short pedestals on the upper surface at more-or-less the
same height. The balls may be of equal or unequal radii and may be arranged
on the ball plate in a regular or irregular pattern. Ball plates are measured by
a Coordinate Measuring Machine. (Hocken and Borchardt, 1979; Reeve, 1974.)

calibrate. To assign physically meaningful and correct values to the
graduations of a measuring device, as, for example, a ruler or thermometer.
For an example in two dimension, the digital readouts of the interferometers
that track the motions of a measurement probe or the stage of a two-
dimensional measuring device, such as a Coordinate Measuring Machine or
an electron-beam lithography system, respectively, may be thought of as the
“graduations” of the measuring device. In the text, such two-dimensional
graduations are referred to as coordinate markers. Although these readouts
may constitute an approximately orthonormal coordinate system, they are
usually not accurate enough, and they contain unspecified curvilinear
components. To calibrate such a system of coordinate markers means to
determine a transformation of the coordinate markers to a physically correct
system of orthonormal coordinates. The transformation so determined is
referred to as a calibration, a calibration function, or a calibration mapping.
Note that, in this paper, a calibration mapping is not unique, since we do not
require specification of scale, orientation, or origin of the orthonormal
coordinate system. The term calibrate may also apply to the measurement of
an object to be used as a measurement standard, as, for example, we may say
that a calibration artifact has itself been calibrated, i.e. measured with
sufficient accuracy to be used for calibrating an instrument. In the text,
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examples are given of calibration procedures for a limited number of
coordinate patches in the plane of a two-dimensional measuring instrument,
In such a case, calibration only refers to the relevant subset of the plane.See

self-cal ibra te.

Cartesian coordinate system. |In this paper, synonym of orthonormal
coordinate system. Cartesian coordinates are the kind used in classical
calculus and analytic geometry, namely the Cartesian method for handling
euclidean geometry in a systematically algebraic and numerical way. For two-
dimensional geometry, the coordinate plane is represented by two coordinate
axes set at right angles to each other, lengths are represented linearly on each
axis, and the axes are scaled equally. The Pythagorean theorem is used for
computing distances between points, and the methods of plane trigonometry
are use to derive formulas for angles between lines. Although these
mathematical procedures are simple and well-established, it is a profound
guestion whether euclidean geometry is a correct description of the physical
universe. In the idealizations of this paper euclidean geometry is accepted as
axiomatic, and it is assumed that point positions can be measured with perfect
accuracy and computed without roundoff error. For reference, see
orthonormal coordinate system.

calibration, calibration f-unction, calibration mapping. See calibrate, classical
approach to calibration, self-calibrate.

classical approach to calibration. A technique in which a calibrated artifact,
such as a standard calibration grid, is used to calibrate a measuring
instrument. The idea is straightforward. The artifact is measured and a
transformation is derived to convert the machine coordinates to the
coordinate system of the artifact. | refer to calibration problems that are
solved by classical means as standard calibration problems. Compare with
self-calibration.

CMM. Coordinate Measuring Machine.

conformed coordinate systems.* A way of saying that a given set of
coordinate systems within a plane are identical. For example consider a set of
coordinate patches in the measuring plane of a measuring instrument.
Suppose, as in the text, that each coordinate patch has been rendered as an
orthonormal coordinate system, but no relationship has been given among
the scales, relative angles of orientation, or placement of the origins. In this
situation these coordinate patches are not conformed. However, if by some
means, such as by measurement strategies exemplified in the text, it were
possible to transform all of the coordinate systems so that they shared a
common origin, were all of the same scale, and the respective axes were
aligned, we would say that the coordinate patches were conformed.
Calibration of a two-dimensional measuring instrument may be viewed as a
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set of procedures that enable the coordinate patches of the instrument to be
conformed to one another. Although it may not be obvious, it is important
to note that, in the text, the process of conforming a set of coordinate patches
is carried out as a means of achieving self-consistency for a given set of
measurement procedures.

congruent. A term from plain geometry for saying that two objects are of
identical size and shape. Two geometric figures are said to be congruent if the
one can be moved rigidly into perfect coincidence with the other. Two figures
are congruent if they are similar to one another and of equal size. Compare
with shape.

coordinate markers.* A convenient synonym for coordinates that may not
have any physical significance or may not be adequately accurate. For
example, if arbitrary graduations were notched on a thermometer or a
yardstick, they would be called coordinate markers. If then physically correct
numbers were attached to each of the markers, for example, degrees Celsius or
lines and inches, respectively, we would call the attached set of numbers
coordinates. The act of assigning physically meaningful values to coordinate
markers on a measuring device is called calibration. In the case of two-
dimensional measuring instruments, as for example Coordinate Measuring
Machines, putative coordinates are given as readouts of a split-beam
interferometer that tracks approximately orthogonal components of the
motion of a probe; typically, however, the coordinates are not reliably
orthonormal or accurate. To underscore the fact that such coordinates have
unknown systematic error, they may be called coordinate markers. To
calibrate such a system of coordinate markers, one must associate or “map”
the coordinate markers to physically meaningful (and correct) numerical
values. The machine coordinate space is a convenient means of depicting
coordinate markers geometrically, and the machine calibration space is a
convenient way of representing calibrated coordinates.

Coordinate Measuring Machine (CMM). A two-dimensional measuring
device consisting of a plane on which an artifact, such as a ball plate can be
mounted and measured. The measurement is done by moving a probe to the
point of interest. X-Y-Z translations of the probe are measured
interferometrically. Although a Z component does exist for small vertical
displacements, in this paper we are concerned only with the projections onto
the X-Y plane.

coordinate patch.* A two-dimensional coordinate system defined for a small
neighborhood of a larger surface, used to refer to small subsets of the
measurement plane of a two-dimensional measuring device. Although the
coordinate system of, say, a Coordinate Measuring Machine may have
systematic curvilinear errors when viewed on the macroscopic scale, we
assume that in small neighborhoods the coordinate system is linear to first
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order. By concentrating attention on coordinate patches, we develop
procedures for transforming the linear coordinates of each patch into an
orthonormal coordinate system, respectively and for conforming the various
orthonormal coordinate systems into one common orthonormal coordinate
system. The procedures involve measuring a calibration artifact in various
placements on the measuring plane of the two-dimensional measuring
device. The process of conforming the various coordinate patches, then, is
aimed at producing self-consistency in the measurements of the artifact. If
the measurement procedures are determinate, the resulting conformed
coordinate system constitutes a calibration of the Coordinate Measuring
Machine. Note that in the examples in the text, the coordinate patches under
consideration usually constitute only a small subset of the entire
measurement plane, nevertheless when all of such coordinate patches are
conformed we still call it a calibration.

determinate measurement procedures.* In measuring a pattern on an
uncalibrated measuring device, the only observable product of the
measurement procedures is the coordinate markers obtained for the points of
the pattern, or transformations thereof. These coordinate markers can be
plotted as points of an orthonormal Cartesian coordinate system, called the
machine coordinate space. If the pattern is measured in each of several
placements of the pattern on the measuring plane, then the several images of
the pattern can be depicted in the machine coordinate space or in machine
calibration space. These images are observable, and their shapes may be
compared. If all of the shapes are congruent to one another, then the
measurement procedures are said to be self-consistent. Under certain
conditions, some of which are specified in the text, self-consistent
measurements can be used to deduce the correct shape of the pattern and,
simultaneously, to derive a calibration of the measuring device. In such
cases, the measurement procedures are said to be determinate. Under other
conditions, it may not be possible to verify the shape of the pattern or to
derive a calibration of the device, as is the case for non t ransit ive
measurement procedures. In the latter case, the measurement procedures are
said to be indeterminate.

equivalence class. A term used in mathematics to denote a partition of all the
members of a set, i.e., a division of the set into a family of subsets such that
each member of the set belongs to one, and only one, subset. Each such subset
is called an equivalence class. Orbits are equivalence classes.

feature. A generic term referring to any measurable part of an artifact or rigid
object that is to be measured by a measuring device. For examples, if the
object is a grid plate, then the features are grid points; if the object is a ball
plate, then the features are the balls or the centers of the balls inferred from
measurements of the surfaces.
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fine rotation.* A very small rotation of an artifact, such as a rigid two-
dimensional pattern or a ball plate, about a fixed pivot point such that each
pattern point or ball, respectively, stays within a single coordinate patch.
Distinguished from gross rotation. The ball plate or pattern is assumed to be
mounted on the measurement plane of a two-dimensional measuring
device, and each ball or pattern point is assumed to lie within a coordinate
patch. Note that fine rotations move each pattern point or ball on the arc of a
circle.

fixpoint.* Synonym for center of rotation, rotational fixpoint, or pivot point.

grid plate. A planar artifact containing a pattern of measurable points
embedded in its surface. The pattern can be arbitrary, as for example a regular
array of points such as a square lattice or a rotationally symmetric array, or it
can be a random pattern sprinkled evenly or unevenly like freckles.

gross rotation.* A large rotation that moves each feature of interest of an
artifact out of one coordinate patch and into another.  Distinguished from
fine rotation.

image of a measured object. Refers to a representation of an object in a
suitable coordinate system. In the paper, measurements of the features of a
two-dimensional object are given as a pair of coordinates, which are then
plotted in a Cartesian coordinate system, such as machine coordinate space or
machine calibration space. Such a plot is referred to as an image of the object.

indeterminate measurement procedures.* Measurement procedures that are
not determinate are called indeterminate. Here is a way to test whether
measurement procedures for a specific machine and pattern of points are
indeterminate: Examine whether, theoretically, the same measurement
procedures carried out on a different measuring device, using a different-
shaped pattern of points, can yield exactly the same set of measurements as in
the case under question. If so, the measurement procedures are
indeterminate.

internal angles. A way of representing the shape of an object. The internal
angles of an object are the angles formed between every set of three points
within the object. Two objects with identical corresponding angles have the
same shape and are said to be similar. If the two object are also of identical
size, they are said to be congruent.

machine calibration space.” A geometric way to represent a transformation of
machine coordinate space to test the transformation for self-consistency.
Consider a two-dimensional measuring instrument, such as a Coordinate
Measuring Machine. The machine coordinate space provides a simple means
of visualizing measured objects as geometric figures. If the measuring
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instrument is uncalibrated, then the image of an object in machine
coordinate space will not be of the same shape as the object itself, but at least
the image provides something observable. Moreover, if the object is
measured in several placements on the measuring plane of the instrument, it
is likely that the resulting images will not be congruent to one another. Now
consider a transformation of the machine coordinates to some other
Cartesian reference frame (a Cartesian frame different than the machine
coordinate space). Self-calibration involves the study of transformations that
transform the dissimilar images of the machine coordinate space into
congruent images in the latter Cartesian framework, called the machine
calibration space. Its importance arises from the fact that when a given
pattern is measured in various placements on the measuring plane of the
measuring device, we can compare and alter the shapes of the images in the
machine calibration space, even though we cannot observe the shape of the
pattern itself. When a transformation of machine coordinates is found for
which the images are all congruent to one another (i.e., of equal size and
shape), we say that the coordinate transformation is self-consistent. As
shorthand, when it is clear that we are applying a self-consistent
transformation we will say the the measurement procedures themselves are
self-consis tent. The theory of self-calibration is concerned with specifying
conditions under which self-consistency is necessary or sufficient for
determining a calibration of the measuring machine. Transitivity of self-
consistent measurement procedures is a necessary condition but is not
sufficient.

machine coordinate space.* A simple geometric way to represent the
coordinate markers of a measuring device. Consider the example of a two-
dimensional measuring instrument, such as a Coordinate Measuring
Machine. Although the coordinate system of the device may be uncalibrated,
it can still be represented as points of a two-dimensional orthonormal
coordinate system. In the text, we envision measuring a pattern of points to
obtain machine coordinates for each point and plotting the points on
Cartesian graph paper, using the machine coordinates for each point. We call
this Cartesian framework the machine coordinate space. If the machine is
uncalibrated, then the image of the pattern on the graph paper will not be the
same shape as the original pattern. The importance of this representational
technique arises from the fact that when a given pattern is measured in
various placements on the measuring plane of the measuring device, we can
compare the shapes of the images in the machine coordinate space, even
though we cannot observe the shape of the pattern itself. If by chance the
shapes were all congruent, we would then say that the measurement
procedures were self-consistent.  The theory of self-calibration involves
analysis of transformations of machine coordinates that yield congruent
images.
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measurement. In this paper, the determination of the shape of an object by
finding coordinates in a single orthonormal reference frame for all the
features of the object. We are not concerned here with the absolute size of an
object but are only concerned with its shape. Note that the shape of an object
may be equivalently given by specifying the internal angles among all pairs of
features. A method used in the text to show that measurement procedures
are indeterminate, is to show that two objects with distinctly different
internal angles are consistent with the given measurements and
measurement procedures. In the same way that in measuring an object we
are not concerned with the size of the object but only its shape, in calibrating a
measuring device we are not concerned with the scale, orientation, or origin
of the orthonormal coordinate system that we assign to the measuring device
but are only concerned that the measuring device give the correct shape of
any measured object. It is useful to consider the duality of measurement and
calibration: An object can be measured by a calibrated measuring device, and
a measuring device may be calibrated by comparison to a measurement
standard. It is the mutual dependency of calibration and measurement that
gives the problem of self-calibration such an interesting chicken-or-egg
guality. The challenge of self-calibration is to devise procedures that permit
simultaneous calibration of a measuring instrument and measurement of the
calibration artifact.

measuring plane. That part of a two-dimensional coordinate measuring
device, for example a Coordinate Measuring Machine, on which an artifact
can be fastened for measurement.

measurement procedures. A shorthand way of referring to the major
ingredients of a measuring experiment, namely, the artifact to be measured,
the measuring device, the series of placements of the artifact on the
measuring plane of the measuring device, and the transformation from
machine coordinate markers to machine calibration space. Thus, transitivity
and self-consistency are defined with specific reference to the measurement
procedures, meaning that all the named elements are involved.

measurement standard. An accurately measured artifact used for calibrating a
measuring device. The National Institute of Standards and Technology
(NIST) provides such measurement standards for a wide variety of
applications. The need for self-calibration arises because neither the NIST nor
any other institution has been able to provide an accepted two-dimensional
measurement standard that is accurate to within ten nanometers, the
magnitude of precision that current metrology tools are capable of.

nontransitivity? Measurement procedures that are not transitive are said to
be nontransi tive.
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orbit? A series of coordinate patches that are related to one another through
the rigid motion(s) of the features of a calibration artifact. When gross
rotations of a rotationally symmetric rigid object are made, such as a ball plate
or grid pattern, on the measurement plane of a two-dimensional measuring
device, each feature of the object (i.e., ball or pattern point) moves from one
coordinate patch into another, while the feature that had previously occupied
the new coordinate patch has itself moved on to still another, and so on.
Thus each feature pursues another feature, and it is also pursued by some
feature. If you start with any feature (on an artifact containing only a finite
number of features) and connect it to the one it pursues, and then connect
that feature to the one it pursues, and so on, you must eventually arrive back
at the feature you started with. Such a chain of features may or may not
exhaust all the features of the grid pattern or ball plate. In any case, the set of
coordinate patches traversed by such a chain of features is called an orbit.
Each feature belongs to one and only one orbit. It can happen that either one
orbit embraces all of the coordinate patches, in which case the measurement
procedures are called transitive, or there are more than one orbit, in which
case | call the procedure nontransitive. When there are multiple orbits they
are all disjoint, and their union comprises all of the coordinate patches.
Orbits are important in self-calibration because only features within a single
orbit can be measured with respect to one another. Thus the shape of a
pattern of points, each of which falls within the same orbit, can often be
deduced from the measurements of an uncalibrated measuring device. But
the relative orientation and scale of patterns in distinct orbits cannot be
determined.

orthonormal coordinate system. In this paper, a synonym of Cartesian
coordinate system. A system of orthogonal axes in which the coordinates are
marked off linearly on each axis and the scales of all the axes are identical. It
provides a standard framework for dealing with euclidean geometry
analytically. (See any introductory book on calculus and analytic geometry or
linear algebra; for a thorough treatment from the standpoint of finite-
dimensional vector spaces see Efimov and Rozendorn, 1975.)

pattern. An array of points situated on the surface of a rigid plate or other
artifact. A pattern can be regular, as in a square lattice of points, or it can
consist of a random array, like freckles.

pivot point.* Synonym for center of rotation or fixpoint.

primal position.* The first position a feature is in when the artifact is first
place on the measuring plane of a measuring instrument, or the first
coordinate patch in which a feature lies.

principle of self-calibration.* Self-calibration is possible only when transitive
measurement procedures are used. Transitivity and self-consistency are
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necessary but not sufficient conditions for self-calibration. | consider this to be
the fundamental fact about self-calibration.

self-calibration.* A type of calibration in which neither the measuring
instrument to be calibrated nor the calibration artifact is calibrated. In this
case, the instrument and the object must be calibrated and measured
simultaneously. The problem is more difficult than classical calibration
problems.

self-consistency.* When the images of a pattern of points in various specific
placements on the measuring plane of a measurement device are all
congruent to one another (i.e., of equal size and shape) in the machine
coordinate space or the machine calibration space, we say that the
measurement procedures are self-consistent. A primary aim of self-
calibration procedures is to produce self-consistency.

shape. The shape of an object as opposed to its size. In this paper we are
concerned with determining the shapes of objects and are not concerned with
size per se. The shape of an object can be determined by either representing it
in a well-defined coordinate system, such as Cartesian coordinates, or by the
internal angles of the object. Objects of the same shape are said to be similar.
Objects of the same size and shape are said to be congruent.

similarity. A term from plain geometry indicating comparison of two objects.
Two triangles are said to be similar if their corresponding angles are equal. By
extension, two geometric figures are said to be equal if all corresponding
triplets of points in the two figures form similar triangles. Similarity thus
refers to the shapes of objects and not their relative sizes.

two-point grid. A flat calibration artifact, consisting of two measurable points
on the upper surface. This is a theoretical construct that can be used to
illustrate the basic operations used in this paper for calibrating a two-
dimensional measuring machine. A use for the two-ball plate is proposed as
an exercise in the conclusion of the paper as a means of testing the reader’s
understanding of some of the basic ideas.

transitivity.* Applied to measurement procedures that give rise to a single
orbit. Transitivity, along with self-consistency, is a necessary but not
sufficient condition for self-cal ibra t ion. Transitivity and self-consistency are
the two key concepts in self-calibration.

logical principle of transitivity.* Two quantities equal to a third are equal to
each other. This principle, or axiom of logic, underlies the theory of self-
calibration. Cal ibra t ion ultimately involves direct or indirect comparison of
all features of an artifact, and the same is true for all the parts of the
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coordinate system of a measuring machine (i.e., coordinate patches), for they
all must be compared to one another.

wheels-within-wheels.* A descriptive expression used in the text to describe
the kind of indeterminacy that exists for nontransitive measurement
procedures resulting from rotation of the measurement artifact around a
single pivot point. Each orbit of a point pattern that is radially symmetric
about the pivot point can be calibrated, but the relative scales, orientation
angles, and placement of the origins among disjoint orbits must remain
indeterminate. In fact, as explained in the text, the relative orientations and
scales are arbitrary, meaning that any rotation of the orbits with respect to
each other, and any scale relationships between them, is consistent with the
measurements. What this means is that the calibration artifact can be
illustrated by “wheels-within-wheels,” such that the shape of all the features
falling within any given orbit is well determined, but each such ring of
features is free to expand or rotate arbitrarily around the pivot point.
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