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Abstract

Synthesis of circuits containing application-specific as well as re-programmable components such as
off-the-shelf microprocessors provides a promising approach to realization of complex systemsusing a
minimal amount of application-specific hardware while still meeting the required performance constraints.
We formulate the synthesis problem of complex behavioral descriptions with performance constraints as
a hardware-software co-design problem. The target system architecture consists of a software component
as a program running on a re-programmable processor assisted by application-specific hardware com-
ponents. System synthesisis performed by first partitioning the input system description into hardware
and software portions and then by implementing each of them separately. We consider the problem of
identifying potential hardware and software components of a system described in a high-level modeling
language. Partitioning approaches are presented based on decoupling of data and control flow, and based
on communication/synchronization requirements of the resulting system design.

Synchronization between various elements of a mixed system design is one of the key issues that any
synthesis system must address. We present software and interface synchronization schemes that facilitate
communication between system components. We expl ore the rel ationship between the non-determinism
in‘the system models and the associated synchronization schemes needed in system implementations.

The synthesis of dedicated hardware is achieved by hardware synthesis tools[ 1], while the software
component is generated using software compiling techniques. We present tools to perform synthesis
of a system description into hardware and software components. The resulting software component is
assumed to be implemented for the DL X machine, aload/store microprocessor. We present design of an
ethernet based network coprocessor to demonstrate the feasibility of mixed system synthesis.

Key Wordsand Phrases. System-level synthesis, High-level Synthesis, System Partitioning, Hardware-
Software Co-design, Multiple Chip Modules(MCMs)
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1 Introduction ‘

Existing high-level synthesis techniques attempt to generate a purely hardware implementation of a system
design either as a single chip or as an interconnection of multiple chips each of which is individualy syn-
thesized [1][2][3][4]. A common objection to such an approach to ASIC design is the cost-effectiveness
of an application-specific hardware implementation versus a corresponding software solution using stan-
dard re-progrummabk components, such as off-the-shelf microprocessors. Often system design requires
a mixed implementation, that blends ASIC chips with processors, memory and other specia purpose mod-
ules like multimedia, transducer and DSP modules. Important examples are embedded controllers and
telecommunication systems. In practice most such systems consist of hardware and software components
- hence the term firmware is often used to describe these systems. When considering the problem of
firmware synthesis, an important issue is the definition of boundaries between the hardware and thesoft-
ware components. In some cases, this boundary can be dictated by issues such as analog interfaces that
require a speciaized hardware implementation. In this report we consider instead the problem in which
implementations are sought for synchronous digital systems, and where the choice between dedicated
hardware and software solutions are driven by system performance and cost requirements.

1.1 Motivations for hardware-software partitioning

Indeed, most digital functions can be implemented by software programs. The major reasons for building
dedicated ASIC hardware is the satisfaction of performance constraints. These performance constraints
can be on the overall time (latency) to perform a given task, or more specificaly on the timing to perform
a subtask and/or on the ability to sustain specified input/output data rates over multiple executions of
the system model. The hardware performance depends on the results of scheduling and binding and on
basic performance characteristics of individual hardware blocks. Whereas the number of cycles that it
takes a general re-programmable processor to execute a routine depends on the number of instructionsit

1
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Figure1: Example of a Mixed System Implementation

must execute and the cycle-per-instruction (CPI) metric of the processor. In general, application-specific
hardware implementations tend to be faster since the underlying hardware is tailored and optimized for
the specific set of tasks. However in absence of stringent performance constraints, for agiven behavioral
description of an ASIC machine, some parts (subroutines) of it may be well suited to a commonly
available re-programmable processor (like 6502, 68HC11, 805 1, 8096 etc) while others may take too
long to execute. For instance, most general purpose CPU’ s deal with byte operands whereas many ASIC
controllers contain bit oriented operations resulting in unnecessary overheads when implemented entirely
in software. However, the software implementations do provide the ease and flexibility of reprogramming
for the possible price of loss of performance.

Example 1.1.

To be specific, consider design of a data encryption/protocol controller chip, such as DES (Data
Encryption Standard) used by commercial banks or AES (Audio Engineering Society) protocol used

for communication between digital audio devices and computers. In Figure 1, the DES transmitter

takes datafrom memory using aDMA controller, assemblesthe frame for transmission, it encryptsthe
data after it receives the key and transmits the encrypted data. Encryption protocol requires that the

encrypted data be transmitted within a certain time duration of receiving the encryption key. In the DES

protocol, a56-bit encryption key is used to transform 64 bits of ‘ plaintext’ . Software implementations
of the encryption algorithm shown in Figure 2 vary from 300 to 3000 instructions depending on the

level of bit-oriented operations supported. The hardware implementation on the other hand can be
implemented to work in 16 cycles times of most digital systems.

It is possible to implement the DES controller in Figure 1 either as a program on a general purpose

re-programmable component or as dedicated ASIC chips [5]. However, as shown in Figure 2, most
encryption/decryption is along, iterative process of rotations, XOR operations, bit permutations and

table lookups. Further, these protocols often use bit-reversal operations as a part of overall encoding
strategy. A bit-permutation operation can be implemented easily in dedicated hardware while it may

take too long to execute as a sequence of instructions on most processors. While implementing the
complete protocol controller on dedicated hardware may be too expensive, an implementation which
uses a re-programmable component may satisfy performance requirements and at the same time provide
the ease and flexibility of reprogramming in software.
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Example 1.2.

While bit-wise shifting and xor operations lead to a slower software implementations, corresponding
byte-wise implementations was considerably faster. Given extra memory for table-storage, the program
implementations can be speeded-up even more using table-lookup methods. Such implementations are
often competitive with corresponding hardware implementations.

Consider a16-bit CRC-CCITT computation using polynomial z 16 + z12 + z5 + 1 below.

With the addition of every byte of data, the new CRC is clearly isafunction of 8-bits of old CRC
and the new byte of data. This function is precomputed and stored in an 256-entry table. Thus, a
byte-wise implementation using two256-byte tables, as described by the following pseudo-code, when
coded in assembly can achieve 16-bit CRC computation in 7 instructions per byte.

typedef byte char;

byt e Table_low[256]), Table_high[256];
byte Tenp, data, CRClow, CRC high;

Tenp = data xor CRC-Ilow;
CRC- | ow = Table_low[Temp] xor CRC hi gh;
CRC hi gh = Table_high[Temp];

The actual latency of computation is a strongly dependent on the instruction-set architecture (ISA) of
the target processor. The best implementation of the above pseudo-code on an Intel 8086 processor
computes 16-bit CRCs in 9 instructions, a Motorola 68K implementation in 11 instructions and a
RISC-based implementation in 14 instructions. O
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1.2 The problem of system synthesis

The problem of mixed system synthesis is complex, and todate there are no available CAD tools to support

it. Thisreport addresses the hardware-software co-design issue by formulating it as a system partitioning
problem into application-specific and re-programmable components. As explained in Section 4, we can
alsoview it asan extension of high-level synthesistechniquesto systemswith generic re-programmable
resources. Nevertheless, the overall problem is much more complex and it involves, among others,

solving the following subproblems:

1. Modeling the system functionality and performance constraints.

System modeling refers to the specification problem of capturing important aspects of system
functionality and constraints to facilitate design implementation and evaluation. Most hardware
description languages attempt to describe a system functionality as a set of computations performed
by a computing element and as interactions among computing elements. Among the important
issuesrelevant to mixed system designs are:

e explicit or implicit concurrency specification
e communication model used: shared memory versus message-passing based
o control flow specification or scheduling information

There is arelationship between concurrency specification and the natural partitionsin the system
descriptions. Typically, languages that contain explicit partitioning viacontrol flow breaks, find it
difficult to specify concurrency explicitly. Concurrency information is then obtained by performing
dependency analysis whose complexity depends on the communication model used. We consider
the relevant modeling issues in Section 3.

2. Choosing granularity of the hardware-software partition.

The system functionality can be partitioned either at the functional abstraction level where a certain
set of high-level operations is partitioned or at the process communication level where a system
model composed of interacting process modelsis mapped onto either hardware or software at the
process description level. The former attempts fine grain partitioning while the latter attempts a
high-level library binding through coarse-grain partitioning.

3. Determination of feasible partitions into application-specific and re-programmable components.

The so-called problem of hardware-software partitioning. This delineation isinfluenced by issues
such as analog interfaces that require a specialized hardware interfaces. However, for operations
that can be implemented either in hardware or in software, the problem requires a careful analysis
of flow of data and control in the system model.

4. Specification and synthesis of the hardware-software interface.

5. Implementation of software routines to provide real-time response to concurrently executing hard-
ware modules.
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6. Synchronization mechanisms for software routines and synchronization between hardware and soft-
ware portions of the system.

This report attempts to outline major issues and suggests approaches to solving them. This report
is organised as follows. In Section 2.1 we present a description of different system architectures based
on types of hardware, software components used. We then describe features and limitations of the
system architecture that is target of current approach towards system synthesis. Section 3 describes the
modeling of system functionality. In particular, we describe how the input to our synthesis system is
described in a hardware description language and its model based on flow graphs. Section 4 defines the
problem of system partitioning. We discuss issues relating to performance characterization of hardware
and software components and partitioning cost metrices based on which a partitioning algorithm is
presented. Sections 5 and 6 present problems and solutions in implementation of hardware and software
components, respectively. We introduce the notion of threads as alinearized set of operations. The
software component is composed a set of concurrent and hierarchical threads. Section 7 discusses
issues in system synchronization, how synchronization is achieved between heterogeneous components
of system design. In section 8 we present design network coprocessor and summarize the results of
hardware, software tradeoffs. Section 9 presents a summary of the main issuesin system synthesis.

1.3 Applications
Among the potential applications of the techniques presented in thisreport are:

1. Design of cost-effective systems: The overall cost of a system implementation can be reduced by
the ability to use aready available genera purpose re-programmable components while reducing
the number of application-specific components.

2. Rapid prototyping of complex system designs- a complete hardware prototype of a complex
system is often too big to be implemented except in a semi-custom implementation. With the
identification of time critical hardware section, the total amount of hardware to be synthesized may
be reduced significantly, thus making it feasible for rapid prototyping. A feasible partition that
shifts the non performance-critical tasks to software programs can be used to quickly evaluate the
design.

3. Speedup of hardware emulation software - During their development phase, many system designs
are often modeled and emulated in software for test and debugging purposes. Such an emulation
can be assisted by dedicated hardware components which provides a speedup on the emulation
time.

Rapid prototyping and hardware emulation are two opposite ends of the system synthesis objective.
Rapid prototyping attempts to minimize the application-specific component to reduce design time whereas
hardware emulation attempts to maximize the application-specific component to realize maximum speed-

up.
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Figure 3: System Synthesis Procedure

Figure 3 shows organization of the CAD design system used for synthesis of mixed system designs.
The input to our synthesis system is an algorithmic description of system functionality described in a
hardware description language (HDL). The HDL description is compiled into a system graph model
based on data-flow graphs described in Section 3. The system graph model is subject to system partitioning
and hardware and software generation schemes as described in sections 4 through 6. Section 7 discusses
mechanisms for synchronization between hardware and software. The resulting mixed system design
consists of an assembly code for the software component, and a gate-level description of the hardware

and hardware-software interface. This heterogenous description can be simulated by a program Poseidon
that is described elsewhere[6].

2 System Architectures Based on Hardware-Software Components

In colloquia terms most digital systems can be classified as being either reprogrammable or embedded.
Reprogrammable digital systems contain some form of storage that can be atered (reprogrammed) by the
user under software control. On the other hand, the embedded systems are usually hardwired for certain
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Figure 4: System Classification Based on HW/SW Components

specific tasks which can not be atered without changing the underlying hardware. Most reprogrammable
digital systems contain one (or more) general-purpose microprocessor and structured memory components.

Since embedded systems are optimized for certain specific tasks, the degree of ‘reprogrammability’ varies
from none to changing parameters of some existing sequentia control. An embedded system may have
a dedicated controller (a sequencer) or a microcontroller programmed to sequence operations. Most of
these systems contain storage (program or data) which isrelatively small and can not be easily atered.

Microcontrollers are essentialy general purpose microprocessors with on-board memory for program and
data storage. The ability to reprogram a digital system is related to the versatility of primitive operations,

or theinstruction-set of the microprocessor or microcomputer used in the system. In our terminology we
refer to a microprocessor or a microcontroller as a reprogrammable component or Simply as a processor.

The specific set of instructions needed for a particul ar application to be executed by the reprogrammable
component is referred to as the software component. Thus, in broad terms, a digital system can be thought

of consisting of two components: software as a program in an on-board RAM or ROM and hardware
as the underlying interconnection of special-purpose blocks. Based on this distinction, Figure 4 shows
compositions of some familiar systems. The hardware component in a system design may be custom-

designed asin most general purpose machines, or program-generated (programmed), or programmable
asin programmable gate array designs. The software component of asystem may consist of microcoded
routines, or machine-level programs used in embedded control systems or high-level programming used
in special-purpose machines. It isimportant to note that some system designs use microcoding simply
as atechnique for implementation of hardware control. For example, general purpose microprocessors
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use microcoding simply as a design technique. Thisis different from the software necessary to achieve
system functionality asin microprogramming of functional algorithmsin case of mainframe machines.
Conventionaly, machine-level and high-level programs manipulate user data-structures while micro-
programs mani pul ate hardwareresources. In case of mixed controller designs proposed in this paper,
however, we use machine-level programs to perform both activities. The objective of this research is
design of mixed controllers shown in Figure 4. These systems use a reprogrammable compoent to achieve
part of the system functionality which may be time-constrained as in the case of embedded systems.

2.1 Target System Architecture

We choose a target architecture that contains the essential elements of hardware-software systems. In
Figure 5, the target architecture consists of a general-purpose processor assisted by application-specific
hardware components. The following liststhe relevant assumptionsrelating to the target architecture.

e Werestrict ourselvesto use of asingle re-programmable component because presence of multiple
re-programmable components requires additional software synchronization and memory protection
considerations to facilitate safe multiprocessing. Multiprocessor implementations also increase the
system cost due to requirements for additional system bus bandwidth to facilitate inter-processor
communications. We make this simplifying assumption in order to make the synthesi s tasks man-
ageable.

e The memory used for program and data-storage may be on-board the processor. However, the
interface buffer memory needs to be accessible to the hardware modules directly. Because of
the complexities associated with modeling hierarchical memory design, so far we considered the
case where al memory accesses are to asingle level memory, i.e., outside the re-programmable
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component. The hardware modules are connected to the system address and data busses. Thus
all the communication between the processor and different hardware modules takes place over a
shared medium.

o The re-programmable component is always the bus master. AlImost all re-programmable compo-
nents come with facilities for bus control. On the other hand, inclusion of such functionality on
the application-specific component would greatly increase the total hardware cost.

o All the communication between the re-programmable component and the ASIC components is done
over named channels whose width (i.e. number of bits) is same as the corresponding port widths
used by read and write instructionsin the software component. The physical communication takes
place over a shared bus. The problem of encoding and sharing multiple virtual channels over a
physical busis asubject of continuing research at Stanford [7].

e The re-programmable component contains a ‘sufficient’ number of maskable interrupt input signals.
For purposes of simplicity, we assume that these interrupts are unvectored and there exists a
predefined destination address associated with each interrupt signal.

o The application-specific components have a well-defined RESET state that is achieved through
system initialization sequence.

It isimportant to note that the final system implementation may or may not be a single-chip system
design depending on availability of the re-programmable component either as a macro-cell or as a separate
chip. Further, the approach outlined in this report can also be used for alternative target architectures.

3 Specification and Modeling of Hardware-Software Systems

Currently most behavioral system specifications are derived from the corresponding agorithmic descrip-
tions of the system functionality. The algorithmic descriptions are usually described in a procedural
language like C or Pascal. Consequently, the hardware behavioral descriptions tend to use a procedural
language like VHDL, Verilog etc. However, when describing hardware in aprocedural language (that is,
as a program), one is often faced with the difficulty of representing an essentialy concurrently-executing
set of operationsin alinear code The linear-code representation inherently assumes existence of asingle
thread of control and static data storage. However, hardware execution is usually multi-threaded and is
driven by availability of appropriate data. In contrast to instruction-driven single-threaded linear-code
representation, data-flow graphs provide adata-driven representation that can model multiple-threads of
execution (Figure 6). Therefore, the hardware for embedded controllers and non-recursive DSP adgorithms
is more appropriately represented by data-flow (DF) graphs instead of linear code used for algorithmic
description. To avoid this dichotomy of behavioral representation, most high-level synthesis algorithms
operate on an intermediate form that accurately reflects the concurrent nature of hardware. Most hardware
intermediate forms used for high-level synthesis tend to be similar to data-flow graphs [8][9][10][11].
Generadly, any sequence of machine instructions can be represented by a machine-level data-flow
graph. Indeed the expression-eval uation trees generated by compilers (before the code-generation stage)
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are a form of data-flow graphs. However, these data-flow graphs consisting of operations described at the
level of machineinstructions decrease the specification granularity significantly to make them useful for
system partitioning in to hardware and software components. Therefore, data-flow graphsin our context
are described using operations available at the language specification level. These have aso been referred
to as macro-data flow graphs elsewhere[12].

From data-flow representations we can generate an equivalent sequence of instructions by scheduling
various operation vertices in the data-flow graph. Operation scheduling techniques are important even in
case of asingle thread of execution where static memory requirements are affected by scheduling even
though all schedules result in same overall latency (see Section 4.2) . Latency optimality in scheduling
is redlized by exploiting paralelism in instruction stream which requires multiple execution threads. We
consider the algorithmsfor evaluating data-flow graphs and their equivalent linear-code representations
in section 4.2.

3.1 System specification using HardwareC

We specify system functionaity in an hardware description language called, HardwareC [ 13]. HardwareC
follows much of the syntax and semantics of the programming language, C with modifications necessary
for correct and unambiguous hardware modeling. Like C, the primitive operation in HardwareC consists
of an assignment operation with a procedural call being the means of abstraction of sub-specifications.
Procedural calls correspond to modular specification of different components of the hardware. No recur-
sive calls of any form are allowed. A HardwareC specification consists of blocks of statements which
are identified by enclosing parentheses. The blocks are structured, thus no two blocks are overlapped
partially. That is, given any two blocks, they are either digoint or oneis contained by the other block.
Like C, no nested procedure declarations are allowed. Therefore, any variable that is non-local to any
procedure is non-local to al procedures. Local variables are scoped lexically with the most-closed nested
rule for structured blocks.

A process in HardwareC executes concurrently with other processesin the system specification. A
process restarts itself on completion of the last operation in the process body. Thus there exists an
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implied outer-most loop that contains the body of the process model. In other languages, this loop can
be specified by an explicit outer loop statement. Operations within a process body need not be executed
sequentially (asisthe case in a process specification in VHDL, for example). A process body can be
specified with varying degrees of parallelism such as parallel (< >), data-parallel ({}) or sequential ([1).

In addition, HardwareC alows specification of declarative model calls as blocks that describe physical
connections and structural rel ationships between called models. For hardware modeling purposes, both
timing and resources constraints are alowed in the input specifications. Timing constraints are specified
as min/max delay attributes between labeled statements where as resource constraints are specified as
user-specified bindings of process and procedure callsto specific hardware model instances.

Example 3.1 describes a simple process specification in HardwareC.

Example 3.1. Example of a simple HardwareC process

process sinple (a, b, c)
in port a(8)], b(8] ;
out port c¢[8];

_boolean x[8], y(8], z[8] ;

This process performs two synchronous read operations in the same cycle, followed by a function
evaluation and a write operation. Note that specification of explicit parallelism by (<>) delimiters
is redundant here since there exists an implicit parallelism between the two read operations, thus a
data-parallel grouping ({}) would yield the same execution results. O

Thereisno explicit delay associated with individual assignment statements (except in case of explicit
. register/port load operations as mentioned later). An assignment may take zero or non-zero delay time.
However, multiple assignments to same variable can either be interpreted as (a) last assignment or (b) an
assignment after some delay. Resolution of which policy (a) or (b) to be used is performed by a reference
stack [ 14]. Reference stack performs variable propagation by instantiating values of the variablesin the
right-hand side of the assignments. In case of identified storage elements (b) is adopted where *some
delay’ corresponds to delay of ‘at least’ one cycle time. In addition, this policy can also be enforced
on some assignments by an explicit ‘load’ prefix that assigns a delay of precisely one cycle time to the
respective assignment operation.

3.1.1 Memory and Communication

HardwareC allows specification of shared memory within a process model. All the communication
within a process model is based on the shared memory specified within the model, because it is relatively
straight-forward to ensure ordering of operations within a given process model to ensure integrity of
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memory shared between operations in the model. However, consistency of memory shared across con-
currently executing models must be ensured by the models themselves. HardwareC alows specification
of blocking inter-model communications based on message-passing operations. As with the shared mem-
ory variables, the only data-types available for channel is a fixed-width bit-vector. Integers are coded
using 2's complement representation. ’

Use of message-passing operations simplifies the specification of inter-model communications. It
should be noted, however, that it is easy to implement a message-passing communication using memory
shared between respective models (the converse is not true, however). Indeed, during system partitioning,
reductions in communication overheads are realized by simplifying the inter-model communication as
discussion in later sections.

3.1.2 Nondeterminism in System Specifications

Non-determinism in our system models is caused either by external synchronization operations or by
internal data-dependent delay operations, like conditional s and data-dependent loops. External synchro-
nization operations are related to blocking communication operations, whereas operations likes data-
dependent loops present variable and unknown execution delays. Example 3.2 below shows a Hard-
wareC process description containing 3 unbounded/unknown delay operations. message-passing receive
operation, conditional and loop.

Example 3.2. Example of a HardwareC process with unbounded delay operations

process exanple (a, b, ¢)
in port a[8];
in channel bi(8];
out port ¢ ;

bool ean x[8], y[8], z[8] ;

x = read(a);
y = receive(b);
if (x>y)
z =X-Y;
el se
zZ=X*y;
while (z >= 0) {
wite ¢ =y
z=2z-1;

read refersto asynchronous port read operation that is executed unconditiona ly as aval ue assignment
operation from the wire or register associated with the port a. receive is a message-passing based
read operation where the channel b carries additional request and acknowledge control signals that
facilitate a blocking read operation on based on availability of data on channel b. O

3.2 System Model
Broadly speaking, there are two major ways of modeling and analyzing the system behavior:
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process-based modeling where logical and temporal properties of processes and their constituent events
define the behavior of a system, and axiomatic techniques, similar to theorem-proving in proof
systems, are applied to verify correctness of system transformations [ 15 ]. Relevant logical properties
of the system behavior are expressed by assertions about liveness and safety. Each liveness property
indicates that the assertion (about state of the system) will eventually hold. Each safety property
states that the assertion (on the system state) will always be true. Most common method to specify
and verify such assertions is by adding time variables to the computation model [ 16} [ 17]. Common
examples of this approach are proof-systems for CSP programs [ 18], distributed programs[ 19].

graph-based modeling which uses techniques from graph theory to build the system model. The main
difference with the process-based modeling is in explicit expression of dependencies between pro-
cesses and constituent operations.

We model system behavior using a graph representation based on flow graphs [20]. As described later
in this section, timing and resource constraints are represented on graphs compatible with the operation
graph models.

Definition 3.1 A system model, M, is represented by a 3-tuple consisting of operation graph @, timing
constraint , 7, and resource constraint, R.

M = (6, T, R)

The operation graph model s capture system functionality asaset of control-data-flow graphs. Timing
constraints are specified using compatible weighted graph models. Resource constraints are used to
specify bounds on types and number of data-path resources available for synthesis of M into hardware
as well as the amount of static storage available for synthesis of M into software. Hardware resource
constraints are important for hardware synthesis and are briefly mentioned in Section 5.

Definition 3.2 An operation graph model, &, consists of a set of acyclic sequencing graph models:
®={G, G2, ..., Gy}

where a sequencing graph model, G, represents body of an iterative construct in the hardware description
language model.

The iterative constructs are of two types:

o Counting loops have an explicit or an implicit repeat count, .
¢ Non-counting loops wait on some external conditions on awire or a channel. For example, a
HardwareC statement like
whi | e(w renane);
is semantically equivalenttowai t ( !wire.name) ;. These loops model some asynchronous
event in the behavior model and are required for correct modeling of reactive hardware behavior.
The corresponding hardware for such loops is implemented by means of asynchronous set/reset

inputs to the storage elements. In software, however, such operations can be implemented either
as interrupts to on-going computation or as polled operations.
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All sequencing graph models are assumed to model counting loop operations with a finite or infinite
repeat count. Non-counting loop operations are modeled as individual wait operations. We make further
distinctions between characteristics of counting loop constructs when considering issues in performance
characterization of the software component.

A sequencing graph model, G, that models a process specification in HardwareC is a model with
infinite repeat count., that is, on completion of itslast operation (sink), it restartsitself unconditionally.
Among the sequencing graph model of an operation graph model, @, there are two kinds of hierarchies
induced:

e structural hierarchy denoted by relation, «= that denotes structural relationship between any two
sequencing graph models,

¢ calling hierarchy G* of a sequencing graph model, G, denotes the set of sequencing graph models
that are on the control-flow hierarchy of G, that is, modelsthat are called or used by G.

An operation graph model may consist of structural connection of one or more than one sequencing graph
models, each of which contains a called hierarchy. A sequencing graph model that is common to two
caling hierarchiesis considered ashared model or a shared resource.

Definition 3.3 A sequencing graph model is a polar acyclic graph G = (V, E, 4, x, S) where V =
{vo,v1,...,vn} represent operations with vo and v being the source and sink operations respectively.
The edge set, E = {(v;, v; )} represents dependencies between operation vertices. An integer weight
é(v;), VY v; € V represents execution delar/ﬁoperation associated with vertex, v;. Function, x :E~ Z
defines condition index of a given edge. case of edges incident from a condition vertex or incident
on a join vertex, these a condition index refers to case value associated with the evaluated condition. S
defines the storage common to operations in the graph model G.

For sake of simplicity, a sequencing graph model, G, is often expressed as G = (V, E). An edge,
(vi , v;) € E(G) induces a precedence relationship between vertices v; and v; and it is also indicated
by v; > v;. Relation >* indicates transitive closure of the precedence relation. The transitive closure
of a sequencing graph model, G, under precedence relation is denoted by G>. Note that the sequencing
model defined here are similar to the the SIF model defined in [ 14). There are, however, some differences
in representation of conditional and wait operations.

The sequencing graph model captures the operation concurrency and data-dependent delay opera-
tions. Overall, the sequencing graph model consists of concurrent data-flow sections which are ordered
by control flow. The graph edges represent dependencies while branches indicate parallelism between
operations. The data-flow sections preserve the paralelism while control constructs like conditionas and
loops obviate the need for a separate description of the system control flow. The control operations like
loops are specified as separate subgraphs by means of hierarchy. The computational semantics of the
sequencing graph mode is as follows. an operation in the data-flow graph is enabled for executions once
all theinput data are available. We maintain the strict FXFO order of operations during successive invo-
cations of the graph model by imposing the additional constraint that a source vertex is reinvokes only
after the corresponding sink vertex has been executed. This requirement avoids need for conventional



3.2 System Model 15

token-matching schemes needed for execution of pure data-flow graphs[21]. Figure 7 shows an example
of the graph model corresponding to pr ocess si npl e described in Example 3.2.

oY
o

Sink S=(xy2

Figure 7: Example of a sequencing graph model

Remark 3.1 Storage, S, is defined for correct behavioral interpretation of the graph model, G. S is
independent of cycle-time of the clock used to implement the corresponding synchronous circuitry and
does not include storage specific to structural implementation of G (for example, control latches). Further
S, need not be the minimum storage requiredfor correct behavioral interpretation of a sequencing graph
model.

An operation vertex is classfied as a simple or complex vertex depending on the operation performed
by the vertex. Simple vertices consist of a single operation whereas complex vertices consists of a set
of operations that are represented by a called sequencing graph model. Thus complex vertices induce
hierarchical relationships between sequencing graph models. A call vertex enables execution of the
sequencing graph corresponding to the procedure call. A loop vertex iterates over the graph body of the
loop until its exit condition is satisfied. Table 1 lists operation vertices used for describing the sequencing
graph models.

Remark 3.2 The sequencing graph is acyclic because the HardwareC descriptions are required to be
structured and looping constructs are represented as separate graphs.

Data-dependent and synchronization operations introduce uncertainty over the precise delay and order
of operations in the system model and thus make its execution non-deterministic [22]. We refer to a
vertex with data-dependent delay as a point of non-determinism in the system graph model.
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Type Operation Description
Simple | no-op No operation
load Load register
cond '| Conditional fork
join Conditiona join
walit Wait on a signal
op-logic Logical operations

op-arithmetic |Arithmetic operations
op-relational | Relational operations

op-io /O operations
Complex| call Procedura call

loop [teration

block Declarative block

Table 1: Sequencing graph operation vertices

Definition 3.4 An operation vertex in G with an unbounded execution &lay is known as an anchor
vertex.

A vertex representing wait operation is example of an anchor vertex. The execution delay, 6(v) of
an anchor vertex may not be known statically and may take any nonnegative integer value from 0 to oc.
By definition, source vertex, vg, of a sequencing graph is considered an anchor vertex.

Definition 3.5 A sequencing graph delay function, d, returns a non-negative delay of a graph model,
G following a bottom-up computation as follows:

1. Delay of a non-anchor vertex is the execution delay of the operation, d(v;) = é(v;),
2. Delay of an anchor vertex is set to zero,
3. Delay of a sequencing graph model, G, is the delay of the longest path in G,

d(G) = maxd(pon) = D d(v;)

v; € longest_path(G)

where a path,p;;, in G consists of an ordered set of vertices in V(G), pij = (vi, Vi+1s. . ., v;).
4. Delay of a complex vertex is set to zero, that is,

d(vloop) = d(vcall) = d(vblock) =0

5. Delay of a conditional vertex is maximum of delay over each of its branches. A conditional branch
is defined by a directed path from the condition vertex to the corresponding join vertex.



3.2 System Model 17

Definition 3.6 A sequencing graph latency function, A, returns a non-negative latency of a graph model,
G following a bottom-up computation as follows:

1. Latency of a vertex is the execution delay of the operation represented by vertex

2. Latency of a sequencing graph model is execution delay of the sequencing graph model, that is,
the time period from execution of its source vertex to the execution of its sink vertex

3. Latency of complex vertices is the latency of the corresponding called sequencing graph models,
that is,

)\(vloop) = 1 A(GIOOP)
AMveatt) = MGean)
A(Wbtock) = MGhiock)

where r;is the repeat-count of the loop operation v;eep.

Note that latency of a sequencing graph is a function of operation scheduling. On the other hand, the
delay function represents the longest path delay of sequencing graph.

3.2.1 Communication

For all operations with in in a graph model, G = (V, E, 6, S) all the communication is based on shared
storage, S. Inter-model communications are represented by 1/0 operation vertices which, on execution,
may alter the model storage, S. An 1/O operation vertex may encapsul ate a sequence of operationswhich
isreferred as acommunication protocol. A communication protocol may be blocking or non-blocking.
A non-blocking protocol may also befinitely buffered.

A blocking communication protocol is is expressed as a sequence of simpler operations on ports and
additional control signal to implement the necessary handshake. For example, to implement a blocking
read operation on achannel ‘¢’ additional control signals‘c_rq’ and‘c.ak’ would be needed as shown
in the Example below.

Example 3.3. A blocking read operation.

bread(c) => {
wite c_rq = 1;
wait (c_ak);
< read(c);
wite c_rqg = 0; >
a

While it is easy to connect two blocking or two non-blocking read-write operations, connection of
two digoint read/write operations on a channel requires handling of specia cases. For example, consider
a connection between blocking read and non-blocking write operation below.

Example 3.4. Blocking/Non-blockingchannel connections.

o r—
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Producer Consumer
c_rq c_ak
c c
c_ak - crq

Blocking read and non-blocking write

Bl ocking read Non- bl ocking wite
( L
wite c_rq = 1; wite c_rg = 1;
wait (c_ak); <wite ¢ =value; wite c_rq = 0; >

< read(c); wite c_rq=20; > \

Blocking write and non-blocking read

Non- bl ocki ng read Bl ocking wite
1 L
wite c_rg = 1; wite c_rq = 1;
< read(c); wite c_rq = 0; > wait (c_ak);

] <wWwite ¢ =value; wite c_rq = 0; >

A non-blocking/non-blocking read/write connection results in one cycle read and write operations.
However, a blocking/non-blocking connection requires two clock cycles for the non-blocking operation.
m]

A buffered communication isfacilitated by afinite-depth interface buffer with corresponding read
and write pointers. The communication protocol consists of I/0 operation aswell as manipulation of the
read, write pointers as shown by the example bel ow.

Example 3.5. Buffered communication protocol.

Producer consumer
writegtr
‘ %IQ_-..@
- read_ptr
[ I
read {buff{read _ptr]); wite buff(write_ptr} = val ue;
read_ptr++ nodul o N, write_ptr++ nodul o N,

Under normal operation, read-ptr # write, ptr. Violation of this condition indicates either a
buffer isfull or empty depending on whether the increment of w it e_ptr causesviolation or the
increment of read.ptr causestheviolation. O
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Figure 8: The Constraint Graph Model

3.3 Specification of Timing Constraints

liming constraints are of two types. (a) minimum/maximum timing separation between pairs of operations
and (b) system input-output rate constraints.  Timing constraints between operations are indicated by
tagging the corresponding operations. The input(output) rate constraints refer to the rates at which the
datais required to be consumed (produced). The rate constraints refer to min/max time constraints on
multiple executions of the same input or output operation.

Let usfirst consider the timing constraints of the first type, that is, the min/max timing constraints.
Min/max timing constraints between operations are specified by tagging the corresponding assignment
operations in the HardwareC specifications. Example 3.6 shows an example of a min/max timing con-
straint.

Example 3.6. Specification of min/max timing constraints by statement tagging

process sinple (a, b, c)
in port a(8], b[8];
out port c{8j;

bool ean x[8], y(8), z[8] ;
tag A B

<
A X
y

read(a)
read(b)

z = fun(x , y);
B: wite ¢ = z;

constraint maxtime fromA to B = 3 cycles;
(m]

These timing constraints are abstracted in a constraint graph model [14] shown in Figure 8. In
the constraint graph model vertices represent operations and edges indicate timing constraints between
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vertices. The edges are Weighted by the timing constraint value. A positive value implies a minimum
timing constraint, a negative value implies a maximum timing constraint.

Let T(v;) represent start time of operation »;. A minimum timing constraint, /;; > 0 from operation
vertex v; to v; is defined by the following relation between the start times of the respective vertices:

T(v;) 2 T(vi) + 1
Similarly amaximum timing constraint, »; > 0 from v; to v; is defined by the following inequality:
T(vj) < T(v). Uij

Definition 3.7 The timing constraint graph model, G o is defined as G, = (V, E, 2) where the set of
edges consists of forward and backward edges, E = Ey U E} and w;; € £2 defines the weights on edges
such that T'(v;) + wi; < T'(v;).

3.4 Data Rate Constraints

Each execution of aninput(output) operation consumes(produces) asample of data. An input/output data
interval is defined in terms of cycles/sample astheinterval between successive input/output operations.
Corresponding data rates are defined by inverse of the data interval. Input/output data rates are a function
of time.

A minimum data rate constraint, p.,, 0n an input/output operation defines the lower bound on the
interval between any successive executions of the corresponding operation. Similarly, amaximum data
rate constraint, pas, on an 1/0 operation defines the upper bound on the time interval between successive
executions of the operation. Thus, the rate constraints refer to time constraints on multiple executions of
the sameinput or output operation. These constraints can be expressed asmin/max timing constraints on
unrolled constraint graph models. As an example, constraint graph model Gy shown in Figure 9 consists
of two sequential executions of the sequencing graph model G. The rate constraint on consecutive read
operations is shown as a maximum timing constraint between two read operationsinG .

For an 1/0 operation v € V(G), a data-rate constraint of pas samples/cycle can be translated into a
constraint on latency of G. Graph G either models a process or body of aloop operation. If G models
aprocess then execution of G restarts itself on completion. Since polarity of G guaranteesthat thereis
one execution of v for every execution of G. Therefore, latency, A(G) < # cycles. If G models body
of aloop operation v; € V( G') then

MG = Aw) +d =1 NG) +d

where d’ (> 0) isthe differencein latencies of G’ and v;. Thus a constraint on A(G) can be translated
into a constraint on latency of the corresponding process graph model, G, if the loop repeat count, i,
can be constrained.

In case of nested |oop operations, rate constraints are indexed by corresponding |oop operations. The
loops are indexed by increasing integer numbers. The inner-most loop isindexed 0. In the Example 3.7
below there are two rate constraints on the read operation with respect to the two while statements.
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Figure 9: Specification of rate constraint as a min/max timing constraint

Example 3.7. Specification of rate constraints in presence of nested loop operations.
process exanpl e (frameEN, bitEN, bit, word)
in port frameEN, bitEN, bit;
out pcrt word(8};

bool ean store[8], tenp;
tag A

whi | e (frameEN)
whil e (bitEN)

A tenp = read(hbit);
store[7:0] = store[6:0] @ tenp;

wite word = store;

attribute 'constraint maxrate 0 of A= 1 cycles/sanple';
attribute 'constraint maxrate 1 of A= 10 cycles/sanple';

O-O-De
|

-

A( Gy <=
[}
pﬂ*pi

G,
g
A(@y) = n-A(@y + d <= p}

M~®~® o

r; denotes repeat-count of loop modeled by G, and d is the difference in latencies of G; and operation
Vioop in G[. o |
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4 The Problem of Hardware-Software Partitioning

Werestrict our attention to partitions that are functional in nature so that the sequencing graph models
are at the granularity of operations rather than machine instructions. Use of functional partitions helps
in operation scheduling since an operation can only be scheduled when all its inputs are available. We
make a distinction between homogenous and heterogenous partitions of a given system model based on
partitioning objectives. The objective of homogenous partitioning is to partition a given hardware de-
scription into minimal number of hardware blocks each of which issmaller than agiven size constraint.
This partitioning is performed under overall area, pinout and latency constraints. The homogenous
partitioning problem is attacked and solved by previous research [23]. The objective of heterogenous
partitioning problem is to partition the system model for implementation into hardware and software
components. Heterogenous partitioning can be thought of as a generalization of the homogenous par-
titioning problem with re-programmable components as being ‘ generalized resources . However, there
areinherent differencesin the model of computation used for implementation of hardware and software
models. The software component implements model functionality as an instruction-driven computation
with a statically allocated memory space. On the other hand, hardware components essentially operate
as data-driven reactive, components. Further, due differencesin primitive operationsin hardware and
software components, the two computations proceed at very different instantaneous rates. Because of
these differences in the models and rates of computation used by hardware and software components,
it is necessary to allow multiple executions of individua hardware and software models with respect to
each other to achieve high system throughput. Further, the difference in rates of computations causes
variationsin the rates of communication between hardware and software components and thus entail a
higher communication overhead due to necessary handshake and buffering mechanisms.

Given two sets of operations, their execution is termed single-rate if for each execution of an operation
in one set there is only one execution of al operationsin the other set. Correspondingly, an execution is
termed multi-rate if for each execution of an operation in one s&t, there are more than one executions of an
operation in the other set. Note that operationsin a sequencing graph model, G, execute at asinglerate.
On the other hand, executions of sequencing graph models may be multi-rate. For the reasons described
before, we would like to achieve a multi-rate execution of hardware and software models. Thus a partition
of a sequencing graph model must be transformed to alow multi-rate executions of the partitioned graphs
by choice of suitable inter-parition communication mechanisms (bufferring, for example). In this context,
the problem of hardware-software partitioning is formulated as a problem of partitioning of operation
graph models, 4, instead of partitioning of the sequencing graph models, G. Because system partitioning
is strongly influenced by the choice of the target processor and program implementation techniques, we
first present amodel of the processor and our approach to software characterization.

4.1 Processor Model

The target processor is represented by a cost model, IT = ( Top, Tea, tm , ti) Where

e execution time function, r,,, represents assembly instruction delay times in cycles,
e address calculation delay function, 7.4, represents effective address calculaion delay times in cycles,
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Mode Notation Explanation
immediate #4 value=4
register R1 ‘value = [R1]
direct (100) value = mem[100]
register indirect | (R1) value = mem[[R1]]
memory indirect | @([R1) value = mem[mem|[[R1]]]
indexed 100(R1)(R2) | value = mem[100+[R1]+d*[R2]]

Table 2: Addressing Modes

® memory access times t,, incyclesisthetime for amemory access,

o interrupt response time, t;, is the maximum time between activation of an external interrupt and
beginning of execution of the corresponding interrupt service routine.

The execution time function, 7,,, maps assembly instructions to positive integer delays. The assembly
instructions are generated by the high-level language compiler. These instructions usually correspond
to instructions supported by the processor instruction set. However, some assembly instruction may

refer to agroup of processor instructions. These pseudo-assembly instructions are sometimes needed for
compilation efficiency and to preserve atomicity of certain operation in the sequencing graph model. Effect
of internal hardware pipelining in microprocessors is modeled as follows. The function, ,, represents
pipelined operation delays (which isusually 1 cycle for operations with non-pipelined execution delays
of less than number of pipestages, p). A pendty of p — 1 cyclesisadded to the delay of the overall

program. In addition, additiona pipeline stall penalty is added for instructions with latencies greater than

p (such asfloating point instructions). The address calculation function, 7.4, maps a memory addressing
mode to integral delay (in cycles) encountered by the processor in computing the effective address. An
addressing mode specifies an immediate data, register or memory address location. In the last case, the
actual address used to access the memory is called the effective address.

Table 2 lists common addressing modes. Square brackets ([1) indicate contents, for example, [R1]
indicates contents of register R1, mem[10] indicates memory contents at address 10. Not al the
addressing modes may be supported by a given processor. For example, the DLX processor supports
only immediate and register addressing modes, while the x86 instruction set supports al mentioned
addressing modes (though with restrictions on which registers can be used in a certain addressing mode).
The interrupt response time, t;, is the time that processor takes to become aware of an external hardware
interrupt in asingle interrupt system (that is, when there is no other maskable interrupt is running).

A software implementation of a sequencing graph model, G = (V, F) is characterised by a software
size function, Sy, that refers to the size of program and static data necessary to implement the corre-
sponding program on a given processor, II. For a operation graph model, ®, Sp(®) = 3g,ee Sn(Gi).

Now the problem of system partitioning is stated as follows.
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Problem P1: Given a system model, M = (@, 7, R), static storage constraint, S, and a
processor cost model, 17, find a partition of operation graph model, & = & , U &, such that:

1. @, satisfies the timing constraints 7,
2. software size, Spp ($,)< S and

3. the number of sequencing graph models in @, is maximized.

4.2 Modeling of Software Performance

Software performance is characterized by two metrices: software delay and program/data size. Software
delay can be computed by bottom-up computation of operation delays in the sequencing graph model.
Datasize is determined by the size of static storage required for correct execution of the program.

In order to make effective tradeoffs during partitioning, it is necessary to be able to make good esti-
mates about software and hardware performance. Such estimations often make simplifying assumptions
that tradeoff modeling accuracy against speed of estimations. In estimating software performance, we
make the following assumptions.

1. The system busis aways available for instruction/data reads and writes.

2. All memory accesses are aligned. Misaligned memory accesses add additional cycles to memory
access time, t,,.

3. All memory accesses areto asingle-level memory.

Each operation, v, in the graph model is characterised by number of read accesses, n,., number of
write accesses, n,, and the number of assembly-level operations, n,. Typicaly, n,, is 1. The software
operation delay function, n, is computed asfollows:

No Ny Ny
77(”) = Z:top,' + Zmi + Emi
=1 =1 i=1

where the operand access time, m;, isthe sum of effective address computation time and memory access
time for memory operands. Due to non-orthogonality of most common instruction set architectures, the
execution time function of some operations is often slightly overestimated from real execution delays.

The number of read and write accesses is related to the amount and allocation of static storage, S(G).

Wait operations in a graph model induce a synchronization operation in the corresponding software model.
Thus, the software delay of wait operations is estimated by the synchronization overhead which is related
to the program implementation scheme being used. A synchronization operation causes a context switch

in which the waiting program is switched out in favor of another program. It is assumed that the software
component is computation intensive and thus the wait time of a program can be overlapped by active
execution another program. As mentioned earlier, a wait operation can be implemented either as an inter-
rupt operation or a polled operation. In case of an interrupt-based implementation, the synchronization
delay iscomputed asfollows:

Nintr (’U) =ttt it
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wheret; isinterrupt response time, t, isinterrupt service time, which istypically the delay of theservice
routine that performs input read operation and ¢, is concurrency overhead (Section 6). In case of a
polled implementation of await operation, the delay due to await operation is the delay in performing

the corresponding read operation. However, the program implementation scheme enforces additional

congtraint on the minimum polling time interval, t ,, a which any port can be polled. ¢, is a function of
the size of &,.

The determination of static storage, S, required for software implementation of a graph model is
more complex. By static storage here we are chiefly concerned with the storage required to hold data
transfers across assembly operations. One approach to determine the minimum set of variables required
to implement a graph model, G, would be to serialize the graph model, G based on a scheduling of
operations. Due a single processor target architecture, the cumulative operation delay of G would be
constant under any schedule. However, the number of variables required to implement program of G
would vary according-to scheduling technique used. Most popular heuristics for code generation use
a specific order of execution of successor nodes in order to reduce the size of S[24). A variable
interference graph can be built from the serialized model G. The minimum number of colors required to
color verticesin the interference graph such that no two adjacent vertices have the same color givesthe
minimum number of variables required to implement G in software. The set of variables in min §(G) can
be mapped to specific memory locations or the on-chip registers, since no aliasing of data items is allowed
ininput HardwareC descriptions. (Register storage of an aliased variable will lead to incorrect behavior
due to possible inconsistency in values stored in the register and the value stored at the aliased location,
memory). Unfortunately, the computational complexity of the problem of coloring an interference graph
is in the class of NP-problems. Thus, heuristics are required to determine min |S(G)|. We use the
following heuristics to determine minimum static data storage required for a given sequencing graph
model. In this formulation we do not consider internal pipelining and storage requirements within the
functiona units. We assume that each operation vertex requires at least one cycle and hence any data
transfer across operation vertices in the sequencing graph requires aholding register. With each edgein
the sequencing graph we associate an integer weight, 6, representing the size of data transfer between
corresponding vertices. Weight of an edge that represents a control dependency is set to zero. We
assume al such data transfers are synchronous and, therefore, require corresponding storage elements. In
case of single execution stream, we use the following algorithm, single_thread_static_storage, to identify
minimum static storage required for execution of its corresponding linear code.

We produce a single-thread execution schedule of operations using a depth-first search to produce a
topological order of verticesin the directed graph [25]. Topological sorting produces a complete order
(schedule) of operations that is compatible with the partial order imposed by the sequencing graph.
Topological sorting ensures that all edges are directed in only one direction (forward), in order words
there are no backward edges [25]. This scheduling operation takes O(|V| + |E|) time. Figure 10 shows
an example.
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Algorithm t0 determine min|S( G) |

Input :  sequenci ng graph nodel, G(W,E)
Output: S(G), static storage for a linear code inplenentation of G
single_thread_static_storage(G)

{
H = topologically.order (G)
count = storage = o;
VYueV(H)
{
Vv € succ(u)
count = count + &(u> v) ;
Vu € pred(u)
count = count - &(v>u) ;
storage = max(count, Storage) ;
} -
return st or age
}

Linearization using Topological Sorting

Input: data-flow graph nodel, G(V,E)
Output: a list of topologically ordered vertices
topologically order(G) {
Q = stack = {} ;
VueV(G)
u = wite ;
source-vertex(Q = gray ;
push (source-vertex(GQ) :
while stack # {} {
Vu € Adj(Top (stack)) {

if v =white {
v = gray ;
push(v) }

}
Q = Q + pop(stack) }
return .}
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Figure 10: Determination of minimum static storage for single execution thread

4.3 Partitioning Feasibility

A system partition into-an application-specific and a re-programmable component is considered feasible
when it implementsthe original specifications and it satisfies the performance and interface constraints.
We assume that the hardware and software compilation, done using standard tools, preserves the function-
ality. We, therefore, concentrate on constraints. In particular, timing constraints are of special interest.
As noted earlier, timing constraints are of two types: those related to min/max time separation between
different operations and rate constraints on I/O operations. We assume that the operations subject to a
min/max timing constraint belong to the same process model. A timing constraint between operation
belonging to two different processesis equivalent to a synchronization constraint between the processes
and it can be specified by ablocking inter-process communication in functional specification of the pro-
cesses. Rate constraints are trandated as constraints on latencies of affected sequencing graph models and
thus verified by comparing actual hardware and software latencies against imposed bounds. Satisfiability
of min/max timing constraints is checked by analyzing the corresponding constraint graph models. For
graphs with no unbounded delay operations, constraint satisfiability is related to absence of any posi-
tive cycles in the constraint graph model. However, in presence of unbounded delay operations, some
constraints may be ill-posed [26], that is, constraints that can not satisfied for some possible values of

delays of unbounded delay operations. Note that a minimum timing constraint is never ill-posed. For an
ill-posed maximum timing constraint between vertices »; and v; there are two cases:

1. operations v; and v; are trangitively related, i.e., v; >* v;,
2. conversely, operations are concurrent, that is, ~(v; > v;) & =(v; >* vi).

In the first case, there exists a path, p;;, that contains an unbounded delay operation. The unbounded delay
operation may be an external wait operation or an internal loop operation. For the software implementation
of the graph model, a wait operation is made deterministic by performing a context switch to a other
operations. Thus, satisfaction of the timing constraint by the software component can be verified by
assigning appropriate context switch delay (as mentioned in the previous section) to the wait operation.
In presence of general unconstrained data-dependent loop operations, determination of satisfiability of
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timing constraint is undecidable. However, under specia conditions constrained loop operations can be
made deterministic by choosing an appropriate policy of loop computation (as shown in the following
sections). In the second case, where the constrained operations are concurrent, the constraint can be made
well-posed by selective seridizations between the two paths of computation.

As mentioned earlier, when partitioning system model into hardware and software components the
data rates may not be uniform across models. The discrepancy in data-rates is caused by the fact that
the application-specific hardware and re-programmable components may be operated off different clocks
and the system execution model supports multi-rate executions that makesit possible to produce data at
a rate faster than it can be consumed by the software component when using a using a finite sized buffer.
In presence of multi-rate data transfers, feasibility of hardware-software partition is determined by the
fact that for al data transfers across a partition, the production and consumption data rates are compatible
with a finite and size-constrained interface buffer. That is, for any data transfer across partition, data
consumption rateis at least as high as the data production rate. The size of the actual buffer needed may
then be determined by using the scheme proposed in [27]. In addition, since the target architecture as
shown in Figure 5 contains a single system bus over which data transfer to and from the re-programmable
component takesplace. Therefore, the net effect of all data-transfers over this bus should not exceed the
pre-specified system bus bandwidth. Available bus bandwidth is a function of bus/processor clock rate

and memory latency.

4.4 Algorithms for System Partitioning

The partition problem of hardware and software components requires first finding a feasible partition.
Among data-rate feasible solutions, a cost function of overall hardware size, program and data storage
cost, bus bandwidth and synchronization overhead cost is used to determine the quality of a solution. We
explore two approaches to obtain a partition of system model into hardware and software components.

4.5 System Partitioning based on system non-determinism

We consider approaches to system partitioning in the order of increasing complexity of the system model.
Let us first consider a system graph model with no unbounded delay operations and with single-rate
execution model. We then look for a partition of a system model driven by satisfaction of the imposed
timing constraints. Consider an algorithm that is summarized asfollows: starting with aninitial solution
with all operationsin hardware, we select operations for move into the software component based on a
cost criterion of communication overheads. Movement of operations to software requires a seriaization
of operations in accordance with the partial order imposed by the system model. With this serialization
and analysis of the corresponding assembly code for a given re-programmable processor, we derive delays
through the software component. The movement of operationsis then constrained by satisfaction of the
imposed timing constraints. Such a partitioning agorithm would strive to achieve maximal number of
operations in the software component.

In presence of unbounded delay operations, we can still apply the algorithm described before. Note
that unbounded delay operations can not be subject to any maximum timing constraints. Therefore, we
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transfer all such operations into the software component and then identify deterministic delay operations
for move into the software component such that all timing constraints are satisfied.

However, in systems with multi-rate execution model, the datadependent delay operations makes
it difficult to predict actual data-rates of production and consumption across partitions. Further, non-
deterministic delays in the system model makes it difficult to statically schedule operationsin any im-
plementation of the system design. When considering a mixed implementation of the system design, it
is possible to use dynamic scheduling of operations either or in both hardware and software components.
Dynamic scheduling of operations in hardware or software requires both area and time overheads that
may sometimesrender ahardware-software co-design solution difficult or even infeasible. On the other
hand, use of static scheduling requires a careful analysis of data-transfer rates across hardware and soft-
ware portions in order to make sure that possible data-rates can indeed be supported by the interface
implementation.

Due to non-determinism in system models, the most general implementation of hardware and software
components requires a control generation scheme that supports data-driven dynamic scheduling of various
operations. Since the software component is implemented on a processor that physically supports only
single thread of control, realization of concurrency in software entails both storage area and execution
time overheads. On the other hand, in absence of any point of non-determinism from the software,
al the operations in the software can be scheduled statically. However, such a software model may
be too restrictive by requiring the control flow to be entirely in hardware. In our model of software
implementation, we take an intermediate approach to scheduling of various operations as described
below. First, we make following assumptions about the implementation model :

¢ Thesystem has an application-specific hardware component that handles all external synchroniza-
tion operations. (External non-determinism points).

o All the data dependent delay operations (internal non-determinism points) are implemented by
software fragments running on re-programmable components.

The software component is thought to consist of aset of concurrently executing routines, called threads.
A thread consists of alinearly ordered set of operations. The serialization of the operations is imposed
by the control flow in the corresponding graph model. Concurrent sets of operations are implemented as
separate threads to preserve concurrency specified in the system graph model. All the threads begin with
apoint of non-determinism and as such these are scheduled dynamically. However, within each thread
of-execution all operations are statically scheduled. As an example, data-dependent loopsin software are
implemented as a single thread with a data-dependent repeat count. In this way, we take an intermediate
approach between dynamic and static scheduling of software operations. Instead of scheduling every
operation dynamically, we create statically known deterministic threads of execution which are scheduled

in acycle-static manner depending on availability of data. Thus, anindividual operation in software has
afixed schedulein its thread, however, the time and the number of times the thread may be invoked is
data-driven. Therefore, for a given re-programmable processor, the latency,& of each thread is known
statically. For a given data-input operation in athread, ¢, with latency, A;, the data consumption rate, p;

is bounded as: x1— < p; < - where M., refersto thelatency of the longest thread. It is assumed that
the latency includes any synchronization overhead that may be required to implement multiple threads
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Partition

Input: System graph model, G =(V, E)
Output: Partitioned system graph model, V = Vg U Vs

partition(V):
v=Vviyvyn * identify points of non-determinism */
Ve = Vne gV /* external vsinternal nondeterminism */
Vg ={ V", V?} /* theinitial hardware component */
Vs ={Vn} * theinitia software component */
create software threads (V") * create| V™| routines */
compute data rates (processor)
if not(feasible(Vy, Vs)) exit /* No feasible solution exists */
frin = f(Vy, Vs) /* initialize cost function */
repeat
foreach v¢; e Vi N vy /* select a deterministic delay operation */
move(v?;) /* recursively move operations to sw */

until no improvement in cost function
return( Vy , Vs)

move(v®;): /* considers a vertex for move from Vg to Vg */
if feasible(Vy — {vd,-}, Vs + {vd;})
if (Ve — {v%}, Vs + {v4}) < fmin
Vg =Vy - {v4} /* move this operation to sw */
Vs =Vs +{ vd; }
frin = f(VH,Vs)

update software threads

update data rates (processor)

foreach v¢; € succ(vd;) N Vg /* identify successor for move */
move(v?;)

return

of execution on a single-thread re-programmable processor. The lower bound on p; is obtained by
implementing a software scheduling scheme that reschedul es a repeating thread for execution at the end
of every iteration.

The system partitioning across hardware and software components is performed by decoupling the
external and internal points of non-determinism in the system model. It is assumed that for al exter-
nal points of non-determinism, the corresponding data-rates are externally specified. Thus, through this
decoupling we are able to determine all the data-rates for al the inputs to the re-programmable com-
ponent. The production data-rates of the re-programmable component are determined by the software
synchronization scheme used. We consider the issue of software implementation in Section 6.

From externally specified data rates we compute data rates for data flow edges in the system graph
model. The vertex set, V, consists of two sets of vertices, V = {V 4, V"}, where V¢ denotes the set
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of operations whose delay is bounded and known at compile time, and V' * refers to non-deterministic
delay vertices. With a data-rate annotated system model as an input, we first isolate its points of non-
determinism, V™, into two groups. V™, those caused by external input/output operations, and Vi ,
those caused by internal data-dependent operations. The external points of nondeterminism, V e, are
solely assigned to the hardware while the internal points of non-determinism, V ™, are assigned solely to
the software component. With thisinitial partition we determine the feasibility of data transfers across
the partition. If thisinitial partition is not feasible, then the algorithm fails since no feasible partition

exists under the proposed hardware-software interface and software implementation scheme. If the initial
partition is feasible, then it is refined by migrating operations from hardware to software (i.e., moving
vertices from Vi to Vi) in the search for alower cost feasible partition.

Associated with each internal point of non-determinism (e.g. data-dependent loop bodies) we create
aprogram fragment or athread of execution. Each thread of execution corresponds to a software routine
by creating corresponding C code from HardwareC description. For various threads of execution in
the software component, we derive latency and static storage measures by analyzing the corresponding
assembly code. The assembly codeis obtained by compiling the corresponding C descriptions. We have
considered todate two off-the-shelf components, the R3000 and the 8086, and used existing compilersto
evaluate the performance of the corresponding implementation. The algorithm uses a cost function, f =
f(size(Vy), size(Vs), Synch.cost(Vy, Vs), Tinterface data rates) that is a weighted sum of its arguments.
The algorithm uses agreedy approach to selection of verticesfor moveintoVs. Thereisno backtracking
since a vertex moved into Vs staysin that set throughout rest of the algorithm. Therefore, the resulting
partitionisalocal optimum with respect single vertex moves. The overall complexity of the algorithm
is quadratic in the number of vertices.

Hardware Controt Software Data

DataFIFO
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SW Entry Points
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Figure 11: Partitioning into Hardware Control and Software Execute Processes

4.6 Partitioning based on decoupling of control and execution

In this section, we briefly mention some of the alternatives ways of partitioning system models in to
hardware and software, The partitioning problem can be formulated as the problem of decoupling
of control and execution processes. We think of a system model as consisting of interacting control
and execution procedures. The execution procedures perform data manipulation where as the control
procedures direct the flow of execution and data. There are two possibilities:
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Figure 12: Partitioned Hardware Model

1. The hardware generates the address and data values for software execute process to start executing.
In Figure 11 the software consists of a set of looping routines. The input data and loop counts are
provided to the software addressing unit by the hardware.

2. The software control provides a mechanism to dynamically schedule hardware execute resources.

This case is similar to microcoded machines where microcode uses different hardware resources to
control flow of execution.

Exploration of alternative partitioning schemesformsapart of the continuing research.

Asaresult of partitioning of a system model, we have two sets of sequencing graph models repre-

senting functionality hardware and software components (Figure 12). These models are translated into
dedicated hardware and software as explained in following sections.

5 Implementation of Hardware Components

H-ardware implementation consists of synthesis of application-specific components from system model.
Timing and resource constraints may be specified in the system model as well as during the design
exploration phase of the synthesis process. Application-specific hardware synthesis under resource and
timing constraints has been addressed in detail elsewhere [ 14]. When generating the hardware component
attention must be paid to the determination and reachability of a know reset state. Typically thisis achieved
by use of an extrareset input signal that on assertion steers the ASIC hardware into reset state from any
other state. Such areachability to the reset state from any other state may sometimes be an overkill and
expensive since it is obtained at the extra hardware cost of requiring every storage element in the ASIC
to be ‘reset-able’. It is possible to reduce this overhead by requiring resetability on a selected few storage
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elements. The primary idea being that the system can be driven to a known reset state by keeping the
primary inputs low and asserting the reset signal for a finite number of clocks needed to traverse the
longest circuit path in the asic.

5.1 Hardware Timing and Resource Constraints

Hardware timing constraints were described in Section 3.3. A resource refers to a data-path element,

that is a hardware module, which implements one or more HardwareC operations. Resource binding of
amodel refers to mapping of operations in the sequencing graph model to a set of hardware modules.

On binding, a hardware module isinstantiated in order to perform operationsto which it is bound to. In
general, a greater number of resource constraints results in alarger overall hardware size. However, to
few resource instances also increase the hardware size by increasing the size of control circuitry needed
to share resources among operations. Resource constraints refer to upper bounds on number and types of
hardware modules and instances. HardwareC supports specification of total number of hardware modules
and instances available for synthesis as well as specification of partial binding of operations to specific
resources and resource instances. Exampleb. Ibelow shows an example of HardwareC specification with
resource and timing constraints.

Example 5.1. Example of a HardwareC process with timing and resource constraints

process exanple (a, b, ¢)
in port a8} ;
in channel bi{8};
out port ¢

bool ean x[8), y(8], z[8] ;
tag A B
instance nultiply mpya;

A x = read(a)
Y = receive(b);
B if (x>y)
zZ =X-Y;
el se
z=x*y;
while (z >= 0) ¢
witec =y ;

z=2z-1;}

constraint maxtime fromA to B = 1 cycles
constraint resource-usage nultiply 1;

5.2 Constrained Hardware Partitioning

Often the size of application-specific hardware component may be too big to be implemented in asingle
chip. Thisis especialy the case when using programmable logic devices for the hardware component.

Typical field-programmable gate array (FPGA) devices support approximately 1000 equivalent gates
where as standard cell ASIC implementations provide up to 50,000 gates. In addition to size of hardware
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implementation, structural synthesis of large hardware components itself becomes computationdly diffi-
cult. For thisreason, partitioning of hardware graph modelsin order to satisfy eventual area, pinout and
delay limitations provides an effective means of hardware implementation. Our approach to hardware
partitioning is formulated as an hypergraph partitioning problem and is described in[23].

6 Implementation of Software Components

In this section we focus on the problem of synthesis of the software component of system design. We
consider the software portion to be small and mapped to real memory so that the issuesrelated to virtual
memory management are not relevant to this problem. The objective of software implementation is
to generate a sequence of processor assembly instructions, or the program, from the set of sequencing
graph models, ¢,, obtained via system partitioning. The generated program is required to satisfy the
timing constraints on the sequencing graph model. System partitioning ensures that size constraints on
the software component will be observed. Thistask isaccomplished in following four steps (Figure 13).

Step 1: Generation of linearized sets of operations or program threads from &,. This requires
selective serializations to ensure convexity of the subgraphs of graph models that are targeted for
program threads. A subgraph is considered convex if al paths between any pair of verticesin
the subgraph are completely contained in the subgraph. Selective seridization is followed by
scheduling of operations in subgraphs of the sequencing graph models. Each maximal set of
completely ordered (i.e., linearized) operations represents a potential program thread.

Step 2: Generation of program routines from program threads. In addition to operationsin the
program threads, a program routine also contains operations that make it possible to achieve con-
currency and synchronization between program threads. It may aso contain operations that are
required to observed imposed timing constraints on #,. Recall the essentia problem here is how do
we implement various program threads for execution on a processor that supports only sequential
execution of operations. Since the processor is completely dedicated to the implementation of the
system model and all the program threads are known statically, the final program can be generated
in one of following two ways.

1. generate a single program routine that incorporates al the program threads, or
2. provide for multiple-thread executions by means of operation interleaving

In thefirst case, we attempt to merge different routines and schedule all the operationsin asingle
routine. The unbounded delay operations are explicitly handled either by busy-waiting or by
executing specific context-switch operations. In the second case, concurrency between threadsis
achieved by interleaved execution on a single processor. In principle, operation interleaving can
be as“finer-grained” as the primitive operations performed by the processor, that is the assembly
instructions. Here we make a further assumption that interleaving is performed at the level of
operations used in the sequencing graph model. This assumption is made to avoid otherwise
excessive overheads due to implementation of concurrency at processor instruction level. Multiple
routines may be implemented using a subroutine relationships to a global routine scheduler. The
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cost of development of such an scheduler may be high in terms of code space and speed of response.
This cost increases substantially in case an attempt is made to avoid possibility of starvation of
some routines by implementing some kind of fairness in scheduling. An alternative would be to
implement various routines as a set of co-operuting routines instead of hierarchical relationship
imposed by subroutine call/return. Such an implementation is particularly attractive in our case
sinceit requiresrelatively little overheads to manage different routines on a single processor.
Section 6.4 presents acomparison of different concurrency implementation schemes.

Step 3: Code generation from program routines. For purposes of retargetability, we generate C-code
from program routines. Code generation requires trandation of operations defined in the sequencing
graph model into corresponding operations in C, a high-level programming language, identification
of memory locations, binding of variablesto memory addresses.

Step 4: Compilation of program routinesinto processor assembly and object code. C-programs
are compiled using existing software compiler for the target processors. Some issues related to
interface of the object code to the underlying processor and ASIC hardware must be resolved at
thislevel. These are discussed later in this section.

In this section, we discuss important issues related to generation of the software component.  Let us first
consider the step of generation of program threads from sequencing graph models. Figure 14 shows the
hierarchical graph model for the process example described in Example 3.2. The system graph model
consists of two graphs, labeled G and Gio0p.  The double-circles indicate operations with unbounded
execution delays. Depending on the points of synchronization in amodel, the graph can be implemented
as asingle or multiple program threads. A program thread is so called due to the complete serialization
of operations required for the control flow in a single thread of execution. In absence of any points of
synchronization, asimple graph model can be translated into a single program thread by ordering all the
operations of the graph model. On the other hand, a hierarchical system model isimplemented as a set
of program threads where each thread correspondsto a graph in the model hierarchy. Thus, the software
component consists of a set of program threads. The program threads may be hierarchically related. In
addition, some program threads may need to be executed concurrently based on the concurrency among
the corresponding graph models. Concurrency between program threads can be achieved by using an
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Figure 14: Example of a graph model containing unknown delay operations

inter-leaved computation model as explained later in this section.

A program thread may be initiated by a synchronization operation, such as a blocking receive operation
(rcv_synch). However, within each thread all operations have fixed delay. The (unknown) delay in
executing the synchronization operation appears as a delay in scheduling the program thread and it is
not considered a part of the thread latency. Therefore, for a given re-programmable device the latency
of each thread is known statically. Referring to the example in Figure 14, there are two program threads
To and Tjo0p. The thread, Ti,op consist of serialized operations in the corresponding graph body.

To Troop
rcv._synch | oop- synch
read wite
cond._eval op
cond.jump det ach

op add

Oop mpy

det ach

Though only a feature of representation, this use of hierarchy to represent control flow is well suited to
eventual implementation of the software component as a set of program routines. Since al the operations
in agiven graph model are always executed, the corresponding routines can be constructed with known
and fixed latencies as explained earlier. As with the graph model, the uncertainty due to data-dependent
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delay operations is related to invocations of the individua routines. A software implementation consisting

of dynamic invocations of fixed latency program threads simplifiesthe task of software characterization
for satisfaction of data rate constraints. Satisfaction of imposed data rate constraints depends on the
performance of the software component. Even in presence of unbounded delay operations bounds on
software performance can be determined based on itsmplementation of program threads. In the following
sections, we describe a code-level transformation of the data-dependent loop operations that makes it
possible to observe imposed input/output rate constraints. In cases, where such transformations are not
possible, we use processor interrupts along with bounds on number of interrupts and interrupt latencies
to ensure satisfaction of rate constraints.

6.1 Rate constraints and software performance

The data rate constraints on the inputs and outputs of the software component are derived based on
the corresponding constraints on system inputs and outputs. A data rate constraint on an input (output)
specifies alower bound (in terms of sec/sample) on the rate at which the particular 1/0 data should
be consumed (produced). In case of a deterministic software component, that is, software component
with known and bounded execution delays, precise data rates can be computed and checked against
corresponding data rate constraints. However, the presence of an unbounded-delay operation between
consecutive read (write) operations requires computation of statistical measures (such as distribution of
input data value and inter-arrival time) to determine the rate of data production and consumption. A major
contribution to the variability of dataratesis due to the data-dependent |oop operations since the delay
due to these operations consists of active execution times rather than *busy-wait’ -type delays encountered
by other synchronization operations.

Cyclo-static |oop implementation

In some cases, the need for statistical measures can be avoided by transforming the corresponding dynamic
loop execution model into a cycle-static loop execution model as follows. Consider, for example, a
software component that consists of reading a value followed by a data-dependent delay operation shown
in Example 6.1.

Example 6.1. Consider a mixed implementation shown by the figure below.

port x ASIC
P sec/sample

Processor

The ASIC component sends to the processor some data on port x at an input rate constraint of p
se&ample. The function to be implemented by the processor is modeled by the following HardwareC
processfragment.

process test(Xx, . ..) Thread T1 Thread T2
in port x [SIZE];
read | oop- synch
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Co \ detach <l oop- body>
read x ; \ X =x -1
while (x »>= 0) \ detach
{ \

<l oop- body> \

X=x-1; \

} [

x is a boolean array that represents an integer. In its software implementation, this behavior is translated
into a set of two program threads shown on the right, where one thread performs the reading operations,
and the other thread consists of operations in the body of the loop. For each execution of thread T1
there are x execution of thread T2.0

For the HardwareC process in Example 6.1, the interval between successive executions of the read
operation is determined by the overall execution time of the whi | e statement. Due to this variable-delay
loop operation, the input data rate at port x is variable and is dependent on value of x as a function of
time. For each invocation of thread T1 there are x invocations of thread T2. In other words, thread T1
can be resumed after x invocations of thread T2. In absence of any other data-dependency to operations in
the loop body, thread T1 can be restarted before completing all invocations of thread T2 by buffering the
datatransfer from thread T1to T2. Further, if variable x is used only for indexing the loop iterations, the
need for inter-thread buffering can be obviated by accumulating value of x into a separate loop counter as
shown in example below. We call such animplementation of aloop construct in software acycle-static
loop based on the fact that an upper bound on the number of iterations of the loop body is statically
determined by the datarate constraints on inputs and outputs that are affected by the data-dependent loop
operation.

A cycle-static loop implementation assumes that there exists arepeat-count counter associated with
every loop and aloop body isrequired to be executed as long as its repeat-count is a non-zero number.
Additionally, the repeat-count is not used by the corresponding loop body for any purposes other than
can keeping a count of number of iterations remaining. Under such conditions, the above component can
be transformed into two program threads where one thread reads port x and increments the repeat-count
for the loop body contained in the other thread.

Example 6.2.  Transformation of data-dependent loop in Example 2 into a cycle-static loop

process test(x, . ..) \ Thread T1 Thread T2
in port x [SIZE] \
{ \ read | oop-synch
integer repeat-count = 0 ; \ add op <l oop- body>
\ detach repeat - count - -
read x ; \ detach
repeat-count = repeat-count t x ; |

whi | e (repeat-count >= 0) \
{ |
<l oop- body> \
repeat-count = repeat-count-| |

(1). For each execution of thread T1 there are max(z, m) execution of thread T2 where constant
m is determined by input data rate constraint, p, on the read operation in T1 given by the relation:
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2 =(dv1+m . Ary)-t., where thread latencies Az and A include synchronization overheads. ¢,
denotes cycle time of the processor.

(2). Initialization of variables is performed during system RESET state. O

In this case, we can provide a bound on the rate at which port is read by ensuring that the read
thread, Thread T1, is scheduled, say after utmost m iterations of the loop body. Due to accumulation of
repeat-count additional care must be taken to avoid any potential overflow of this counter. [Generaly,
overflow can be avoided if m is greater than or equal to the average value of x. In the extreme, it can
be guaranteed not to overflow if misat least maximum of x which is equivalent to assigning worst-case
delay to the loop operation].

Decoupling data rate from software non-determinism

Due to unbounded delay operations in the software component that is translated into a data-dependent

number of invocations of some threads of execution, use of cycle-static loops may not aways be possible
or it may lead to implementations that under-utilize the system bus bandwidths, for example, by reserving

worst case data-transfer ratesfor somel/O operations.  With concurrent threads, to a certain extent, we
can insulate the input/output data rates from variable delays due to other threads by buffering the data
transfers between threads. Thus, the inter-thread buffers hold the data in order to facilitate multiple
executions among program threads. Threads containing specific input/output operations are scheduled

at fixed intervals via processor interrupt routines as shown in the Example 6.3 below. In this scheme,

finite-sized buffers are allocated for each data-transfer between program threads. In order to ensure the
input/output data rates for each thread, we associate a timer with every 1/O operation that interrupts the
processor once the timer expires. The associated interrupt service routine performs the respective I/O
operation and restarts the timer. In case a data is not ready the processor can send the previous output
and (optionally) raise an error flag.

Example 6.3.
Thread T2 Ti mer Process T1 (interrupt service routine)
| oop- synch timer-- per clock tick read x
<l oop- body> if (timer == 0) | oad timer = CONSTANT
X =x -1 i nterrupt enqueue (X) on dFIFO
detach

Thread T1 is now implemented into an interrupt service routine that is invoked at each expiration of
the timer process. Timer process represents a processor timer (or an external hardware timer) that is
used to generate interrupts at regular intervals. The interruption interval CONSTANT is determined by
the rate constraint and latencies of interrupt service routines. dFIFO in the interrupt service routine
refers to the buffer between threads T1 and T2. O

This schemeis particularly helpful in case of widely non-uniform rates of production and consumption.
In this case, data transfer from processor to ASICs is handled by the interrupt routines thereby leading
to arelatively smaller program size for the cost of increased latencies of the interrupt service routines.
Section 7.2 presents implementation costs and performance of this scheme.



40 6 IMPLEMENTATION OF SOFTWARE COMPONENTS

Next we consider the problem of software synchronization and scheduling mechanisms to make a
hardware-software system design feasible.

6.2 Representation of Inter-thread dependencies

Inter-thread dependencies are represented by a program flow graph, P = (V, £). The vertices of P
areindividua program threads. A directed edge between two vertices indicates a dependency between
the two corresponding threads. Example below shows the program flow graph corresponding to the
HardwareC process described in Example3.2.

Example 6.4. Program flow graph corresponding to pr ocess exanpl e

() —C

cl

6.3 Control Flow in the Software Component

Our model of software component relies on the sequentia execution of each thread of execution. Concur-
rency between threads is achieved through interleaved execution of the threads. Since multiple program
threads may be created out of a graph model each starting with an unbounded-delay operation, therefore,
software synchronization is needed to ensure correct ordering of operations within the program threads
and between different threads.

Since the total number program threads and their dependencies are known statically, the programs
threads are constructed to observe these dependencies. The threads are identified by unique tags. A
run-time FIFO, called control FIFO, maintainstheid of the tags that are ready to run based on control
flow (while they may still be waiting for data). Before detaching, each thread performs one or more
enqueue operations to the FIFO for its successor threads as shown in Example 6.5 below.

Example 6.5. Inter-thread control dependencies

before T1

Thread T1 .

/ \ <body>
enqueue (T2) on cFIFO
enqueue (T3) on cFIFO T1
detach
@ @ EC

Flow Graph Thread Control FIFO

<body> refers to the (linearized) set of operations from the corresponding graph models. Control
dependency from thread T1to T2 is built into the code of T1 by the enqueue operation on the control
FIFO.D
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A thread dependency on more than one predecessor thread (that is a multiple indegree (fanin) node
in the flow graph) is observed by ensuring multiple enqueue operations for the thread by means of a
counter. For example, athread node with aindegree of 2 would contain a synchronization preamble code
as indicated by the while statement shown in Example 6.6 below.

Example 6.6. Thread with multiple input control dependencies

Thread T1

while (count != 1) @ @
( count = count + 1;

detach

}
<body>
county: 0 (131
enqueue <successor threads> on ¢FIFO

detach

Control transfer for multiple fanin nodes entails program overheads that add to the latency of the
corresponding threads. For this reason, an attempt should be made to reduce multiple dependencies for
aprogram thread through a careful dependency analysis. In case of multiple outdegree nodesin the flow
graph, anecessary serialization among enabling of successor threads occurs. However, this serialization
isof little significance since there exists only a single re-programmable component.

6.4 Concurrency in Software Through Interleaving

The problem of concurrent multi-thread implementation iswell known[28]. In general, multiple program
threads may be implemented as subroutines operating under a global task scheduler. However, subroutine
calling adds overheads which can be reduced by putting all the program fragments at the same level of
execution. Such an aternative is provided by implementing different threads as coroutines[29]. In this
case, routines maintain a co-operative rather than a hierarchical relaionship by keeping al individua data
as local storage. The coroutines maintain alocal state and willingly relinquish control of the processor
at exception conditions which may be caused by unavailability of data or an interrupt. In case of such
exceptions the coroutine switch picks up the processes according to a predefined priority list. The code
for such a scheduler for coroutines takes approximately 100 bytes in an instruction set that supports both
register and memory operands.

Software implementation with explicitly modeled points of non-determinism

Since the processor is completely dedicated to the implementation of the system model and all software
tasks are known statically, we can use a smpler and more relevant scheme to implement the software
component. In this approach, we merge different routines and describe all operationsin a single routine
using amethod of description by cases[30]. This schemeissimpler than the coroutine scheme presented



42 6 IMPLEMENTATION OF SOFTWARE COMPONENTS

Implementation Processor type | Overhead cycles ]
Subroutine RM 728
Coroutine RM 364
Restricted Coroutine RM 103
Description by cases RM 85
Restricted Coroutine L/S 19
Description by cases usS 35

Table 3: Comparison of program thread implementation schemes

above. Here we construct a single program which has a unique state assignment for each point of non-
determinism. A globa state register is used to store the state of execution of a thread. Transitions between
states are determined by the requirement on interrupt latency for blocking transfers and scheduling of
different points of non-determinism based on data received.

This method is restrictive since it precludes use of nested routines and requires description as a single
switch statement, which in cases of particularly large software descriptions, may be too cumbersome.
Overhead due to state save and restore amounts to 85 clock cycles for every point of non-determinism
when implemented on a 8086 processor. Consequently, this scheme entails smaller overheads when
compared to the genera coroutine scheme described earlier.

Table 3 summarizes program overhead for different implementation schemes. The processors are
categorized based on availability of memory operandsin the instruction set. A register-memory (R./M)
processor supports both register and memory operands for its instructions, typical of ‘complex-instruction
set’ processors like Motorola 68K or Intel x86 series. A load-store (L/S) processor supports use of
memory operands only in two specific ‘load’ and ‘store’ instructions, typical of ‘reduced-instruction set’
processors like MipsR(2/3)K and Sun SPARC series. Overhead cycles refersto the overhead (in cycles)
incurred due each transfer operation from one program thread to another. A Subroutine implementation
refers to trandation of program threads to program subroutines that operate under a global task scheduler
(or the main program). A Coroutine implementation reduces the overhead by placing routinesin a
co-operative, rather than hierarchical, relationship to each other. A Restricted coroutine implementation
reduces the overhead further by suitably partitioning the onboard register storage between program threads
such that program counter is the only register that is saved/restored during a thread transfer. In case of
R/M processors the case description scheme reduces the overhead by reducing amount of ALU operations
infavor of aslight increase in memory input-output operations.

6.5 Issues in Code Generation from Program Routines

As mentioned earlier, we generate C-code from partitioned graph models. Use of high-level programming
language for software generation provides the ability to generate corresponding object code for most
commonly used processors. While this retargetability can be realized for the most part of the software
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component, there are certain program implementation issues that must be addressed while compiling and
loading the generated C-programs. In this section, we address the major practical implementation issues.

6.5.1 Memory allocation

The C-compiler uses two kinds of memory structures: stack for storing local variables in order to facilitate
subroutine calls; heap for dynamic allocation of memory space to run-time generated data structures.

When using target systemswith limited available memory (especially in case of microcontrollers where
the on-chip memory is severely constrained), unconstrained use of stack and heap space may lead runtime

exceptions that may make the software component non-functional. Fortunately, use of both stack and

heap can be avoided by performing static memory allocation in the generated program. Static memory
allocation makes the generated program non-recur sive and non-reentrant. The non-recursive nature
of the software component is not an issue since the input graph models are themselves non-recursive
thus ruling out possibility of recursion in generated programs. A non-reentrant program can not be
entered by more than one task. Thisisusually aproblem in case of general-purpose computing systems
where a program execution must co-exist with other programs and the operating system software. In our
application, the only restriction placed by non-reentrant code is that the main program and, the interrupt
service routines must not share any procedure calls.

6.5.2 Data types

The standard C programming languages supports the following data types. char, short int, int, long
int, float and double. Format compatibility for the encoded/interpreted data types (types other than bit-
vectors) becomes an issue when interfacing a general-purpose processor to externa hardware such as
A/D converters. Further, most standard C-compilers support declaration prefixes const and volatile. A
const-declared data set can be mapped to on-chip read-only memory (ROM). For variables declared as
shared-storage between program threads and as memory-mapped 1/0 variables, use of volatile declaration
preserves these from any compiler-driven optimizations.

63.3 The C Standard Library

The standard C-library contains procedures that are called by most C-programs. While most of these
procedures are coded as C-programs thus making it portable across systems. However, some of these
are written as assembly programs. Commonly used assembly routines are getchar() and putchar() that
are used for most 1/0 operations. These routines must be written for the target processor. Example 6.7
shows these routines for the MC68HC11 processor.

Example 6.7.  Assembly input/output routines for MC68HC11 processor

#define RDRF 0x20 /* Receive data register full =/
#define TRDE 0x80 /* Transnit data ready enpty */
#define SCSR * (char ® ) 0x102e /* SCI status register */
#define SCOR * (char ® ) 0x102f /* SCI data register */

int putchar (c)
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int c;

while (! (SCSR & TRDE) ); /* Wait until ready to receive */
SCOR = c;
return(c);

int getchar ()

while (! (SCSR & RDRF) ); /* Wit for data */
¢ = SCDR
return(c);

0

6.5.4 Linking and loading compiled C-programs

When using routines from the standard C-library, only the routines used by the program are loaded

into the object image. The object image consists of memory-relocatable modules. A hardware-software
interface often contains fixed memory locationsfor interface semaphores, hardware devices addresses et
cetra. When using rel ocatabl e object code, fixed addresses can be generated and used by the program by
creating special relocatable modulesthat areloaded at fixed addresses during executions. Use of smaller
relocatable modules for fixed-address generation avoids the problem of having to create fixed-address
object modules for the entire software component. Example 6.8 shows how such modules can be used

to address a fixed location interrupt vector table.

Example 6.8. Using relocatable modulesto generate fixed-address | ocations

Interrupt VectorTable

Fixed

p—a Location
-A..\ /

Program Relocatable module Memory

Figure15: Generating fixed addresses from C-programs

The interrupt-vector table islocated at a fixed address Oxffd6. The following relocatable module

vect or-tabl e contains pointersto various service routines. vect or - t abl e iscompiled sepa-
rately and loaded at address Oxffd6.

extern void reset();
extern void sci();
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extern void spi{);

voi d (* const vector-table[]) () = {
sci(), /* SCI service routine */
spif(),

reset,
}:

O

6.5.5 I nterface to assembly routines

For avariety of reasons, often assembly routines are needed to simplify the task of hardware-software
interface tasks. Most common example of assembly programs are programs for runtime startup routines
to setup the environment for execution of C-coded programs. A startup routine typically performs the
following functions:

1. Load stack pointer (if using stack)

2. Manipulation of hardware registers. Sometimes, a hardware register must be initialized within
a certain time interval of power-up that can only be performed by an assembly routines. For
example, the block protection register (BPROT) in MC68HC11 must be written within 5 1 cycles
after power-up inorder to enable writes to the on-chip EEPROM.

3. Initialize global variables either by initializing the automatic initialization block in static RAM
memory generated by the C-compiler for auto-initialized variables, or by using initialized values
fromaROM.

When interfacing a C-compiled program to assembly programs, the following issues must be consid-
ered:

¢ global symbols are renamed by the compiler with a prefix that must be used by the assembly
routines.
e When passing parameters or returning values from routines, some values may be passed via registers
while others may need use of an external stack.
o registersthat are used by compiler must be saved and restored when manipulated by the assembly
. routines.

Use of in-line assembly routines in C-programs simplifies the task of interfacing object code to the
underlying processor hardware. A common example of in-line assembly is in enabling/disabling interrupts
as shown by the Example below.

Example 6.9.  Useof in-line assembly

main()

_asm(*di\n*");
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<critical code>

_asm{"ei\n");

(]

As amatter of programming convenience, the in-line assembly instructions need not use explicitly
assigned processor registers. Most C-compilers alow use of C-expressions as operands to assembly
instructions. Thisallows usto use critical functions as assembly macrosin C source programs as shown
by the example below.

Example 6.10.  C functions as assembly macros

#define sin(x) \

({doubl e -value, _arg = (x) ; \

asm (' fsinx %1, %0* : =*=f* (-value) : *f* (_arg)); \
-value; 1)

The assembly instruction fsi nx uses C expression x as an operand. Type declaration - £+ indicates
that a floating point register must be used for this operand. A - = £+ declaration indicates that output
is afloating point register. The output operand .value must be a write-only l-value. O

7 System Synchronization

Due to pseudo-concurrency in the software component a data transfer from hardware to software must be
explicitly synchronized. Using a polling strategy, the software component can be designed to perform pre-
meditated transfers from the hardware components based on its data requirements. This requires static
scheduling of the hardware component. In cases where the software functionality is communication
limited, that is, the processor is busy-waiting for an input-output operation most of the time, such a
scheme would be sufficient. Further, in absence of any non-determinism, the software component in this
scheme can be smplified to asingle program thread and asingle data channel since all datatransfersare
serialized. However, thiswould not support any branching, no reordering of data arrivals since dynamic
scheduling of operations in hardware would not be supported.

In order to accommodate different rates of execution of the hardware and software components, and
due to unbounded delay operations, we look for adynamic scheduling of different threads of execution.
Such a scheduling is done based on availability of data. This scheduling is by means of acontrol FIFO
introduced in Section 6.3 which attempts to enforce the policy that dataitems are consumed in the order
in which they are produced. The hardware-software interface consists of data queues on each channel
and a FIFO that holds the identifiers for the enabled program threads in the order in which their input
data arrives. The control FIFO depth is sized with the number of threads of execution, since a program
thread is stalled pending availability of the requested data.

Example 7.1.  Hardware-Softwarelnterface

Figure 16 shows schematic connection of the FIFO control signals for a single data queue. In this
example, the data queue is memory mapped at address Oxee000 while the data queue request signal



System Bus

up_en =

——— qrq
FIFO D
Processor control taa
-_sb logic sue
—eet
Oxee000
1 on of_ak
ControlFIFO

Figure 16: Control FIFO schematic
nan

=/,
up_ab
up_en&qrq
‘ @
0
s of_ak

Figure 17: FIFO control state transition diagram

isidentified by bit 0 of address Oxee004 and enable from the microprocessor (upen) is generated from
hit 0 of address OxeeO08.

The control logic needed for generation of theenqueue is described by a simple state transition diagram
shown in Figure 17. The control FIFO is ready to enqueue (indicated by gn = 1) aprocessid if
the corresponding data request (g-xrq) is high and the process has enabled the thread for execution
(up-en). Signa up-ab indicates completion of a control FIFO read operation by the processor.

In case of multiple fanin queues, the enqueue_rq is generated by OR-ing the requests of all inputs
to the queues. In case of multiple-fanout queues, the signal dequeue_rq isgenerated also by OR-ing

all dequeue requests from the queue. O

47

The control FIFO and associated control logic can beimplemented either in hardware as apart of the

Example 7.2. Specification of the control FIFO based on two threads of execution

queue [2] controlFIFO [1];

ASIC component or in software. In case the control FIFO isimplemented in software the FIFO control
logic is no longer needed since the control f | ow isaready in software. Int hi s case, the gq.rg lines
from data queues are connected to processor unvectored interrupt lines, where the respective interrupt
service routines are used to enqueue the thread identifier tagsinto the control FIFO. During the enqueue
operations the interrupts are disabled in order to preserve integrity of the software control flow. An
specification for the control FIFO based on two threads of execution is* given in the Example 7.2 below.
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INTERFACEBUFFERPOLICY-OF-USE

DIRECT-MAPPED BUFFER FOR TtaG RQ DATA
DATA TRANSFER:
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1. Control flow modifications from:

a. Memory Read or
b. Interrupt driven or
c. A dedicated Input Port

Figure 18: Hardware and Software I nterface Architecture

queue [16] i ne-queue [1}, circle-queue [1];

when ({line_queue.dequeue_rqg+ & !line_queue.empty) & !controlFIFO.full) do
controlFIFO enqueue #1;

when ((circle_queue.dequeue_rq+ & !circle_dequeue.empty) & !controlFIFO.full)
do controlFIFO enqueue #2;

when (controlFIFO.dequeue_rqg+ & !control FI FO enpty) do controlFIFO dequeue
dlx.0xff000{1:0];

dlx.0xf£000(2:2}) = !control FI FO enpty;

In this example, two data queues with 16 bits of width and 1 bit of depth, | i ne- queue and
circl e-queue, and onequeue with 2 bits of width and 1 bit of depth controlFIFO are de
clared. The guarded commands specify the conditions on which the number 1 or the number 2 are
enqueued — here, a‘+’ after a signal name means a positive edge and a ‘-’ after the signal means a
negative edge. The first condition states that when a request for a dequeue on the queue line-queue
comes and the queue is not empty and the queue controlFIFO isnot full, then enqueue the value
linthe controlFIF0. The last command just specifies a direct connection between signal not
control FI FO enpty and bit 2 of signaldlx.0x££000. O
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Figure 19: Hardware and Software | nterface Model

7.1 Hardware-Software Interface Architecture

As mentioned earlier, the hardware-software interface depends on the corresponding data transfer require-
mentsimposed on the system model. In the case of known data-rates where (non-blocking) synchronous
datatransfers are possible, the interface contains an interface buffer memory for data transfer. Different
policy-of-use for the interface buffer is adopted when transferring data or control information acrossthe
partition. Therefore, theinterface buffer consists of two parts: adata-transfer buffer and acontrol-transfer
buffer (Figure 18). The data-transfer buffer uses an associative memory with statically determined tags
while the control-transfer buffer uses a FIFO policy-of-use in order to dynamically schedule multiple
threads of execution in the software. Associated with each data-transfer we assign a unique tag which
consists of two parts, software thread id and the specific data-transfer id. Since al the threads and all
input/output operations are known, the tags are determined statically. In addition, the data-buffer contains
arequest flag (RQ bit) associated with each tag to facilitate demand scheduling of various threads in
software. Figure 19 explains the modus operandi of data transfer across a hardware-software partition.
In the software, a thread of execution is in the compute state aslong as it has all the available data
[Figure19(a)]. In case of amiss on adata, the corresponding RQ bit is raised and the thread is detached
[Figure 19(c)]. The processor then selects a new thread of execution from the control FIFO [Figure 19(b)].
In case of data arrival to the interface buffer, if the corresponding RQ bit is on, its tag is put into the
control FIFO [Figure 19(c)].

Note that the interface architecture described here shows only a mechanistic view of the hardware-
software synchronization concepts presented before. Its implementation may be made simpler and yet
achieve the same effect. For example, the functionality of the associative memory buffer can be trandated
into a software thread while using asimpler memory structure.
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Figure 20: Graphics Coprocessor Block Diagram
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7.2 Example 51

FORMAT SCROLL VIEV VINDOW 2008 it |
sIN[ocT{mex| <[> [~[~[1[u]=[=[ t | 1 [wma]...

Q198 W S 74 Sy UM 1M 150 4 19F Ap Zp A6 79 20

_out[0:3] 100000000000000000000000000000600}t 222222[333333)444444f555555555555555666666[777
uout(0:3) oI!ooooooooooooooooooooooooooooooooh p22222[333333}444444/55555555555555 f66666[777
ceirclel0:3] o[000000000000000000 fB|l2 kloJs3333333333333333333333333333333[p [ipR33333333333333
weirclel0:3) »l0000000000000000000[E3333[[p2222222222222222222222222222][5 333 [R222222222222
controlFifol0:3] | o922 11 2j1 P2l11p2222222222)111111p2f111 p2fias ofias f2222222222f111 Bofias B2
CF-ready o[

corotrisors (o] | | 111 I O O O [ 11 |
controlfifos | L1 1 | | L1
ol.rg AN

. Py I I [ |

0 193 387 580 774 97 1161 1354 1546 1741 1935 2129 2322 2816 2709 2903

Figure 22: Graphics Coprocessor Simulation

7.2 Example

In order to illustrate the effect of software and hardware-software interface implementation, we present
design of a graphics controller that outputs pixel coordinates for lines and circles given the end coordinates

(and radiusin case of circle). The final implementation of the system design consists of line and circle

drawing routinesin the software component while the ASIC hardware performsinitial coordinate gener-
ation, coordinate transfer to the video ram. The software component consists of two threads of execution

corresponding to the line and circle drawing routines. Both program threads generate coordinates that
are used by the dedicated hardware. The data-driven dynamic scheduling of program threadsis achieved
by a3-deep control FIFO. The circle and line drawing program threads are identified by id numbers
1 and 2 respectively. The program threads are implemented using the coroutine scheme described in
Section 3.1.2.

Figure 23 shows the main program in case of a hardware control FIFO implementation. Like the line
and circle drawing routines, this program is compiled using existing C-compiler. Table 4 compares the
performance of different program implementations using control FIFO either in hardware or in software
component. The hardware implementation of a control FIFO with fanin 3 when synthesized by program
Hebe and mapped to LS| 10K library of gates using program Ceres costs 228 gates. An equivalent
software implementation adds 388 bytes to the overall program size of the software component. Note
that the cost of hardware control FIFO increases as the number of data queues increases. On the other
hand, software implementation of control FIFO using interrupt routines to perform the control FIFO
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#include "transfer_to.h"

int 1astPC[MAXCOROUTINES] = { scheduler, circle, line,main};
int current=MAIN;

int *controlFIFO_out = (int *) 0xaa0000;
int *controlFIFO = (int *) 0xab0000;
int *controlFIFO_outak = (int *) 0xac0000;

#include "line.c”
#include "circle.c”

void main(){
) resume (SCHEDULER);

int nextCoroutine;

void scheduler() {

resume (LINE);
resume (CIRCLE);
while (!RESET) {

do { )

nextCorou tine = *controlFIFO,
} while ((nextCoroutine & 0x4) != 0x4);
resume (nextCoroutine & 0x3);

}

Figure 23: Graphics Controller Software Component

Scheme Program Synchronization | Input data rate=! Output data rate=!
size | overhead (cycles/coordinate) (cycles/coordinate)
delay line circle
(bytes) (% cycles) | ave. | peak | ave. | peak
HardwareCFIFO 5972 0 81 535.2| 502 76.4| 30
SoftwareCFIFO 6588 50 95 749.5] 407 | 106.8| 31
Ont. Software CFIFO 6360 294 95 651 | 330 | 94 | 31

Table 4: A comparison of control FIFO implementation schemes
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enqueue operations offers lower implementation cost for a 50% increase in the thread latencies. In case
of software implementation of control FIFO, the enqueue and dequeue operations are described in C which
are then compiled for DLX assembly. The overhead due to enqueue and dequeue operations is reduced
further by manually optimizing the assembly code for enqueue and dequeue operations as indicated by
the entry * Opt. Software CFIFO’. This one time optimization of enqueue and dequeue routines, which
does not affect the C-code description of the program threads, leads to areduction in the program size
and program thread overhead to 29.4% thereby improving the rate at which the datais output. Note that
data input and output rates have been expressed in terms of number of cycles it takes to input or output a
coordinate. Due to a purely data-dependent behavior of program threads, the actua data input and output
rates would vary with respect to value of the input data. In this example simulation, the input rate has
been expressed for a simultaneous drawing of aline and 5 pixel radius with width of 1 pixel each and

theresults are accurate to one pixel. An input rate of 81 cycles/coordinate corresponds to approximately
0.25 million samples/sec for a processor running at 20 MHz. Similarly, a peak circle output rate of 30
cycles/coordinate corresponds to arate of 0.67 million samples/sec.

Though instructive, the line and circle drawing agorithms are ssmple enough that their software
implementation do not-fully exploit the potential of a mixed implementation. However, a more computa-
tionally intensive operation like spline generation or operations involving floating point arithmetic would
greatly benefit by their program implementations.

8 Example of System-level Synthesis. Network Coprocessor

The coprocessor manages the processes of transmitting and receiving data frames over a network under
CSMA/CD protocol. CSMA/CD refers to Carrier Sense Multiple Access with Collision Detection protocol
used to facilitate communication among many stations over a shared medium (or channel). It is defined
by IEEE 802.3 standard. Briefly, CS means that any station wishing to transmit ‘listens’ first and defers
its transmission until the channel is clear. MA implies simultaneous accesses by multiple stations is
alowed without the use of any central arbitration. CD refers to collision detection protocol used to detect
simultaneous transmission by two or more stations.

The purpose of this coprocessor is to off-load the host CPU from managing communication activities.
The coprocessor contains two independent 16 byte wide receive and transmit FIFO buffers. The copro-
cessor provides a small repertoire of eight instructions that let the host CPU program the machine for
specific operations (transmit some data from memory, for example). The coprocessor provides following
functions.

o Data Framing and De-Framing
o Network/Link Operation

o Address sensing

e Error Detection

o Data Encoding

o Memory Access
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START enables reception

STOP disable reception

XMIT transmit frame

CTADDR set controller address

SIF set inter-frame spacing

JAM set jamming parameter
PREAMBLE | set preamble length in bytes
SFRDELIM | set framedelimeter

Table 5: Network Coprocessor Instruction Set

8.1 Host CPU-Coprocessor Interface

Both the CPU and the coprocessor share a bus which can be controlled either by CPU or by the copro-
cessor. The exclusivity-of bus-master is ensured by handshake signals used between the two. The shared
bus consists of all Addressand Datalines.

In additionsto CPU and coprocessor, the bus is also connected to system memory. The coprocessor
contains a PC which contains the address from where its next instruction fetch occurs.

8.2 Coprocessor Operation

A typical coprocessor operation can be described asfollows:

1. host cpu invokes the coprocessor by write and amemory mapped address

2. the coprocessor responds by making areguest for bus control

3. once acknowledged the coprocessor initiates memory read operation to receive command operations
4. once initialized the coprocessor relinquishes control of the bus to host cpu

In the event of acollision, the controller managesthe ‘jam’ period, random wait and retry process by
re-initializing the DMA pointers without CPU intervention. In case of any errors in the received data,
the controller re-initializes the DMA pointers and reclaims any data buffers containing the bad frame.
All the transmitted and received data is manchester encoded/decoded.

8.3 Coprocessor Architecture

The coprocessor architecture is modeled after the target system architecture shown in Section 2.1. A
modification is addition of alocal memory and local busin order to reduce the system bus bandwidth.
The coprocessor can be thought of logically consisting of following functional units: execute, transmit
and the receive unit. The ethernet controller block diagram is shown in Figure 24.
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Figure 24: Network Coprocessor Block Diagram

The Execute unit provides for fetching and decoding of coprocessor instructions. It provides a
repertoire of eight instructionslisted in Table 5 The Receive unit receives frames and stores them into
memory. The host cpu sets aside an adequate amount of buffer space and then enables the controller.
Once enabled, frames arrived asynchronously. The controller must always be ready to receive the data
and storethem into afree memory area. The controller checks each received frame for an address match.
If amatch occurs, it stores the destination and source address and length field in the next available free
space. Once an entire frame is received without errors, the controller does the following:

e updates the actua count of the frames received
o fetchesaddress of the next free receive buffer
e interrupts the cpu

Given apointer to the memory, the Transmit unit generates the preambl e start frame delimiter,
fetches the destination address and length field from the transmit command, inserts its unique address
as the source address, fetches data field from buffers pointed by the transmit command, computes and
appends CRC at the end of the frame.



56 8 EXAMPLE OF SYSTEM-LEVEL SYNTHESIS: NETWORK COPROCESSOR

Theimportant rate and timing constraints on the coprocessor design are: the maximum input/output
bit rate is 10 Mb/sec; maximum propagation delay is 46.4 us; maximum jam time is 4.8 us and the
minimum inter-frame spacing is 67.2 us.

Micro-
Processor

-
| syncHronizaTION BUFFERS |32— ons
e — DMA'RC“D
Host

CPU ¥

|« RXE
RCVD-FRAME {=— [RCVD-BUFFER RCVD-BIT

~<—— RDX
——TXD
Memory | DMAXMIT XMIT-FRAME [— XMIT-BIT

Figure 25: Net work Coprocessor Implementa tion

8.4 Network Coprocessor Implementation Results

Due to this partitioning of system behavior into hardware and software components we demonstrate
feasibility of achieving a 20 MHz coprocessor using a slower general microprocessor component running
at 10 MHz. Thisspeedup in coprocessor performance is achieved by identifying time critical operations
and implementing them in dedicated hardware.

The ethernet coprocessor is modularly described as a set of 13 concurrently executing processes which
interact with each other by means of 24 send and 40 receive operations. The total HardwareC description
consists of 1036 lines of code. A mixed implementation following the approach outlined in Section 4.4
was attempted by decoupling the points of non-determinism in the system model. Table 6 shows the
results of synthesis of application-specific hardware component of the system implementations that was
synthesized in the Olympus Synthesis System and mapped using LS| logic 10K library of gates. Table
7 shows synthesis results using ACTEL library of gates. The software’ component isimplemented in a
single program containing case switches corresponding to 17 synchronization points, i.e., internal points
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Unit Process Area Delay

Transmit Unit | xmitbit 271 | 1431 ns
xmit_frame | 3183 | 37.15 ns
DMA xmit | 2560 | 45.06 ns
ReceiveUnit | DMAxcvd | 400 | 2751 ns
rcvdbit 282 |1 12.30 ns
rcvd buffer | 127 | 22.09 ns
rcvdframe | 1571 | 38.12 ns

Coprocessor 8394 | 45.06 ns

Table 6: Network Coprocessor Synthesis Resultsusing LS| LCAI0K Gates

Unit Process Area Delay

Transmit Unit | xmit_bit 268 | 128.10 ns
xmitframe | 2548 | 246.0 ns
DMA xmit | 2028 | 472.85 ns
Receive Unit | DMA_rcvd | 563 | 236.65 ns
rcvd.bit 211 | 11550 ns
rcvdbuffer | 121 | 199.28 ns
rcvdframe | 1226 | 298.40 ns

Coprocessor 7022 | 472.85 ns

Table 7: Network Coprocessor Synthesis Results using Actel Gates

of non-determinism as described in Section 6. With reference to Figure 24, the software component
congists of t he execution unit and portions of the DMA_rcvd and DMA_xmit blocks. The reception and
transmission of data on the ethernet line is handled by the application-specific hardware running at 20
MHz. Thetotal interface buffer cost is 314 bits of memory elements. Table 8 lists statistics on the code
generated by existing software compilersfor the ethernet software component implementation.

By contrast, apurely hardware implementation of the Network Coprocessor requires 10882 gates
(using LSI 10K library). With amaximum limit of 10000 gates on asingle chip, apure hardware imple-
mentation would require two application-specific chips. Thus by partitioning into hardware and software
components we are able to achieve a 20 MHz coprocessor operation while decreasing the overall hard-
ware cost to only one application-specific chip (or 23% in terms of gate count). The reprogrammability
of software components makes it possible to increase the coprocessor functiondity, for example addition
of self-test and diagnostic features, with little or no increase in dedicated hardware required.
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Target Processor | Pgm & Data Size

Max Delay

R3000, 10 MHz 8572 bytes 56 cycles, 5.6 us

8086, 10 MHz 1295 bytes | 115 cycles, 115 s |

Table 8: Network Coprocessor Software Component

Figure 26 shows a results of simulation of the final network coprocessor design. This simulation
portion shows when the coprocessor is being programmed for transmission. Instructions are supplied to
the coprocessor by external programmer (the host CPU) which areenqueue in al-deep queue, ctqueue.
Thelast pulse on signal ctqueue_ak indicates transmission enable instruction after which datais
transmitted serially through signal TXD.
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9 Summary

Synthesis of systems containing both general -purpose re-programmable as well as application-specific
components can be formul ated as a hardware-software co-design problem due to two predominantly dif-
ferent computation models used by the system components. This report attempts to identify important
topics and sub-problems in synthesis of hardware-software systems which are then addressed individu-
aly. Among the important topics are — system functionality and constraint modeling, system partitioning,
hardware-software synchronization and synthesis of hardware and software components. We model sys-
tem behavior using flow graph that encapsulate system data and control flow. Constraints are specified on
these graphs as additiona edges or as constraints on graph properties. Constraint-driven partitioning into
hardware and software components is performed using a system model that supports non-deterministic de-
lay operations and timing constraints. This partitioning is driven by the satisfaction of timing constraints.
A feasible solution to the timing constraints is obtained by identification and separation of internal and
externa points of non-determinism in the system model.

Hardware implementation of partitioned system models uses synthesis approach formulated in the
Olympus Synthesis System. Software component design for such systems poses interesting problems due
to inherently serial nature of program execution that must interact with concurrently operating hardware
components. The software component is generated in two steps. First we create a set of linearized sets
of operations, called threads. Next, based on concurrency implementation technique, program threads
aretranglated into program routines. We have compared program implementation schemesfor achieving
low-overhead pseudo-concurrency in the program threads. A coroutine implementation reduces overheads
due to hierarchical calling mechanisms by treating all routines symmetrically, therefore, the context
information needed to be saved/restored is reduced. However, the necessity to embed control flow
into the individual coroutines reduces this gain somewhat, since in some ways the hierarchical context
savelrestore also contains this control flow information. At the same time, the ability to do intelligent
dependency analysis can reduce this overhead in case of coroutines. Case descriptions may result in
asmaller overall program implementation in certain cases. The tradeoff between cases and coroutine
implementations is dependent on processor 1SA.

Synchronization between hardware and software is achieved through the use of a control FIFO buffer.
We have demonstrated feasibility of control FIFO-based hardware-software synchronization schemes
where the FIFO control can be implemented either as a dedicated hardware or as a program. The
software implementation of control FIFO reduces the size of hardware component of system design, but
it increases program size and adds to the latencies of program threads. This makes the input data rate about
15% slower in case of the graphics controller example. Depending on the objective of system synthesis
either of the hardware and software alternatives can be selected and simulated using program Poseidon.
Generdly, an implementation that aims to rapidly prototype the system design would favor software
component of the system design for asmall loss of performance. Hardware control FIFO-based schemes
require sophisticated hardware in order to implement multi-fanin queues. The interrupt-based schemes
reduce the external overhead for the price of additional storage/counters, achieve greater bandwidth
utilizations, reduce the effect of thread sizes on supported data rates, thus making an otherwise infeasible
partition feasible.
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Using the partitioning and implementation approach outlined here we are able to implement the design
of an Ethernet based network coprocessor into feasible hardware and software components. The mixed
implementation requires 23% less dedicated hardware than a purely application-specific implementation.
More importantly, reprogrammability of the software component makes it possible to extend the copro-
cessor functionality without the need of additional application-specific hardware modules. We are able to
smulate mixed system designs using by running concurrent hardware, software simulations with interface
protocol described as a set of guarded commands.

The topic of system synthesis using hardware and software is explorative in nature, because of its
novelty. Even with the simplifying assumptionsrelating to the target architecture, the problems of accu-
rately characterizing software component and its synthesis are challenging problems. Thiswork takesa
first step in formulating the problem of system synthesis containing hardware and software components.
There are several limitations of the approach presented here. First, even though system specifications
in HardwareC contain explicit concurrency, the algorithmic control flow is not modified during the be-
havioral synthesis process. This control flow eventually translates into a hierarchical sequencing graph
model which influences system partitioning and the generation of program threads. Since no across the
hierarchy optimizationsare performed the system implementations are affected by the style of specifica-
tion in HardwareC. Current research efforts are attempting to formulate behavioral transformations that
alter control flow while preserving overall functional and timing characteristics of asystem model. With
respect to partitioning, the limitation of the technique presented here would be related to the lack of a
feasible partition on some system designs. In addition, the assumptions on hardware, software imple-
mentation model and interface scheme influence the partition. As a result, the partitioning results may
not be as general to all system designs but specific to the assumptions made for example to the type
of re-programmabl e processor being considered. Further, the hardware and processor cost models used
are simplified in order to speed up evaluations of different partitioning aternatives. In particular, our
formulation does not make use of processor specific capabilities in the performance estimation of the
software component. Currently we do not consider memory hierarchy in our model of system design.
Most modern processors come with a certain amount of on-chip cache memory that can be used to speed
up the response time of the software component. However, thisis not an inherent limitation of our
approach, and future extensions include modeling of the effect of cache misses on software performance.

10 Acknowledgments

Authors would like to thank Claudionor Coelho, Jr. and Martin Freeman for helpful discussions. This
research was sponsored by NSF-ARPA, under grant No. MIP 8719546 and, by DEC jointly with NSF,
under aPY| Award program, and by afellowship provided by Philips/Signetics. \We also acknowledge
support from ARPA, under contract No. J-FBI-89-101.

References

[1] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, “The Olympus Synthesis System for Digital



REFERENCES 61
Design,” IEEE Design and Test Magazine, pp. 37-53, Oct. 1990.

[2] J. Rabaey, H. D. Man, and et. al., Silicon Compilation, D. Gajski, editor, ch. Cathedra 11: A
Synthesis System for Multiprocessor DSP Systems, pp. 311-360. Addison Wesley, 1988.

[31D. Thomas, E. Lagnese, R. Walker, J. Nestor, J. Rgjan, and R. Blackbum, Algorithmic and Register-
Transfer Level: The System Architects Workbench. Kluwer Academic Publishers, 1990.

[4] R. Camposano and W. Rosenstiel, “Synthesizing Circuits from Behavioral Descriptions,” IEEE
Transactions on CAD/ICAS, vol. 8, no. 2, pp. 171-180, Feb. 1989.

[5]1 M. Ligthart, A. Bechtolsheim, G. D. Micheli, and A. E. Gamal, “ Design of a Digital Audio Input
Output Chip,” in Proceedings of the Custom Integrated Circuits Conference, pp. 15.1.1-15.1.6, May
1989.

[6] R. K. Gupta, C. C. Jr., and G. D. Micheli, “ Synthesis and Simulation of Digital Systems Containing
Interacting Hardware and Software Components,” in Proceedings of the 29t*Design Automation
Conference, June 1992.

[7] C. N. Coelho, D. Filo, and G. D. Micheli, “ Channel Sharing,” under preparation, Stanford Univer-
sity, 1992,

[8]M. C. McFarland, “TheVaue Trace: A Data Base for Automated Digital Design,” Technical Report
DRC-01-4-80, Design Research Center, Carnegie-Mellon University, Nov. 1978.

[9] R. Camposano, A. Kunzmann, and W. Rosenstiel, “ Automatic Data Path Synthesis from DSL
Specifications,” in Proceedings of the International Conference on Computer Design, pp. 630-635,
1984.

[10] A. Parker, J. Pizarro, and M. Mlinar, “ A Program for Data Path Synthesis,” in Proceedings of the
2374 Design Automation Conference, pp. 461-466, June 1986.

[ 11)R. K. Brayton, R. Camposano, G. D. Micheli, R. Otten, and J. van Eijndhoven, Silicon Compilers,
ch. TheY orktown Silicon Compiler System, pp. 204-310. Addison Wesley, 1987.

[ 12} V. Sarkar, Partitioning and scheduling parallel programs for multiprocessors. MIT Press, Cam-
bridge, Mass., 1989.

[13]) D. Ku and G. D. Micheli, “HardwareC - A Language for Hardware Design (version 2.0),” CSL
Technical Report CSL-TR-90419, Stanford University, Apr. 1990.

[14] D. Ku and G. D. Micheli, High-level Synthesis of ASICs under Timing and and Synchronization
Constraints. Kluwer Academic Publishers, 1992.

[ 15] B. Chen and R. Yeh, “Formal Specification and Verification of Distributed Systems,” IEEE Trans-
actions on Software Engineering, vol. SE-9, no. 6, pp. 710-722, Nov. 1983.



62 REFERENCES

[(16] V. Haase, “ Redl lime Behavior of Programs,” IEEE Transactions on Software Engineering, vol. SE-
7, no. 5, pp. 494-501, Sept. 1991.

[17]P. Caspi and N. Halbwachs, “ A Functional Model for Describing and Reasoning Time Behavior of
Computer Systems,” Acta Informatica, vol. 22, no. 6, pp. 595-628, Mar. 1986.

[18) K. Apt, N. Francez, and W. D. Roever, “ A Proof System for Communicating Sequential Processes,”
ACM Trans. on Programming Languages and Systems, vol. 27, no. 2, pp. 359-385, July 1980.

[19] S. Owicki and D. Gries, “ Verifying Properties of Parallel Programs,”” Communications of the ACM,
vol. 19, no. 5, pp. 279-285, May 1976.

[20] A. L. Davisand R. M. Kéller, “ Data Flow Program Graphs,” IEEE Computer, vol. 15, no. 2, Feb.
1982.

[21] J. B. Dennisand D. P. Misunas, “ A preliminary architecturefor abasic data-flow processor,” in
Proc. 2nd Annual Symposium on Computer Architecture, pp. 126-132, 1974.

[22] D. Bustard, J. Elder, and J. Welsh, Concurrent Program Structures, p. 3. Prentice Hall, 1988.

[23] R. K. Guptaand G. D. Michdli, “Vulcan - A System for High-Level Partitioning of Synchronous
Digitd Systems,” CSL Technica Report CSL-TR-471, Stanford University, Apr. 1991.

[24] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and Tools, ch. Code
Generation, pp. 557-565. Addison Wedey, 1986.

[25] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, ch. VI: Graph Algo-
rithms. The MIT Press, 1990.

[26] D. Ku and G. D. Micheli, “ Relative Scheduling Und@TI}Ting Congtraints: Algorithms for High-
Level Synthesis of Digital Circuits,” IEEE Transactions CAD/ICAS, vol. 11, no. 6, pp. 696-718,
June 1992.

[27] T. Amon and G. Borriello, “Sizing Synchronization Queues: A Case Study in Higher Level Syn-
thesis,” in Proceedings of the 28 t* Design Automation Conference, June 199 1.

[28] G. R. Andrews and F. Schneider, “ Concepts and Notations for Concurrent Programming,” ACM
Computing Surveys, vol. 15, no. 1, pp. 344, Mar. 1983.

[29] M. E. Conway, “ Design of a Separate Transition-Diagram Compiler,” Comm. of the ACM, vol. 6,
pp. 396408, 1963.

[301 P. J. H. King, “ Decision Tables,” The Computer Journal, vol. 10, no. 2, Aug. 1967.



11 Appendix A: Processor Characterization in Vulcan-11

The syntax of the CPU characteristicsfileis:
.cpumodel <processor-name> ;

.machine_type [<stack>, <accumulator>, <gpr>};
.operand-type {<rr>, <rm>, <mmp] ;

.cycle_time<num> NS ;
.l oad <num> cycles ;

.address [<str>]*;
.data [<str>]* ;
Jinterrupt [<str>)* ;
.reset <str> ;

.bus_model ;
.type [<muxed> , <de_muxed>] ;

T .de_muxed;
.mem_read <str> ;
.mem_write <str> ;
.io_read <str> ;
.lo_write <str> ;

.end_de_muxed ;

. muxed ;
.read <str> ,
.write <str> ;
.io <str>
.mem <str> ;
.end_de_muxed ;

.bus_hold <str> ;
.bus_ack <str> ;

.end_bus_model ;
.timing_model ;

# tining nodel

63

# instr delay = read/wite access + execution delay + operand EA del ays

.read_access <num> cycl es ;
.write_access <num> cycl es ;

.load <num> cycles ;
.store <num> cycles ;

. move <num> cycles ;
.xchange <num> cycles ;

.alu <num> cycles ;
. NPy <num> cycles ;
.div <num> cycles ;
. comp <num> cycles ;
.call <num> cycles ;
.jump <num> cycles ;
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.branch <num> cycles ;
.bc_true <num> cycles ;
.bc_false <num> cycles ;
.return <num> cycl es

# interrupts are all fixed target l|ocations
.seti <num> cycles ; '

.cli <num> cycles ;

.int_response <num> cycl es ;

.halt <num> cycles ;

# EA cal cul ati on delays
.address_modes ,

.immediate <num> cycles ;
.register <num> cycles ;
.direct <num> cycles ;
.reg_indirect <num> cycles ;
.mem_indirect <num> cycles ;
.indexed <num> cycles ;
.other <num> cycles ;

.end_address_modes ;

.fpadd <num> cycles ;
.fpsub <num> cycles ;
.fpdiv <num> cycles
fpmul <num> cycl es

.end_timing_mode
. endcpunodel



