Preserving Information during Online Partial Evaluation®
Erik Ruf and Daniel Weise

Technical Report: CSL-TR-92-517
(also FUSE Memo 92-8)

April, 1992

Computer Systems Laboratory
Departments of Electrical Engineering & Computer Science
Stanford University
Stanford, California 94305-4055

Abstract

The degree to which a partial evaluator can specialize a source program depends on how accu-
rately the partial evaluator can represent and maintain information about runtime values. Partial
evaluators always lose some accuracy due to their use of finite type systems; however, existing
partial evaluation techniques lose information about runtime values even when their type systems
are capable of representing such information. This paper describes two sources of such loss in ex-
isting specializers, solutions for both cases, and the implementation of these solutions in our partial
evaluation system, FUSE.

Key Words and Phrases: Partial Evaluation, Program Specialization, Online Specialization,
Abstract Interpretation, Control Flow Analysis.

*This research has been supported in part by NSF Contract No. MIP-8902764, and in part by Advanced Research
Projects Agency, Department of Defense, Contract No. N0039-91-K-0138. Erik Ruf is funded by an AT&T Foundation
Ph.D. Scholarship.

(i)



Copyright (© 1992

Erik Ruf and Daniel Weise



Introduction

A program specializer (also called a partial evaluator) transforms a program and a specification
restricting the possible values of its inputs into a specialized program that operates only on those
input values satisfying the specification. The specializer uses the information in the specification
to perform some of the program’s computations at specialization time, producing a specialized
program that performs fewer computations at runtime, and thus runs faster than the original
program.

Program specializers operate by symbolically reducing the program on the specification of its
inputs. Computations that can be performed, given the information available, are performed; oth-
erwise, residual code is generated, delaying the computation until the specialized program is run.
Performable computations are not always performed: to guarantee the termination of the special-
izer, and to increase sharing in residual programs, the specializer performs folding [9] operations by
recursively specializing parts of the program, and building residual invocations of these specializa-
tions. These specializations may be invoked from multiple residual call sites, allowing them to be
re-used. Program specializers also perform generalization [43, 45, 37, 6] operations, ignoring some
specialization-time information and prohibiting some reductions in order to guarantee that only a
finite number of specializations are built.

Ideally, a program specializer would perform as many reductions as possible! (while still ter-
minating) at specialization time, so that they wouldn’t have to be performed at run time. Unlike
an interpreter, which always has the information necessary to perform all reductions, a program
specializer can only perform reductions when it has sufficient information to do so. The expression
(+ x 1.33) cannot be reduced if nothing is known about the value of x, while if the specializer
knows that x=1.1, it can reduce the expression to 2.43. Even partial information can be useful:
in a language with runtime typing, knowing that x is a floating-point number might allow the
specializer to produce (flonum+ x 1.33), eliminating some runtime tag checks; similarly, knowing
part of a structured value (e.g., y’s car is 4, etc.) can be of use. Thus, it is important for the
specializer to have access to as much information as possible during the specialization process.

The amount of information available to the specializer depends on two features: the complexity
of the specializer’s type system, which limits the detail with which values can be described, and the
specializer’s ability to infer and maintain this information. This paper is not about the former; our
results and methods are largely independent of the particular type system used by the specializer.
We are also not concerned with how the specializer infers type information from residual primitives,
as we consider this part of the type system as well. Instead, this paper identifies and treats two
specific cases in which existing specializers “throw away” information available to them even though
the information can be represented in their type systems, and using the information poses no risk
of nontermination.

As a simple example of where existing methods fall short, consider code that maintains a store
represented as an association list (Figure 1). The procedures lookup-in-store and update-store
access and update (functionally) a store, while the procedure process-updates accepts a list of

!This does not, unfortunately, give us an absolute metric for residual programs. Consider the case of a loop that
cannot be fully unfolded at specialization time. A specializer can always perform one more reduction at specialization
time by unfolding the loop one more time (thus eliminating a procedure call at runtime, at the cost of increasing the
code size). This is always the case; no matter how many times the source loop is unfolded before the residual loop is
constructed, unfolding it one more time will always produce a “better” residual program under such a metric.



(define (lookup-in-store name store)
(if (eq? name (caar store))
(cdar store)
(lookup-in-store name (cdr store))))

(define (update-store store name new-value)
(let ((binding (car store)))
(if (eq? (car binding) name)
(cons (cons name new-value) (cdr store))
(cons binding (update-store (cdr store) name new-value)))))

(define (process-updates updates store)
(if (null? updates)
store
(process-updates
(cdr updates)
(update-store store (caar updates) (cdar updates) store))))

Figure 1: Code to access and update (functionally) a store

update requests and a store, and returns the resulting store. Similar code might be present in
interpreters, simulators or other programs that maintain a global state of this form.

Specializing update-store on a store of the form ((a . <any value>) (b . <any value>))?
and an unknown name and value will return a store of the same form. This information (the shape
of the store) is important, because it will allow subsequent calls to lookup-in-store to be reduced
to either a decision tree (when name is unknown) or to a simple sequence of car and cdr operations
to index into the store (when name is known). Specializing process-updates on the same store
and a unknown updates list should also return a store of the same form; if one update preserves
the “shape” of the store, so should an arbitrary number of updates.

To the best of our knowledge, all existing (published) specialization techniques fail to compute
accurate approximations to the values returned by (residual calls to) specializations, even when
their type systems are capable of representing such values. Instead of computing an approxima-
tion, such specializers always use the approximation “any value,” which is always safe, but often
not very accurate. In the case of specializing process-updates, using “any value” instead of
((a . <any value>) (b . <any value>)))as the return value will cause subsequent invocations
of lookup-in-store to be specialized as residual loops, even though the lookups could have been
resolved at specialization time. The methods described in this paper overcome this problem, and
compute the desired return approximation for process-updates.

A related problem arises when higher-order procedures are introduced. The specializer must
ensure that any specialization of such a procedure is sufficiently general to be applicable at all
call sites it might reach at runtime. Thus, when constructing the body of the specialization, (by

2A note on terminology: we use terms like “any value,” “

any integer,” and 42 to describe specialization-time
approximations of runtime values, and use <any value>, <any integer>, and 42 to describe representations of
those approximations. Thus, we can say either “a pair whose car is any value and whose cdr is any integer,” or

(<any value> . <any integer>).



unfolding the procedure’s body) the specializer must bind the formal parameters to approximations
that safely approximate all values that might be passed at runtime. Existing higher-order special-
izers [4, 12, 17, 45])3, do not compute accurate approximations for parameters of specializations
of higher-order procedures, but instead approximate each parameter by “any value.” This will
certainly result in a sufficiently general specialization (since “any value” approximates all runtime
values), but may forego many reductions which could have been performed had a better argument
approximation been available. This paper describes a technique for computing such approximations,
and shows its use on several examples.

This paper has five sections. The first describes program specialization, its online variant, and
our partial evaluation system, FUSE. Section 2 introduces two examples of programs which special-
ize poorly under existing schemes, but which are handled well by our new mechanisms. Section 3
describes and solves the problem of computing approximations to values returned by specializations
of first-order procedures, while Section 4 treats the problem of computing approximations to val-
ues passed as parameters to specializations of higher-order procedures. The final section describes
related work in program specialization, type inference, and control flow analysis.

1 Background

In this section, we describe program specialization, and one if its implementations, online program
specialization, using our system, FUSE, as a concrete example.

1.1 Defining Specialization

A specializer takes a function definition and a specification of the arguments to that function, and
produces a residual function definition, or specialization. The argument specification restricts the
possible values of the actual parameters that will be passed to the function at runtime. Although
different specializers use different specification techniques, thus allowing different classes of values
to be described, they all share this same general input/output behavior.

We can define a specializer as follows:

Definition 1 (Specializer) Let L be a language with value domain V and evaluation function
E:LxV —=V. Let S be a set of possible specifications of values in V', and let C': 5 —PS(V)
be a “concretization” function mapping a specification into the set of values it denotes. A special-
izer is a function SP: L X S — L mapping a function definition fel and a specification s€S into
a residual function definition SP(f,s)eL such that

Va € C(s)[E(f,a) # Ly = E(f.a) = E(SPUf,s),a)].

This definition has several important properties. First, it allows the residual function definition
to return any value when the original function definition fails to terminate (indicated by the eval-
uator returning Ly/); a stricter definition would preserve the termination properties of the original
function definition. Second, the residual function definition takes the same formal parameters as

®[38] and [18] treat higher-order languages, but cannot build specializations of higher-order procedures, so the
problem does not arise.



the original function; we consider reparameterization [37] behavior such as the removal of com-
pletely known parameters or arity raising [34] to be a code generation issue, and not part of the
definition of specialization. Finally, this definition gives a correctness criterion for specializers, but
no information about how they operate. In order to describe and compare various strategies for
performing program specialization, we must take a more operational view of specialization.

1.2 Online Program Specialization

Most program specializers operate by symbolically executing the source program: for each redex
(or program point), the specializer either performs a one-step reduction on the redex, or builds a
residual code expression that will perform that reduction at runtime. A specializer repetitively
makes this reduce/residualize decision for each redex encountered during the symbolic evaluation.

Online program specializers make at least some of these reduce/residualize decisions at spe-
cialization time, while offline specializers make all such decisions prior to specialization time ( for
further comparisons of online and offline techniques, see [36, 7, 25]. The problems we will consider
in this paper arise in both online and offline specialization, but our solutions are specific to online
methods.

The structure of an online specializer is similar to that of an interpreter, except that online
specializers represent unknown values explicitly, and construct a residual program instead of (or in
addition to) returning a result value. Most of the reduce/residualize decisions are simple: expres-
sions are reduced when enough information is available, and residualized otherwise; e.g., residual
code is generated for if expressions with unknown tests, call expressions with unknown heads,
and primitive expressions with unknown parameters in strict positions. Folding [9] operations are
performed by leaving some potentially reducible call expressions residual, building a residual call
to a specialized version, or specialization, of the function being called. Such specializations can
be invoked from multiple sites in the residual program, allowing the construction of loops and
the sharing of code. Strategies for building and caching specializations vary; virtually all online
specializers can build multiple specializations of a single function, a behavior known as polyvariant
specialization [8].

To obtain an online specializer from an interpreter, three extensions are necessary. First, the
value domain of the interpreter must be extended to represent values which are unknown at spe-
cialization time. Many different extensions are possible; they range from type lattices with a single
“unknown” type added at the top of the interpreter’s type lattice, through systems which can
represent partial information about structures and scalar arithmetic types, to systems which can
represent sets of concrete values and have recursive type descriptions. Second, the interpreter and
its primitives must be extended to handle this richer value domain. As each expression is processed,
the specializer must not only build residual code if necessary, but must also compute an approxi-
mation to the expression’s return value, so that expressions consuming that value can be processed.
Finally, the handling of call expressions must be extended to handle the construction and re-use
of specializations (this includes choosing between unfolding and residualizing calls, determining
which actual parameter values to use when building specializations, and when to re-use existing
specializations).

The values manipulated by the specializer are approximations that represent runtime values;
for instance, the return value computed for a residual code expression must approximate all values
that could be returned by that expression at runtime. The degree to which these approximations



are accurate depends on the type system; information is lost when the type system is insufficiently
precise to denote a particular set of possible runtime values exactly. Such information loss may
lead to unnecessary residualization. For example, consider the program fragment

(let ((z (coms x y)))
(1f (integer? (car z)) ... ...))

where x and y are known to be integers. When the cons expression’s return value is approximated
by “a pair whose car and cdr are integers,” the if expression will be seen to be reducible, and will
be reduced. Otherwise, if the return value is approximated by “a pair whose car is any value and
whose cdr is any value,” or by “any value,” the if will not be seen to be reducible, and will not
be reduced.

Sometimes, information loss is unavoidable. Whenever the specializer is forced to generalize
(compute an upper bound of) two approximations, it can lose information. Part of this loss is
fundamental: the least upper bound of 3 and 4 is “3 or 4;” there is less information because the
specializer no longer knows which value will appear at runtime. The other component of this loss is,
once again, the imprecision of the type system, which may be unable to denote the least upper bound
exactly (i.e., for approximations a and b, it is not generally the case that C(aUb) = (C'(a)UC(b)),
but only that C(a U b) O (C(a)U C(b))). If generalizing 3 and 4 yields “an integer” or “any
value,” an additional loss has occurred, since the specializer would no longer be able determine, for
example, that the value in question is less than 5.

Such generalization occurs in two places in most online specializers. The first is when computing
the return value of a residual if statement, which must approximate the values returned by both
arms (for example, see the “online parameterized partial evaluation” semantics on p. 99 of [15],
and the if-handler code on p. 11 of [46]). The second is when computing the argument values
to be used when building a specialization (discussions of generalization can be found in Section 3
of [45], Section 2.2 of [36], and [43].) In both cases, some loss of information is unavoidable, but
can be minimized through the use of a more precise type system which can compute less overly
general upper bounds.

In this paper, we will show two instances where present systems lose information unnecessarily,
along with means for recovering this information.

1.3 FUSE: an online program specializer

This section briefly describes our program specializer, FUSE; for further documentation, see [45, 44].

FUSE is a polyvariant online program specializer for a side-effect-free subset of the programming
language Scheme [33], with atoms, pairs, and higher-order procedures, but no vectors, input/output,
first-class continuations, or apply. FUSE also enforces some minor syntactic constraints which
are not of importance here: the syntax and semantics of the language treated in this paper are
essentially those of Scheme.

1.3.1 Type System

Like other specializers, FUSE represents possibly infinite sets of runtime values using approx-
imations drawn from a type system. FUSE’s type system is obtained by extending the value
domains of the Scheme subset it processes, shown in Figure 2. To describe sets of values, FUSE



Num numbers

Bool = true + false booleans
Sym symbols
Nil = il empty list
Parr = Valx Val pairs
Funec = Val— Val function values
Val = Num+ Bool+ Sym + Nil+ Pair+ Func Values

Figure 2: Value domains for a subset of Scheme

NumType ::= top-num | neNum
BoolType ::= top-bool | beBool
SymType ::= top-sym | seSym
NilType ::= nil
PairType ::= (PeType PeType)
FenType ::= top-fcn | (Src Env)
Src ::= <source language expressions>
Env ::= <representations of Sym — PeType>
PeType ::= HNumType | BoolType | SymType | NilType | PairType | FcnType | top

Figure 3: FUSE representation of types

adds “top” elements to the various subdomains (i.e., “lifts” the CPOs), since each top element can
be interpreted as describing all of the elements below it. Therefore, in addition to values, FUSE’s
approximations may also contain representations of Tyyms TBools TSym> TStrs | Funce @and Ty
There is no need to represent Tpy; or Tpg;p since Nil has only one element, and because the “least
known” pair is represented as < Ty, Ty, >. Functions are represented intensionally by their
source text and environment. Generalizing two functions with the same source text generalizes
their environments; other otherwise, Ty, is used. FUSE’s repertoire of approximations is shown
in Figure 3.

This scheme represents known values exactly, and preserves the structure of partially known
values with known, finite structure. It cannot, however, describe the structure of infinite structured
objects (such as the set of all lists of integers), describe disjoint unions (the set {1.2,3,5}), or
describe arbitrary constraints (such as the set of all pairs of numbers whose sum is 3, or the set of
values that are not pairs).

Generalization of these types is accomplished in the obvious way: by climbing the lattice until
a least upper bound is found.

1.3.2 Symbolic Values

FUSE’s process for computing a residual program can be considered as interpreting the source
program under a nonstandard semantics [15] (which performs generalization, caches specializations,
and leaves behind a trace of residual code) and a nonstandard value domain (which can represent
unknown values, etc). FUSE’s value domain is made up of symbolic values, which are described
in detail in [45]. A symbolic value has several attributes, one of which is the type approximation



drawn from the type system of Figure 3, denoting the values that that could possibly appear
in place of the symbolic value at runtime. Another important attribute contains a residual code
expression which can be used to compute the symbolic value’s value at runtime. After specialization
is complete, a separate code generator walks the graph formed by the code attributes and produces
a residual Scheme program. Several other attributes are used for other purposes, but will not be
described here; for more details, see [35].

1.3.3 Termination

FUSE achieves termination through pairwise generalization, as described in [45, 36] (this termina-
tion strategy is also used by [37, 43]). That is, the specializer maintains a model of the runtime
stack, and uses it to eliminate unbounded recursion by generalizing the argument vectors of re-
cursive calls which it cannot prove are well-founded (actually, a combination of heuristic methods,
machine-generated annotations, and human-generated annotations are used).

The exact mechanism is not important: what matters is that the specializer have some mech-
anism that is responsible for building a finite number of specializations (limiting specialization by
generalizing arguments), each of which is of finite size (limiting unfolding by building specializa-
tions). We will make use of this later when arguing that our information preservation mechanisms
terminate (c.f. Section 3.4.2 and Section 4.4.1.3). The basic idea will be that the information
preservation mechanisms serve only to introduce better approximations, and will do so in finite
time and space—preventing nontermination due to the use of such approximations in performing
reductions is the responsibility of the termination mechanism.

2 Two Examples

In this section, we give two more realistic examples of programs where existing program specializers
fail to produce good-quality specializations because of information loss during the specialization
process. These losses are not inherent in the nature of specialization, but are avoidable.

2.1 Interpreter Example

Our first example is drawn from the domain of interpreters, which are common targets for spe-
cialization. The “MP+” language, whose syntax is shown in Figure 4, is an extension of the
by-now-canonical “MP” language, first used as an example by Sestoft [39]. Programs consist of
declarations of input variables, local variables, and procedures, followed by a body, which is one of
five commands (:=, begin, if, while and call). Commands may contain constants, as well as a
variety of unary and binary expressions (cons, car, cdr, not, atom, and equal).

Figure 5 shows a fragment of a direct-style, recursive descent interpreter for this language. The
interpreter begins by building an initial store, represented as an association list, mapping each name
declared in the pars section to the corresponding element of the input, and each name declared
in the vars section to the empty list. The values (cdrs) of bindings in this store are altered as
interpretation proceeds, but the names (cars) never change. If this interpreter is specialized with
respect to a known program and unknown input, we would expect that the store will appear in the
residual program, since it implements variable access. However, since the names in the store never
change, all residual accesses to the store should be fully unfolded into sequences of car and cdr



Program ::= (program (pars Id*) (dec Id*) (procs Command*) Command)
Command ::= (:= Id Exp) |
(if Exp Exp Exp) |
(while Exp Command) |
(begin Commandx*) |
(call Id)
Exp ::= (quote Exp) |
(car Exp) |
(cdr Exp) |
(not Exp) |
(atom Exp) |
(equal Exp Exp)

Figure 4: Syntax of the MP+ language

operations. There should be no residual loops that search for the correct binding in the store. A
postpass could further improve the program by converting the list accesses to tuple accesses, or by
arity raising the store to convert its elements into distinct variables. For instance, specializing the
interpreter on the program

(program (pars x)
(dec y)
(procs)
(begin
(while x
(begin
(:=y (cons ’1 (cons ’1 y)))
(:= x (cdr x))))
(:=y (cons ’1 y))))

(which computes y = 2z + 1 for numbers represented in unary notation) and an unknown input
should yield a specialization like the one shown in Figure 6. Note that accesses and updates to the
store have been replaced by open-coded strings of car and cdr operations: the names in the store
are not used by the residual program at all, allowing various optimizations such as arity raising.

Unfortunately, this isn’t what most specializers produce. The while loop in the program causes
the specializer to build a residual version of the mp-while procedure which recursively invokes
itself to implement the while loop. Existing specializers don’t compute approximations to the
value returned by a residual procedure call, but just use the most general approximation “any
value,” which is always valid, but not very precise, since partial information about the return
value may be available at specialization time. In this example, that decision means that the
return value approximation from both the original and recursive calls to mp-while is <any value>
instead of ((x . <any value>) (y . <any value>)), meaning that any accesses to the store
after the program exits the while loop (e.g., procedure lookup6 and update5 in Figure 7) will
have to be residualized as loops that search the store, instead of as open-coded accessors. This
makes arity raising impossible. In this particular example, only the access and update to y in
(:=y (cons ’foo y)) are residualized in this manner, but in general, all store accesses after a
loop exit will be residualized sub-optimally.



(define mp
(letrec
((init-store ...)
(mp-command
(lambda (com decls store)
(let ((token (car com)) (rest (cdr com)))
(cond
((eq? token ’:=)
(let ((new-value (mp-exp (cadr rest) store)))
(update store (car rest) new-value)))
((eq? token ’if)
(if (not (null? (mp-exp (car rest) store)))
(mp-command (cadr rest) decls store)
(mp-command (caddr rest) decls store)))
((eq? token ’call) (mp-call com decls store))
((eq? token ’while) (mp-while com decls store))
(else ;(eq? token ’begin)
(mp-begin rest decls store))))))
(mp-call
(lambda (com decls store)
(let ((procname (cadr com)))
(mp-command (lookup-proc procname decls)
decls
store))))
(mp-begin
(lambda (coms decls store)
(if (null? coms)
store
(mp-begin (cdr coms) decls (mp-command (car coms) decls store)))))
(mp-while
(lambda (com decls store)
(if (mp-exp (cadr com) store)
(mp-while com decls (mp-command (caddr com) decls store))
store)))
(mp-exp ...)
(lookup-proc ...)
(update ...)
(lookup ...)
(main ...)
main))

Figure 5: Fragment of Interpreter for MP+



(letrec
((mp-while35
(lambda (store)
(if (cdr (car store))
(mp-while35
(cons (cons ’x (cdr (cdr (car store))))
(cons (cons ’y (cons ’1 (cons ’1 (cdr (car (cdr store)))))) ()N
store)))
(main34
(lambda (input)
(let ((temp36
(mp-while35
(cons (coms ’x (car imput)) *((y))N))
(cons (car temp36) (cons (cons ’y (coms ’1 (cdr (car (cdr temp36))))) (1)) PI)))

main34)

Figure 6: Desired result of specializing MP+ interpreter on program. Completely static formal and
actual parameters have been eliminated, but arity raising has not been performed. The boxed code
implements the statement (:= y (cons 1 y)); note that the store access and update have been
open-coded.

The situation is often worse, for two reasons. First, not only is the structure of the store lost,
but any type information about values in the store is lost as well. There isn’t any such information
in this example, but there might well be in others (such as interpreters for runtime-typed languages,
which tag the values in the store with their types). Second, in this program, the structure of the
store was retained in the body of the loop because the residual version of mp-while is tail-recursive
(the recursive call to mp-command gets inlined, and is not a factor). That is, the body of a mp-while
doesn’t use the return value from mp-while, so using a bad approximation to that return value
doesn’t affect the body. However, were the program to contain nested while loops, all code after
the innermost loop would lose the structure of the store. Furthermore, as we shall see later (c.f.
Section 4.6), specialization of the interpreter on MP+ programs which use procedures (e.g., contain
call statements) can cause the construction of truly recursive loops, whose return value is used by
their bodies.

There are three common work-arounds for the problem illustrated by this example, all of which
use syntactic transformations to avoid passing the names upward. The first solution separates
the store into two lists: one which holds the names, and need only be passed downward, and one
which holds the values, and is passed both upward and downward. Now, when information is lost
about upward-passed values, the list of names will not be lost. Of course, any values (or types
or subparts of values) will be lost. For programs intended as input for offline specializers, this
transformation can be automated [31, 16]; these transformations are too conservative for input
to an online specializer because only values that are provably “static” will be factored out into
downward-passed lists, and preserved during specialization.

Another solution is rewrites the program so that it only passes information downwards, never
upwards. This approach is taken by Mogensen [31] and by Launchbury [29], whose interpreters
pass an extra argument containing the “rest” of the MP+ statements to be executed. Instead of
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(letrec
((mp-while7
(lambda (store)

(if
(cdr (car store))
(mp-while7

(cons (cons ’x (cdr (cdr (car store))))
(cons (cons ’y (cons ’1 (cons ’1 (cdr (car (cdr store)))))) *())))
store)))
(lookups6
(lambda (store)
(if (eq? (car (car store)) ’y)
(cdr (car store))
(lookup6 (cdr store)))))
(updateb
(lambda (store val)
(if
(eq? (car (car store)) ’y)
(cons (cons (car (car store)) val) (cdr store))
(cons (car store) (updateb (cdr store) val)))))
(main4
(lambda (program input)
(let ((temp8
(mp-while7
(cons (coms ’x (car imput)) *((y))N))
(update5 temp8 (cons ’1 (lookup6 temp8))) P))))

main4)

Figure 7: Usual result of specializing MP+ interpreter on program. Completely static formal and
actual parameters have been eliminated, but arity raising has not been performed. The boxed code
implements the statement (:= y (cons ’1 y)); note that the store access and update invoke
specializations that search the store.

11



(letrec
((integrate-loop
(lambda (fcn 1lhs rhs)
(let ((guess (* (- rhs 1lhs) (/ (+ (fcn lhs) (fcn rhs)) 2))))
(if (good-enough? fcn lhs rhs guess)
guess
(let ((mid (/ (+ lhs rhs) 2)))
(+ (integrate-loop fcn lhs mid)
(integrate-loop fcn mid rhs))))))))
integrate-loop)

Figure 8: Divide-and-Conquer integration program

returning a store when the loop is complete, mp-while exits by calling mp-command on the “next
statement” and the store. This approach involves considerable hand-rewriting, and has not, as yet,
been automated.

The third common work-around performs CPS [42] transformation on the program, as is done
by Consel and Danvy [14]. This is a general transformation which is applicable to all programs;
specializing the CPS converted form of the interpreter yields better specializations for many MP+
programs, including the addition program shown program above. However, CPS does have a cost:
it introduces higher-order constructs which complicate specialization, and may reduce polyvari-
ance. Furthermore, as described in [36], for truly recursive programs, this approach trades one
information loss problem for another; we will cover this in Section 4.

2.2 Integration Example

Our second example is drawn from another popular domain of programs: scientific and nu-
merical computation. Consider an idealized routine for performing integration using a divide-and-
conquer paradigm (Figure 8). On each iteration, the loop computes an approximation using the
trapezoidal rule, then calls a predicate good-enough? that computes a more complex estimate
and returns true when the two estimates are sufficiently close. Otherwise, the loop subdivides the
interval, recursively computes solutions for the subintervals, and sums them.*

We will specialize this loop with respect to a known function, but with unknown integration
bounds (the types of the bounds may be known). We expect that the function and termination
test will be unfolded, and that the various arithmetic operators in the function, predicate, and in
the body of the integration loop, although left residual, will be specialized using the types of the
integration bounds and the integration result. In particular, we expect that the + operator used to
implement the sum of the subinterval estimates will be specialized on the same type as fcn’s result
type. If we specialize integrate-loop on fcn=(lambda (x) (* x x)) and lhs and rhs known
to be numbers, we should get a specialization in which none of the arithmetic operators have
been residualized in a form that type-check their operands (Figure 9). The sum of the subinterval
estimates can be specialized in this manner because the recursive calls to integrate-loop are
known to return numbers. This might allow a compiler to eliminate some tag checks.

*Of course, a real integration routine would do some extra parameter passing and, possibly, memoization to avoid
redundant evaluations of fcn, but the point of the example here is to show a divide-and-conquer algorithm, not to
teach numerical methods.
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(letrec
((integrate-loop-10
(lambda (lhs-8 rhs-7)
(let ((guess-5
(tc—* (tc-- rhs-7 lhs-8)
(tc-/ (tc—+ (tc—* lhs-8 1lhs-8) (tc—* rhs-7 rhs-7)) 2))))
(if
<unfolded version of good-enough? omitted>

guess-5
(let ((mid-9 (tc-/ (tc—-+ 1lhs-8 rhs-7) 2)))

=

(integrate-loop-10 1hs-8 mid-9)
(integrate-loop-10 mid-9 rhs-7))))))))
integrate-loop-10)

Figure 9: Desired result of specializing integration routine. We have omitted the unfolded residual
version of the predicate good-enough?. Note that the addition of the subinterval estimates (recur-
sive calls to integrate-loop10) is performed with a specialized addition operator, tc-+ (“typed

checked +7).

(letrec
((integrate-loop-10
(lambda (lhs-8 rhs-7)
(let ((guess-5
(tc—* (tc-- rhs-7 lhs-8)
(tc-/ (tc—+ (tc—* lhs-8 1lhs-8) (tc—* rhs-7 rhs-7)) 2))))
(if
<unfolded version of good-enough? omitted>

guess-5
(let ((mid-9 (tc-/ (tc—-+ 1lhs-8 rhs-7) 2)))

(+]
(integrate-loop-10 1hs-8 mid-9)
(integrate-loop-10 mid-9 rhs-7))))))))

integrate-loop-10)

Figure 10: Usual result of specializing integration routine. We have omitted the unfolded residual
version of the predicate good-enough?. Note that the addition of the subinterval estimates is

performed with the general addition operator, +.
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Existing specializers, which cannot compute return types of residual calls, use the approximation
“any value” for the values returned from the recursive calls, leading to a specialization in which
operators depending on the types of the loop’s formal parameters are still specialized, but the +
operator which adds the subinterval estimates cannot be specialized (Figure 10).

At first, this might seem like a small price to pay; after all, the vast majority of the opera-
tors (including those in the predicate, whose expansion we have omitted for brevity) are properly
specialized. Only one operator is improperly specialized, leaving only one unnecessary tag test.
Although this is the case in this simple example, it is not so in general. Often, numeric programs
use more complex data types than the built-in scalar types; for instance, one might use an object-
oriented representation for complex numbers such as that in Section 2.3 of [1]. In such cases,
which may involve multiple levels of dispatch, it is important to be able to resolve the method
dispatch for operators like + at specialization time, since it might involve many operations at run-
time. Furthermore, it may allow the fields used for tagging such ad hoc types to be removed by
transformations like arity raising, which is not possible if their contents (the tag symbols) are still
used in comparison operations in the residual program.

Also, one might be led to believe that this problem could be solved by simple scalar type
inference in a postpass or in the compiler. Such an inferencer would deduce that integrate-loop
returns a number, and could thus replace the general + for adding the subinterval estimates with one
optimized for numeric arguments. There are two problems with this approach. First, if some other
expression (such as a call to number?) depends on the return value, it will not be reduced by the
postpass, which is not a specializer, and cannot perform arbitrary reductions, build specializations,
etc. Second, a scalar type inferencer would not be able to optimize the program when ad hoc types,
such as those described in the previous paragraph, are used. It might be able to deduce that the
return value is a pair whose car is a symbol and whose cdr is a number, but it would not be able
to deduce that the head is the symbol ’polar-complex and resolve the dispatch accordingly.

2.3 Commentary

In both of these examples, achieving a good specialization required that the specializer compute
accurate approximations to values returned by residual calls to specializations. Thus, both examples
serve to motivate the mechanism that will be described in Section 3.3; we will revisit these examples
and demonstrate that mechanism in action in Section 3.5.

As we shall see in Section 4, the need for accurate return value approximations can be avoided
entirely by performing the CPS transformation [42, 14, 36] on the program to be specialized. How-
ever, for these examples, this transformation only serves to trade one information loss problem
(approximations to return values) for another (approximations to parameter values). Thus, in
CPS-converted form, these examples serve to motivate the mechanism of Section 4.4, which com-
putes accurate approximations for values passed as parameters to specializations of higher-order
procedures. That mechanism will be demonstrated in Section 4.6, in which we will revisit both of
these examples in CPS-converted form.
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3 First-Order Programs

In this section, we treat an instance of unnecessary information loss that occurs in existing specializ-
ers for first-order programs, namely, the use of “any value” as the approximation to values returned
by calls to specializations.” We describe an algorithm for computing more accurate approximations
to return values, its implementation in FUSE, and its use in specializing realistic programs.

3.1 Sources of Information Loss

As we described in Section 1.2, a program specializer inherently loses information since it uses
a finite type system to represent a possibly infinite collection of runtime values. It loses further
information when it generalizes two approximations; in online specializers, such generalization takes
place both when computing the return value of an if expression with unknown test [15], and when
computing the argument specification to be used in building a specialization [45]. These losses are
inherent in the nature of specialization itself, but can be mitigated to some extent through the use
of a more precise type system.

However, information loss in existing specializers is not limited to these cases. In particular,
existing specialization techniques for first-order programs always use “any value” as the approxi-
mation to the value returned from a residual procedure call, even when their type system might be
able to represent a better approximation. For example, when the recursive length function®

(define (length x)
(if (null? x)
0
(+ 1 (length (cdr x)))))

is specialized on x=<any value>, its return value is always an integer. This could be used to
specialize the application of +, replacing it with int+, possibly avoiding some runtime type tests.
However, existing systems that can represent the type “any integer” still do not achieve this result,
because the recursive call to length is viewed as returning “any value.”

3.2 Existing Approaches

Existing approaches to dealing with the problem of computing approximations of return values of
residual procedure calls concentrate on avoiding the problem rather than solving it. That is, they
rewrite the program in such a way that, even if the specializer computes overly general approxi-
mations to return values, it won’t affect the quality of the specialization. The three work-arounds

®Actually, the argument we will make is true for all programs which, when specialized, result in first-order residual
programs (i.e., as long as all of the higher-order functions are inlined, we don’t have to treat them specially when
computing approximations, but can use the same mechanisms we use for first-order code), but this is a difficult
class of programs to characterize, as it depends not only on the program, but on the specializer, and on the input
approximations given to the specializer. To avoid such characterizations, we will deal exclusively with first-order
programs in this section.

6This example, like many of the examples which follow, assumes a specializer that computes type approximations
for scalars. This is for purposes of exposition, since it allows us to build smaller examples. Our argument and
techniques are equally valid for specializers that don’t, because Scheme programmers often use structured data to
build “ad hoc” representations of types. Often, the information which we wish to preserve about a return value is its
structure, and the values of some subparts of that structure (e.g., preserving the ordering and values of the names
within the store in the interpreter example of Section 2.1).
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described in Section 2.1 are of this form; they either convert the program so that all informa-
tion is passed downward, or so that any upward-passed information can be lost without affecting
the specialization. Of the three approaches, only the CPS transformation was fully general and
automatable, but since it builds higher-order programs, it cannot be considered a solution for
first-order specializers; we will address the merits of CPS when we describe information loss in
higher-order specializers in Section 4.

3.3 Fixpoint Iteration Solution

Instead of rewriting the source program to avoid the consequences of overly general approximations
to return values, we can choose to compute better approximations. This allows us to treat direct
style programs without pre-transforming them, producing good results without human intervention
or the introduction of higher-order constructs.

Consider the recursive length example again:

(define (length x)
(if (null? x)
0
(+ 1 (length (cdr x)))))

We would like to compute an approximation to the return value of the expression (length y)
where y=<any value>. Because the approximation of the if depends on the approximations of its
arms’ values, and the approximation of the +’s value depends on the approximation of (Length (cdr
x))’s return value, we can see that computing the return value of length y requires computing
the return value of (length (cdr x)). In the residual program, however, both the initial and
recursive calls to length will invoke the same specialization (because both calls bind x to the same
type, namely <any value>). Thus, the return value of the specialization depends on itself.

This suggests a fixpoint solution, in which the return value of a residual procedure is computed
repeatedly until a least upper bound is found. This can be accomplished by adding a unique
bottom element to the specializer’s type lattice (we’ll call it <no value>) and using it as the
initial approximation to the return value of a residual procedure call. This approximation is used
in computing an approximation to the return value of the body of the procedure. If this new
approximation differs from the previous one, the body is evaluated using this approximation to the
residual call’s value, again and again, until the approximation does not change. This is similar to the
fixpointing solutions used in Abstract Interpretation frameworks such as Binding Time Analysis [26,
31]. Our solution bears an even greater similarity to the Minimal Function Graph (MFG) framework
of [24]; if we view the specializer’s cache as mapping function names and parameter approximations
to specializations and return value specifications (instead of just specializations, which is the usual
case), then specialization is just MFG fixpointing over the cache.

In order to be sure that the fixpoint iteration terminates with a correct least upper bound, the
specializer must guarantee that (1) the type lattice has a finite height, and (2) all type operations
in the specializer are monotonic. These are restrictions on the type system of the specializer; we
will examine them in the context of FUSE in Section 3.4.2.

Assuming, for the moment, that these restrictions are met, let us consider the specialization
of the length example. In Figure 11, rows represent source expressions, while columns represent
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Expression Iteration 1 Iteration 2 Iteration 3

X <any value> <any value> <any value>
(null? x) <any value> <any value> <any value>
(cdr x) <any value> <any value> <any value>
(length (cdr x)) <no value> 0 <any integer>
(+ 1 (length (cdr x))) <no value> 1 <any integer>
(if (null? x) 0 (+ 1 (length (cdr x)))) O <any integer> <any integer>
(length y) 0 <any integer> <any integer>

Figure 11: Fixpoint Iteration on length example

iterations of the algorithm. The finite height assumption is maintained here by forcing the gener-
alization of 0 and 1 to be “any integer;”
analysis would not terminate.

if we were to allow disjoint unions such as “0 or 1,” the

3.4 Implementation in FUSE
3.4.1 Basics

Fixpoint iteration is implemented in FUSE by adding a bottom element to the type hierarchy and
modifying the procedure call code in the specializer. The specializer, which formerly maintained
an association between specializations and their residual code, must now maintain an association
between specializations, their residual code, and the types of their return values.

Specialization proceeds as follows. When the specializer decides to build a specialization, it adds
an entry associating the source procedure, the argument vector, and an initial type approximation of
no-value to the cache. It then adds the bindings between formals and actuals to the environment,
and recursively calls itself on the procedure’s body. Subsequent attempts to specialize the same
procedure on the same argument vector will return the type approximation from the cache. When
the process of specializing the body is complete, the type approximation of the body’s symbolic
value will be compared with the cached approximation. If they are the same, the specialization is
complete; otherwise, the cached approximation is updated, and the body is specialized again. This
process proceeds until the new and old approximations are equal.

3.4.2 Termination

As we saw above, the termination of the fixpoint iteration process (for computing the return value
approximation for a particular specialization) depends on two factors: the monotonicity of the
specializer’s operations on types, and the finite height of the type lattice. If both of these constraints
are met, then the fixpoint will be found in a finite number of iterations. Thus, the iteration process
will terminate, provided that each individual iteration terminates. The termination of an individual
iteration (which builds a specialization using the return value approximation found by the previous
iteration) is dependent on the specializer’s mechanisms for avoiding infinite unfolding and the
building of infinite specializations; if either of these occurs, control will never return to the fixpoint
loop. This may occur if the termination method in use allows nontermination on programs where
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entry to a “statically controlled” infinite loop is guarded by a conditional that can’t be decided at
specialization time.”

We state, without proof, that all of the specializer’s type operations (including type computa-
tions in primitive operators, special forms, and the generalizer used by the termination mechanism),
are monotonic. Were this not so, the approximations computed by the iteration could oscillate be-
tween higher and lower lattice values forever.

The finite height requirement is needed to avoid the phenomenon of infinitely ascending chains,
in which each successive approximation is higher in the lattice, ad infinitum. For instance, fixpoint
iteration on the function

(define (ones)
(cons 1 (ones)))

might return the infinite sequence of approximations
{<no value>, (1 . <no value>), (1 . (1 . <no value>)), ...}.

FUSE’s type system contains no disjoint unions, so the only types that could lead to an infinite
chain of approximations are pairs (because they can contain other pairs), and functions (because
their environments can contain pairs and functions). Functions are not an issue for finiteness;
because our program is first order, their number is fixed by the source program, they are never
passed as arguments, or returned, and they are never generalized. Thus, we only need to avoid
infinite ascending chains of pairs.®

The easiest way to avoid infinite ascending chains is by construction: all we have to do is
prevent the bottom element <no value> from appearing in any pair. That is, cons applied to 1
and <no value> returns <no value> instead of (1 . <no value>). This guarantees that, after the
first iteration, the return value approximation is either <no value>, in which case the specializer
has proven that the specialization doesn’t terminate, and can return <no value> with a clear
conscience, or it contains no occurrences of <no value> at all. In this latter case, termination is
assured. First, the approximation will contain a finite number of pairs because the first iteration
terminated. That is, since the specialization of the body terminated, it only executed the cons
primitive a finite number of times. The only pairs that may appear in the body’s approximation
are those from executing cons (which happened a finite number of times), those in the body’s
free variables (which are finite because only a finite number of specializations are built), and those
in the return approximations of any specializations invoked by the body (the number of such
specializations is finite, as is the size of their return approximations). Second, if the first iteration
returns an approximation containing a finite number of pairs, the height of the lattice above that
approximation is finite, because all values above any pair in the lattice contain an equal or smaller
number of pairs (this would not be the case if we were allowed to put the bottom element in

"Problems such as dynamically controlled loops with increasing static parameters are faced by all specializers. Tt
is important to note that the difficulty faced in building a finite specialization of a procedure is no easier or more
difficult with our fixpoint mechanism in place than without it. With respect to ensuring termination, the fixpoint
mechanism’s only responsibility is to iterate a finite number of times; the finiteness of the specialization(s) constructed
on each iteration is the responsibility of the specializer’s termination mechanism, whatever that may be.

8The algorithm described in Section 4.5, which does handle functions, is not vulnerable to infinite ascending
chains.
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pairs; e.g., (1 . (1 . <no value>)) dominates (1 . <no value>)). This method works because
Scheme is a strict language; if it were lazy, we would be unable to restrict the lattice in this manner.

Even if this construction is not used (for instance, the system described in [35] allows the bottom
element to appear in pairs), infinite ascending chains are rarely a problem because most useful
residual programs contain only well-founded loops. Well-founded loops always have base cases,
which will necessarily contain a finite number of pairs, and no bottom elements. When such a base
case is generalized with the recursive cases(s) of the loop, it establishes a finite length, bottom-
free lower bound on the final approximation—once this is achieved, termination follows because
such an approximation is only a finite distance below the top element of the lattice. Although the
specializer is perfectly willing to construct residual loops that are not well founded (for instance, if
an interpreter is specialized on a program containing an infinite loop, the specializer will build an
infinite residual loop to implement it), such loops are rare in practice.

3.4.3 Technicalities

In this section, we cover a few implementation technicalities. First, we note that fixed point
iteration necessitates a change to the control structure of FUSE as described in Section 1.3 and
in [45]. Traditional abstract interpretation methods do not specify a particular control strategy;
they simply keep recomputing the approximations of all program points until they all converge.
FUSE, however, already has a depth-first, interpreter-like control strategy, which we must modify
somewhat. Before fixed point iteration, each specialization could be considered independently;
each depended only on its arguments. Once a specialization was built and cached, it never had
to be touched again. This is no longer the case, because one of a specialization’s properties, its
return value (and thus its residual code), may depend on the return value of another specialization.
Consider the program

(define (a x)
(if (predil x)
x
(if (pred2 x)
(... (a(-x1)) ...
(... () ..M

(define (b y)
(if (pred3 y)
(... @ y2» ..2
(... Gay) ..M

where a is specialized on <any value>. During the first iteration of the fixed point computation for
this specialization, b will also be specialized on <any value>. After the first iteration of a’s fixpoint
loop, the return value approximation for a’s specialization may have changed, but the completed
specialization of b may contain residual code that depends on the old value of a’s return value.
Thus, even though the parameters to the specialization of b have not changed, the specialization
must be rebuilt. FUSE accomplishes this by keeping track of dependencies between specializations.
In this case the specialization of b depends on the return value of the specialization of a, and
vice versa. If either specialization’s return value changes, the other specialization’s body (and
thus its return value) will be recomputed. Note that such recomputations need not begin again
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with bottom as the approximation to the specialization’s return value, but may proceed from the
previous approximation.

Second, we address the cost of this mechanism. We have found that, in most cases, the fixed
point is computed within two or three iterations; this is most likely due to the simplicity of the
scalar type hierarchy. For programs without infinite loops, the fixpoint computation must go at least
two iterations (i.e., the first iteration returns the approximation, and the second returns the same
approximation). This, unfortunately, imposes a minimum factor-of-two performance penalty—in
fixed point computations, the last iteration never accomplishes any work, but merely serves as
a termination test. For procedures which are only ever called in tail position (i.e., their return
values are never used by any computation), such as those in Mogensen’s downward-passing MP
interpreter [31], there is no need to compute a return approximation at all, since it won’t ever
be used. Unfortunately, at the point when a specializer is building a specialization, it cannot
know how its return value will be used. This extra expense might be avoided through the use
of lazy specialization techniques, but these come with their own overhead, and have not been
been investigated in much detail (Launchbury [30] describes the use of lazy techniques to reduce
representational overhead, but that’s a different problem). In Section 4.5, we will describe another
algorithm that does not impose this “extra iteration” penalty.

Because of mutual recursion, the cost of fixpoint iteration is potentially multiplicative in the
depth of mutually recursive call paths in the residual program. For instance, in the program we
saw above, recomputing one specialization may lead to the recomputation of another. In practice,
this penalty is small, because (1) the number of mutually recursive procedures in residual programs
is quite small,? and (2) because the recomputations, starting higher in the lattice, often converge
faster than the original computations did.

Another, more serious cost, is that fixpoint iteration over nested recursive procedures may inter-
act badly with FUSE’s specialization cache, causing unnecessary specialization. The reason is that,
each time the outer loop’s approximation is recomputed, a new procedure object representing the
inner loop is constructed. For various technical reasons having to do with the lexical addressability
of free variables, the cache of specializations is indexed by the identity of these objects, rather than
by their intensional equality; this means that a new specialization (and return approximation) is
constructed for the inner loop for each fixpoint iteration of the outer loop. Similarly, the improved
caching scheme of [35] cannot be used here, as it only considers procedure arguments, not free
variables, when determining when specializations can be re-used. We solve these problems by dis-
allowing nested procedures, transforming such programs to a “flat” form via a process similar to
lambda-lifting [23]. In this form, inner loops take their free variables as arguments, making them
visible to the specialization cache and to the mechanism of [35].

3.5 Examples

In this section, we demonstrate our fixpoint iteration mechanism on the examples of Section 2.

®Under FUSE’s termination criterion, a mutually recursive source procedure must call both itself and one of its
callers in order to be residualized. In many mutual recursions, one of the members merely “calls back” to its caller,
and induces no loop of its own. Consider a Scheme interpreter, in which eval and apply are mutually recursive, but
only eval is self-recursive. No specializations of apply will be constructed; instead, it will be unfolded in the body
of the specialization of eval, yielding a residual program without mutual recursion.
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3.5.1 Interpreter Example

Consider specializing the interpreter of Figure 5 on the program

(program (pars x)
(dec y)
(procs)
(begin
(while x
(begin
(:=y (cons ’1 (cons ’1 y)))
(:= x (cdr x))))
(:=y (cons ’1 y))))

and an unknown input. The specializer will build a specialization of the function mp-while on the
expression

(while x
(begin
(:=y (cons ’1 (cons ’1 y)))
(:= x (cdr x))))

an empty list of declarations, and a store of the form ((x . <any value>) (y . <any value>)),
resulting in a specialization like

(lambda (store)
(if (cdr (car store))
(mp-while35
(cons (cons ’x (cdr (cdr (car store))))
(cons (cons ’y (cons ’1 (cons ’1 (cdr (car (cdr store)))))) ()N
store))

The initial approximation to the return value of the recursive call is <no value>. Thus, the
approximation for the if, and thus the procedure body, is the generalization (least upper bound)
of the approximation to the store and <no value>, which is ((x . <any value>) (y . <any
value>)). A second iteration of the fixpoint algorithm uses this as the approximation to the return
value of the recursive call, which, after generalization with the approximation to the store, is the
same as the previous approximation. Thus, when mp-command is unfolded on the expression (:= y
(cons ’1 y)), the approximation to the store is ((x . <any value>) (y . <any valued>)),
allowing the calls to Lookup and update to be unfolded. The final code is that shown in Figure 6.

3.5.2 Integration Example

The integration code shown in Figure 8 is a higher-order program, since the function to be inte-
grated, fcn, is passed as a parameter. Because this section addresses only first-order programs, we
have to change the example slightly.!® We will remove the formal parameter fcn and instead add
an explicit definition binding fcn to a function, yielding the source program shown in Figure 12.

1%Tn actuality, there is no problem as long as fcn is known at specialization time, since it will just be unfolded, and
analyzed just as though the function definition was present inline in the source program. However, we are trying to
avoid the first-order-residual characterization of programs, and are therefore presenting a truly first-order example.
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(letrec
((integrate-loop
(lambda (lhs rhs)
(let ((guess (* (- rhs 1lhs) (/ (+ (fcn lhs) (fcn rhs)) 2))))
(if (good-enough? lhs rhs guess)
guess
(let ((mid (/ (+ 1hs rhs) 2)))
(+ (integrate-loop lhs mid)
(integrate-loop mid rhs)))))))
(fcn (lambda (x) (*x x x))))
integrate-loop)

Figure 12: First-order Divide-and-Conquer integration program

Consider specializing this code on 1lhs and rhs both specified as “any number.” Thus, the
approximation to guess will be “any number,” and all of the arithmetic operators in the expressions
for computing guess and mid will be residualized in a form that takes advantage of their arguments’
being numbers. The recursive calls to integrate-loop are initially approximated by the bottom
element, <no value>; their sum gets the same approximation. The approximation for the if is
the generalization of <any number> and <no value>, which is <any number>; this becomes the
approximation the return value of the specialization of integrate-loop. On the second iteration,
this approximation is used for the return values of both recursive calls, allowing the + operator which
adds these values to be specialized on numbers, and return <any number>. The if expression,
and thus the body of the specialization, now returns <any number>; since the approximation is
unchanged, the fixpoint iteration terminates. The resulting residual program is identical to that
shown in Figure 9.

4 Higher-Order Programs

The treatment of information recovery in Section 3 and in [46] is specific to first-order source
programs (actually to first-order residual programs). In this section, we treat an additional source of
unnecessary information loss that appears when higher-order programs are considered. We begin by
examining what it means to specialize a higher-order program, and show that the usual approach to
specializing higher-order procedures (as used in [45, 4, 12]) requires building specializations that are
sufficiently general to be applicable at all of their call sites. Existing methods simply use the overly
general approximation “any value” for all parameters to such specializations, even when the actual
values can be shown to be more specific, and those more specific values are representable in the
specializer’s type system. We describe an algorithm for computing more accurate approximations
to parameter values, its implementation in FUSE, and its use in specializing realistic programs.
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4.1 Basics

Higher-order programs require that the program specializer be able to operate on first-class
functions'!, which may be passed as arguments, returned from procedure calls, and stored in
structures. From the specializer’s point of view, many of these uses of functions involve little addi-
tional difficulty: the specializer explicitly represents closures, and passes, returns, and stores those
representations. When a call head evaluates to a closure, the specializer’s choices are the same as
before: unfold or specialize. The only complication is that lexical access to unknown closed-over
variables in the body of the unfolding or specialization must be established, either by arity raising
the enclosing specialization (as in Similix-2 [4]) or by nesting specializations (as in the FUSE code
generator [45]). As with first-order procedures, this unfolding/specialization process is polyvariant.

This takes care of many higher-order uses of functions, such as (map (lambda (x) ...) 1),
where inlining the lambda expression is sufficient. Similarly, handling CPS-transformed versions
of tail-recursive procedures is simple, because the continuation'? is always inlinable. For example,
specializing

(define (fact k n ans)
(if (= n 0)
(k ans)
(fact k (- n 1) (* n ans))))

on k=(lambda (x) (+ x 5)), and n and ans unknown, might yield

(define (fact43 n ans)
(if (= n 0)
(+ ans B)
(fact43 (- n 1) (* n ans))))

Difficulties arise when a call head evaluates to an unknown value at specialization time; i.e.,
when the residual program is higher-order. This occurs when closures from multiple lambda ex-
pressions reach a single call site, as in

(define (fact k n)

(if (= n 0)
(k 1)
(fact (lambda (ans) (k (* n ans)))
(-n 1))

in which both invocations of k are reached both by the initial continuation to fact, and the recursive
continuation (lambda (ans) (k (*x ans))). This situation forces the specializer to residualize the
construction of (i.e., build specializations of) all closures which might reach this site at runtime.
Unlike the case of first-order procedures, in which the specializer can residualize a call simply by

1'We assume, for simplicity’s sake, that first-order and first-class procedures are distinguished syntactically: first-
order procedures are built by define, and need not be represented explicitly at specialization time (i.e., the specializer
just looks up procedure names in the source program), while first-class procedures are built by lambda, and are
represented by closures at specialization time. This distinction is also used by Similix-2 [4] and Schism [12]. Our
approach does not rely on any such distinction; we make it only to simplify the discussion.

12In this paper, the term “continuation” refers to a first-class procedure introduced by the CPS transformation,
not to any implicit continuation present in the Scheme evaluator or reified by call-with-current-continuation.
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building a call to the appropriate specialization, both residual call sites of k must be able to invoke
either of two specializations at runtime, depending on which lambda expression the call head came
from. There are several approaches to specializing such programs.

One approach eliminates the problem entirely via environment conversion. The idea is to
transform the source program'?, replacing lambda expressions with environment constructors (i.e.,
build a structure representing the lambda expression’s free variables, along with a tag to indicate
which lambda expression they belong to), and replace every call site with a case dispatch that
chooses among the bodies of all 1ambda expressions whose closures that might reach that site.'
This approach allows a high degree of specialization, since each lambda expression may be special-
ized differently per call site, leading to a cartesian product of specializations (lambda expressions
x call expressions). We view this transformation as overly low-level because it forces a user-
level representation of a virtual machine object, the environment. Such transformations may be
counterproductive because they limit the Scheme compiler’s ability to choose efficient machine-
level representations.'® Once first-class environments become part of the Scheme language, this
approach may become more appropriate. Schooler’s IBL [38] system, which is intended to be em-
bedded within a compiler, performs environment conversion of a sort, replacing identifiers with
offsets into environment frames; however, it only unfolds lambda expressions and cannot build
shared specializations.

Another approach achieves specialization on a per-call-site basis without the need for explicit
environments by building all of the specializations at the site of the original lambda expression, and
choosing among them at runtime. This can be accomplished by allowing the specializer to build
as many specializations of each closure as necessary to accommodate all of the closure’s call sites.
Then, the residual program is transformed as follows. All first-class procedures in the residual
program are represented as tuples, with one entry per higher-order call expression (i.e., call
expressions whose head must be evaluated at runtime) in the program. Each lambda expression
is replaced by a tuple constructor whose arguments are either specialized versions of the source
lambda expression (for positions reaching call sites of the lambda), or some placeholder. Each
residual call head is replaced by the appropriate tuple accessor. This approach allows a high degree
of specialization, but has costs. The specializer pays the cost of building potentially very large
number of specializations, many of which may never be invoked, and generates a large residual
program. Runtime costs include the constructing and accessing tuples, and creating closures for
all of the specialized lambda expressions (this is an expense in systems which copy the values of
free variables to a closure data structure at closure creation time). We have chosen not to take
this approach because we believe that, for many higher-order programs, the additional degree of
specialization is not worth this cost; we don’t want to risk having a slower residual program. To

13This transformation could also be performed during specialization, or in a postpass, but we find it easiest to
think of as a source-to-source transformation.

1 A practical implementation of this might build a first-order procedure for each lambda-body, parameterized by
the both the free and bound variables. The case-dispatch at each call site would apply one of these procedures to
the argument values and to the environment. Polyvariant specialization of such a program could potentially build a
specialization of each “body” procedure for each non-recursive call site.

1%For example, once the specializer has mapped closure creation into the creation of a tuple of free variables, it is
unlikely that the compiler will be able to share structure between these tuples, as it could with environments. If the
same variable is “closed over” several times, this could cause unnecessary copying. Similarly, an explicit representation
of environments as tuples may prevent optimizations that map all or part of the environment to registers or stack
frames.
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the best of our knowledge, this approach has not been implemented,

A third approach allows the building of only a single residual version of each specialization-
time closure object (in cases where unfolding or specialization of first-order procedures duplicates
lambda expressions, each copy may induce a separate specialization.). That specialization must be
sufficiently general to be valid at all of its call sites. Existing specializers provide such applicability
by building all first-class specializations on completely unknown arguments. As we shall see, this
approach builds specializations which are overly general since the call sites may have some amount
of known information in common, which could be used in building the specialization. At first, this
might seem to be a completely monovariant solution, because only one specialization is permitted.
In actuality, polyvariance is still available in several forms. First, although a closure may be
specialized only once, it can be unfolded (inlined) any number of times. As described above, this
handles many “packaging” uses of first-class functions, such as passing a closure to map. Second,
first-order procedures may be both unfolded and specialized an arbitrary number of times, which
may result in the duplication of 1lambda expressions contained in procedure bodies. Thus, a single
lambda expression will indeed be specialized for different values of its free variables; the limitation
is that each of these variants (specialization-time closure) may be specialized for only one argument
vector, which must satisfy all of its call sites. This approach is used by FUSE [45], Similix-2 [4],
and Schism [12], and is the approach we will consider in the remainder of this section.

Note that the second two approaches, because they can generate multiple residual lambda
expressions from a single lambda expression in the source, can break code that uses eq? on closures
(the first approach doesn’t have this problem because eq? on closures can be simulated via the use
of eq? on environments). We find the use of eq? on closures questionable, and have not concerned
ourselves with this problem.

4.2 Sources of Information Loss

As with first-order programs, a specializer will lose information as it processes a higher-order
program. These losses stem from the use of a finite type system, and from the need to generalize
approximations when computing the return values of if expressions and the actual parameters
to use when building a specialization. We saw above that existing specializers lost information
unnecessarily when computing the approximation to the value returned from a residual procedure
call.

In the case of higher-order programs, the need to compute approximations to return values can
be eliminated by transforming the program into continuation-passing style (CPS) [42] form. In CPS
programs, all calls are tail calls in the sense that no reductions are performed on their return value;
if the initial continuation is the identity function, then every call returns the program’s final value.
Thus, the specializer can safely use any approximation to the return values of residual calls, since
nothing is ever going to look at them. Since this is the case, we need not concern ourselves with the
problem of computing return approximations in higher-order programs: for the remainder of this
paper, we will assume that all higher-order programs to be specialized have been CPS converted.

This application of the CPS transformation to program specialization was first investigated by
Consel and Danvy [14], who used it to improve the accuracy of an offline program specializer that
lacks the ability to compute accurate return values for if statements and residual procedure calls.
CPS overcomes some of these limitations; consider the program fragment
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(if x
(cons 1 y)
(cons 2 z))

where x, y and z are unknown. In a specializer like that of Consel and Danvy (and, in fact, any
offline specializer; see [36] for details), which cannot perform generalization, the return value of
this fragment is “any value.” The best result possible from a specializer with generalization would

> This solution is better than

be “a pair, whose car is either 1 or 2, and whose cdr is any value.’
“any value,” but still loses information, since any reduction depending on the return value can’t
know if the car is 1 or 2 until runtime. When the CPS transformation!® is applied, the fragment

becomes

(if x
(k (cons 1 y))
(k (cons 2 z)))

where k is bound to (lambda (if-result) ... if-result ...). In this case, the continuation
bound to k can be unfolded at each of its call sites; one invocation will be unfolded on “a pair whose
car is 1 and whose cdr is any value,” while the other will be unfolded on “a pair whose car is 2 and
whose cdr is any value.” This yields an even more accurate specialization than the generalization
approach, because, unlike before, the values 1 and 2 are available for performing reductions in the
continuation at specialization time. Of course, there are risks: because procedures are specialized

i

with respect to particular continuations, there is less opportunity for sharing (residual programs
may become very large), while code duplication may result if continuations are unfolded multiple
times on identical inputs [36]. However, experiments to date [14, 28] suggest that this approach
works well, at least under offline methods.

The CPS transformation can also improve the accuracy of specializers that do not compute
return values of residual procedure calls. For instance, the tail-recursive length function

(define (tail-length x ans)
(if (null? x)
ans
(tail-length (cdr x) (+ 1 ans))))

specialized on x unknown and ans an unknown integer!'”, returns “any integer” under specializers
which compute return values, but only “any value” under specializers which don’t. If we transform
it to

(define (tail-length k x ans)
(if (null? x)
(k ans)
(tail-length k (cdr x) (+ 1 ans))))

1 This is not the full CPS transform of [42], which also transforms primitives to take a continuation argument;
we need only transform user function definitions and their call sites. Because most specializers have no difficultly
computing return values of residual primitive calls, expressions like (k (cons (car x) (cdr y))) are considered
perfectly acceptable.

17 A user would most likely specialize this procedure on ans=0, but termination criteria (either manual or automatic)
will raise ans’s approximation to “any integer” in order to build a finite number of specializations of length.
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we no longer have this problem. When we specialize this transformed version on x unknown, ans
an unknown integer, and k=(lambda (loop-result) ... loop-result ...),k will be applied
to (and unfolded on) the approximation “any integer,” which is the result we desire. Indeed, this
is the case for all first-order programs whose residualization is tail recursive, since, in their CPS-
transformed form, recursive calls will pass the same continuation passed to the original call, and all
continuation invocations will invoke only one continuation, which can be inlined. As we shall see
in Section 4.6, this means that the CPS transformed version of the MP+ interpreter, specialized
on the example program of Section 2.1, will be able to preserve the shape of the store across the
tail-recursive residual loop used to implement the MP+ while construct.

Now let us consider the truly recursive formulation of length used in Section 3.1. After CPS
transformation, it looks like

(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) (k (+ 1 ans))) (cdr x))))

When we specialize this on unknown x and k=(lambda (result) ... result ...), the spe-
cializer will build specializations of both the initial continuation bound to k, and the continuation
(lambda (ans) ...) passed on the recursive call. Since both residual invocations of k will pass

an integer argument, it would be desirable to specialize the continuations on “any integer,” which
would allow the expression (+ 1 ans) in the recursive continuation to be simplified to (integer+
1 ans). If this were done, the specialized program would be be as good as the first order fixpoint
iteration solution. Computing this approximation requires that the specializer find all call sites of
each continuation (in this case, both calls to k), and compute an approximation that denotes all
values which could be passed in at any of those sites (in this case, “any integer” includes both the
0 passed at the site (k 0) and the “any integer” passed at the site (k (+ 1 ans))).

Unfortunately, existing specializers for higher-order programs always use “any value” as the
approximation to the value(s) passed to residual lambda-expressions, even when their type system
might be able to represent a better approximation to that value(s). This unnecessary loss of infor-
mation means that residual lambda expressions constructed by such specializers are unnecessarily
general. In particular, with respect to the computation of accurate return value approximations,
it limits the utility of the CPS transformation to programs whose residualization is tail recursive.
For example, when the length program above is specialized, neither continuation can be unfolded;
instead, both continuations are specialized on a completely unknown actual parameter, forcing the
+in (+ 1 ans) to be left residual in its most general form. Similarly (c.f. Section 4.6), specializing
a CPS transformed version of the MP+ interpreter on a program containing recursive MP+ proce-
dure calls will result in the loss of the shape of the interpreter’s store across the residual loop used
to implement those procedure calls.

4.3 Existing Approaches

To the best of our knowledge, no existing specializer or transformation method solves the problem
of overly general parameter approximations. Much of the existing work on specialization, and
experimentation with the CPS transformation, has focused on interpreters for languages with while
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loops, but without procedure call. Since the residual versions of such interpreters are usually tail-
recursivel®, the costs of using the overly general approximation “a value” to the actual parameters
of residual lambda expressions have not been detected. Also, most existing work on higher-order
specialization has occurred in the context of offline specialization, which makes the computation of
good approximations to parameter values more difficult [36].

4.4 Control Flow Analysis Solution

For each first-class specialization (residual lambda expression), we want to compute an accurate
approximation to the parameter values that will be passed to (closures constructed from) it at run-
time. For each parameter, this requires finding a single approximation which dominates, in the type
lattice, the approximations to the corresponding parameter at each residual call to the specializa-
tion. At first, this might seem quite simple: find all residual call sites of a specialization, compute
the least upper bound of the approximations to their parameters, and use that approximation to
construct the specialization. Two factors complicate this task:

1. To obtain an accurate result, the control flow analysis used to find a specialization’s call
sites must be performed on the residual program, which is still being constructed at the time
the results of the analysis are required (e.g., in the length program, the call to k inside the
recursive continuation must be discovered before that continuation is specialized.).

2. Computing accurate control flow information, even on a complete program, can be expensive;
worse yet, our solution to analyzing an incomplete program will require this control flow
analysis to be performed several times.

We will consider each of these issues in turn.

4.4.1 An Accurate Specialization Algorithm
4.4.1.1 The Tterative Algorithm

For each first-class procedure to be specialized, we would like to compute an argument vector
that is sufficiently general to approximate all values that might be passed at runtime, but which
is not overly general. We can do this by generalizing the argument approximations from all of
the specialization’s call sites; our problem is that, at the time the argument vector is needed, not
all of the call sites will have been constructed, since some of them may lie in the body of the
specialization itself. This suggests the use of an iterative solution technique, in which we construct
an initial specialization based on argument approximations from call sites outside the specialization,
then revise the specialization as more call sites are discovered.

One possible algorithm (Figure 13) works as follows. Associate two values with each residual
lambda expression: (1) the closure which was specialized to produce this expression, and (2) the
argument vector on which the closure was specialized. Specialize the program as usual, but when
a residual lambda expression is initially constructed from a closure, do not compute the body by
specializing the closure on a completely unknown argument vector. Instead, set the expression’s
closure field to the appropriate closure, set the argument vector to L, and leave the body empty.

8The interpreters contain truly recursive code for interpreting expressions, etc, but all of those loops are fully
unfolded at specialization time, leaving only tail recursive loops in the residual interpreter.
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Specialize program on inputs as usual
Each time we build a residual lambda expression L
from closure C:
set L.CLOSURE:=C
set L.BODY:=empty
set L.ARGS:=bottom

LOOP:
Perform control flow analysis on the residual program
(i.e., compute SITES(L) for all L)
For each L in the residual program
Compute A:=LUB(S.ARGS) for all S in SITES(L)
If A=L.ARGS then
exit
else
set L.ARGS:=A
set L.BODY:=specialize(L.CLOSURE,L.ARGS)
goto LOOP

Figure 13: An iterative specialization algorithm

Once specialization is complete, the residual program will contain some number of residual
lambda expressions. Perform a control flow analysis to find (a conservative approximation to) each
lambda expression’s call sites (i.e., compute a relation SITES(L) for each lambda expression L).!?
For each lambda expression, compute the least upper bound of the argument approximations at
all of its call sites. If this approximation is the same as the expression’s argument vector, do
nothing.?® Otherwise, set the expression’s argument vector to the new approximation, and re-
specialize the expression’s closure on the new argument vector. If any residual lambda expressions
were re-specialized, repeat the process starting with the control flow analysis.

4.4.1.2 An Example

Consider the length function, specialized on a known continuation k=(lambda (result) (+ 5
result)) and an unknown list x=T. This process is shown in Figures 14 and 15.

On the first iteration of the algorithm, the initial and recursive continuations are specialized
on 1, yielding residual lambda expressions with empty bodies. Control flow analysis finds one

191f closures constructed from the lambda expression can be returned out of the top-level invocation of the program,
the control flow analysis must add a “virtual” call site with completely unknown argument approximations to account
for the fact that closures constructed from the lambda expression might be invoked on arbitrary values at runtime.
This is a standard issue in control flow analysis [41].

20Tt might seem sufficient to halt when the set of call sites remains the same across iterations. This fails because
call sites are compared using the identity of call expressions in the residual program, and, since specializations are
rebuilt on each iteration, any call sites within a rebuilt specialization are guaranteed to appear different on each
iteration, resulting in nontermination. Furthermore, the set of call sites of a particular residual lambda expression
does not grow monotonically during the analysis; for example, a later specialization constructed on general arguments
may contain fewer residual calls than an earlier one built on more specific arguments, because loop unfolding in the
more specific case may duplicate some call sites.
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Initial Program

(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) (k (+ 1 amns)))
(edr x))))

(define (length2 x)
(length (lambda (result) (+ 5 result))
x))

After 1 iteration

(define (length k x)
(if (null? x)

(k 0)
(length (lambda (ans) ; specialized on L
<empty>)
(edr x))))

(define (length2 x)
(length (lambda (result) ; specialized on L
<empty>)
x))

SITES((lambda (ans) ...)) = {(k 0)}
SITES((lambda (result) ...)) = {(k 0)}

After 2 iterations

(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) ; specialized on 0
(k 1))
(edr x))))

(define (length2 x)
(length (lambda (result) ; specialized on 0
5)
x))

SITES((lambda (ans) ...))
SITES((lambda (result) ...))

{k0), (x 1)}
{k0), (x 1)}

Figure 14: Applying the iterative algorithm to the length program
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After 3 iterations

(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) ; specialized on T
(k (integer+ 1 ans)))
(edr x))))

nteger

(define (length2 x)
(length (lambda (result) ; specialized on T}nuyer
(integer+ 5 result))

x))
SITES((lambda (ans) ...)) = {(k 0),
(k (integer+ 1 ans)}
SITES((lambda (result) ...)) = {(k 0),

(k (integer+ 1 ans)}

Figure 15: Applying the iterative algorithm to the length program (continued)

call site for each residual lambda expression, namely (k 0). Since 0 # L1, both continuations
are re-specialized on an actual parameter value of 0, yielding bodies of (k 1) and 5, respectively.
This time, control flow analysis finds two call sites for each lambda expression, (k 0) and (k
1). Computing the least upper bound of 0 and 1 gives T;yjeger, Which is not equal to the pre-
vious approximation, 0. Respecialization of both continuations on T;pseger Produces bodies of (k
(integer+ 1 ans)) and (integer+ 5 result). Control flow analysis of this program finds two
call sites, (k 0) and (k (integer+ 1 ans)), for each specialization. This time, the least upper
bound of the argument approximations at each call site (OU Typteger = Tinteger) is the same as the
argument vector used to build the specializations, so the algorithm terminates.

The final residual program is more specialized than that achieved under standard specialization
strategies; if the initial and recursive continuations were specialized on T, the applications of + in
those continuations would not be specialized to integer+.

4.4.1.3 Termination and Correctness

The termination of this algorithm depends on two factors: building a finite number of closures
and performing a finite number of respecializations of each closure. The latter is easily achieved;
each closure will be respecialized a finite number of times because the argument vector used to
respecialize any particular closure is drawn from a finite-height lattice, and rises in that lattice
on each subsequent respecialization. The former is more difficult to assure, but is not specific to
this algorithm—indeed, it is faced by all existing specializers for higher-order languages. The only
way to build an infinite number of closures is to build an infinite number of unfoldings (or first-
order specializations) of a loop whose body constructs a closure. Such behavior can be avoided
using traditional solutions: limiting unfolding and forcing generalization of certain arguments to
specializations [4, 45].

The correctness of this algorithm can be shown inductively. Provided that the control flow
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analysis is correct (i.e., finds all call sites of each lambda expression in the program), the residual
lambda expressions constructed in iteration k of the algorithm are sufficiently general to be appli-
cable at all call sites in the program produced by iteration k — 1 of the algorithm. The algorithm
terminates when the argument vectors computed from the residual program are the same as those
computed from the previous residual program. Because specializations constructed on identical
argument vectors are identical, any further iteration would produce an identical program. Thus, if
the algorithm terminates at iteration n, the specializations produced by iteration n + 1 are suffi-
ciently general to be applicable at all call sites in the residual program of iteration n. But since the
algorithm terminated at iteration n, the residual programs of iterations n and n + 1 are the same,
and thus the specializations in the program of iteration n are sufficiently general for the call sites
in the program of iteration n.

4.4.2 Control Flow Analysis

As it stands, the algorithm of Section 4.4.1.1 is not practical, for two reasons. First, we have not
specified how to compute the necessary control flow information (i.e., the SITES relation); many
strategies are possible. Second, the algorithm requires that the SITES relation be recomputed on
each iteration after respecialization has been performed; this can be quite expensive. In this section,
we address both of these issues.

4.4.2.1 Choosing a CFA Strategy

Finding an accurate approximation to the set of call sites reached by a lambda expression can be
expensive; because the relationship between lambda and call expressions is data dependent, it is
both a dataflow and a control flow problem. This problem has been treated in detail by Shivers [41]
and Harrison [20], while simpler, less accurate solutions are used by Sestoft’s “closure analysis” [40],
Bondorf’s variant of this analysis [4], and Consel’s higher-order binding time analysis [12].

All of these analyses compute correct solutions; our concern is with accuracy. If an overly large
set of potential call sites is determined for a lambda expression, the approximation computed for
the lambda’s parameters may be overly general. Shivers proposes a taxonomy of analyses in terms
of the depth of the call history used to distinguish between control paths (i.e., “OCFA” maintains
one set of abstract closures?!', “I1CFA” maintains a set of sets, indexed by call sites of the call site’s
enclosing lambda, “2CFA” indexes based on two levels of call sites, etc). Analyses higher in the
taxonomy compute more accurate estimates, but are more costly to compute [27].

0CFA is relatively simple to compute, but provides overly general results for continuation-
passing-style code. For example, given the program fragment

(define (foo k x)
(k x))

(cons (foo (lambda (a) ...) 4)
(foo (lambda (b) ...) ’bar))

21 . . . . .
An abstract closure is a 1lambda expression plus an approximate representation of an environment; thus, abstract
closures are very similar to specializers’ representations of closures.
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O0CFA will determine that the call site (k x) could invoke either (lambda (a) ...)?? or (lambda
(b) ...) on either 4 or ’bar, while 1ICFA will determine that (lambda (a) ...) is invoked
only on 4 and that (lambda (b) ...) is invoked only on ’bar. The additional accuracy of 1CFA
would thus allow us to specialize (lambda (a) ...) on 4 instead of on T, which might lead to a
significantly better specialization.

Thus, it might appear necessary to use an expensive analysis like 1CFA; luckily, this is not
the case. In the example above, 0CFA computes an inaccurate result because it fails to analyze
the body of foo separately for each of the two calls to foo; 1CFA succeeds by keeping additional
context to distinguish the calls. Such context is often unnecessary when analyzing residual programs
because a polyvariant specializer will build different code for different call contexts, which will then
be analyzed separately even by 0CFA.

First, any calls for which the specializer can prove that the head is reached only by closures
generated by a single lambda expression are either unfolded or specialized; no residual higher-order
code is generated, and no further analysis is required. In the example above, if both calls to foo
were unfolded or specialized on their arguments, k would evaluate to a closure, which could then
be unfolded or specialized.

Second, even in cases where the specializer constructs a residual call that is reached by several
closures, the polyvariant nature of the specializer helps avoid undesirable merging of control paths.
Consider the program below, which computes the sum of the values from 0 to x where x is either
a number or a list representing a number in unary notation:

(define (sum k x)
(cond ((number? x)
(if (= x 0)
(k 0)
(sum (lambda (num-ans) (+ x num-ans)) (- x 1))))
((1ist? x)
(if (null? x)
k()
(sum (lambda (list-ans) (append x list-ans) (cdr x)))))))

and a program fragment containing two calls to sum:

(cons (sum (lambda (a) ...) x)
(sum (lambda (b) ...) y))

where x=<any integer>, and y=<any list>. 0CFA on the source program would determine that
either continuation could be invoked on either an integer or a list. In order to terminate, the
specializer cannot make use of the value of k in building specializations of foo, since each iter-
ation builds a new continuation; instead, it may only use some more general value such as “any
function.”?®> However, the specializer can make use of the value of x; because x’s type is different
at the two call sites, the specializer will build two specializations of foo. When 0CFA is run on the

22To be accurate, we mean “closures constructed from (lambda (a) ...);” we omit this phrase for brevity since
the meaning should be clear.
%It could use something like “any closure built from either (lambda (a) ...) or (lambda (num-ans) ...),”

which would distinguish the specializations built by the two invocations, but we will see in a moment that this can
be counterproductive.
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residual program, it will notice that the continuation (lambda (a) ...) is called only from the
specialization with x=<any integer>, and the continuation (lambda (b) ...) is called only from
the specialization with x=<any 1ist>, and will compute the approximations we want. If both call
sites had passed “any integer” for x, then they would share the same specialization, causing 0CFA
to conflate the two closures. Note, however, that such conflation would cause no harm, because
both closures would be applied to the same value (T). If we had built different specializations for
the two call sites merely because different initial continuations were passed as arguments, we would
have built duplicate code needlessly, since the value of the continuation is not used in computing
the body of the specialization.

Another way to think of this is that 1CFA, 2CFA, etc. split control paths to some fixed depth
to obtain more accurate results. A program specializer splits control paths to an arbitrary depth
based on the equality of approximations to arguments (i.e., a new specialization is built every time
a function is called on a new argument vector, with the (possibly invalid [35]) expectation that
the different information will lead to different reductions). If 0CFA is performed on the residual
program, it may needlessly conflate the applications of different closures (i.e., it may erroneously
deduce that (lambda (a) ...) is called on an argument that really only reaches (lambda (b)
...), and vice versa), but it doesn’t matter because this will only happen in cases where those
arguments have the same type (otherwise the procedure containing the application would have been
split into two specializations), in which case conflating the two applications will do no harm.

Of course, even when analyzing residual programs, there are cases in which a more complex
control flow analysis could get better results. For example, our specializer is monovariant over
specialization of first-class functions, and thus will fail to build separate specializations for control
paths that might be considered separately by 1CFA or other more sophisticated CFA schemes.
We are merely arguing that there will be fewer such cases in residual programs than in general
programs, making the use of such analyses on residual programs less advantageous than on general
programs. Thus, our solution will be based on 0CFA, which is fairly simple and computationally
efficient.

4.4.2.2 Making CFA Efficient

The other problem with our specialization algorithm is one of efficiency: it performs a control
flow analysis of the entire residual program on each iteration, even though most of the program
doesn’t change from iteration to iteration (only the particular specialization(s) being iteratively
recomputed will change). Because the respecialization process can both add and remove call sites
from a residual lambda expression (c.f. iterations 2 and 3 in Figure 14), each time we perform
the control flow analysis, we must restart the abstract interpretation at “square one,” with each
lambda expression having no call sites. If we were to simply restart the control flow analysis on
the existing approximations after removing a call site, the results would be inaccurate because the
removed call site would still appear in the result of the analysis. The argument vector of such a
site might “pollute” the new argument vector computed by taking the least upper bound of the
argument approximations at the various call sites.

We can make two useful observations here. First, simply restarting the control flow analysis
on the current call site approximations is never incorrect, merely less accurate. After all, even the
approximation “all lambdas reach all calls of equivalent arity” is correct; it’s just not very useful.
Thus, we could save time by restarting the abstract interpretation for control flow analysis on the
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current SITES relation after each respecialization phase.

Second, and, for our purposes, more interestingly, the accuracy loss does not affect the quality of
specialization. To see this, consider running our algorithm using an accurate control flow analysis.
For a particular specialization, the set of call sites found by successive applications of the control
flow analysis does not increase monotonically. However, we are not interested in the set of call sites
per se, but rather in the least upper bound of the argument approximations at those call sites. This
upper bound does increase monotonically, even when the set of call sites does not. Thus, retaining
call sites from prior applications of CFA would not affect the upper bound.

Consider a residual lambda expression with call sites ¢; and ¢y, with argument vectors vy and
Vg, Tespectively. Suppose that our algorithm respecializes the lambda expression on vy Uvg, yielding
call sites ¢; and ¢3, with argument approximations v; and vs. The new argument vector for further
respecialization is v = v; Uws. If an inaccurate CFA algorithm were to keep the old call site ¢3, we
would instead compute v’ = vy U vg U v3 as the new argument vector. But we already know that
vy Uz O vy Uwg, so v’ = v. Retaining the old call site ¢z, which no longer appears in the residual
program, does not affect the result. Thus, it is safe to restart the abstract interpretation for control
flow analysis for any iteration of the specialization algorithm on the approximations computed by
the previous iteration, instead of on the bottom element of the abstract interpretation domain.
Only the new specializations, and any code called from those new specializations, will need to be
re-analyzed.

The observations above suggest the use of an incremental control flow algorithm that, on each
iteration of the specialization algorithm, only propagates new call sites (and new residual lambda
expressions), instead of starting over and re-propagating all call sites and residual lambda expres-
sions. This incremental algorithm will compute SITES relations containing call sites which no longer
appear in the residual program, but this will not affect the argument vectors (or the specializations)
computed by the specialization algorithm. This is what we do in FUSE.

4.5 Implementation in FUSE

This section describes the implementation of control flow analysis and higher-order specialization
in FUSE [45]. We assume, from here onward, that all user procedures and procedure applications
in the input program have been CPS-converted; this not only allows us to get good binding times
without the need to compute return value approximations [14, 36], but also allows us to simplify
the control flow analysis.

4.5.1 CFA

Recall that FUSE represents values at specialization time using symbolic value objects, which
contain a type approximation and a residual code expression. Control flow analysis in FUSE is
implemented by adding two new fields to each symbolic value. The initial sources field lists all
residual cons and lambda expressions whose output could be returned by the symbolic value’s
residual expression at runtime. The final destinations field lists all residual car, cdr, and call
expressions that could destructure (in the case of pairs) or apply (in the case of closures) data
structures returned by the symbolic value’s residual expression at runtime. To find all residual call
sites of a residual lambda expression, we simply examine its final destinations field.

During specialization, we maintain the invariant that every destructor that could be reached by
the value of a constructor must appear on the constructor’s final destinations list, and that every
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constructor which might reach a destructor at runtime must appear on the destructor’s initial
sources list. We do this incrementally, as follows:

1. Every symbolic value whose code field is a residual cons or lambda expression adds itself to
its (initially empty) initial sources list.

2. Every symbolic value whose code field is a residual car, cdr, or call instruction adds itself
to the final destinations list of its argument (or call head).

3. Every symbolic value created by generalizing two other symbolic values adds the initial sources
of both of those symbolic values to its (initially empty) initial sources list. This occurs when
a specialization is re-used at a call site other than the one which caused its construction.

4. Adding a final destination to a symbolic value adds all of its initial sources to the new final
destination’s initial sources list.

5. Adding an initial source to a symbolic value adds all of its final destinations to the new initial
source’s final destinations list.

6. Whenever a new initial source is added to the final destination list of a pair destructor (car,
cdr), and that initial source is a pair constructor (cons), the initial sources of the correspond-
ing argument of the initial source are added to the initial source list of the destructor.

We state without proof that performing these operations is sufficient to maintain the desired in-
variant. It might seem as though some operations are missing: in particular, when an initial source
which is a lambda reaches a final destination which is a call, one might expect the initial sources
of the lambda’s body to be added to the initial sources of the call. This is unnecessary because
we are treating only CPS programs, in which values returned from residual call expressions are
unimportant—only the values returned from residual primitive expressions are used in performing
reductions. Similarly, it might appear that when an initial source which is a 1ambda reaches a final
destination which is a call, the initial sources of the call’s arguments should be added to the
initial sources lists of the symbolic values representing the lambda’s formal parameters. This is
unnecessary because this association should not be made until the lambda is specialized, at which
point the forwarding will be performed by the generalization operation (rule 3).

4.5.2 Specialization

FUSE uses the initial source and final destination information as follows. Every closure object,
in addition to fields containing the formals, body, and environment, contains fields containing an
argument vector and a specialized body (symbolic value). Each time an initial source which is a
lambda reaches a final destination which is a call, the argument vector of that call is generalized
with the argument vector stored in the lambda’s associated closure object (the first time through,
we just use the one from the call). If the old and new argument vectors are equal, initial source
information is propagated from the new argument vector to the old one (because the old one is the
one whose symbolic values appear in the specialization). If the old and new vectors are different,
the new argument vector is used to build a new specialization, which is then stored, along with the
new argument vector, in the closure object.
Once again, let us return to the length example:
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(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) (k (+ 1 ans))) (cdr x))))

specialized on k=(lambda (result) (+ 5 result)) and x=T. The specializer first builds a spe-
cialization of length on unknown k and x:

(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) <empty>) (cdr x))))

along with some links. The symbolic value for k has an initial source of (1ambda (ans) ...) and
a final destination of (k 0), while the symbolic value for x has a final destination of (cdr x).
The symbolic value for (lambda (ans) ...) has itself as an initial source, and (k 0) as a final
destination.

When the residual call (k 0) is constructed, the specializer iterates through all of the initial
sources of k (in this case, just (lambda (ans) ...)) and recomputes their argument vectors. In
this case, the new argument vector for (Lambda (ans) ...) is 0. Respecializing yields

(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) (k 1)) (cdr x))))

During the respecialization process, a new residual call, (k 1) is constructed. The specializer must
update the argument vectors of all of k’s initial sources; in this case, the argument vector of (lambda
(ans) ...),formerly 0, becomes Tj,s¢4¢p This change forces a respecialization, building the code

(define (length k x)
(if (null? x)

(k 0)
(length (lambda (ans) (k (integer+ 1 amns)))
(cdr x))))
Once again, a new residual call, (k (integer+ 1 ans)), with argument approximation
Tintegers 1s constructed, and becomes a final destination for (lambda (ans) ...). Computing
the least upper bound of the argument vectors of (Lambda (ans) ...)’s final destinations yields

Tinteger- oince no change occurred, no respecialization is performed. The specializer resumes
its normal operation, building a residual invocation of the specialization of length on the initial
continuation:

(define (length2 x2)
(length (lambda (result) <empty>) x2))

The construction of the residual invocation of length causes x2 to pick up the final destination
of x, namely (cdr x). Similarly, the final destinations of k, (k 0) and (k (integer+ 1 ans)), are
added to (lambda (result) ...), which adds (lambda (result) ...) to their initial sources.
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Because new initial sources have arrived at a call, respecialization may be necessary; (lambda
(result) ...) is respecialized on 0 and then?? on Tinteger» yielding the final program

(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) (k (integer+ 1 amns)))
(edr x))))

(define (length 2 x2)
(length (lambda (result) (integer+ 5 result)
x2)))

In this simple example, we didn’t get to see our mechanism propagating initial source information
from the arguments of a cons out through a car or cdr operation. This is important in pro-
grams where first-class functions are placed into and accessed from list structure (e.g., an initial
environment containing functions in an interpreter, or a task queue in a simulator). We did see
some benefit from the algorithm’s incremental nature, since the correspondences between (lambda
(ans) ...) and (k 0), (lambda (result) ...) and (k 0), and x and (cdr x) were only de-
rived once; under a traditional CFA framework, these would have been rederived on each iteration
of the respecialization algorithm. Such behavior is more important in larger programs where only
a small fraction of the program is re-specialized in any given iteration.

4.5.3 Technicalities

In this section, we cover a few implementation technicalities. First, the description above stated
that, when a new specialization of a closure is constructed, it is stored in the closure object. This
is not entirely correct because the specialization procedure must be reentrant. That is, during the
course of building a specialization of a closure, the closure may be specialized again on more general
arguments. This can be solved either through a queueing scheme to remove the reentrancy, or by
allowing reentrant invocations, but only storing the new specialization in the closure if the closure’s
argument vector has not changed since the specialization was requested.

Second, we address the cost of this mechanism. The initial source and final destination slots add
a space cost to symbolic values; they also add a cost to the basic operations of the specializer, since
building a residual constructor or destructor, or performing a generalization, may result in several
links being added. In cases where such an update finds new a call site of a lambda expression, it
may even result in the (re)computation of a specialization. We have found that, in practice, the
cost of this mechanism is low; since updating links is cheap, and specialization is expensive, we only
pay a price when respecialization is performed. Since the vast majority of lambda expressions in a
typical CPS program are merely unfolded, not specialized, our mechanism costs little when it is not
needed. In our tests, we have found that the incremental control flow analysis accounts for 10-15%
of total specialization time; for programs where no respecialization is required, our algorithm exacts
no other overhead.

#FUSE doesn’t specify the order in which new initial sources are processed; if the call site (k (integer+ 1 ans))
is processed first, (lambda (result) ...) will be respecialized only once, on Tipteger, While if (k 0) is processed
first, respecialization will be performed on both 0 and Tjuteqer. This suggests “batching” initial source updates so
that multiple updates to a lambda expression’s argument vector are processed before respecialization takes place.
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More importantly, this mechanism is more efficient than the first-order solution of Section 3.3.
This is because the first-order solution constructs return value approximations as part of the process
of building specializations; since the fixpoint iteration only stops when the same approximation has
been built twice, the solution always rebuilds specializations one more time than necessary (c.f.
Section 3.4.3). This is particularly troublesome in the presence of tail-recursive loops, where the
return value approximation is never used during specialization.

The CFA solution does not suffer from this problem. In some sense, it “gets one iteration for
free” by not building a specialization of a 1ambda expression until a call site is found, which allows
it to start at a value higher in the lattice than “bottom,” which is what gets used in the first-order
solution. Because information flows only downward, not upward, a recursive call only causes a new
iteration if it adds some new information (such as passing a different continuation, which adds a
new initial source to a call site in the specialization’s body). In particular, there is no cost for
tail-recursive calls, because they pass the same continuation as the original call, and thus can’t add
any new source/destination links. Without new links, there is no way to cause another iteration.

4.6 Examples

In this section, we demonstrate our mechanism on CPS-converted forms of the examples of Section 2.

4.6.1 Interpreter Example

Consider the CPS converted form of the interpreter in Figure 5. If we specialize it on the program

(program (pars x)
(dec y)
(procs)
(begin
(while x
(begin
(:=y (cons ’1 (cons ’1 y)))
(:= x (cdr x))))
(:=y (cons ’1 y))))

an unknown input, and an unknown initial continuation, we get the program shown in Figure 16.
The shape of the store is preserved across the while loop; store accesses/updates in the implemen-
tation of the statement (:= y (cons ’1 y)) are open-coded car and cdr operations.

Note that this residual program contains no first-class lambda expressions. Qur respecialization
mechanism was never used; a traditional specialization method would have worked equally well.
This is true because the residual loop mp-while1598 is tail recursive; it doesn’t add to the con-
tinuation on each recursive call. It is possible to write programs which, when specialized, produce
residual programs with recursive loops. For instance, the program
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(letrec
((mp-while1598
(lambda (cont1541 store)
(if
(cdr (car store))
(mp-while1598
cont1541
(cons
(cons ’x (cdr (cdr (car store))))
(cons (cons ’y (cons ’1 (cons ’1 (cdr (car (cdr store))))))
*0))
(cont1541
(cons
(car store)
(cons (cons ’y (cons ’1 (cdr (car (cdr store))))) >(IIN
(main1597
(lambda (cont1468 input)
(mp-while1598
cont1468
(cons (coms ’x (car imput)) ’((y)))))))
maini597)

Figure 16: Result of specializing CPS-transformed MP+ interpreter on multiplication program.
Completely static formal and actual parameters have been eliminated, but arity raising has not
been performed.
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(letrec
((mp-command1729
(lambda (cont1680 store)
(if
(not (null? (cdr (car store))))
(if
(not (null? (cdr (car (cdr store)))))
(mp-command1729
(lambda (temp1675)
(cont1680
(cons
(car temp1675)
(cons
(car (cdr templ675))
(cons
(cons ’out (cons ’1 (cdr (car (cdr (cdr templ675))))))
NN
(cons
(cons ’a (cdr (cdr (car store))))
(cons (cons ’b (cdr (cdr (car (cdr store))))) ’((out)))))
(cont1680 store))
(cont1680 store))))
(main1728
(lambda (cont1599 input)
(mp-command1729
cont1599
(cons
(cons ’a (car input))
(cons (cons ’b (car (cdr input))) ’((out))))))))
maini728)

Figure 17: Result of specializing CPS-transformed MP+ interpreter on minimum program. Com-
pletely static formal and actual parameters have been eliminated, but arity raising has not been
performed.
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(letrec
((integrate-loopT71
(lambda (contb672)
(if
<unfolded version of good-enough? omitted>
(cont5672 (tc—* (tc—- rhs lhs) (tc—/ (tc—+ (tc—* lhs lhs) (tc—* rhs rhs)) ’2)))
(integrate-loop71
(lambda (temp61)
(integrate-loop71
(lambda (temp62)
(contb672 (tc—+ temp61l temp62))))))))))
integrate-loop71)

Figure 18: Result of specializing CPS-transformed integration program. Note that the addition of
the subinterval estimates (temp61 and temp62) is performed with a specialized addition operator.

(program (pars a b)
(dec out)
(procs (loop
(if a
(if b
(begin (:= a (cdr a))
(:= b (cdr b))
(call loop)
(:= out (cons ’1 out)))
(begin))
(begin))))
(call loop))

which computes the minimum of two numbers represented in unary notation, produces the residual
program shown in Figure 17. In this case, each recursive call to the function mp-command1729 builds
up a new continuation (lambda (temp1675) ...) toimplement the statement (:= out (cons °’1
out)). Our mechanism correctly computes an approximation ((a . <any value>) (b . <any
value>) (out . <any value>)) to the store passed to this continuation. If traditional methods
had been used, the continuation would have been specialized on the approximation <any value>,
and all store accesses in the continuation would have been residualized as loops, rather than as
open-coded car and cdr instructions.

4.6.2 Integration Example

We now return to the integration program shown in Figure 8. We would like to show how
our mechanism specializes the CPS transformed version of this program. If we specialize the
CPS-transformed integration program on an unknown continuation, fcn=(lambda (x) (* x x)),
and 1lhs and rhs known to be numbers, we get the specialization shown in Figure 18. Both of
the recursive continuations ((lambda (temp61) ...) and (lambda (temp62) ...)) are initially
specialized on “any number” because the “base case” call site (cont5672 (tc-* (tc-- ...))
passes a parameter known to be a number. When the second call site (cont5672 (tc-+ temp61
...)) is found, its parameter is also numeric, so no respecialization is necessary. FUSE was able
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to deduce that the parameter passed to both continuations is numeric, allowing it to generate the
specialized code (tc-+ temp61 temp62) instead of (+ tempBl temp62) without unnecessary effort
(modulo the cost of performing control flow analysis, of course). Contrast this with the first-order
fixpointing solution shown in Section 3.5.2, in which the body of the specialization is computed
twice, once assuming that the recursive calls to integrate-loop return bottom, and once assuming
that they return <any number>.

5 Related Work

This section describes related work in program specialization, binding time improvement, type
inference, control flow analysis, and specialization-based compiler technology.

5.1 Specializers

Although no existing specializer performs fixpoint iteration to compute return value approxima-
tions, or uses approximations other than “any value” for the values of formal parameters when
building specializations of higher-order procedures, a variety of techniques have been used to im-
prove the quality of specialization.

Haraldsson’s REDFUN-2 [19], computes and propagates type information during specialization.
For each residual expression, the specializer computes either a set of concrete values that the
expression can return at runtime, a set of concrete values that it cannot return at runtime, or a
scalar type descriptor, such as SEXPR, INTEGER, or STRING. REDFUN-2 goes further than FUSE in
maintaining sets of concrete values, but its approximations, or g-tuples are weaker than symbolic
values in that they denote properties of expressions, rather than values, and cannot be included in
structured data or higher-order functions. REDFUN-2 only automatically derives type information
from residual function calls in very restricted situations.

The online systems of Berlin [3] and Schooler [38] propagate information downward using place-
holders and partials, respectively, both of which are similar to FUSE’s symbolic values. However,
these systems fail to propagate automatically derived type information upward out of if expressions
or residual function calls.

The parameterized partial evaluation framework of Consel and Khoo [15] is a user-extensible
type system for program specialization which can infer and maintain “static information” drawn
from finite semantic algebras. Its online variant performs generalization to compute return values
for if expressions, but its behavior with respect to return values of residual calls and parameters
to specializations of higher-order procedures is unspecified. Its offline variant cannot perform such
generalization because of the need to make all reduce/residualize decisions in advance.

In the area of offline specialization, the partially static binding time analyses of Mogensen [31]
and Consel [11], the projection-based analysis of Launchbury [29], and the higher-order binding time
analyses of Bondorf [4], Mogensen [31], and Consel [12] reason about structured and function types,
allowing offline specializers to make use of more information than the simple scalar BTA of MIX [26].
However, it should be noted that these analyses only produce descriptions of specialization-time
structures, not of runtime structures. Online specializers like FUSE don’t need to build recursive
descriptions of such values, but instead simply operate on them. Similarly, binding time analysis
can propagate information out of conditionals only when the test is static, whereas FUSE can do
this in both the static and dynamic cases. Propagation of information out of residual procedure
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calls and into residual higher-order procedures has not been implemented; based on the analysis
of [36], we believe it will be difficult to perform these optimizations in an offline framework.

5.2 Binding Time Improvement

The class of program transformations applied to programs in order to improve the quality of
residual programs obtained when they are specialized is called “binding time improvements.” These
transformations have been investigated mainly in the context of offline specialization, but can be
useful under online frameworks as well.

Binding time improvement via the replication of code is common practice in writing interpreters
to be specialized via offline means (for some example interpreters written in this style, see [5]).
Automating such replication was first suggested by Mogensen [31]. Using the CPS transformation
to perform the same task was first suggested by Consel and Danvy [14] and has been used to improve
the quality of specialization in several examples [13, 28]. other manual transformations, such as
eta-conversion, are also common; Holst and Hughes [21] suggest a possible means of automating
such transformations.

5.3 Type Inference

The techniques we use for computing approximations to return values and specialization parameters
are similar to those used in abstract interpretation-based type inference.

The fixpoint iteration solution described in Section 3.3 is similar to the Minimal Function Graph
analysis presented in [24], which computes sets of (input approximation, output approximation)
pairs for each function in a first order program. Although MFG techniques have been used in
Binding Time Analysis [31], we believe that ours is the first application to the specialization phase.

Young and O’Keefe’s type evaluator [47] is very similar to FUSE, cannot be considered to be
a program specializer because it doesn’t build specializations. The type evaluator discovers types
(including recursive types) using a variety of techniques, including fixpointing and generalization
as used in FUSE. Unlike FUSE, however, the type analysis performed by the type evaluator is
monovariant in the sense that a polymorphic formal parameter of a function will be assigned the
least upper bound of the types of the corresponding actuals from all calls to the function, while
a polyvariant type analysis would be free to build a separate, more accurately typed specialized
version of the function for each type of actual parameter.

The FL type inferencer of Aiken and Murphy [32, 2] treats types as sets of expressions rather
than sets of values, avoiding some of the difficulties usually encountered when treating function
types. To some degree, our specializer uses similar techniques, specializing functions at each call
site in order to compute their return types, instead of attempting to build and instantiate type
signatures for functions.

5.4 Control Flow Analysis

Control flow analysis for Scheme programs has been investigated extensively in the context of
parallelization by Harrison [20] and in the context of program optimization by Shivers [41]. Existing
applications of control flow analysis to program specialization are Bondorf’s application [4] of
Sestoft’s closure analysis [40] and Consel’s higher-order binding time analysis [12]. Both of these
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analyses operate on source programs prior to specialization; we believe ours is the first application
of CFA technology during specialization.

5.5 Compilers

The optimizing compiler technology of Chambers and Ungar [10] is very similar to program spe-
cialization, except that it occurs at runtime. In particular, their iterative type analysis for loops
serves the same purpose as the generalization operation which is often used to compute parameter
types/values in online specializers [45, 37, 43]. Chambers’ algorithm pre-abstracts concrete values
(such as 1 and *foo) to their types (the class of integers and the class of symbols) before entering a
loop, thus achieving faster convergence with a possible cost in accuracy (for instance, it is not pos-
sible to determine that a particular variable always contains a particular value during a loop). This
is acceptable because the compiler is primarily interested in optimizing method dispatch (which
depends only on the classes (types) of objects), rather than on performing primitive operations
(which require values) at compilation time. The splitting operation, in which portions of the con-
trol flow graph following a conditional is compiled separately for each outcome of the conditional, is
isomorphic to specializing an if expression which has been transformed into continuation-passing
style.

The polymorphic inline caching methods of Hélzle [22] suggest a possible new frontier for pro-
gram specialization. At present, specializers only build variants based on different specialization-
time information; polymorphic operations which cannot be reduced to a monomorphic form at
specialization time are left in their general form. By replacing such operations with a stub routine
and a type cache, one could build specializations based on runtime values, which would (1) give
more information to the specializer, and (2) avoid the cost of specializing control paths which are
not exercised at runtime. Such methods may become increasingly important when more complex
higher-order programs are specialized.

Conclusion

Although information loss during specialization is inevitable, we have shown how existing special-
ization systems lose information unnecessarily when computing approximations to return values
of residual calls to specializations and formal parameters of specializations of higher order func-
tions. The overly general approximations presently used in such cases adversely affect the quality
of residual programs.

We have presented algorithms for computing better approximations in both cases: a fixpoint
iteration method for computing return value approximations and a control flow analysis method
for computing formal parameter approximations, and have shown how these algorithms are imple-
mented in our specializer, FUSE. Adding these methods to FUSE have allowed it to build better
specializations of several real-world programs.

In the future, we plan to explore several avenues. We hope to add support for disjoint union and
recursive datatypes to FUSE, increasing the accuracy of generalization, and thus specialization. We
may be able to improve the speed of our specializer via static analysis; performing type inference
and control flow analysis prior to specialization time would establish conservative upper bounds on
return value approximations and control flow information. Such bounds would allow the specializer
to halt fixpoint iteration or stop propagating initial source/final destination information when it
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detects that the bound has been reached, avoiding unnecessary work. Finally, we plan to explore
interactions between these information preservation mechanisms and the “re-use” mechanism of

[35].
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