
A UNIDRAW-BASED USER INTERFACE BUILDER

John M. Vlissides
Steven Tang

Technical Report: CSL-TR-91-485

August 1991

Research supported by a grant from Fujitsu America, Inc., by the SRC under Contract go-MC-1 06,
by the U.S.Navy/DARPA under Contract N00014-87-K-0729, by the NASA CASIS project under
Contract NAGW 419, by the Quantum project through a gift from Digital Equipment Corporation,
and by a grant from the Charles Lee Powell Foundation.

A Unidraw-Based User Interface Builder

John M. Vlissides and Steven Tang

Technical Report: CSL-TR-91-485

August 1991

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305

Abstract

Ibuild is a user interface builder that lets a user manipulate simulations of toolkit objects rather
than actual toolkit objects. Ibuild is built with Unidraw, a framework for building graphical
editors that is part of the Interviews toolkit. Unidraw makes the simulation-based approach
attractive. Simulating toolkit objects in Unidraw makes it easier to support editing facilities that
are common in other kinds of graphical editors, and it keeps the builder insulated from a particular
toolkit implementation. Ibuild supports direct manipulation analogs of InterViews’ composition
mechanisms, which simplify the specification of an interface’s layout and resize semantics. Ibuild
also leverages the C++ inheritance mechanism to decouple builder-generated code from the rest
of the application. And while current user interface builders stop at the widget level, ibuild
incorporates Unidraw abstractions to simplify the implementation of graphical editors.

Keywords: user interface builders, user interface toolkits, direct manipulation, graphical con-
straints

Copyright @ 1991

bY

John M. Vlissides and Steven Tang

Unidraw-Based User Interface Builder

John M. Vlissides and Steven Tang
Stanford University

Abstract

Ibuild is a user interface builder that lets a user ma-
nipulate simulations of toolkit objects rather than ac-
tual toolkit objects. Ibuild is built with Unidraw, a
framework for building graphical editors that is part of
the Interviews toolkit. Unidraw makes the simulation-
based approach attractive. Simulating toolkit objects
in Unidraw makes it easier to support editing facili-
ties that are common in other kinds of graphical ed-
itors, and it keeps the builder insulated from a par-
ticular toolkit implementation. Ibuild supports di-
rect manipulation analogs of Interviews’ composition
mechanisms, which simplify the specification of an
interface’s layout and resize semantics. Ibuild also
leverages the C++ inheritance mechanism to decouple
builder-generated code from the rest of the application.
And while current user interface builders stop at the
widget level, ibuild incorporates Unidraw abstractions
to simplify the implementation of graphical editors.

Keywords: user interface builders, user interface
toolkits, direct manipulation, graphical constraints

1 Introduction

Few user interface builders today are written from
scratch. Like other interactive applications, most ben-
efit from a toolkit-based implementation. But in addi-
tion to using a toolkit in the normal way, most builders
also use instances of toolkit classes as data objects: a
user manipulates these instances directly in the builder
to construct a user interface. Such instance-based
builders employ mechanisms that keep the toolkit ob-
jects passive as the designer assembles the interface.
This approach has certain advantages: the builder’s
objects look and feel exactly like the toolkit objects
do, since they are one in the same, and testing the fi-
nal interface involves simply disabling the mechanism

This research has been supported by a grant from Fujitsu Amer-
ica, Inc., by the SRC under contract 90-MC-106, by the U.S.
Navy/DARPA under contract N00014-87-K-0729, by the NASA
CASIS project under Contract NAGW 419, by the Quantum project
through a gift from Digital Equipment Corporation, and by a grant
from the Charles Lee Powell foundation.

To appear in the Proceedings of the ACM SIGGRAPH/SIGCHI
User Interface Software and Technologies ‘91 Conference, Hilton
Head, South Carolina, November 1991.

that keeps the objects passive during the buihling pro-
cess.

But the instance-based approach has several dis-
advantages as well. To implement passivation, the
builder must subvert normal toolkit semantics, which
usually requires knowledge of toolkit internals. The
builder and toolkit implementations are thus closely
coupled, making it harder to retarget the builder to a
new toolkit. Moreover, an instance-based approach
complicates the implementation of features that are
taken for granted in graphical editors for other do-
mains, features such as scrolling and zooming the in-
terface, eliding parts of it, and supporting multiple
views.

Ibuild is a user interface builder for the Interviews
toolkit [6] that lets a user manipulate simulations of
toolkit objects. Ibuild’s implementation of these ob-
jects is independent of the toolkit’s implementation.
Builder developers have avoided simulation-based ap-
proaches because they offer no implementation ad-
vantage over an instance-based approach when the
builder is developed on top of a traditional user in-
terface toolkit. Ibuild, however, takes advantage of
Unidraw [131, a framework for building direct manipu-
lation graphical editors. Unidraw provides abstractions
above the toolkit level that simplify the construction of
such applications. Unidraw makes a simulation-based
approach attractive, and it has enabled us to explore
the advantages of simulation as an alternative to the
instance-based approach. Moreover, Unidraw provides
the basis for builder abstractions beyond the widget
level.

In addition to standard toolkit objects such as scroll
bars, buttons, and menus (generally known as wid-
gets or, in Interviews terminology, interactors), ibuild
provides direct-manipulation analogs of Interviews
composition mechanisms for specifying spatial rela-
tionships between interactors. Simulation makes it
possible to let the user modify part of the result-
ing hierarchical interactor structure without disturb-
ing unrelated parts and without compromising the
builder’s what-you-see-is-what-you-get (WYSIWYG)
model. The user can also establish relationships be-
tween interactors by direct manipulation and can in-
corporate Unidraw abstractions into the interface to
support graphical editing applications. Ibuild gener-

- 2

ates Interviews code that implements the interface, et al’s FormsVBT dialog builder [l] employs a TEX-
and it uses the C++ inheritance mechanism to insu- based boxes-and-glue model for widget layout simi-
late ibuild-generated code from application code and lar to Interviews’ (and ibuild’s). While FormsVBT’s
to pen-nit extension of built-in interactors. direct-manipulation interface is not WYSIWYG, the

This paper describes ibuild’s design and implemen- system can also display a non-editable WYSIWYG
tation on top of Unidraw. view.

2 Background

User interface builders promote visual user interface
design and development to minimize the need for con-
ventional programming. Current commercial and re-
search builders support interface specification on sev-
eral levels:

1. Most support the interactive layout of a user in-
terface, that is, absolute positioning of widgets by
direct manipulation.

2. A few offer mechanisms for expressing spatial
relationships between widgets, which define the
resize semantics of an interface.

3. Some support hierarchical structuring of widgets
to aid in the specification of complex layouts.

4. Some research builders offer demonstration-based
specification. At least one research builder, Lap-
idary [7], supports demonstrational widget speci-
fication.

The more elements a user interface has, the more
important it is for the builder to support hierarchy.
The reason comparatively few builders support hierar-
chy stems from their WYSIWYG nature: the widget
hierarchy has no visible manifestation in the interface
from the user’s perspective. Thus hierarchical builders
either depart from a truly WYSIWYG model or they
introduce additional, hierarchical views of the inter-
face, or both. For example, child widget compositions
in OPUS are elided as gray boxes. The user can ex-
pand a box into a window that contains the child’s con-
tents with its own children elided. Navigating through
a deeply nested hierarchy can be cumbersome, how-
ever, since it is not possible to jump more than one
level at a time. TeleSoft’s TeleUSE [lo] provides a
tree view of the widget hierarchy and allows limited
editing to take place there. FormsVBT provides a tex-
tual view for viewing and specifying the interface in
an s-expression-based language. Unfortunately, it is
often difficult for a user to map between widgets in the
graphical view and nodes in a tree or s-expressions in
a program.

A common way to support specification of resize se-
mantics is through a graphical notation. In Cardelli’s
DialogEditor [3], one of the earliest builders, the user
draws attachment points that keep an edge of a wid-
get attached to an arbitrary point in the interface. The
component will stretch or shrink if necessary to main-
tain the attachment. OPUS [4] extends this model to
include a variety of notations for aligning widgets and
spacing them proportionately. The main drawback of
these notations, apart from their often-cryptic appear-
ance, is that their presence interferes with the interface
being built, thereby mitigating the benefits of a WYSI-
WYG editor. NeXT’s Interface Builder [14] takes
a simpler approach. The user can introduce integral
numbers of springs around widgets that define how
readily the widget deforms when pressed or pulled by
the window it occupies. The springs do not appear in
the interface but are specified instead through dialog
boxes. This scheme is simple and non-intrusive but
cannot express many common layouts, such as mutu-
ally centered or tiled widget arrangements. Avrahami,

Another approach to visual interface specification is
through demonstrational techniques. These have been
applied most successfully to solving the layout prob-
lem, as in OSU [5], Lapidary, and Druid [8], though
each of these systems iets the user specify certain in-
terface semantics by demonstration. The known prob-
lems with demonstrational specification in general ap-
ply equally well to its use in interface builders:

Deducing non-trivial interface semantics from a
limited number of user actions is difficult.

The inferred behavior is not always predictable.

There is usually no way to edit a demonstration.

The system understands a limited number of
demonstrations and must have a fallback speci-
fication mechanism when these are insufficient to
express desired behavior.

It is difficult to extend the system to understand
new demonstrations.

There are other issues that current builders fail to
address adequately., No current builder eliminates the

need for conventional programming in application de-
velopment. Therefore a programmer must at some
point integrate builder-generated code with the rest
of the application. To carry out the integration, the
programmer usually needs to access or even modify
objects in the generated code. Once generated code
is modified, however, the programmer can no longer
edit the interface in the builder without merging his
changes into code generated subsequently. Code con-
sistency thus becomes a problem. A related problem
for builders is providing a mechanism for extending
the functionahty of the builder’s built-in widgets. Fi-
nally, no current builder has proven practical for speci-
fying interfaces beyond the widget level. For example,
assembling a non-trivial, production-quality graphical
editing application is beyond the capabilities of current
systems.

3 Composing an Interface
with Ibuild

We will introduce ibuild’s interface and capabilities by
composing a simple text editing interface.

3.1 Basic Composition

Figure 1 shows the interface being built with ibuild.
Three objects are instantiated initially (from left to
right):

l A TextEditor instance provides a multiline text
editing interface but defines no input handling.

l A VBorder defines a vertical border.

l A V&roller supplies an interface for scrolling in
the vertical dimension.

Each object represents an instance of an Interactor sub-
class. The user can instantiate any of the interactors
that Interviews predefines by clicking in the viewing
area with the appropriate creation tool engaged. The
creation tools installed currently appear along the bot-
tom of ibuild’s interface. The manipulation semantics
for instantiating an object vary with the interactor. For
example, the TextEditor instance is created by sweep-
ing out a rectangular area of the desired size, while
the VBorder is specified by dragging a vertical line.

All inter-actors have a shape. The shape defines a
natural size (width and height) for the interactor as
well as the amount by which the interactor is prepared
to stretch or shrink from the natural size. For example,
the natural size of both the VBorder and VScroller is

-3-

zero in the vertical dimension, and both can stretch “in-
finitely” in this dimension. The TextEditor is infinitely
stretchable and shrinkable as well, but its natural size
is defined implicitly when it is created by direct ma-
nipulation.

Each object in the interface is thus far uncomposed
and independent. Now we will compose the interactors
in an HBox so that they tile horizontally. In general,
composing interactors in ibuild involves selecting the
instances to be composed and then choosing a com-
position mechanism from the Composition menu, for
example, “HBox.” Once composed, the interactors are
no longer independent; in this case the HBox instance
becomes the only selectable component in this view
of the interface (see Figure 2). Note that the border
and scroller have stretched vertically to accommodate
the TextEditor’s natural height. This follows from the
HBox’s shape semantics, which specify that the natu-
ral height of an HBox is the maximum of the natural
heights of its children.

We can resize the interface as it now stands with
ibuild’s Resize tool (Figure 3), which will simulate a
window manager’s r&zing operation. Doing so can
give a designer the feedback needed to ensure a pleas-
ing layout in the face of resizes. Note that the re-
size semantics are a natural outgrowth of the compo-
sition mechanisms-no graphical notation apart from
the interface itself is required to specify the layout
constraints, and the builder’s rendition of the interface
remains WYSIWYG. To ibuild’s user, the objects that
define layout and resizing semantics are an integral
part of the interface. The end-user, on the other hand,
has no knowledge of their presence.

The HBox object can now participate in a larger
composition that includes pull-down menus. Figure 4
shows the text editing interface once it is fully com-
posed, and Figure 5 depicts its interactor hierarchy
schematically. The top-level interactor in the interface
is a ShadowFrame, a composition that draws a drop
shadow around its (one and only) component. The
ShadowFrame’s component is a VBox, which tiles its
components vertically. Inside the VBox is the HBox
composed earlier, a horizontal border (HBorder), and
another HE3ox containing a MenuBar object and a
piece of horizontal glue, or HGlue. HGlue (and its
vertical counterpart VGlue) are interactor subclasses
that define whitespace of user-specified natural size,
stretchability, and shrinkability along their major axis
(which for HGlue is the horizontal axis); they have
zero natural size and infinite stretchability in their mi-
nor axis. Glue is composed along with other elements
of the interface to provide both empty space and slack

- 4 -

: Select MOW Resize Exanine Relate Edit Magnify Narrow :::. :..;:_ :::. i.
3 m I i I Q z cl

._’ ‘: ‘_._ _: 1.:. :

! File Edit Composition Font Border FgColor BgColor Align View
,$i”‘r$:;: ;
:::..

: GraphicBlock FileBrowser TextEditor StringBrowser 0 0 6 3 e MaryinFrarne PulldownMenu i

i PullriyhtMenu ParlelControl CommandControl Viewer
i._. :. .._I ._. .:..:... _~_._~_._._~.~ _._._.. _._..._._._....._.:....,., _._....._._._. ._...,..,. ,., ., .,. ., ._._ ._ _., ,. ., ., ,., ., ,. ., ._ ,. ,. ., ., ,. ,... ., .,.,.,.,. ,._.,.,.,. ._.,.,.,._._. ._._._.,.,.,./,._.,.,.,., I ,.,.,._. .,.,.,.,.,._.,.,.,.,.,.~.,.,.~.,.,.,.~. :.

Figure 1: Uncomposed TextEditor, VBorder, and VScroller instances

: Select Move Resize Examine Relate Edit Mqnify t4arrow
3 m I i I Q z cl

: File Edit Composition Font Border FgColor BgColor Align View

i HGlue VGlue
:I

Men :Ti:: Panner M e s s a g e StringEditor i,.:..., :. I
GraphicBlock FileBrowser TextEditor WinyBrowser 0 r=> G 9 Q e MqinFrmne PulldownMenu

PullrightMenu PanelControl Comm;arldControl Viewer

Figure 2: TextEditor, VBorder, and VScroller instances composed in an HE3ox

- 5 -

[GrayhicBlock FileBrowser TextEditor &inyBrowter 3 0 G 0 e TGT MaryinFrame PulldownMenu j:

i PullriyhtMenu PanelControl CommandControl Viewer 1:
:...................................:..........: ._ _._....._..._..._._.,...,...,..... . .._.....,.,. _... .,. ._.,._._. ._._.,._.,._._._._.,...,...,.,...,...,. .,...,.,. ._...l.....,.,.,.,.,.,,,.,.,.,.,.,,..,.,...... .,._.,. ..,.........,.,.,.,.,.,...,.,.....,..., .,.,. ,.,.,.,.,.,.,.,.,.,., ,.,.,., . ,.,.,.,.,.,.,.,.....~. ,.,.........,..... :.

Figure 3: HESox composition after resizing

GraphicBlock FileBrowser TextEditor StringBrowser (5 0 Q 0 ,/a e MarginFrame

PullriyhtMenu PanelControl CommandControl Viewer

Figure 4: Text editing interface, fully composed

- 6 -

ShadowFrame9

Figure 5: Interactor hierarchy for the text editing interface

between interactors. Glue normally deforms sooner
than other, non-trivial interactors when there is more
or less space than the natural amount. In this case, the
glue in the HBox effectively left-justifies its MenuBar
sibling.

The MenuBar contains two PulldownMenu in-
stances, which it tiles horizontally. It also establishes
the dependencies between the menus so that they work
in concert The only visible manifestation of the pull-
down menus in the MenuBar is the tag that the user
clicks on to expose the menu’s body, which contains
its choices. A pull-down menu tiles the interactors
in its body vertically. Any interactor can appear in a
menu’s body, including other menus, thereby support-
ing hierarchical menus. We explain how the body is
composed in the next section.

Of existing builders, FormsVBT’s composition
model is closest to ibuild’s. There are significant dif-
ferences, however. FormsVBT interactors cannot de-
fine shrinkability, thus limiting the range of resize be-
haviors. Its composition objects have visible manifes-
tations that do not appear in the final interface. More-
over, Ibuild supports a greater variety of composition
mechanisms, including nearly all that Interviews de-
fines [6].

3.2 Modifying the Composition

How does one modify part of the composition without
disturbing other parts? Stated another way, how does
one refer to and edit composition objects buried deep
in the interface? One could start from scratch or could
dissolve the compositions to expose the leaf interac-
tors. But both of these alternatives force the user to
repeat work already performed, which is undesirable
even for small interfaces.

Like TeleUSE, ibuild uses multiple views to address
this problem, but ibuild’s views are always WYSI-
WYG. Suppose we want to augment our text edit-
ing application’s scrolling interface with two buttons
that support incremental vertical scrolling, either up
or down. In Interviews terminology we could place
an UpMover above the VScrolIer and a DownMover
below it. This calls for a composition in which the
movers and the scroller are tiled vertically. We there-
fore introduce a VBox into the existing interface.

First we will create a separate view of the inter-
face in which to work, keeping the original view.
Any changes we make in one view will appear syn-
chronously in all other views. Each view can be
scrolled and zoomed independently, and interactors
may be selected in multiple views independently.

Initially both views display the interface in its en-
tirety. Now we will narrow the second view into
the HBox composition containing the TextEditor, the
VBorder, and the VScroller. In Figure 6 the user has
clicked on the VScroller with ibuild’s Narrow tool
engaged Doing so produces a pop-up menu contain-
ing entries that reflect the instance hierarchy in the
scroller’s subtme. Each entry is the class name of an
instance along the path from the root of the hierarchy
(the topmost entry in the menu) to the parent of the
instance clicked upon (the bottommost menu entry, in
this case, the HBox containing the VScroller). Select-
ing one of these entries will narrow the view to the
chosen node, eliding other parts of the composition.
We can then edit that portion of the interface out of
context, as if it was the entire interface.

Figure 7 depicts the two views of the interface with
the one on the right narrowed to view the HBox’s con-
tents. Note that the original view (on the left) merely
provides context by displaying the overall interface.

- 7 -

..,.,.,.> .A .P. .P...:... . ._. ._. ._._._. .c. .:.:... ..,,P. ‘...‘.‘...c..... ‘..... . . 1. ,_. . . .,
.

~~~~~~ ~~~
. ., ., ,. . 1

.,..,....
...1;8a~~~~ii~~~~~~~~i~:

. . .;+..& . . . . . . . . . ~ .:..::......:::.....::.::: :..:: I ,:....... ~- text_ed

‘,” A;ij$;;  jtg&&
. .:.I . .%

: L”-:$ File Edit Composition Font Border FyColor  BgColor Align View

HGlue VGlue  M e n u l t e m 0 radio q  check -

i] HGlue VGlue  M e n u l t e m Message StringEditor GraphicBlock
-,. ..” “” :

FileBrowser TextEditor  iI:

FileBrowse

PullriyhtMenu

Figure 6: Narrowing a separate view

Figure 7: Editing inside the HE3ox



Figure 8: Recomposed interface

The user may create as many or as few views as de-
sired, and each may be narrowed independently.

The HBox’s  siblings and ancestors are elided in the
narrowed view, and its children can be selected indi-
vidually. The user has added an UpMover,  a Down-
Mover, and two HBorders to the interface and is about
to compose them in a VBox along with the VScroller.
These additions appear in the original view as well.
Ibuild does not, however, enforce all composition se-
mantics constantly when editing a subview.  It is im-
portant to preserve the user’s freedom to position in-
teractors in the most natural way before composing
them. Restricting an interactor’s placement prior to be-
ing composed is unnecessary because composition ul-
timately determines an interactor’s placement Avoid-
ing any such restriction lets the user arrange interac-
tors freely, giving him a feel for spatial relationships
before committing them to a particular composition.
Ibuild provides a Natural Size command that reposi-
tions the selected compositions to reflect their natural
appearance. Figure 8 shows the interface at its natural
size.

The user employs the same narrowing mechanism
to specify the body of a menu. F’igure 9 shows the
user narrowing in on the “Edit” pull-down menu with

the Narrow tool. Inside the pull-down menu the user
sees the tag in its highlighted state, suggesting that the
menu’s body is exposed. The user may then instantiate
the interactors that make up the body, including other
menus or compositions of interactors (Figure 10). As
in other subviews, the user may place newly instan-
tiated interactors anywhere; the menu’s composition
semantics will define its children’s ultimate positions.
In this case, the pull-down menu will tile its body’s
children vertically.

The ability to edit parts of an interactor composition
is an indispensable one in any builder that supports
hierarchy. Note that the composition model that Inter-
Views defines and ibuild inherits at first glance seems
an inherently bottom-up approach to interface design.
Yet with the subview capability, the designer is free
to revisit and expand parts of the composition in a
top-down manner. Menu specification in particular is
top-down.

4 Interactor Attributes

In addition to a shape, interactors have other attributes
of interest to the user. Ibuild provides an Examine
tool for inspecting and modifying these attributes.



Figure 9: Narrowing in on a pull-down menu

~~~~ - InI ’ [part ofJ text ed Helvetica-Bold 12

~~Select3 Movem Re3ii-y Examinei RelateI Editq Mwnifyz 1~~~~~~~~~~~

i File Edit Composition Font Border FyColor BgColor Aliyu View ;:;:::f :::: :,:,.~i~$~

Figure 10: Editing a pull-down menu’s body

FileBrowse

PullriuhtMenu

0 0 Q 0 Q MarginFrame PulldownMenu it

PanelControl CommandControl
.1........... 8 .._......~...........~.~,.,*.~....,........ + . ..*_..~.~...~._~.~,..~..............:......:.~.. ._~...._........._......~..,...,..............~......... * .*...._.....,..........~. FE: ._......._.

Figure 11: Examining a TextEditor

4.1 Examining an Interactor

Figure 11 shows the two-level pop-up menu pro-
duced by the Examine tool when the user clicks upon
the TextEditor instance in our example interface. In
this case the user has the option of examining ei-
ther run-time information about the interactor (via the
Info... choice) or the static customization properties
(via Props...). In either case, a submenu analogous
to the Narrow tool’s lets the user choose the instance
to examine in the composition, from the leaf instance
clicked upon to the topmost interactor in the hierarchy.

But by changing the class name, the user directs ibuild
to declare a new subclass of the base class and to use
an instance of that subclass. The generated code will
include a subclass declaration that the user can modify
to specialize the behavior of the base class. For ex-
ample, our text editing interface would probably define
and use a subclass of TextEditor (instead of TextEditor
itself) that implements application-specific input han-
dling. Specifying subclasses provides a simple way to
extend the behavior of ibuild’s predetied interactors
programmatically.

If the user chooses to examine the TextEditor’s run-
time information, then an Interactor Information di-
alog will appear as shown in Figure 12. Had the user
chosen to examine the TextEditor’s properties, an In-
teractor Properties dialog would have appeared in
which to type static attribute names and their values.
The Interactor Properties dialog is the same for all in-
teractors: it has a simple text editor-based interface for
specifying the properties. The Interactor Information
dialog varies from interactor to interactor, though all
have a class name, a base class name, a member name,
canvas dimensions, and shape information.

The interactor’s member name identifies the inter-
actor to application code should the application need
to access it; this issue is discussed further in Section 6.
The interactor’s canvas defines the actual screen space
the interactor occupies, which may be different from
the desired size specified by its shape. Most interac-
tors computer their shape from information they keep
internally; thus their shape information is not editable
in the information dialog. However, glue and other
interactors that parameter& their shape have editable
shape information fields.

When the class name and base class name are the TextEditors have a minimum of run-time attributes.
same, ibuild will instantiate the corresponding class. Below is a sampling of the information that can be

Move
3

Resize :

i HGlue VGlue M e n u l t e m : amer[plil Message StringEditor GrayhicBlock FileBrowser TextEditor

; GraphicBlock FileBrowrser
i. StringBrowser Q 0 G 9 CQ 62

Tex?
MarginFrame PulldovrnMenu

i PullrightMenu Panelli; _..*.*. . .
: PullrightMenu PanelControl CommandControl Viewer

. . *.*_....;, 9 :_._.,...,.........., ,.,...,.,...,... ,._............ ,. .,.....,. .,.:,.,..... .,._.,... ..I....,... :..,.,... .,._.,.,...,... . ..*.._.... .:..: .::.._. . .._I _.. .,I,._... ._._I ._ ..:. I.. _j
:_ ._ _._ ._. _. ._ ._. _. ._ _. _. . . _. ._ . ._. ._. _. . ,. . ., ._. ._. ._, ._._._. ._._ ._.,. ._._._.,._. ._. ._ . ..gymT. ._._ _._. .,._. ._. ._. ._._._. ._,_._. ._. ._. ._._. ._,_._._.,._. ._._._._._. ,_. . .__ , ._ ._ . ._. _,

Figure 12: TextEditor attributes

specified for different interactors through the Examine
tool interface:

l ScrollBars and Movers have a field for specifying
the member name of the interactor they scroll.

l Menus have a field for specifying a member func-
tion to call when invoked.

l Buttons provide an interface for specifying But-
tonstate information [6] along with a member
function to call whenever the ButtonState’s value
changes.

l FileBrowser (a scrollable list of files in a direc-
tory) provides fields for specifying a directory to
search and regular expressions for filtering files.

l The pop-up menu for GraphicBlock (an interac-
tor that displays, scrolls, and zooms structured
graphics objects [12]) and Viewer (a Unidraw ob-
ject derived from GraphicBlock) adds a Graph-
ics entry that lets the user specify the graphics
they display through a drawing editor interface
(idraw [9]).

4.2 Relating Interactors,

Some interface semantics establish relationships be-
tween interactors. For example, a scroll bar normally
scrolls another interactor, some button choices might
exclude others, and double-clicking in a scrollable list
of choices might be equivalent to pressing a button to
dismiss the dialog. These relationships can be estab-
lished through dialog boxes produced by the Examine
tool, but such interaction is indirect at best and clumsy
in practice.

Ibuild’s Relate tool provides a direct-manipulation
interface for establishing relationships between inter-
actors. The Relate tool involves two interactor in-
stances, the source and the target. The user identifies
the source and then the target by clicking on each in
turn. As with the Examine tool, the Relate tool pops
up a menu in response to each downclick to let the
user select the instance in the hierarchy being related

To demonstrate how the Relate tool works, we will
use it in our text editing example to make the scroller
and movers adjust the TextEditor instance. Figure 13
shows the pop-up menu produced by clicking on the
VScroller instance. The user specifies the source by
selecting an entry in the pop-up menu. In this case the
user could choose the VScroller, but then the movers

/I File Edit Composition Font Bo

TextEditor

rg!Y MarginFrame PulldovrnMenu
GraphicBlock FileBrowser Texii

. PulhightMenu
Pan&i.

Viewer
_L *id‘. A.....I... ..- -.,, •,‘*IYL.~ Y.iiV1/.~ . ~‘~ L ,,...................,.......,..,.,..,,.,.....

Figure 13: Specifying the source with the Relate tool

must be related separately. Instead, the user can relate
both movers and the scroller at once by making the
VBox that composes them the source, thereby speci-
fying a recursive relation.

Once the source is specified, the next step is to
identify the target by clicking on the TextEditor in-
stance (Figure 14). Again, a menu pops up to let the
user choose the instance in the hierarchy. Ibuild draws
a line from the source to the current mouse position
to remind the user to specify the target. Upclicking
the mouse over the “TextEditor” entry in the menu
completes the relation. If the user now examines
the scroller or either mover, the TextEditor instance’s
member name will appear in the information dialog’s
field that identifies the instance adjusted

The user may use the Relate tool to establish a
meaningful relationship between many combinations
of interactors. The semantics of the relationship de-
pends on the interactors and sometimes on the order
in which the relation is made, but no more than one
such relationship exists between two inter-actors-there
can be no ambiguity. For example, relating one radio
button to another ensures that they mutually exclude
one another. Relating a push button to a dialog makes
the push button dismiss the dialog. The Relate tool

prevents the user from making meaningless relations
(for example, between a pull-down menu and a bor-
der) simply by not popping up the menu (source or
target) that would permit such a relation.

5 Unidraw Abstractions

In addition to providing widget-level support, ibuild
also incorporates Unidraw abstractions that simplify
the construction of graphical editors. Unidraw is de-
signed to span the gap between traditional user inter-
face toolkits and the implementation requirements of
these applications. It partitions their basic functional-
ity into four class hierarchies:

1. Components represent the elements in a graphi-
cal editing domain, for example, geometric shapes
in technical drawing, schematics of electronic
parts in circuit layout, and notes in written mu-
sic. Components encapsulate the appearance and
semantics of these elements. The user arranges
components to convey information in the domain
of interest. A component is made up of a sub-
ject and zero or more views: the subject defines
the component’s semantics, while views define

:ji Select Move

‘1 File Edit Composition Font Boi

Figure 14: Specifying the target

presentations of the subject. Components can be
structured hierarchically.

Tools support direct manipulation of components.
Tools employ animation and other visual effects
for immediate feedback to reinforce the user’s
perception that he is dealing with real objects.
Examples include tools for selecting components
for subsequent editing, for applying coordinate
transformations such as translation and rotation,
and for connecting components.

Commands define operations on components and
other objects. Commands are similar to messages
in traditional object-oriented systems in that com-
ponents can receive and respond to them. Com-
mands can also be executed in isolation to per-
form arbitrary computation, and they can reverse
the effects of such execution to support undo.
Examples include commands for changing the at-
tributes of a component, duplicating a component,
and grouping several components into a compos-
ite component.

External representations convey domain-spe-
cific information outside the editor. Each com-
ponent can define one or more external represen-

tations of itself. For example, a transistor compo-
nent can define both a PostScript representation
for printing and a netlist representation for circuit
simulation; each is generated by a different class
of external representation. An external represen-
tation object thus defines a one-way mapping be-
tween a component and its representation in an
outside format.

The Unidraw library defines the base classes and a set
of subclasses for each of these elements. The prede-
fined subclasses support basic drawing editing capa-
bilities. For example, the library includes:

l components for elementary shapes such as lines
and polygons

l tools for creating and selecting components and
for applying coordinate transformations by direct
manipulation

l commands for cut, copy, paste, undo, redo,
changing component attributes, saving and restor-
ing drawings

l external representation objects for generating
PostScript

Figure 15: Composing Unidraw objects

The library also defines special interactors to en-
gage and control these abstractions. It defines two
subclasses of Interviews’ Control class, which is
the base class for interactors that execute an action:
CommandControl provides an interface for executing
commands from menus, and PanelControl engages a
particular tool. Ibuild includes these interactor classes
and lets the user specify via the Examine tool the com-
mand or tool subclass they use. A user can specify ei-
ther a predef3red command or tool subclass by name;
he can also extend the existing classes programmati-
tally by subclassing them as he can interactors.

Ibuild currently supports two additional Unidraw
classes:

1. A Viewer displays a graphical component view,
most often the root view in a hierarchy. A viewer
provides a framework for displaying the view,
supporting such “non-semantic” manipulations as
scrolling and zooming. Viewers also take raw
window system or toolkit events and translate
them into Unidraw protocol requests.

2. An Editor is an interactor subclass that composes
the application’s interface. It associates tools (in
PanelControls) and commands (in CommandCon-
trols) with one or more viewers and composes
them along with other toolkit objects into a co-

herent user interface. A Unidraw-based applica-
tion can create any number of editor objects to
provide a multi-view editing environment.

Figure 15 depicts how one might compose a graph-
ical editor with ibuild’s Unidraw abstractions. Panel-
Controls for engaging various tools appear composed
in a VBox along the left side of the interface. The
top three PanelControls engage tools for editing exist-
ing components, while the bottom three let the user
instantiate components. CommandControls containing
user-executed commands are composed in pull-down
menus along the top. The Viewer in the center displays
the component view hierarchy that the user edits. The
interface is composed in an Editor object, which co-
ordinates the operation of the other Unidraw-specific
objects.

6 Integrating Interface
and Application Code

A user interface builder’s objective is to implement
an interface from the user’s graphical specification.
To this end, most builders generate toolkit code, and
ibuild is no exception. However, the user interface is
normally just a part of a larger application. We have

- 15 -

core subclass
stubs for redeflnlng vlttuals

programmer-added state or protocol

(read-only)

(read-only)

Figure 16: Core class and subclass derivation

designed a novel technique for integrating interface
and application code and for keeping the two consis-
tent amidst changes to one or the other.

Ibuild generates a C++ class called the core class
for each interactor subclass in an ibuild editing session.
A user wiIl usually deline a subclass for each top-level
interactor composition in the interface. The core class
implements the user’s interactor composition and de-
clares all exported member names and functions. The
user exports a name by checking “Export” beside the
name in the interactor information dialog. For exam-
ple, ibuild generates a protected member variable for
each interactor that has exported its member name, and
a public virtual function may exist for each menu item
in the composition. Yet protected members cannot be
invoked by other objects, and the member functions
have no implementation. So how do these support
code integration?

The programmer could modify the core class to
work with other application code, but subsequent edit-
ing and regeneration of the interface in ibuild would
create a code merging problem. Instead, ibuild gener-
ates a core subclass in addition to the core class. As
the name suggests, each core subclass is derived from a
core class (Figure 16). The programmer modifies the
core subclass, not the core class, to establish a link
to the rest of the application. He can define member
functions that provide controlled access to the exported
member variables, and he can redefine the core class
virtual functions to do useful work.

If the interface’s appearance is later modified, then
the user can choose to regenerate c&y the core class
files, which were not modified-the changes to the
core subclass are thus unaffected. The programmer
can then recompile the application, and it will reflect
the change in appearance. Only if the designer makes
radical changes to the interface (such as deleting in-

application software

4
system software

Toolkit (Interviews)

1
Window system (X) 1

Figure 17: Layers of software underlying ibuild

teractor instances upon which the application depends)
should it become necessary to edit the core subclass
again.

7 Implementation

Ibuild’s implementation relies on Unidraw for its
graphical editing capabilities and on Interviews’ pre-
defined interactors to implement its look and feel. Fig-
ure 17 depicts the dependencies between these layers
of software.

7.1 Interactor Components

Ibuild defines a component subject subclass called In-
teractorComp from which to derive components that
simulate the predefined Interviews interactors. Inter-
actorComp adds two Interactor-inspired methods to the
base graphical component protocol: Reconfig notifies
the InteractorComp to compute its desired shape based
on its children and whatever other criteria it considers,
and Resize signals that the InteractorComp’s canvas
(actual screen space) has been allocated.

Though the Interactor base class defines consider-
ably more protocol than these two methods, they were
all that were needed for our simulation. We initially
wanted ibuild to simulate input behavior, but later we
realized that there was little to be gained from letting
the user push buttons on and off. Therefore ibuild’s
interactors do not interpret input, and they and have no
need for the equivalent of Interactor’s Handle method
or for objects that specify event interest. Rendering op-
erations are already part of Unidraw’s graphical com-
ponent semantics. Child traversal, window manager,
and other operations are similarly superfluous.

One benefit of these simplifications is that ibuild’s
interactor simulations consume only about 60% of the
memory of their interactor counterparts, though this
number increases with each additional view. A sig-

nificant cost associated with interactors is the X win-
dow each one allocates, for which the simulated in-
teractors have no need. Also, the multiple view fea-
ture is simply inherited from the Unidraw architec-
ture; no special work-arounds were needed to im-
plement it. Other features that come for free are
view scrolling and zooming, incremental screen up-
date, hit detection, Unidraw’s framework for support-
ing direct manipulation, standard editing features such
as cut/copy/paste, and arbitrary level undo and redo.
Moreover, we have found it easier to simulate an in-
teractor in Unidraw than to create the real one from
scratch; thus the simulation-based implementation can
serve as a testbed for interactor development.

7.2 Code Generation

CodeView is the base class from which external rep-
resentation objects for each interactor component are
derived The name “CodeView” reflects the fact that
external representation objects in Unidraw are simply
another kind of component view. The external repre-
sentation itself is Interviews and Unidraw code written
in C++. A CodeView subclass instance is instantiated
for the top-level interactor components at code gener-
ation time. Each subclass is responsible for generating
the source code representation for the component sub-
ject it views.

Code generation is divided into multiple phases,
each entailing a traversal of the entire CodeView hier-
archy. This hierarchy mirrors the interactor hierarchy
being simulated. Each CodeView instance is responsi-
ble for generating the proper code fragment in a given
phase. For example, forward declarations are emitted
in a phase in which all participating CodeViews are
asked to generate their own forward declarations. Not
all CodeViews participate in all phases. For example,
only a few CodeView subclasses generate ButtonState
declarations, because not every interactor has a But-
tonstate.

AI1 the traversal machinery and protocol for emitting
code are inherited from Unidraw’s external represen-
tation framework. The CodeView base class initiates
each pass and checks for errors. CodeView subclasses
define the code fragments appropriate to each interac-
tor component.

8 Future Directions

Ibuild has proven to be flexible and powerful enough
to eliminate the need to hand-craft most interactor code
and a significant amount of Unidraw code. Currently

we are focusing on penetrating deeper into Unidraw
abstractions. Ibuild supports only the highest-level as-
pects of the Unidraw architecture. It lets the user incor-
porate existing components, commands, tools, view-
ers, and editors into an interface, and the only support
for extending the piedefined objects’ semantics is pro-
grammatically, by subclassing. Yet Unidraw defines
objects at lower levels that help programmers imple-
ment graphical connectivity semantics, dataflow and
dependency maintenance between components, and
the direct manipulation behavior of tools. Gradually
interactive analogs of these programming abstractions
will make their way into ibuild’s interface.

Another area we plan to address is support for Inter-
Views’ glyph abstraction [2]. Glyphs are lightweight
and sharable structured graphics objects that can be
used to represent the appearance of any object in a
graphical user interface. Glyphs support a super-set of
existing interactor composition mechanisms, includ-
ing support for high-quality text formatting. Tradi-
tional Interviews interactors are being replaced by
glyph-based versions. This has several implications
for Unidraw and ibuild:

Glyphs provide a superset of Unidraw ‘s structured
graphics capabilities and are much less expen-
sive. We therefore plan to retarget Unidraw to
use glyphs.

Ibuild should generate glyph code.

Simulating glyph-based interactors would be even
easier than current interactors. Most of the ef-
fort involved in writing a new interactor compo-
nent is in expressing the target interactor’s ap-
pearance in terms of structured graphics objects
and in simulating the resizing behavior. Glyphs
define both, so interactor components could use
the glyphs from glyph-based interactors directly
to define their appearance. This also eliminates
the need to keep the builder consistent with the
toolkit, though this has not proved to be a prob-
lem because the library of predefined interactors
rarely changes.

Finally, we plan to extend ibuild to support standard
look-and-feels and perhaps other toolkits. Already the
glyph-based interactors implemented so far support
three interface styles. Once ibuild supports glyphs,
then, supporting multiple styles should be straightfor-
ward.

- 17

9 Conclusion

Ibuild demonstrates how a user interface builder can
leverage the functionality of object-oriented libraries.
It offers several features not found in existing builders:

A composition metaphor powerful enough to de-
fine interface layout and resizing semantics with-
out giving up a WYSIWYG interface.

Viewing facilities at least as good as other kinds
of graphics editors.

Abstractions that go beyond the widget level into
the realm of graphical object editing [111.

An implementation that is not tied intimately to
a particular widget set.

An architecture that can support more than one
toolkit, including unrealized ones.

Extension and code integration mechanisms that
leverage the C++ object model. The program-
mer can extend the functionality of any built-
in Interviews or Unidraw object. Moreover, the
programmer can change the semantics of ibuild-
generated code without precluding further editing
in ibuild and without special environmental sup-
port.

We see a trend towards a proliferation of object-
oriented libraries that offer domain-specific solutions
to application development problems. Early libraries

. supported basic data structures, input/output manage-
ment (e.g., C++ streams), and graphical user interfaces
(i.e., widgets). Newer libraries address areas like mul-
tithreading (i.e., tasking), debugging, graphical editing
(e.g., Unidraw), and signal processing.

Each new library brings with it an opportunity for
some sort of builder, just as widget sets begat user in-
terface builders and Unidraw’s abstractions made their
way into ibuild. Builder development on this scale will
be difficult without even higher-level programming
abstractions, because it is unlikely that programmers
will be able to exploit an instance-based implementa-
tion in builders for non-graphical libraries. This only
strengthens the argument for a simulation-based ap-
proach. It also points to the need for builder-building
abstractions that simplify builder development for any
library.

References

VI Gideon Avrahami,
Marc H. Brown. A

Kenneth
two-view

P. Brooks,
approach to

and
con-

PI

[31

r41

PI

WI

[71

WI

PI

WI

WI

WI

strutting user interfaces. In ACM SZGGRAPH ‘89
Conference Proceedings, pages 137-146, Boston,
MA, July 1989.

Paul R. Calder and Mark A. Linton. Glyphs: Fly-
weight objects for user interfaces. In Proceedings
of the ACM SIGGRAPH Third Annual Sympo-
sium on User Interface Software and Technology,
pages 92-101, Snowbird, UT, October 1990.

Luca Cardelli. Building user interfaces by direct
manipulation. In Proceedings of the ACM SIG-
GRAPH Symposium on User Intevace Software,
pages 152-166, Banff, Alberta, October 1988.

Scott E. Hudson and Shamim P. Mohamed. In-
teractive specification of flexible user interface
displays. ACM Transactions on Information Sys-
tems, 8(3):269-288, July 1990.

T.G. Lewis, Fred T. Handloser IlI, Sharada Bose,
and Sherry Yang. Prototypes from standard
user interface management systems. Computer,
22(5):5 l-60, May 1989.

Mark A. Linton, John M. Vlissides, and Paul R.
Calder. Composing user interfaces with Inter-
Views. Computer, 22(2):8-22, February 1989.

Brad A. Myers, Brad Vander Zanden, and
Roger B. Dannenberg. Creating graphical inter-
active application objects by demonstration. In
Proceedings of the ACM SIGGRAPH Second An-
nual Symposium on User Interface Software and
Technology, pages 95-104, Williamsburg, VA,
November 1989.

Gurminder Singh, Chun Hong Kok, and Teng Ye
Ngan. Druid: A system for demonstrational rapid
user interface development. In Proceedings of the
ACM SIGGRAPH Third Annual Symposium on
User Intelface Software and Technology, pages
167-177, Snowbird, UT, October 1990.

Stanford University. InterViews Reference Man-
ual, Version 3.0, 1991.

TeleSoft, Inc., San Diego, CA. TeleUSE User’s
Manual, 1990.

John M. Vlissides. Generalized Graphical Object
Editing. PhD thesis, Stanford University, 1990.

John M. Vlissides and Mark A. Linton. Applying
object-oriented design to structured graphics. In
Proceedings of the 1988 USENIX C++ Confer-
ence, pages 81-94, Denver, CO, October 1988.

- 18 -

[13] John M I&sides and Mark A. Linton. Unidraw:
A framework for building domain-specific graph-
ical editors. ACM Transactions on Information
Systems, 8(3):237-268, July 1990.

[14] Bruce F. Webster. The NeXT Book. Addison-
Wesley, Reading, MA, 1989.

