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In trace-driven simulation, traces generated for one set of machine characteristics are
used to simulate a machine with different characteristics. However, the execution path
of a multiprocessor workload may depend on the ordering of events on different
processors, which in turn depends on machine characteristics such as memory system
timings. Trace-driven simulations of multiprocessor workloads are inaccurate unless
the timing-dependencies are eliminated from the traces.

We measured such inaccuracies by comparing trace-driven simulations to direct
simulations of the same workloads. The results were identical only for workloads
whose timing dependencies were eliminated from the traces. The remaining workloads
used either first-come first-served scheduling or non-deterministic algorithms; these
characteristics resulted in timing-dependencies that could not be eliminated from the
traces. Workloads which used task-queue scheduling had particularly large
discrepancies because task-queue operations, unlike other synchronization operations,
were not abstracted.

Two types of simulation results had especially large discrepancies: those related to
synchronization latency and those derived from relatively small numbers of events.
Studies that rely on such results should use timing-independent traces or direct
simulation.
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Chapter 1

Background

Modem multiprocessor memory systems make extensive use of caches, buffers, and directories, any of
which may be crucial to system performance. Analytic models cannot deal with the full complexity of
such systems, so designers rely on simulation for insight into design trade-offs. Memory system and
network designs are often evaluated using trace-driven simulation.

1.1 Principles of trace-driven simulation

We define an environment to be a deterministic model of the characteristics of a machine. Simulation
seeks to emulate the execution of a particular workload, V, in a particular environment, 7, the fargef
environment.

Trace-driven simulation is based on the divide-and-conquer principle; the problem of simulating the
execution of (I* in T is divided into two subproblems: trace generation and trace simulation. The events
that occur when ‘11’ executes in a trace generation environment G are captured and recorded in a trace.
The simulator reads the trace, and the results are taken to describe the behavior that would be observed
if u- were run in 7. (See Figure 1.1.)

In this paper, we will consider memory system simulation only. In such simulations, the trace is
composed primarily of memory references.

1.2 Multiprocessor trace-driven simulation

Multiprocessors complicate trace-driven simulation. When tracing a multiprocessor workload, each pro-
cessing element (PE) generates a logically-distinct trace. A multiprocessor memory/network simulator
reads a trace-set consisting of one logical trace for each PE.

How does the simulator interleave memory references from different PEs? Following Bitar [2], we
classify multiprocessor trace-driven simulation techniques into two types, synchronous and asynchronous.

In synchronous trace-driven simulation, the simulator preserves the reference sequence that occurred
during trace generation. In practice, this technique is implemented in the trace generator, either by putting
time-stamps in the traces or by merging references from different PEs into a single trace stream.

In asynchronous trace-driven simulation, the simulator adjusts the reference sequence to reflect dif-
ferences between the reference latencies of G and those of 7. Asynchronous TDS has been used, for
example, by Eggers and Katz [5] to study the relative performance of two cache coherency protocols.
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Figure 1.1: The trace-driven simulation process.

Both data and instruction references were recorded in their trace-sets. They assumed a nominal CPI of
one, to which memory reference latencies were added by their simulator.

1.3 Accuracy issues

The trace generation environment and the target environment should ideally be identical, but the costs and
limitations of existing trace generation techniques usually make this impractical. Realistic traces can be
generated by executing workloads with instrumented hardware (as in ATUM [1]) or instrumented software
(as in WEDS [12]).  Hardware instrumentation produces traces that reflect the characteristics of the
hardware used. These characteristics are unlikely to match those of 7. Software instrumentation offers
greater flexibility, but is comparatively slow. Regardless of which technique is used, trace storage costs
limit the number traces that can be stored. When evaluating a large number of target environments, a
single trace generation environment is usually chosen, and the same traces are used to simulate each target
environment. For these reasons, the trace-generation environment seldom matches the target environment
This mismatch is a potential source of inaccuracies.

This study is concerned only with the inaccuracies that are caused by 67 # 7. It is not concerned
with inaccuracies can that arise from approximations made during trace generation and simulation. We
therefore assume that the trace generator and simulator are both accurate, so that trace-driven simulation
with 51 = 7 is accurate.

What conditions will ensure accurate trace-driven simulation if G # 7?

C can influence the simulator only through the trace. If the workload were known to generate the
same trace in both environments, accurate simulation would be assured This condition is satisfied in
many uniprocessor simulations that do not time-stamp trace-events. For workloads in which memory
latencies do not affect the sequence of memory references, environments that differ only in their memory
latencies will generate identical traces.

Accurate trace-driven simulation can also be achieved by translating a trace generated in G into the
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trace that would have been generated in 7. For this reason, accurate simulation of a time-stamped trace
is possible if the simulator compensates for the differences between the memory reference latencies of 5’
and 7 as it reads the trace. For example, suppose memory references in 7 always take one cycle longer
than the corresponding references in S. To translate a trace from G into one for 7, one could simply
increase each timestamp by the number of preceding memory references.

For many environments, the cost of translating the trace into one that is valid for 7 may be comparable
to the cost of generating a new trace. For example, it would be costly to adjust time-stamps if the memory
reference latencies of $? were so complex that they had to be simulated. Also, if the processor were to
issue memory references out of order, the sequence of memory references generated by a basic block could
depend on the environment. Asynchronous processes (such as interrupts) can introduce dependencies in
the execution path itself. Such dependencies complicate accurate trace translation.

Certain workload features introduce timing-dependencies in the traces they produce. Consider a
workload which (among other things) reads the elapsed time and formats it for output. The execution
path through the formatting routine would then depend on the value of the elapsed time. The trace of
the workload is therefore timing-dependent.

Multiprocessor workloads are particularly likely to have timing-dependencies, due to the presence
of asynchronous interactions between processes. Such interactions include dynamic allocation, barrier
synchronization, and unsynchronized read-write access to shared data.

Any workload which allocates shared resources on a first-come, first-served (FCFS) basis is likely to
produce timing-dependent trace-sets. FCFS policies are commonly used to allocate tasks, loop iterations,
memory, and access to critical-sections. The trace-set of such a workload is likely to depend on which
resources are assigned to which PEs. Resource allocation depends on order in which PEs make their
requests, which depends on the latencies of the preceding memory references made by each PE.

Barrier synchronizations also produce timing-dependent trace-sets if PEs spin while they wait at the
barrier. Spins generate memory references, and the number of references generated depends on the
relative completion times of the various PEs entering the barrier. Workloads that use FCFS allocation
and barriers may produce timing-dependent trace-sets even if the results of the workload itself are not
timing-dependent.

Some workloads allow unsynchronized access to shared data by different PEs. The trace-sets produced
by such workloads will be timing-dependent if the order of the accesses affects the trace. For example,
in simulated annealing algorithms, the final solution is an approximation. To permit greater parallelism,
implementations of such algorithms often permit simultaneous accesses to the current optimum. Such
workloads are likely to produce timingdependent traces.

When timing-dependencies are present, a small change to the environment can induce numerous
changes to the execution path of a PE. These changes induce further changes, and so on. As a result,
environments that differ in minor ways may generate radically different trace-sets. For instance, changing
cache sixes can affect the number of misses occurring in each task. In workloads where tasks are
assigned to PEs on a FCFS basis, this may impact the assignment of tasks to PEs, altering the large-scale
communication patterns of the workload.

In Chapter 2, we will address the problem of accurate TDS in the presence of timing dependencies.

1.4 Direct simulation

Direct simulation provides an alternative to trace-driven simulation. In direct simulation, memory refer-
ences are simulated as they occur. No traces are required, and only one environment is involved.
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The accuracy of direct simulation is limited only by approximations in the workload execution soft-
ware (which corresponds to the trace-generation software in TDS) and in the simulator itself.

1.5 Related work

In his critique [2], Bitar argued that trace-driven simulation is not generally valid for multiprocessor
studies. After considering both asynchronous and synchronous trace-driven simulation, he concluded that
multiprocessor trace-driven simulation techniques must be validated by analysis or low-level simulation.
He showed that the inter-process interactions found in access-control algorithms are inaccurately modeled
by trace-driven simulation. However, he did not connect the inaccuracies with timing dependencies, nor
did he prove that the inaccuracies were ever great enough to be of practical concern.

.

In [3 1, we pointed out that the nondeterminis m in many parallel workloads makes accurate tracing
difficult We emphasized that a trace-set obtained for one environment could represent an execution order
that was impossible for the target environment. To address this problem, we presented the Tango simula-
tion system, a flexible direct-simulation tool for studying shared-memory applications and environments.

In [7], Holliday and Ellis studied the amount of re-simulation required to create an accurate trace-
set for one environment from a trace-set of another. Finding that traditional trace-sets were inadequate
for accurate trace-driven simulation, they based their approach on intrinsic traces. (An intrinsic trace
consists of the control-flow graph of the workload plus address and timing data for each basic block.)
Their findings are difficult to apply to traditional trace-sets, which are composed of isolated events. They
noted that traditional trace-sets can provide accurate simulation for some workloads (by abstracting the
locks and barriers) but, beyond this, their work did not address the use of traditional trace-sets.,

In [8], Koldinger, Eggers, and Levy studied the effects of time dilation on trace generation. They
introduced various degrees of time dilation into a software-based trace generation system. They found
that time dilation had a slight impact on the accuracy of two simulation results: miss ratio and bus
utilization. Errors occured only because their instrumentation system was unable to preserve the global
order of memory references in the presence of time dilation. Modem instrumentation systems (such as
Tango) have the ability to maintain this order. With such systems, time dilation need not be a source of
error. Thus, the errors Koldinger, Eggers, and Levy observed were not intrinsic to trace-driven simulation.

1.6 Goals of this work

We have seen that a connection exists between timing dependencies and the accuracy of trace-driven
simulation.

In the next chapter, we will present a technique that permits accurate trace-driven simulation of
multiprocessors in the presence of timing dependencies caused by locks and barriers. Our approach
is based on the methods used by Eggers and Katz in [5]. We will discuss difficulties in dealing with
timing-dependencies which affect large portions of the trace-set.

In the chapters that follow, we quantify the inaccuracies in actual trace-driven simulations and explain
the observed behavior. We find that the inaccuracies are very small in most cases. Results related
to synchronization latency have large inaccuracies, as do results based on small numbers of events.
The workloads which use task-queue scheduling have particularly poor accuracy because the timing-
dependencies caused by task-queue operations are difficult to eliminate.
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Chapter 2

Techniques for dealing with
timing-dependent trace-sets

In a multiprocessor environment, events occurring on different PEs are largely asynchronous; the ordering
of memory references from different PEs is generally unconstrained The interleaving of memory refer-
ences from different PEs will depend on the environment. Synchronous ‘IDS generally cannot accurately
simulate environments other than G, because it must simulate memory references in the order they are
genemed.

On the other hand, for some workloads, asynchronous TDS can accurately simulate multiple envi-
ronments with a single trace-set. In asynchronous TDS, the interleaving of memory references from
different  PEs is determined during simulation, based on the latencies associated with the target environ-
ment Without re-interpreting the workload, a simulator cannot make extensive changes to the execution
paths of individual PEs, but many timing-dependencies have only limited impact on the execution path.
The ability to eliminate these timing-dependencies from the trace-set by means of abstraction is the key
to accurate trace-driven simulation. We now show how this abstraction is accomplished for locks and
barrier synchronizations.

2.1 Abstracting locks and barrier synchronizations

Suppose the only timing-dependency in PI’ were caused by two PEs trying to acquire the same spin-lock:
in 7, 1’1  gets the lock after spinning three times, but in CT, 1’: gets it after spinning once. The execution
paths would be different, so the raw trace-sets must also differ.

However, if we could ignore the number of times each PE spins during lock acquisition, the trace-set
would look the same in both environments. We can make the trace-set timing-independent by translating
each lock-acquisition loop into an abstract “spin-loop” event. The environment-dependent features (the
number of iterations) are thus eliminated from the trace-set, which is now valid for both environments.

Naturally, for this technique to work, the simulator must process the new “spin-loop” event properly;
when it reads a “spin-loop” event from a trace, it must determine the correct number of iterations for the
target environment. The simulator can do this by simulating spins until another process releases the lock.

The approach we have described is essentially the same as that used in [SJ. It relies on two seldom-
violated properties of the spin-loops used to implement locks:

l Spin-loops have few parameters. To simulate the loop, the simulator need only know the address of
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the lock and the address of the start of the loop. This information can be embedded in the trace-set.
(We assume that alI spin-loops in the workload are implemented in exactly the same way.)

l Spin-loops do not return a value, and their side-effects (changes to the state of the lock) JWUZ~Z~
do not affect any address calculations in the workload outside of related spin-loops. The timing-
dependencies are thus limited to small portions the trace-set.

An application could violate the latter property if state of the lock were used for some purpose other
than spinning. Such behavior might occur, for instance, in a workload that monitors its own locking
patterns. Abstraction alone cannot handle such workloads correctly, because large portions of the trace-
set could be afGct.ed.

Barrier synchronizations possess much the same properties as spin-loops. The effect of a barrier is
to delay each PE by a different amount. If barrier entry is treated as an abstract trace eva~., these delays
can be easily recomputed for each environment. (The simulator does this by simulating spins until ail
processes have entered the barrier.) Thus, the technique of abstracting timing-de~dencies  from the
trace-set works for barriers as well as locks.

2.2 Abstracting FCFS scheduling primitives

-Abstracting locks and barriers eliminates most of the timing-dependencies found in statically-scheduled
worldoads,  that is, workloads in which, for a given input, the assignment of work to PEs is fixed. In
dynamically-scheduled workloads, work is assigned to idle PEs on a first-come, first-served (FCF S) basis.

FCFS scheduling introduces timing dependencies. These dependencies can influence branch con-
ditions and address computations over large portions of the workload. The fetch-and-add operation
illustrates this problem. Fetch-and-add is commonly used to distribute iterations among PEs in a dis-
tributed loop; when a PE completes an iteration, it performs a fetch-and-add on a shared counter to
determine the next iteration for that PE. While it is possible to abstract the fetch-and-add itself from
the trace-set, the returned index is timing-dependent and affects the remainder of the trace in a complex
fashion. It is typically used as an array index, and value read from the array can affect other data and/or
branch addresses.

Such timing dependencies could be eliminated, at the cost of additional simulator complexity, if
each iteration had a deterministic trace. The trace-generator could record the trace of each iteration in a
separate file. The simulator could then assign iterations to PEs dynamically. This approach would allow
accurate simulation of fetch-and-add in simple cases, however, we do not know of any simulators that
have implemented it.

Shared queues and heaps pose a somewhat more complex problem than fetch-and-add operations.
Like fetch-and-add operations, the values returned by queue operations may affect large portions of
the trace-set. In addition, queues permit many possible operations, some of them quite complex. For
example, the situation in which a PE tries to take work from an empty queue may be handled in many
different ways, depending on the scheduling policies of the workload.

To summarize: the operations used in dynamic scheduling introduce trace-set timing-dependencies
that are not localized. It is difficult to accurately simulate such workloads using conventional traces.
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Chapter 3

Methodology

A major goal of this study is to evaluate the accuracy of trace-driven simulation. To this end, we simulated
a simple shared-memory multiprocessor environment running various workloads. We obtained simulation
results for this environment using two different trace-generation environmcsts,  one idpalized,  one similar
to the target environment. We compared the results of these simulations to nominally “accurate” results
obtained by direct simulation.

To eliminate errors due to approximations introduced by the instrumentation and simulator, She same -
instrumentation and memory simulator were used for both the -trace-driven and direct simulations. The 1
measured discrepancies therefore reflect approximations intrinsic to the trace-driven simulation techniques
used.

The remainder of this chapter presents details of the instrumentation system, memory simulator, and
workloads used.

3.1 The Tango Llte Instrumentation System

The workloads were compiled into executable simulations using Tango Llte, an assembly-language
instrumentation system for the MIPS processor architecture. Tango LIte allows a uniprocessor to perform
direct simulation of a multiprocessor workload.

Tango Llte is a successor to the Tango simulation system described in [4, 61.  Unlike Tango, Tango
Llte represents application processes as light-weight threads executing in a common virtual address space.
This change eliminates the need to call to operating system’s scheduler, allowing much faster simulation.

Tango Llte instruments application code with calls to the simulator at strategic points during exe-
cution, such as loads, stores, and synchronization events. It also supports a distributed notion of time,
in which each thread has an independent simulation clock. Tango Llte supports the scheduling of ap-
plication threads in such a way that events from different threads are simulated in the correct temporal
order.

3.1.1 Limitations of Tango Lxte

Tango Llte has several limitations which affect the accuracy its results:

l Tango Llte does not instrument the operating system kernel. (The applications we study are
computate-intensive; the kernel should have relatively little impact on their performance.)
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l Tango Llte can only instrument those portions of the run-time libraries that are not used by its
own run-time system. Uninstrumented library func tio ns are treated as atomic operations.

Most of the library code used by the applications in this study was instrumentable. The math
library (iibm) was instrumented, as was much of the C run-time ~~~XIIIY  (libc). The estimated
fraction of cycles spent in uninstrumented functions ranged from 0.16% of total cycles (in Barnes)
to 14% (in LocusRoute). The uninstnnnented  portions of the run-time library included functions
that provide output formatting (such as prints),  memory allocation (malloc),  and file I/O (fopen).

l Because the application and the simulator share a common address space, the addresses of ap-
plication data are displaced by simulator data and by expansion of the application code by the
instrumentation.

Techniques to correct for such displacements are known (see [ 12]),  but we have not implemented
than for -0 Lite, feeling that the additional cost of these features was not justified. Since
application data tend to be fairly contiguous in memory, we expect the effects of such displacement
to be minor.

l Because T&ngo Llte instruments at the assembly-language level, it perturbs the reordering phase
of the assembler. As a result, fewer delay slots in the application code can be filled, infiating the
instruction counts somewhat. The order of independent data references within a basic block may
also be perturbed.

Because these limitations affect both the trace-driven and direct simulations, they do not contribute
to the discrepancies reported in Chapter 4.

3.1.2 Overhead in Tango Llte

The execution overhead of Tango Llte can be substantial. Fortunately, time dilation does not affect
results obtained from Tango Llte-based  simulations because (unlike most prior trace generation systems
for multiprocessors [13])  event order in Tango Llte is determined by event-driven simulation. Thus,
while simulation overhead limits the problem sizes that can be reasonably simulated, it has no effect on
the accuracy of trace generation and simulation.

Instrumentation of the applications at data references and basic blocks typically increased application
static size by a factor of four and uniprocessor execution time by a factor of 45. However, these figures do
not include the memory system simulator. This instrumentation overhead was insignificant compared to
the cost of simulating the memory system. In this study, memory simulation typically increased execution
times by another factor of 17 over the execution time of the instnunented  application with no simulator.
Thus, the net slowdown factor was roughly 750. (45 x 17 = 765.)

3.2 Memory Simulator

We used a single memory system simulator for both trace generation and simulation. The simulator
computes reference latencies for a hypothetical shared-memory multiprocessor with snoopy caches. Each
PE has a fully-associative TLB and a direct-mapped cache. Writes pass through the cache and are
broadcast on the bus, where they invalidate any comsponding copies in other caches. (For the target
uswironment,  7, we used a TLBs with 28 entries and caches with 1024 4-word blocks.) The simulator
also has an option allowing it to simulate an ideal memory system which satisfies all references in a
single cycle.



In this study, all synchronizations except task-queues were treated as abstract operations. Task-queues
are implemented slightly differently by each application, so they are much more difficult to abstract.

3.2.1 Limitations of the simulator

The simulator makes a number of simplifying assumptions about the environment:

l Pipelining is not simulated, and data accesses precede the corresponding instruction fetches, rather
than following them, as they would in a real machine.

l Memory references associated with synchronization are filtered out, to avoid distorting the cache
miss rates. Similarly, TLB faults are treated as idle time. As a result, synchronizations and TLB
faults do not cause any memory references.

l We use an idealized synchronization model that assumes negligible communication delay between
PEs. Thus, for instance, there is is no delay between the release of a lock and acquisition by a
waiting PE.

l A trivial physical-to-virtual page mapping is implemented in the TLB. Contiguous virtual addresses
always have contiguous physical addresses.

the

0 Interference from DMA and illteKUptS are not simulated.

Because these limitations affect both
discrepancies reported in Chapter 4.

3.2.2 Tracing

We optimized the tracing system

l To eliminate the need for
generated for each PE.

l Explicit time-stamps were

trace-driven and direct simulations, they do not contribute to

to reduce the time- and space-requirements for trace generation:

an explicit process ID in each trace record, separate trace files were

eliminated by recording instruction references in the traces. Bach in-
struction ideally takes one cycle, so the simulator can determine the number of cycles between two
data references events by counting the number of intervening instructions and adding latencies due
to TLB faults and cache misses. (This technique was inspired by the methodology of [5].)

;
l To further reduce trace size, consecutive instruction references were encoded into a single trace

record and combined with any following data reference. (This technique is particularly effective
with Tango Llte because it turns out that each instrumentation point generates only a single trace
record.)

l Writing a trace-set to disk and then reading it back introduces substantial overhead, so we developed
a buffering system to pass trace data directly from the trace generator to the simulator using fixed-
size shared memory buffers, one for each simulated PE. Semaphores were used to synchronize the
reading and writing of these buffers. Such a scheme may encounter deadlock because different PEs
generate trace data at different rates. The simulator automatically detected deadlock conditions,
and simulations that aborted due to deadlock were re-run using disk-based traces.
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3.3 Applications

The application codes that make up the workloads in this study were derived primarily from the SPLASH
suite described in [ 111.

The SPLASH suite consists of six applications: one in FORTRAN  (Ocean) and five in C (Cholesky,
LocusRoute, MP3D, PThor, and Water). Each application is a program of significant size and corn-
plexity. All except Cholesky solve complete problems in scientific simulation or computer-aided design.
The applications were explicitly parallel&d  using m4 macros based on the monmacs[9] macro library. 1

Since many timing-dependencies are associated with dynamic scheduling, the scheduling algorithms
used by the applications were particularly important to this study. Three of the original SPLASH appli-
cations (MP3D, Ocean, and Water) use static task scheduling; the remainder use taskqueues. We also
introduced an alternate version of MP3D,  called Dynamic MP3D.  The Dynamic MP3D application is
identical to MP3D except that it schedules loops dynamically, rather than statically.

.

We further supplemented SPLASH with a new application, called Barnes, which uses the Barnes-
Hut algorithm to solve +body problems similar to those arising in astrophysics. (Barnes has since
been added to the SPLASH suite.) The Barnes code is interesting because of its unusual scheduling
technique [ 1 Cl]. On the first iteration, it distributes tasks dynamically, using a distributed loop. On
successive iterations, it partitions work among PEs using deterministic heuristics that tend to equalize the
amount of work assigned to each PE. For comparison, we introduced a second version of this application,
named Dynamic Barnes, which uses the distributed loop on every iteration.

In the end, a total of nine applications were used: three with static scheduling and six with dynamic
scheduling.

33.1 Changes made to the applications

The SPLASH applications were written for a vitual-memory model which gives each process a private
copy of all variables not declared “shared.” (This follows the semantics of the fork system call.) However,
the Tango Llte instrumentation system is threads-based. Threads provide a shared virtual address space,
which is inconsistent with the model assumed in SPLASH. We therefore had to port the applications
to the shared virtual-memory model. This was done by manually editing each application to replicate
statically-allocated data that would be modified during parallel computation.

Most of the synchronizations in the applications were coded using monmacs, allowing Tango Llte
to identify them and treat them as abstract operations. A few synchronizations were written as spin-loops
in the original codes. Wherever possible, these synchronizations were converted to standard macros.
The only remaining synchronizations were task-queue operations, found in Cholesky, LocusRoute, and
PThor. Special instrumentation was added by hand to these applications to delimit the spins, allowing
Tango Llte to recognize them as synchronization.

Throughout this study, the applications were simulated to completion; both parallel and serial compu-
tatations  were simulated. To keep simulation costs reasonable, the problem sizes we used were (except
in the case of MP3D)  somewhat smaller than those used in [ll].

Official SPLASH bug fixes through August 28, 1991 were incorporated into the codes used in this
study.

‘Monmacs was developed by the Advanced Computing Research Facility at Argonne National Laboratories.
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3.3.2 Application characteristics

Table 3.1: Application characteristics with 10 PEs.

Application Problem size
ocean 62 x 62 grid
Water 2 steps/4 x 4 x 4 lattice
MP3D 30 steps/5K  particles
Dynamic MP3D 30 steps/5K  particles
Barnes 10 steps/l28 bodies
Dynamic Barnes 10 steps/l28 bodies
Cholesky lshp.0
LocusRoute 2 steps/bnrE.grin
PThor 500 steps/rise  processor

Synch. cycles I-fetches D-reads writes
millions millions millions % sh millions % sh -

0.9 34.6 9.4 95.7 3.2 89.2
25.8 51.5 8.5 37.4 4.3 4.9

2 5 47.5 10.1 71.4 5.3 52.2
2.0 48.2 10.4 69.7 5.1 53.4 .

18.8 61.5 12.0 63.5 7.5 35.4
8.8 61.0 12.0 63.4 7.5 35.5

88.8 44.5 11.5 90.6 4 . 0  7 8 . 8
1.5 25.3 5 .0  69 .9 2 . 2  4 3 . 5

53.9 74.3 17.2 75.2 5.8 50.3

Table 3.1 summarizes the synchronization and reference behavior of the applications. The measurements
in this table are from simulations of the target environment (described in Section 3.2) with 10 PEs.

The “% sh” figures indicate the fraction of references of each type which were to shared addresses.
The sharing fractions in the table are higher than those reported in [ 1 I]. This is due to data that were
originally private to each PE, but were replicated in shared memory when the applications were ported
to the shared virtual-memory model.

11



Chapter 4

Results

This chapter describes the experiments we performed and the behavior we observed

We evaluated the accuracy of asynchronous trace-driven simulation using two different trace-gener-
ation environments (G’s) to simulate the target environment, ‘T. We chose the bus-based memory system
described in Section 3.2 for our target environment. In each trace-generation environment, we simulated
the nine parallel applications described in Section 3.3, varying the number of simulated PEs, 11, from 1 to
10. Of the 90 possible workloads for each trace-generation environment, only 85 were actually simulated.
(The Ocean application could not be simulated with 1~ = 3, 5, 7, 8, or 9 PEs. Ocean constrains 1~ to be
either 1 or an even number that divides I: - 2, where 9 is the grid size. Our choice of 9 = 62 limited us
to p = 1, 2, 4, 6, or 10 PEs.)

The trace-generation environments we chose typify two approaches to trace generation. For our
first set of experiments, we generated traces with an idealized environment, hereafter denoted by &ted.
&T&al models an idealized memory system capable of satisfying any number of simultaneous references
in a single cycle. It exemplifies the trace-generation environments used in studies in which traces are
generated by software instrumentation. The target environment, T, was fairly complex, so the differences
between g and T were substantial.

For the second set of experiments, we chose a more complex trace-generation environment, hereafter
denoted by &14. This environment was identical to 7 except that its caches were only l/4 as large (256
blocks). Such minor differences between the trace-generation and target environments might be found in
studies that use hardware instrumentation to generate traces.

Among the 85 workloads we simulated, there were 22 that gave completely accurate TDS results
in both trace-generation environments. These workloads are described in Section 4.1. The results for
the remaining workloads are organized by trace-generation environment. Section 4.2 defines metrics for
assessing simulation accuracy. The experimental data for Ga are presented in Section 4.3, and those for
G1j4  may be found in Section 4.4. The patterns that emerge will be discussed and explained in Chapter 5.

4.1 Cases with accurate trace-driven simulation

The trace-driven results and the nominal results agreed perfectly for 22 workloads. In the remaining 63
workloads, agreement between TDS and nominal results was the exception rather than the rule.

The workloads with accurate TDS were identical in both trace-generation environments, namely:

l workloads with a single PE 0) = 1) and
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l workloads where the application was Ocean or Water.

These workloads illustrate -important properties of ‘IDS which will be discussed in Section 5.1.
However, we exclude them from the data presented in the following sections.

4.2 Error metrics

Our evaluation of TDS accuracy is based on discrepancies (“errors”) between the trace-driven simulation
results and nominal results. (Because the simulations are deterministic, we present data from a single
simulation of each workload in each environment.)

In individual workloads, we quantify the discrepancies as a percentage of the nominal value. More
precisely, given a nominal result, znom, and the corresponding TDS result, zb, we define the error:

ur(2q  = (.T& - I.,,)/.T,, x 100%. if ;7’nofn > 0;
0%. if n’ds = Lrn0n-j  = 0.

.

E IT( n* i exaggerates positive errors, resulting in skewed error distributions. When making statistical
tests, we compensate for this skew by applying a logarithmic transformation to r, obtaining the normalized
error, TWI’(.I~)  = ln( .r*/.7.,,).

For many results, 16 rr( T ) 1 was not si@cantly correlated with the number of PEs. We therefore
tabulate the mean error magnitude for each application:

Since the mean error magnitude obscures the signs of the errors, we append a “+” or a “-” to the
mean magnitude (to indicate the sign of the mean) in cases where the sign is sign&ant. Significance is
determined by means of a one-sided f-test with CI = 0.05. (The t-test assumes normally-distributed data,
so we apply the test to ?rfrr(  .T ) rather than t rr( x).)

When comparing the contributions of different components of a result to its error, we use the magnitude
of the difference between the TDS and nominal values of the component, 1 .T I .e - x ; .M)m / , denoted ) -J ( .I. 1 ) 1.

4.3 Errors with cTi&d

We now present data from simulations of 63 traces generated in the &&al  environment.
This section is divided into subsections dealing with different simulation results. In Section 4.3.1,

we present error data for elapsed tune. In Section 4.3.2, we decompose the elapsed time to distinguish
the parallel and serial stages. In Section 4.3.3, we compare the errors in the elapsed time to errors in the
cycle count. In Section 4.3.4, we decompose the cycle count into instructions and idle cycles. We find
that timing errors (including elapsed time, parallel time, and cycle counts) were primarily due to errors
in the simulation of idle time. We then analyze the three sources of idle time: Section 4.3.5 presents
data on synchronization latency errors, Section 4.3.6 deals with errors in memory reference latencies, and
Section 4.3.7 deals (briefly) with address-translation latency.
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4.3.1 Elapsed time

We start by considering the elapsed time, T, , measured by trace-driven simulation Err( T, ) is particularly
important because it is tied directly to c YY( S ), the error in the overall speedup.  1

The majority of the TF errors were small or insignificant; jc r.r*( T, ) 1 was < 0.2% for 52.% of the
workloads. The largest Tc error was 4.03  % (for Dynamic Barnes, with eight PEs) and the overall
mean )C ~7’( T, )I was only 0.41% (-I- = 63).

It is difficult to account for the T, errors in individual workloads because Y-c is influenced by numerous
minor perturbations of the simulated execution path. To make sense of the data, some organization is
needed. An analysis
any more than could
application basis.

Table 4.1 reports

of variance (ANOVA) test on nc ?*r( TE ) showed that UI‘( TC ) did not depend on p
be accounted for by chance. We therefore organized the data on an application-by-

the mean and extreme /E’ rr( Te ) 1 for each application.

Table 4.1: Elapsed Time Errors with C;ded for 2 to 10 PEs.?
Application mean jc7’7+(T,  )j max /C 1.7-i T, )/
MP3D 0.03 % -0.09%
D y n a m i c  MP3D 0.08%+ $0.13%
Barnes 0.03%- -0.07%
Dynamic Barnes 1.33 %+ -12.03%
Choleskp 0.63% -1.72%
LocusRoute 0.45% i- 1.40%
PThor 0.34%+ +0.54%

We partition the applications into two groups based on the size of (E r~.( T, ) 1. The Zarge-error  soup,
containing Choleskp, Dynamic Barnes, LocusRoute, and PThor, consists of applications with mean
(c I-?-(  T-,)1 > 0.2%. The small-error group, containing MP3D, Barnes, and Dynamic MP3D, consists
of applications with mean /(- I./+(  T, ) : < 0.1%. The ratio between the variances of I/ ( t T, 1 for the two
groups was 190, indicating that the distinction between the two groups was fairly great.

The signs of the T, errors were biased toward the positive side. Whereas c ~r( TE j was positive for 45
workloads, it was negative for only 18. (In other words, trace-driven simulation exaggerated the elapsed
time five times for every two times that it understated it.) Four of the applications showed a significant
bias in n c rr( TC ): three were biased toward positive errors and one (Barnes) was biased toward negative
errors.

4.3.2 Parallel time VS. serial time

To determine the source of the errors in Tt, we decompose Tt into three components:

l the duration of the (serial) initialization stage, T,,

l the duration of the parallel stage, ‘III, T, and

‘Because s = (7, rrz, rlTc, and Tc,tds+=, = Tc edR,J,=l, it follows from the dehition  of CTT(T1  that:

e?T(S)  = ( 100%
eT-r(Tc)  + 100%

- 1) x 100%.
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Figure 4.1: Idealized workload execution profile.

l the duration of the (serial) finalization stage, If.

Figure 4.1 illustrates this decomposition for an an idealized workload.

The proportions of these components depended strongly on both the application and the number
of PEs simulated. In particular, the parallel fraction tended to decrease as the number of PEs grew.
Figure 4.2 (on the next page) shows the decomposition of T, for each workload.

We are primarily interested in the parallel stage, since that is the stage that would dominate in
simulations of full-scale workloads. However, for the problem sixes we used, a significant portion of
each Tf was due to the serial stages. The serial fraction, (T + 7-f i/T,, ranged from 1.6% to 85.7%,
and T, + Tf represented more than half of 7, for 56. % of the workloads. Despite their importance to
the elapsed time, the serial stages do not seriously distort our error measurements; they simply dilute
errors in the parallel stage. To support this claim, we present Table 4.2, which summan‘242s the effect of
trace-driven simulation on the duration of each stage.

Table 4.2: Stage Duration Errors with LTdCal for 2 to 10 PEs. c
Application mean /~r(T,)j  mean (err(T,,,J mf3.n j~dTj)/
MP3D 0% 0.05% 10.1%
Dpnamic MP3D 0 % 0.16%+ 8.83%
Barnes 0% 0.03% 8.12%
Dynamic Barnes 0% 1.39%+ 6.01%-
Choiesky 0% 3.20% 3.81%
LocusRoute 0% 1.34% 0.45%
PThor 0% 1.93%+ 549.%

The initialization stage, which made up the bulk of the serial time, was accurately simulated for all
workloads. The finalization stage, meanwhile, was greatly distorted. 7-f exceeded 0.1% of Tf in only
two applications: Cholesky and LocusRoute.  The finalization stage was too short to noticeably affect
t~( Tt ). In all 63 workloads, the parallel stage contributed more to t rr( T, ) than the finalization stage.
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Figure 4.2: White areas = parallel. Dark gray = initialization. Light gray = finalization.

16



We should therefore expect the T,,, errors to be slightly inflated versions of F TT(  T, ) . This is exactly
what we observe in our data. The signs of the 6 V( T, ) and f rr( T,,,,) agreed in every workload, and
jf~l*( I-,,,, )I always exceeded /rl*~(T;)/. The largest T,,,, error was - 18.9% (for Cholesky with six PEs)
and the overall mean 1~ r~( &, 1‘ ) I was 1.16% (-4. = 63).

The distinction between the two groups of applications is even clearer from the TPnr errors than it
was from 6 r~.( TE ). The ratio of the group variances of II 6 rr( Tp(I  r ) was 1600, as opposed to 190 for
11 c I*?‘( TE ). Each of the four large-error applications had one or more workloads with 16 V( IQ,, T ) / > 2%,
but among the small-error applications Jt TT(  T1,,, ) j never exceeded 0.3%.

The 2-j errors were larger than the T,,, I errors in 41 out of 63 workloads. IErr exceeded 10%
in 16 out of 63 workloads. The 2-f errors in PThor were especially remarkable. The largest Tj error was
4850.%,  for PThor with two processors. This one workload was responsible for most of the err( Tf ) in
PThor. All but one of the remaining PThor workloads had c V( Tf ) = 0.

Negative Tf errors outnumbered positive ones by 30 : 26, and Dynamic Barnes was the only
application which showed significant sign-bias in c T*I*( Tf ).

For the remainder of this report, it is important to remember that errors are reported for complete
workloads, including the initialization stage. For larger workloads, the initialization stage would be
insi,@ficant,  so many of the errors would be larger by a factor of two or so.

4.3.3 Cycle counts

The cycle count, C, is another important simulation result, closely related to T,. We define C to be
the sum (over all PEs) of cycles consumed by the workload. (’ includes idle cycles (latencies due to
synchronization, memory references, and address translation) but not the cycles consumed by inactive PEs
during serial stages of the computation. In to Figure 4.1, T, is the length of the curve along the z-axis,
while C corresponds to the area under the curve. We can approximate the area by Tt + (p - 1 )I&,,., so
c’ is closely related to both T, and T,,, ,,.

Table 4.3 summarizes the effect of trace-driven simulation on C’.

Table 4.3: Cycle Count Errors with Ghd for 2 to 10 PEs.-I
Application mean [c 7.r.l C’)I max ICV( (’ )I
MP3D 0.04% -0.12%
Dynamic MP3D 0.13%+ 10.25%
Barnes 0.03% -0.07%
Dynamic Barnes 1.38%+ +2.11%
Cholesky 10.2%- - 18.2%
LocusRoute 1.19% -3.23%
PThor 1.08%+ +2.39%

Except for the Cholesky workloads, FTT( C’ ) resembled ( V( TpTr ) and, to a lesser extent, ( V( TE ).
There was a mild (T = 0.422) correlation between M~T( c) and ~zerr( T, ) and a slightly stronger one
[7. = 0.4971 between ~/frr(C’)  and mn(Tp,,). In 49 out of 63 workloads, r~(<‘) fell somewhere
between err( T,) and UY( T,,.). The largest C error was -18.2% (for Cholesky with ten PEs) and the
overall mean (HY+( (‘)I was 2.00% (;I. = 63).

The applications fell into the same groups as before, and the ratio of the normalized error variances
was 5200.

The sign of ET~( C ) was biased toward the positive side by a 40 : 23 margin.
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4.3.4 Instructions vs. idle cycles

We now decompose c’ as the sum of the dynamic instruction count, I, and the number of idle cycles,
C - I. This is possible because all instructions execute in a single cycle, and we do not count instructions
that perform synchronization.

Figure 4.3 illustrates this decomposition of C’ for each workload. Idle time represented 42.1% to
75.8% of C in our workloads, and the idle fraction, (C - I)/, grew at a fairly uniformly rate with
respect to the number of PEs. The plot of idle fraction versus ]J was similar for all seven applications.

Table 4.4 presents our measurements of the errors in I and C’ - I.

Table 4.4: Cycle Count Errors with G*d for 2 to 10 PEs.
Application mean }~r(I)j mean /fr?*(C’ - I)) fl
MP3D 0.03% 0.10%
Dynamic MP3D  0.04% 0.24%+
Barnes 0.00% 0.05 %
Dynamic Barnes 0.00% 2.57 %+
C holesky 0.00% 15.1%-
LocusRoute 0.04% 2.33%
PThor 0.20% 1.74%+

I was barely affected by TDS. The largest I error was only ~0.37% (for Cholesky with ten PEs)
and the overall mean /c- r~( I) / was 0.04% (S = 63). Negative I errors outnumbered positive ones by a
32 : 26 margin. Five workloads experienced no distortion of I at all.

c - I usually suffered much greater distortion than I. In all but two workloads, / J( C - I ) / was
> IA(I The largest C’ - I error was -24.3% (for Choieskp with six PEs) and the overall mean
IHT(C’ - I)/ was 3.16% (A- = 63). Positive C’ - I errors outnumbered negative ones by a 41 : 22
margin

The large-error applications can be clearly distinguished from the small-error ones by 1 c U( C’ - I ) /
but not by Icrr( I)l.

We conclude that the discrepancies in C’ were primarily due to errors in the simulation of idle cycles.
Furthermore, noting the interrelationships between T, , TpCI ,., and C’, as well as the correlations between
their errors, we attribute the majority of t r~( TC 1 and 6 W( 7,,,,  ) to errors in C’ - I.

Next we decompose the idle time. In our simulations, idle time is the sum of the latencies from three
types of events: synchronizations, memory references, and address-translation faults.

We define synchronization latenqv,  L,, to be the number of idle PE-cycles spent waiting on syn-
chronization primitives. The applications use a variety of synchronization primitives, including locks,
barriers, and waits. Time spent spinning on shared variables (such as task queues) is also considered to
be synchronization, as are the latencies due to mutual exclusion during fetch-and-increment operations.

Memory reference latency, L,f, is defined to be the number of PE cycles spent waiting for responses
from their caches. Address-translation latency, L TLH, is the total latency due to TLB faults.

Figure 4.4 shows the decomposition of the idle time into L 0, L,f, and LTLB. From the figure, it
appears that memory reference latencies were the most important of the three. In 58 out of 63 workloads,
L,f dominated the idle time, exceeding both L, and L TLB. Sy’Idroni~~on kikincy genedy increased
with the number of PEs, but it accounted for a substantial portion of the idle time only in PThor and
Cholesky. (Translation latencies were relatively small in most workloads; this may reflect the small
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problem sizes used in this study.)
The errors in C - I were not_uniformly  distributed among its three components. L cr made the largest

contribution to c v*( C’ - I) despite its small contribution to (’ - I. Indeed, L cr errors dominated in 53 out
of 63 workloads. (That is, 1-I ( L cI ) 1 exceeded both / -1( L,f ) 1 and 1 A( L TLB ) 1 in those workloads.) Errors
in L,f dominated in eight of the remaining 10 workloads, and errors in L TLB dominated in only two
workloads.

4.3.5 Synchronization latency

Because synchronization latency errors account for so much of the idle time error, .we shall treat them first.
Table 4.5 summarizes the errors in total synchronization latency, Lo, and the number of synchronization
operations, 1.

Table 4.5: Svnchronization Latency Errors with G&al for 2 to 10 PEs.
nAppication mea*/, 7.r(  L,- )I mean Ic?.r(S )j

MP3D 5.71% 0.04%
Dynamic MP3D
Barnes
Dynamic Barnes
Cholesky
LocusRoute
PThor

18.1%+ 0.05%
0.29%- 0.16%

66.5%+ 0.18%+
28.6%- 0%

106.% 0.09%
7.85%+ 0.58%

The L, errors were often substantial, exceeding 5% in 45 out of 63 workloads. The mean error
magnitude was 33.3% (!Y = 63), and the largest error was 1231%  (for LocusRoute, with six PEs).

The signs of the L, errors were predominantly positive, by a 42 : 21 margin.

We see from the table that the number of synchronization operations was hardly affected by TDS. We
conclude that c r r( L n ) arises from inaccurate simulation of the latencies of synchronization operations.

There are substantial differences between the 6 r.r.i L, ) distributions of the different applications.
To understand the differences, we decompose L, into three components. We distinguish two major
components of L cr : mutex latency and delay latency. Mutex  latency, L kL, results from PEs trying to
execute a common critical section; locks, for instance, produce mutex latency. Delay latency is due
to completion waits in the workload; barriers and task-queue spins produce this type of latency. We
subdivide delay latency into two s&components: that due to task queues, L Q, and the remaining delay
latencies, Ld. Figure 4.5 illustrates the breakdown of the synchronization latency in each workload.

The proportions of the synchronization components varied, but delay latencies always dominated.
Task-queue delays were absent from MP3D, Dynamic MP3D, Barnes, and Dynamic Barnes. Only in
Cholesky and LocusRoute did they form a substantial fraction of the synchronization latency.

Table 4.6 presents error data for each component of the synchronization latency.
The observed L, errors were negative in 26 of the 27 workloads that had task-queue latency. (The

sole exception was LocusRoute with six PEs.) The mean lerr( L, )) for those 26 workloads was 54.7%,
and the largest L, error was -97.3% (for LocusRoute with eight PEs). jJ( L,)I dominated the other
components of t ~*r( L cT ) in 13 workloads.

Ld occurs at the end of computational phases, when PEs that exhaust their supply of tasks must wait
for other PEs to finish their outstanding tasks. The smaller L d/C’ is, the better the load balance of the
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Table 4.6: Synchronization Latency Errors with G&al for 2 to 10 PEs..
Application 1 mean jO.Gq)! 1 mean IVT( Ld)l 1 mean IcT~-(  L,, )/
MP3D 0% 5.99% 9.12%
D y n a m i c  MP3D 0 % 21.1%+ 3.35%
Barnes 0% 0.23%+ 26.8%-
Dynamic Barnes  0% 75.6%+ 11.5%-
Cholesky 40.6% - 1560000.%+ 21.4%
LocusRoute 64.9%- 128000.%+ 16.1%
PThor 59.3%- 9.81%+ 9.67%

workload. The largest Ld error was +2.470.000%,  for Cholesky with three PEs. There were a total of
17 workloads with /U-T-( L d)l > 200%, all involving either Cholesky or LocusRoute.

A ( L d ) dominated the other components of CW( L n ) in 60 out of 63 workloads.
The observed err( Ld) values were positive in 57 out of 63 workloads, indicating that load balance in

the trace-driven simulation was poorer than it was in the direct simulation. From Table 4.6 we see that
this tendency was most pronounced in applications that used dynamic scheduling extensively, especially
Cholesky and LocusRoute.  Of the two workloads which had negative 6 r.r( Ld), one involved MP3D
and the other involved Barnes: MP3D is statically scheduled, and Barnes was dynamically-scheduled
only during the first of its ten steps. The dynamic (FCFS)  versions of both applications had larger L .I
errors that were consistently positive.

There was one workload with ( 1‘~.( L d ) = 0, namely Cholesky with six PEs.

The largest L, error was +52.6%,  and the mean Ifrr( L,,)l was 14.0% (-I- = 63). Negative L,,
errors outnumbered positive ones, by a 41 : 22 margin, indicating that trace-driven simulation tends to
underestimate mutex wait times.

The overall E ~r( L, ) was typically determined by the balance between negative f;_?*l.(  L y I and positive
6 TT( L d I. L i errors dominated F 1%~ L ,- I in only eight of the 63 workloads. Those eight workloads all
involved either Barnes or MP3D.

Next we examine the errors in memory reference latency and other memory statistics.

4.3.6 Memory reference latency

We have already seen that the memory reference latency, L,f, dominated C - I, yet the errors in L,f
did not dominate t~( C’ - I ) . This occurred because er T( L ,J was relatively small in most workloads.
The largest L,f error was only -1.99% (for PThor with 10 PEs) and the mean j~rr( L,f)l was 0.27%
(-I- = 63).

The large-error applications had L,f errors that were distinctly larger than those of the other appli-
cations; the ratio between the variances of nerr( L,f) for the two groups was 130. Table 4.7 tabulates
mean error magnitudes for L,f and the count of total memory references, Red.

Trace-driven simulation gave a highly-accurate measurements of Re.f in all workloads; the largest
error was only +0.38%  (for PThor with seven PEs). The seven largest REP errors were all due to PThor,
making this application distinctive.

By comparing crr(R~.f) to rrT.( L,f), we can determine to what extent cTr( L,f) was due to errors
in the average reference latency. Among large-error applications, 6 TT( L,f ) clearly exceeded E TT(  Re.f ),
indicating that c TT*( L rtf  ) was due primarily to errors in the average reference latency. For the remaining
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Table 4.7: Memory Reference Errors with &al for 2 to 10 PEs.
n Application ) mean Icrr(L,r)i I mean lfrr(Rrf)l 1
L

&3D 0.05% --- - ’ ’0.03%
Dynamic MP3D 0.05%- 0.04%
Barnes 0.04% 0.00%
Dynamic Barnes 0.24%- 0.00%
Choleskp 0.47% 0.00%
LocusRoute 0.73%- 0.03%
PThor 0.32% 0.20%

applications, cf V( L,f ) was smaller; for these applications the errors in Reef were comparable in size to
the errors in the average reference latency.

We decompose Rcf into instruction fetches, I, data reads, R, and writes, II-. The relative proportions
of these operations were fairly uniform across all 63 workloads, though each application had a slightly
different mix. Instructions fetches made up 74.2% to 77.9% of the references, data reads 14.8% to 19.2%,
and writes 6.0% to 9.3%. We also distinguish the shared writes, &h, as a portion of II-. Shared writes
represented 35.3% to 78.8% of the total number of writes.

MPSD 0.03%
Dynamic MP3D 0.04%
Barnes 0.00%
Dynamic Barnes 0.00%
Choleskp 0.00%
LocusRoute 0.04%

PThor , 0.2@%

0.03 % 0.03 % 0.03%-
0.04% 0.03 % 0.03 %
0.00% 0.00% 0.00%
0.00% 0.00% 0.00%
0.00% 0% 0%
0.04% 0.03% 0.06%
0.23% 0.14% 0.19%

Table 4.8 shows that the errors in the components of Rc.f were small. However, Re.f is not very
useful for analyzing tr~.( L,fi. The majority of the reads and instruction fetches are satisfied by the
caches, so they do not contribute any latency to L,f. Reference latency is predominantly due primarily
to non-local references, that is, references not satisfied by the local cache. (Local references can stall the
PE, but this is a very minor effect.)

The non-local references, F, may be decomposed in various ways. One decomposition partitions
them into instruction misses, I,, . data read misses, Rn,, and writes, I I-; L,f may then be similarly
partitioned into L lm, LR”:, and L\l.. An alternative decomposition divides L =f into cache latency, LL ,
and bus latency, L 6. Table 4.9 presents both decompositions. Columm 2 through 4 tabulate I ,,,?, R,i , and
T,‘I’ as fractions of the total number of non-local references, F. (For the simulated memory system used
in this study, each non-local reference occupies the bus for exactly two cycles. The distribution of the
latencies are similar for both types of non-local references, so I, /F is roughly equivalent to L 1m / L,f.)
Columns 5 and 6 show the decomposition of L rtf into L c and Lb.

Most instruction fetches and reads were satisfied by the caches, so the majority nonlocal accesses
in each workload were writes. Memory latency was divided fairly evenly between L ,. and Li,, with I,
dominating L,f in 36 out of 63 workloads.

Table 4.10 summarizes the observed TDS errors in F and its components.
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Table 4.9: Memory Reference Latency Decompositions for 2 to 10 PEs.
n ADDkatiOn 1 mean I,> /F mean Rni/F mean M-/FL

&3D 5.0%
,.. ,

14.7% 80.3 %
Dynamic MP3D 4.6% 14.7% 80.7%
Barnes 10.3% 10.0% 79.7%
Dynamic Barnes 7.3% 7.5% 85.2%
Cholesky 5.4% 17.3% 77.3%
LocusRoute 17.7% 13.1% 69.3%
PThor 20.7% 23.8% 55.5%

Table 4.10: Non-Local Reference Errors with $&al for 2 to 10 PEs.l-
Application mean It?~j F)I mean /UT( &.,)I mean ~UT( R,,)j mean IUT( 1Y)/
MP3D 0.03 % 0.43 %+ 0.14% 0.03 %
Dynamic MF3D  0.04% 0.40% 0.04% 0.03%
Barnes 0.03% 0.10% 0.21% 0.00%
Dynamic Barnes 0.14%+ 1.34%+ 0.72%+ 0.00%
Cholesky
LocusRoute
PThor

0.08% 0.84%+ 0.43% 0%
0.09% 0.29% 0.99% 0.03%
0.24% 0.45% 0.31%+ 0.14%

E r.7.i F ) was small, closely resembling c rri I?c.f ). The component errors were larger, but the largest
I, and R,? errors were only +2.79%  and +1.61%,  respectively.

The errors in F were concentrated in I,,, and Rni. Though Ii- dominated over I,, and R,, in all
workloads, 1( H-) dominated over -1( I,, ) and J( R,: ) in only 11 workloads. The fact that I,, and R,
generally had larger errors than I and R suggests that much of the error in I,, and R,, was due to errors
in the miss rates.

Table 4.11 summarizes the observed errors in L c and L,., .

Table 4.11: Memorv  Reference Latency Errors with Gihl for 2 to 10 PEs.

Dynamic Barnes
Cholesky
LocusRoute
PThor

0.03 %
0.04%
0.01%
0.12%-
0.49%
0.18%-
0.27%

_--_
mean !f?.r( LJ
0.07%
0.06%
0.06%
0.31%-
0.45%
1.19%-
0.41 %

The errors in Lt, tended to be larger than those in L,; A(&,) dominated over A(L,) in 44 out of 63
workloads. The largest L, error was -0.91% (for Cholesky with eight PEs) and the largest Lb error was
-3.06% (for LocusRoute with 10 PEs). The four largest Lb errors were all in LocusRoute; bus latency
errors seem to be the primary cause of the large L,f errors in LocusRoute.

We now examine some statistics that are commonly used to parameterize memory system behavior.
Cache effectiveness is measured in terms of per-reference miss rates. We tabulate this statistic for both
for instruction fetches, 177  1 = 1, /I, and data reads, 1?1R = R,/ R. The average number of cache
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invalidations per shared write, in ?‘, reflects the degree of data sharing, and the fractional bus occupancy,
.fb-y, reflects the average level of bus traffic. Table 4.12 summarizes the observed TDS errors in these
results.

Table 4.12: Memory Statistic Errors with &al for 2 to 10 PEs.-I r
Application mean ~c7’~‘(?11~)~  mean /frr(?nR)l mean IE~.I’( jl,?*)j mfZ2i.n  ic)‘l‘(.fbwy)l
MP3D 0.44%+ 0.13% 0.82% 0.05%
Dynamic MP3D 0.41% 0.06% 0.48% 0.08%-
Barnes 0.10% 0.21% 0.34% 0.02%+
Dynamic Barnes 1.34%+ 0.71%+ 1.41%+ 1.18%-
Cholesky 0.84%+ 0.43 % 4.91% 0.70%
LocusRoute 0.30% 1.01% 8.22%- 0.47%
PThor 0.26% 0.25 %+ 3.25% 0.24%-4 J

Our Study Of I,,7 and RF,, suggested that errors were occurring in the miss rates. The table shows
that this was indeed the case, though the errors were generally too small to be of practical concern.
The largest 117 J error was only $2.78%, and the largest mR  error was only +1.67%. Positive errors
outnumbered negative ones for both miss rates.

The invalidation ratio exhibited large errors. ill 1’ errors as large as -20.9% were measured for
LocusRoute.  We known that TDS did not significantly distort 1 TTsh, so the i?? 1’ errors must be due
to errors in the number of invalidations. Invalidations are caused by communication between PEs and
false sharing between caches. By simulating LocusRoute with one-word cache lines, we were able to
eliminate false-sharing invalidations. The large i I) 1’ errors persisted, indicating that they are due to errors
in communication misses, not false sharing misses.

4.3.7 Address translation (TLB) latency

The third and final source of latency to consider is address translation. We denote the total latency due
to TLB faults by LTL-. The latency of a TLB fault was fixed at at 50 cycles in our simulator, so L TLB
is simply 50 times the number of T’LB faults. Errors in I. TLB were due entirely to errors in the number
of TLB faults, not the average fault latencies.

Table 4.13 summarizes the TLB behavior of the applications and the errors due to trace-driven
simulation.

Table 4.13: TLB Errors with G&d for 2 to 10 PEs.
Application mCT%JII LTLBf  c’ m e a n  (fIT( LT~,B)/  m e a n  If7‘7’(LTL~.j)j m e a n  /e?*dLTLB.d)/

MP3D 6.56% 0.40% 0.77% 0.40%
Dynamic MP3D 6.61% 0.41% 0.96% 0.37%
Barnes 0.07% 2.87% 4.85% 3.46%
Dynamic Barnes 0.05 % 4.45% 7.27% 4.39%
Cholesky 0.78% 0.64% 2.45% 0.55%
LocusRoute 6.50% 0.58%+ 0.81%+ 0.55%+
PThor 14.8% 0.80% 0.90% 0.81%

The large TLB penalty for PThor reflects the large working-set of that application.

The mean (t~( LTLB)[ was 1.48%,  and the largest LTLB error was -9.57%. In the table, we
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distinguish TLB faults on instructions (L TLB.()  from TLB faults on data &-LB.& The instruction TLB
faults found to show somewhat larger errors.

Only Barnes and Dynamic Barnes had any workloads with ICT~( LTLB )/ > 5%. For these applica-
tions, the impact of TLB latency errors on t w ( C - I) was mitigated by the low fault rates.

4.4 Errors with C;,p

We have observed sizable TDS errors for a number of important simulation results. However, the
trace-generation environment used, G&d, was quite different from the target environment. To determine
whether the magnitude of the errors reflects the vast differences between g~ and 7, we ran a second set
of experiments with 1;ri4, which was almost identical to the target environment. A total of 83 workloads
were simulated using G1 14.  (Due to limited simulation resources, we were unable to simulate Cholesky
with more than eight PEs.)

.

As noted in Section 4.1, all uniprocessor workloads were accurately simulated, as were workloads
that used the applications Ocean or Water. The remaining 61 workloads behaved generally like their
iTi&d counterparts except that the errors were slightly larger.

The following sections present error statistics for the simulations of the G 1/4  traces and compare them
with the corresponding statistics for the G&d traces.

4.4.1 Elapsed time

Table 4.14 presents error data for Tt (and its components) for simulations of L? 114 traces. (Compare with
Tables 4.1 and 4.2.)

Table 4.14: Elapsed Time Errors with cj 114 for 2 to 10 PEs.
Application mean lcrrfT,)l  m a x  l(r*r(T, )I mean lfTr(T,,: j! m e a n  lr7*dTfj’

MP3D 0.05 % +o. 14% 0.10% 9.89%
D y n a m i c  MP3D  0.12%+ +0.14% 0.23 %+ 5.19%+
Barnes 0.03% -0.09% 0.03% 8.12%
Dynamic Barnes 0.69%+ $1.07% 0.72%+ 4.37%-
Cholesky 2.74% t5.63% 6.79% 0.83%
LocusRoute 0.44%- -1.58% 1.22%- 30.9%+
PThor 0.40%+ +0.59% 2.22%+ 21.9%

As with the G&al traces, the majority of the timing errors were small or insignificant. T, errors
increased slightly on average; for 35 out of 61 workloads, )e~( T, )I was larger in Gt,4  than it was in
G&al. The overall mean error increased from 0.40% (~1’ = 61) to 0.57%, the largest TE error increased
from $2.03%  to -t-5.63%,  and the fraction of workloads with Icv(T~)J  < 0.2% increased from 52% to
54%.

The TE errors continued to be biased toward the positive side in G1/4:  45 out of 61 workloads had
positive c TT( T, ).

As before, we decomposed the elapsed time into parallel and serial components. Once again, errors in
T,,, dominated c w*( T, ) for most workloads. T; continued to be undistorted, and errors in Tf dominated
tw( Tt ) in only six workloads, all of which involved LocusRoute. The Tl,aT  errors grew in 34 out of 61
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workloads, and the mean )uI’(T,,,,  )I grew from 1.13% (-1‘ = 61) to 1.45%. The largest err( T,,,) fell,
however, from - 18.9% to $13.9%.

The number of workloads with /in+( 7-j ) / > 10% grew from 16 to 22. The overall mean 1 c IT( Tj ) 1
fell, however, from 86.5% (-I- = 61) to 12.0%. T’he decline in the mean was due largely to the two
PThor workloads that had huge errors when (;?u was used. As before, the majority of the PThor
workloads had c I‘]‘( Pi I = 0.

The ranking of the applications by mean j f~ 7’ r( T,, T ) 1 was nearly the same with the G l/4 traces as it
was with the <Tided ones, suggesting that application characteristics outweigh trace-generation differences
in determining the size of TDS timing errors. The large-error applications continued to be distinguished
by higher EV( T, ) and E V( I&. ) than the small-error applications. The ratio between the variances of
11 c V( TE ) for the two groups of applications rose from 190 to 330, while the ratio of the variances of
116 W( T,,,. ) fell, from 1600 to 690.

4.4.2 Cycle counts

Table 4.15 presents error data for c’ and its components from simulations using the G 1/4  traces. (Compare
with Tables 4.3 and 4.4.)

Table 4.15: Cycle Count Errors with Gt ,4 for 2 to 10 PEs.
Application mean /( r.ri(‘)j  max it v((‘); mean ic~(I)l mean jc/+r.(C’ - I)/
MP3D 0.08% -i-0.26% 0.03%- 0.13%
D y n a m i c  MP3D 0.20%+ +0.27% 0.03% 0.39%+
Barnes 0.03 % -0.09% 0.00% 0.06%
Dynamic Barnes 0.72%+ $l.ll% 0.00% l-34%+
Choleskg 4.53% + 10.0% 0% 7.10%
LocusRoute 0.84%- -2.97% 0.02% 1.64%-
PThor 1.24%+ +1.78% 0.20%+ 2.17%+

E I’T i i’ i continued to resemble c I* I.( T, ) and F W( Tpcl  T ). Its magnitude fell between theirs in 54 out
of 61 workloads. The mean /cr.liC’)i decreased overall, from from 1.55% (-I- = 61) to 0.98%. This
decline was largely due to a decrease in Cholesky’s c w( C ), yet Cholesky continued to exhibit the largest
cycle-count errors of any application.

The applications fell into the same groups as before, but the ratio of the variances of n E T-T{  c’ ) fell
from 5200 to only 460. Err( C’ ) was biased to the positive side even more strongly than before, this
time by a 43 : 18 margin.

We again decomposed of c’ into I and C - I. As before, I was hardly distorted by TDS. The errors
in the idle cycles, C’ - I, accounted for most of f W( c’). The largest l~r(I)l climbed from +0.37% to
-O&I%,  while the largest 1~ TT( (I’ - I)1 fell from -24.3% to +14.4%.  The overall mean of IwT(I)I
remained at 0.04% (-I- = 61), whereas that of IETI’(<‘- I)1 fell from 2.56% (_1- = 61) to 1.66%. Positive
C’ - I errors outnumbered negative ones by a 43 : 18 margin.

As before, we attribute much of the error in TE and &,,. to error in the idle time, C’ - I. Decomposing
c‘ - I as before, we find a familiar pattern: most of the idle time comes from memory reference latency,
but most of the error in the idle time comes from synchronization latency. In G 1/4,  synchronization
latency errors dominated c r I+( c’ - I ) in 55 out of 61 workloads, reference latency errors dominated in
five workloads, and translation latency errors dominated in only in one workload.
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4.4.3 Synchronization latency

Table 4.16 summarizes the synchronization latency errors for the Gt/d traces. (Compare with Tables 4.5
and 4.6.)

Table 4.16: Synchronization Latency Errors with &/4 for 2 to 10 PEs.
Application mean if~(L,)j mean IFW(L(J  mean ~~7~Uf)~ mean )(I-rl’(L.)j
MP3D 5.95%+ 0% 6.14%+ 12.2%
Dynamic MP3D 39.1%+ 0% 45.9%+ 3.87%
Barnes 0.35% 0% 0.25% 22.2%-
Dynamic Barnes 36.9%+ 0% 42.8%+ 10.9%-
Cholesky 15.1% 15.6% 98900.%+ 30.6%-
LocusRoute 57.3% 59.6% 1890.% 22.9%
PThor 10.9%+ 12.8%+ 10.9%+ 9.22%+

E/.ra( L,) remained substantial in G1/4,  exceeding 5% in 45 out of 61 workloads. The overall mean
err-( L,) fell from 33.2% (:I- = 61) to 24.0%. The Largest L, error fell from +231% to +l lo.%.

The L, error signs went from 67% positive to 77% positive. The sign changes in Cholesky were
particularly notable; Cholesky went from 100% negative t W( L, ) to 71% positive f W( L fl ).

Decomposing t or! L cr J as before, A( L ‘I ) dominated in 16 workloads, A( L d ) dominated in 39 work-
loads, and -1( L p ) in the remaining six workloads. This decomposition is similar to the decomposition of
c [.I*( L 0 1 for Gikd, except that the impact of L y errors increased at the expense of errors in L, and L p.

EwC 1) for (; 1/4 (not shown in the table) was similar in size to the S errors for <Tided. The largest
1 error fell slightly, from - 1.64% to only - 1.17%. As with G aal, the L, errors were clearly due to
errors in the average synchronization latencies rather than errors in the number of synchronizations.

The L, errors changed dramatically in the new trace-generation environment. G1,4 measured L, more
accurately than &&&al  did, and the signs of c U( L y ) shifted, from being mostly negative in (;3ikd to being
mostly positive in G 1/4. The number of positive L g errors jumped from one to 18, while negative errors
fell from 24 to seven.

The L $ errors in G1 i4 were similar to those seen in G&al. The largest Ld error was 306.000%.
The most important change from Gikd was that more workloads had f W( L (1) = 0. Where L&d had
cm(L;j = 0 for omy one workload, G1,4  had c7’1’(Ld) = 0 for nine workloads: seven workloads
of LocusRoute and two of Cholesky. As a result, only six workloads (all involving Cholesky or
LocusRoute) had /c V( L,J) / > 2OO%,  and jc W( Ld) i decreased in 35 out of 61 workloads.

As before, the Ld errors were mostly positive, but positive errors outnumbered negative ones by a
46 : 6 margin, down from the 60 : 2 margin observed for the <&al traces.

The L, errors for G1j4 were similar to those for G&d, but were slightly more evenly balanced between
positive and negative errors. The largest L, error was +83.8%  (as opposed to +52.6% in Sided) and the
mean l~r(L,)l rose from 13.7% (:I- = 61) to 15.5%. Negative errors continued to outnumber positive
ones, but by a narrower margin, 35 : 26 instead of 41 : 22.

Next we examine the errors in memory reference latency and other memory statistics.

29



4.4.4 Memory reference latency

Table 4.17 summarizes the errors in reference latency and reference counts for &j4. (Comtxue with
Tables 4.7 and 4.8.)

Table 4.17: Memory Reference Errors with G1/4 for 2 to 10 PEs.
Application mean /t rd L&j
MP3D 0.05 %
D y n a m i c  MP3D 0.09%-
Barnes 0.02%
Dynamic Barnes 0.36%-
C holesky 0.40%
LocusRoute 0.22%
PThor 0.46%-,

mean jc~~riR~.f)l
0.02%-
0.03%
0.00%
0.00%
0%
0.02%
0.20%-

mean It 7v.l I?)1 mean lf~~‘( ll-,j< )I
0.02%- 0.02%-
0.03% 0.04%
0.00% 0.00%
0.00% 0.00%
0% 0%
0.03% 0.05%
0.24%- 0.19%- c

The L,f errors were similar to those 0f LIP&& For one thing, the errors were small; the largest L,f
error fell from - 1.99% to $1.35%, and the mean (UY( L=f)l  fell from 0.25% (S = 61) to 0.22%. As
with the Ghd traces, the large-error applications suffered the largest L,f errors, but the ratio between
the 17~ r~*( L,f 1 variances of the two groups of applications fell from 130 to 54.

As with the cYi&d traces, f r.r( Rc.f ) was quite small; the largest Rt;f  error rose slightly, from -i-0.38%
to - 0.44%. The components of K i,i had similarly small errors.

As before (for the large-error applications at least) f I*I*( L,f I was due mostly to errors in the average
reference latency rather than errors in the number of references. PThor stood out once again for its large
Rcf errors.

Table 4.18 summarizes the observed TDS errors in F and its components. (Compare with Table 4.10.)

Table 4.18: Non-Local Reference Errors with &;1/4 for 2 to 10 PEs.
Application ) mean ;( r.r.( F )I mean Jf~(l,~, )I mean lfT.ri R,,, ): mean lFrr( IV)]
MP3D / 0.03% 0.38% 0.09%- 0.02%-
Dynamic MP3D 1 0.04% 0.43% 0.08% 0.04%
Barnes 0.02% 0.09% 0.16% 0.00%
Dynamic Barnes 0.08 % 0.64%- 0.45 % 0.00%
C holesky 0.06% 0.39% 0.28% 0%
LocusRoute 0.11% 0.13% 0.76% 0.02%
PThor 0.19%- 0.49% - 0.24%- 0.14%-

Once again, t W( F ) was similar in magnitude to c w( Rcf ), while F W( I nl ) and f W( R nl ) were larger,
and VT( IV) was smaller. The largest in I, and R, errors were -1.37% and +1.61%,  respectively.

Table 4.19 summarizes the observed errors in L. and Ll,. (Compare with Table 4.11.)
Lt, errors dominated c V( L l-t.f \ more strongly than they did in &al: Lb dominated over L c in 47 out

of 61 workloads. The largest L i error rose from -0.91% to + 1.62% and the largest Lb error fell from
-3.06% to - 1.26%. The mean 6 w( Li, ) for LocusRoute declined in G1i4, and LocusRoute no longer
exhibited the largest Lt, errors.

Table 4.20 summarizes the observed errors in the miss rates, invalidation rates, and bus occupancy.
(Compare with Table 4.12.)
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Table 4.19: Memory Reference Latency Errors with G1,4 for 2 to 10 PEs.*
Application m e a n  lcr7‘fL  )I mean lfrr(  L, 1:
MP3D 0.04%- 0.07 %
D y n a m i c  MP3D 0.06%- O.ll%-
Barnes 0.01% 0.04%
Dynamic Barnes 0.15%- 0.49%-
C holesky 0.43% 0.34%
LocusRoute 0.12% 0.41%
PThor 0.34%- 0.59%- u

Table 4.20: Memory Statistic Errors with G1i4 for 2 to 10 PEs.rT c
Application mean crrli 17~1)I mean l~7‘r(n1~)l  mean jvr(inv)I  mean }fvi.fbusY)l
MP3D 0.37 %+ 0.08%+ 0.27% 0.04%
Dynamic MP3D 0.42% 0.07% 0.36% 0.13%-
Barnes 0.09% 0.16% 0.20% 0.02%
Dynamic Barnes OH%+ 0.45 % 1.15%+ 0.75%-
Choleskp O-39%+ 0.28%+ 5.73% 2.68%-
LocusRoute 0.26% 0.74% 6.24% 0.45%
PThor 0.31% 0.18%+ 2.03% 0.56%-I-

The miss rate errors were once again too small to be of concern to most studies. The largest V/I
error declined from -2.78% to - 1.370/c, and the largest n?~ error declined from + 1.67% to + 1.61%.

Negative ~1 errors outnumbered positive ones by a 39 : 22 margin, and negative 1)) R errors outnum-
bered positive ones by 35 : 26. (Before, positive errors dominated in both miss rates.)

Once again, invalidation rates exhibited larger errors. E r1.t irl?’ I magnitudes above 14% were observed
in both Choleskp and LocusRoute. As with the GT,kd traces, the in?* errors reflect errors in the total
number of invalidations.

4.4.5 Address translation (TLB) latency

Table 4.21 summarizes the TLB behavior of the applications and the errors caused by trace-driven
simulation. (Compare with Table 4.13.)

Table 4.21: TLB Latency Errors with G1j4  for 2 to 10 PEs.
Application mean /c9’T(  LTLB)j mean i~~~Lh~.,)/ ma ~~(LTLB.~)I
MP3D 0.40% 1.28% 0.34%
Dynamic MF3D 0.28% 0.83% 0.29%
Barnes 4.61% 5.83% 4.24%
Dynamic Barnes 3.78% 9.34% 3.90%
Cholesky 1.59% 2.83% 1.53%
LocusRoute 0.83% 0.78% 0.89%
PThor 0.48%- 0.55%- 0.47%-L,

As before, only Barnes and Dynamic Barnes had workloads with lfrr( LTLB)~ > 5%. The impact
of TLB latency on cc_ TT(  C’ - I) was again mitigated by the low fault rates in these applications. Once
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again, the TLB fault rates for instruction references had a larger errors than those for data references.
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Chapter 5

Discussion

This chapter discusses
for them.

5.1 Cases with accurate trace-driven simulation

the patterns in the experimental results and, where possible, provides explanations

We have argued in Section 1.3 that accurate trace-driven simulation across multiple environments is
possible only with timing-independent trace-sets. The experimental data support this claim: all cases
with timing-independent trace-sets were simulated accurately, and all cases with inaccurate simulation
had timing-dependent trace-sets.

As noted in Section 4.1, all uniprocessor cases were accurately simulated The uniprocessor trace-sets
were timing-independent because none of the workloads generated addresses that were dependent on a
clock reading. (In uniprocessor simulations there is only a single thread of execution, so the clock is the
only source of timing dependencies.)

Additionally, the Ocean and Water workloads were accurately simulated in all cases. The trace-
sets from these workloads were timing-independent because not only did these workloads lack clock-
dependencies, but their inter-process timing dependencies were confined to simple synchronization con-
structs such as locks and barriers. The synchronization constructs were abstracted, leaving no timing
dependencies in the trace-sets.

Aside from the two groups described above, every case was, to some degree, inaccurately simulated.
Each inaccurately-simulated case had timing-dependencies in its trace-set caused by inter-process timing
dependencies. Dynamic scheduling was a major source of timing dependencies. Except for MP3D,  all the
workloads that were inaccurately simulated used FCFS scheduling to some extent. In FCFS-scheduled
workloads, task assignments depend on memory system timings. Such dependencies are inevitably
reflected in the trace-set.

Both of the accurately-simulated workloads (Ocean and Water) used static scheduling. The only
statically-scheduled workload that was inaccurately simulated was MP3D.

5.2 The MP3D workload

The timing-dependencies in MP3D were not due to FCFS scheduling; rather, they were due to races in
its collision-pairing algorithm. (See [l l] for an overview of the MP3D algorithm.) In MF’3D,  collision
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pairings for each space cell are determined by the order in which the particles occupying the cell are
updated. Different particles occupying the same cell may be updated by different PEs, and memory
reference delays can alter this order. Thus, the pairings depend on the environment. 1

The indeterminacy of the MP3D collision pairings does not substantially affect the accuracy of MP3D
itself, since its algorithm seeks to approximate random collision pairing. While pairing changes alter the
trajectories of individual molecules, they have no statistically-significant effects on the macro-scale results
of MP3D. However, changes in the collision pairings perturb the execution path, making the trace-set
timing-dependent. The trace-sets are therefore invalid for simulations of environments with different
memory system timings.

Other workloads, notably Dynamic MP3D and LocusRoute, are known to have similar races. With-
out rewriting the workloads, however, the effects of those races on simulation accuracy are impossible
to isolate from the effects of dynamic scheduling.

5.3 Results that were accurately simulated

T,, the initialization time, was the only result that was accurately simulated for all workloads. During
initialization, each workload has only a single thread of execution, so, as in a uniprocessor workload,
there are no timing-dependencies.

5.4 Results with large errors

The observed errors in the small-error workloads (MP3D,  Dynamic MP3D, and Barnes) were on the
order of 0.1‘30 for most of the results studied. Such errors are negligible for most purposes.

The errors were small because the the perturbations caused by individual timing-dependencies in a
workload are very slight. Such perturbations affect the results substantially only when their influence
is biased (toward positive or negative errors) or when the number of events reflected in the result is
very small. Over large numbers of events, the total effect of these perturbations grows slowly unless the
individual effects are biased. Execution path perturbations, such as those due to collision-pairing races
and FCFS-scheduhng , have no systematic effect on most simulation results.

A few results (such as synchronization latencies, TLB latencies, and Tf) were either systematically
influenced by execution path perturbations or else were derived from relatively small numbers of events.
For these results, large errors were observed. even for small-error workloads.

We will now analyze the errors exhibited by these results. First we will analyze the errors in the
components of L fl, namely: L d, L, , and L [, . Then we will discuss the effects these errors had on Lo
itself. Then we will discuss the errors in TLB latency and Tf.

54 .1 Errors in L ,j

The largest errors observed for any result were for the non-spin delay latency, L d. Errors of over
2.000. ooO% were observed. The L d errors were overwhelmingly positive.

Ld measures the time spent at the barriers and completion waits that mark the end of computational
steps. L,i is thus a good indicator of the load balance in a workload. The large errors in L d indicate

‘The version of MP3D used in [l l] had additional races, caused by simultaneous updates of the space array by different
PEs. For this study, the update races were eliminated by locking space array cells during updates.
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that trace-driven simulation distorts the load balance of the workload. Specifically, positive L d errors
indicate that the load balance, as measured by trace-driven simulation, was poorer than it was in the
direct simulation.

Large positive errors were observed in FCFS-scheduled workloads because perturbations of the exe-
cution path tend to disrupt the load balance. The goal of FCFS scheduling is to optimize load balance, so
that trace-sets of workloads with FCFS scheduling tend to reflect schedules that have good load-balance
for the trace-generation environment. When the simulator applies the memory latencies of the target envi-
ronment to a trace-set, the execution times of individual tasks change. However, the scheduling decisions
made during trace-generation are hard-coded into the trace-set. (In effect, trace-driven simulation forces
the workload to use a static schedule.) Unless there is a high correlation between task execution times in
the trace-generation environment and the target environment, the target environment will appear to have
poor load balance. In direct simulation, tasks are dynamically load balanced for the target environment,
so less time is spent at barriers and Ld is smaller.

The largest Ld errors occurred in workloads where FCFS scheduling gave good load balance, that
is, where L&’ was small. The two applications with the best load balance, Cholesky and LocusRoute
accounted for all 21 cases with j ( I. I*[ T, ) j > 160%.

Ten simulations had c V( L ,I ) = 0, even though there were errors in other latencies. These ten
simulations involved either Cholesky or LocusRoute, which used barriers only to synchronize the start
of the parallel phase. The barrier waits in these applications were very short, so there was a reasonable
chance of having no execution path differences before the barrier.

5.4.2 Errors in L,

Three of the workloads used task-queues. Errors of up to 117% were observed in queueing latencies
of these workloads. The trace-sets generated in the G&d environment produced L, errors that were
predominantly negative, while the G 1,4 traces produced L, errors that were mostly positive.

The large errors in L, were due to the fact that shared-memory spins, used to implement queueing
operations, were not resimulated. The trace-driven simulator set the duration of each spin in the target
environment to be the number of cycles the spin lasted in the trace-generation environment. This technique
provides a reasonable approximation for spin latencies only when the two environments execute non-spin
instructions at the same average rate. If the trace-generation environment executes instructions more
slowly than the target environment, the simulated spins tend to complete too late (relative to events
occurring on other PEs in the target environment) and positive L 4 errors result. Similarly, if the trace-
generation environment executes more quickly than the target environment, negative L (1 errors will result.

In the target environment, the average CPI (exclusive of synchronization) ranged from 1.72 to 3.38,
depending on the workload. The CPIs in &al were exactly 1, due to the idealized memory system, so
large negative errors were observed in L, with the Sikd traces. In G1,4  the average CPIs were higher
than the target environment, due to the smaller caches. Positive L, errors were observed with most of
the &/J traces, except for LocusRoute. The negative errors for these traces may be due to a drop in the
CPIs of active PEs when many PEs are spinning.

Is there an approach that would simulate task-queue latencies more accurately?
The best solution would be to abstract the task-queue operations out of the trace-sets. This is difficult

to do because task-queue operations are complex. In PThor for instance, every task has a preferred PE,
but idle PEs may “steal” tasks from the queues of busy PEs. The code to de-queue a task is spread over
180 lines of C code. Even if task-queue operations were abstracted from the trace-sets, their side-effects
would introduce complex timing-dependencies, so that accurate simulation would not be achieved.
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Another approach would be to multiply the length of each spin by the average CPI ratio, CPI~/CPI?;-.
However, the CPI of a workload is not a constant; it varies substantially during execution. It is also not
clear that the CPI ratio can be accurately estimated without simulating the workload in both evironments.

A third approach would be to treat the spins as normal memory references, rather than as synchro-
nization. This has accuracy problems similar to those of the approach taken in this study, since the CPI
of a spinning PE is not the same as that of one that is doing useful work. (The working set of a spinning
PE is only a few addresses, so for long spins it is likely to have a miss rate very close to zero.)

5.4.3 Errors in L,

L, basically measures lock contention. Lock contention was rare in the workloads we studied; L c1 never
exceeded 0.67% of C. Errors as large as 83.8% were observed in L,, and the errors were more often
negative than positive, especially in Barnes and Dynamic Barnes.

The large L, errors are undoubtedly due to the fact that most of the workloads had few lock operations:
one complete nm of LocusRoute had only 5570 such operations. Most of the individual lock latencies
are zero, so an error in the latency of an individual lock operation could noticeably affect L p. However,
this does not explain the sign-bias in 6 r.7.l L /, 1. There are two reasons why L L1 might tend to be smaller in
the trace-driven simulations: either the locks were held for a smaller fraction of the total execution time
or lock accesses by different PEs were less correlated in time. We do not know the relative importance
of these two sources of error.

5.4.4 Errors in L,

The errors in L, were a composite of the errors in L,I, L ‘I, and L,, . In Choleskp  and LocusRoute,
the majority of L, was due to queueing. L, errors dominated in Cholesky and in the G1j4 simulations
of LocusRoute,  so the sign-biases of f ~.ri L, i and c I‘I’~ L y 1 were the same for these simulations. In all
applications except Choieskp and LocusRoute, the majority of L, was due to non-queue delays. Lcl
errors dominated in simulations of all these applications except Barnes, producing positive L cr errors.
The L! errors dominated in Barnes, due to high lock contention in the application; as a result, Barnes
had small, negative L, errors.

5.4.5 Errors in TLB latencies

Since TLB faults are very infrequent, their errors were computed based on small numbers of events -
less than lo6 faults per application. The only simulations with significant sign-bias were LocusRoute
(in I;sd)  and PThor (in &&I~),  and the errors in these simulations averaged less than 1%. Because
instructions have relatively low TLB fault rates compared to data references, the LTLB.~  errors were
based on an even smaller number of events, and had somewhat larger errors. We expect that the LTLB
errors in the remaining simulations would decline substantially if longer workloads were simulated.

5.4.6 Errors in Tf

While the finalization stage, like the initialization stage, has only a single thread of execution, it was not
accurately simulated for most workloads. The reason for this is that the simulator is not stateless. The
state of the simulator at the start of the initialization stage is the same for all simulations, but at the start
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of the finalization state, the trace-driven simulator is in a state the reflects any errors that occurred during
the parallel stage.

The relative errors in Tj were largest in the applications where 1j itself was small, so that the errors
were derived from small samples of events. Thus, despite the large relative errors, the impact on T,
was seldom significant. There were only 11 simulations (out of 124) in which IJ( Tf ) 1 exceeded 10.000
cycles.

5.4.7 Errors in C - I and related results

Large errors in the simulated idle time, C‘ - I, are the distinguishing feature of the large-error workloads.
The sign-biases in ‘Tf, T,,,, and C’ all reflect the sign-biases of the C - I results, and the relative
magnitudes of these results usually reflect dilution of If IT( C - I ) 1 by serial time and execution latencies.
Large C - I errors caused by TF , Tilr, -. , and C errors in large-error workloads to be distinctly larger than
the corresponding errors in the small-error workloads.

The T:,,, T errors in the Gidcd simulations of Cholesky were exceptional because they did not reflect
the much larger errors in C’ and C’ - I for the application. This occurred because the child processes
in Cholesky finish over a relatively long period of time. In the Gihd simulations, the parallel times of
individual processes were consistently too short, producing large negative errors in C’. Tpl,;. was less
affected by these errors because it reflects the error in the parallel time of the process which ran longest
in the trace-driven simulation. This effect was much less prominent in G 1/4 simulations of Cholesky
because the parallel times of individual processes were likely to sometimes be too short and sometimes
be too long.

The errors in C - I were dominated by synchronization latency errors in 108 out of 124 simulations,
including all but two of the 70 simulations of large-error applications. The errors in L rtf and LTLB were
small or were based on small numbers of events, so they did not greatly impact C - 1.

L r~( C’ - I ) was smaller in the small-error applications, either because the L cr errors were dominated
by L,, errors (Barnes) or because the application did not have appreciable amounts of synchronization
latency (MPSD and Dynamic MP3D).

The large-error applications were the ones that either had large amounts of queueing latency (Choleskp
and LocusRoute) or else used dynamic scheduling yet had relatively poor load-balance (Dynamic Banes
and PThor).  These features produced large 1( L, ) errors, which in turn caused large errors in C’ - I
and related results.

5.5 Differences between trace-generation environments

Comparison of the results obtained from the two trace-generation environments shows that a more detailed
trace-generation environment will not necessarily produce more accurate results. In most cases, the &&al
trace-sets gave results that were roughly as accurate as those from the G1/4  traces-sets. For most of the
results we studied, trace-driven simulation accuracy was determined more by the workload than by the
trace generation environment.

of
The most noticeable differences between the &al data

queueing delays, where accuracy was tied to the CPI of
and the &/4 data were in the measurements
the trace-generation environment.
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Chapter 6

Conclusions

Trace-driven simulation is often performed using trace-sets from environments other than the one being
simulated. To the extent that the simulator cannot compensate for the timing-dependencies in the trace-
sets, errors are introduced in the simulation results.

For studies of uniprocessor memory systems, timing-dependencies are not a problem. However, the
execution path of a multiprocessor workload is likely to depend on memory latencies. Accurate simulation
of multiprocessor workloads is possible in asynchronous simulation of statically-scheduled, deterministic
applications. The simple synchronization primitives used by such workloads can be abstracted from the
trace-sets to eliminate timing dependencies. Memory system differences are not reflected in the resulting
trace-sets.

For the workloads we studied, only a few results were greatly distorted by trace-driven simulation. The
most important distortions occurred in synchronization latencies. Large positive errors were observed in
the barrier latencies of dynamically-scheduled applications because the simulated task assignments were
set by the trace. Large errors of both signs were observed in task-queue latencies because the trace-
generation environments had different CPIs than the target environment. The resulting synchronization
latency errors affected the accuracy of the cycle count and execution time, especially in workloads that
had poor load-balance or large task-queue latencies.

For results not tied to simulation latency, the errors introduced by changes to the execution path had
little or no sign-bias. For such results, as the number of events sampled grew, the relative error became
very small. Large errors were observed in such results only when the result was based on a relatively
small number of events.

Application characteristics seemed to play a greater role in detemining the accuracy of the simulation
results than the trace-generation environment did The t--4 l/4 traces did not produce results that were any
more accurate than the results produced from the Gad traces, even though the memory system of G 1/4
was more similar to 7.

While it is difficult to generalize from our limited data, researchers and memory system design-
ers should be aware of the pitfalls in multiprocessor trace-driven simulation. Where possible, direct
simulation should be used, or else the trace generation environment should exactly match the environ-
ment being simulated. If neither approach is possible, asynchronous trace-driven simulation should be
used, and statically-scheduled, deterministic workloads should be preferred over dynamically-scheduled
or nondeterministic workloads, which produce timingdependent trace-sets.

If timing-dependent trace-sets are unavoidable, suitable accuracy may still be achieved for speedups
and other global measurements. On the other hand, results that are either strongly influenced by syn-
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chronization latency must be treated with suspicion. Because results based on small numbers of events
generally have poor accuracy, trace-driven simulation is poorly suited to studies of infrequent events and
minor architectural features.
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