
COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY . STANFORD, CA 943054055, . .

SYSTEM SYNTHESIS via HARDWARE-SO
CO-DESIGN ’

Rajesh K. Gupta
Giovanni De Micheli-_

Technical Report No. CSL-TR-92-548

* October 1992

This research was sponsored by NSF-DARPA, under grant No. MIP 8719546 and by
DEC jointly with NSF, under a PYI Award program and by a fellowship provided
by Philips/Signetics. We also acknowledge support from DARPA,under contract
No. J-FBI-89-101. ,.

System Synthesis via Hardware-Software Co-design

Rajesh K. Gupta Giovanni De Micheli

Technical Report CSL-TR-92-548
October 1992

Computer Systems Ldzboratory
Departments of Electrical Engineering and Computer Science

Stanford University, Stanford, CA 943054055.

Abstract

Synthesis of circuits containing application-specific as well as re-programmable components such as
off-the-shelf microprocessors provides a promising approach to realization of complex systems using a
minimal amount of application-specific hardware while still meeting the required performance constraints.
We formulate the synthesis problem of complex behavioral descriptions with performance constraints as
a hardware-software co-design problem. The target system architecture consists of a software component
as a program running on a re-programmable processor assisted by application-specific hardware com-
ponents. System synthesis is performed by first partitioning the input system description into hardware
and software portions and then by implementing each of them separately. We consider the problem of
identifying potential hardware and software components of a system described in a high-level modeling
language. Partitioning approaches are presented based on decoupling of data and control flow, and based

I on communication/synchronization requirements of the resulting system design.
Synchronization between various elements of a mixed system design is one of the key issues that any

synthesis system must address. We present software and interface synchronization schemes that facilitate
communication between system components. We explore the relationship between the non-determinism
in‘the system models and the associated synchronization schemes needed in system implementations.

The synthesis of dedicated hardware is achieved by hardware synthesis tools [11, while the software
component is generated using software compiling techniques. We present tools to perform synthesis
of a system description into hardware and software components. The resulting software component is
assumed to be implemented for the DLX machine, a load/store microprocessor. We present design of an
ethernet based network coprocessor to demonstrate the feasibility of mixed system synthesis.

Key Words and Phrases: System-level synthesis, High-level Synthesis, System Partitioning, Hardware-
Software Co-design, Multiple Chip Modules (MCMs)

Copyright @ 1992
bY

Rajesh K. Gupta and Giovanni De Micheli

Contents

.
1 Introduction 1

1.1 Motivations for hardware-sofkware partitioning . 1
1 . 2 Theproblemofsystemsynthesis ;. 4
1.3 Applications . 5

2 System Architectures Based on Hardware-Software Components 6
2.1 Target System Architecture . 8

3 Specification and Modeling of Hardware-Sofkware Systems 9
3.1 System specification using HfzrciwareC . 10

3.1.1 MemoryandCommunication . 11
3.1.2 Nondeterminism in System Specifications . 12

3.2 System Model . 12
3.2.1 Communication . 17

3.3 Specification of?Eming Constraints . 19
3.4 DataRate Constraints . 20

4 The Problem of Hardware-Software Partitioning 22
4.1 Processor Model . 22
4.2 Modeling of Software Per-fonnance . 24
4.3 Partitioning Feasibility. 1 27
4.4 Algorithms for System Partitioning . 28
4.5 System partitioning based on system non&krminism 28
4.6 Partitioning based on decoupling of control and execution 31

5 Implementation of Hardware Components 32
5.1 Hardware liming and Resource Constraints . 33

I 5.2 Constrained Hardware Partitioning . 33

6 Implementation of Software Components 34
6.1 Rate constraints and software performance . 37
6~2 Representation of Inter-thread dependencies . 40
6.3 Control Flow in the Software Component. 40
6.4 Concurrency in Software mgh Interleaving . 41
6.5 Issues in Code Generation fi-om Program Routines . 42

6.51 Memory allocation . 43
6.5.2 Datatypes . 43
6.5.3 TbeC StandardLibrary . 43
6.5.4 Linking and loading wmpiled C-programs . 44
6.5.5 Interface to assembiy routines. 45

. . .
111

7 System Synchronization 46
7.1 Hardware-Software Interface Architecture. 49
7.2 Example . 51

8 Example of System-level Synthesis: Network Coprocessor 53
8.1 Host CPU-Coprocessor Interface . 54
8.2 Coprocessor Operation. 54
8.3 Coprocessor Architecture . 54
8.4 Network Coprocessor Implementation Results . 56

9 Summary 59

10 Acknowledgments 60

11 Appendix A: Processor Characterization in Vulcan-II 63

iv

List of Figures

1 Example of a Mix& System Implementation . 2
2 DESEbcryptionscheme . 3
3 SystemSpMs~m . 6
4 System CMMcatbn Based on HW/SW Cbmpnents 7
5 Eqget System Ar&it@ture . 8
6 Linear &t.k versus Data-How Graph Representations 10
7 Exampleofa squenclaggqph mud& . 15
8 lllie Constraint Graph Model . 19
9 S~~~.onoff~cooslraiotdlsamin/m;utimrfig~ns~~t 21
10 Determination of minimum static storage fw singIe execution thread 27
11 Pm.tioning into Hardware Control and SoAware Execute Ibzsses 31
12 Partitioned Hardwatz Model. 32
13 Stqsiogenerationoftbsorbvarecomponent . 35
14 Example of a gra@ model containing unknown delay operalioas 36
15 Generating tTxed addresses &vm C-programs . 44
16 Cbntrol m schematic . 47
17 HFO control state transition diagram . 47
18 Hardware and SoAware lirterfacle Architecture . 48
19 Hardware and SoAware Interface Model . 49
20 Graphics Cbprwr Block Diagram. 50
21 Graphics Cbproczssor Implementatibn . 50
22 Graphics Coprocessor Simulation . 51
23 Graphics Controller Software Component. 52
24 Network Coptocesscu Block Diagram . 55
25 Network Copmessor I&plementatibn . 56
26 N&work Coprocessor Simulation . 58

V

List of Tables

Sequencing graph operation vertices . 16
Addressing Modes . 23
Comwson ofprogram t&ad implementation sc&nes 42
A wmparison of wntrvl HF0 implementation m 52
Network &processor Instruction Set . 54
Network Cbpr-r Synthesis ResuIts using LSI LCXIOK Gates 57
Network Coprxessor Synthesis Results using AC@ Ga&s 57
Network Coprocessor S&ware Component . 58

vi

System Synthesis via Hardware-Software Co-design

Rajesh K. Gupta Giovanni De Micheli

Technical Report CSL-TR-92-548
October 1992

Computer Systems L&oratory
Departments of Electrical Engineering and Computer Science

Stanford University, Stanford, CA 943054055.

-_

1 Introduction

Existing high-level synthesis techniques attempt to generate a purely hardware implementation of a system
design either as a single chip or as an interconnection of multiple chips each of which is individually syn-
thesized [l] [2] [3] [4]. A common objection to such an approach to ASK design is the cost-effectiveness
of an application-specljic hardware implementation versus a corresponding software solution using stan-
dard re-progrummabk components, such as off-the-shelf microprocessors. Often system design requires
a mixed implementation, that blends ASIC chips with processors, memory and other special purpose mod-
ules like multimedia, transducer and DSP modules. Important examples are embedded controllers and
telecommunication systems. In practice most such systems consist of hardware and software components
- hence the term firmware is often used to describe these systems. When considering the problem of
firmware synthesis, an important issue is the definition of boundaries between the hardware and the soft-

a ware components. In some cases, this boundary can be dictated by issues such as analog interfaces that
require a specialized hardware implementation. In this report we consider instead the problem in which
implementations are sought for synchronous digital systems, and where the choice between dedicated
hardware and software solutions are driven by system performance and cost requirements.

1.1 Motivations for hardware-software partitioning

Indeed, most digital functions can be implemented by software programs. The major reasons for building
dedicated ASK hardware is the satisfaction of performance constraints. These performance constraints
can be on the overall time (latency) to perform a given task, or more specifically on the timing to perform
a subtask and/or on the ability to sustain specified input/output data rates over multiple executions of
the system model. The hardware performance depends on the results of scheduling and binding and on
basic performance characteristics of individual hardware blocks. Whereas the number of cycles that it
takes a general re-programmable processor to execute a routine depends on the number of instructions it

1

1 INlRODVC7?ON

i receive data from memory using DMA 1I
I 1 I
I

assemble frame I
REPROGRAMMABLE

I I i SOFlVVARE. .
T DEDICATEDmaw timecunstreint HARDWARE

\
4transmit data

Figure 1: Example of a Mxed System Implementation

must execute and the cycle-per-instruction (CPI) metric of the processor. In general, application-specific
hardware implementations tend to be faster since the underlying hardware is tailored and optimized for
the specific set of tasks. However in absence of stringent performance constraints, for a given behavioral
description of an ASK machine, some parts (subroutines) of it may be well suited to a commonly
available re-programmable processor (like 6502, 68HC11, 805 1, 8096 etc) while others may take too
long to execute. For instance, most general purpose CPU’s deal with byte operands whereas many ASIC
controllers contain bit oriented operations resulting in unnecessary overheads when implemented entirely
in software. However, the software implementations do provide the ease and flexibility of reprogramming
for the possible price of loss of performance.

Example 1.1.
To be specific, consider design of a data encryption/protocol controller chip, such as DES (Data
Encryption Standard) used by commercial banks or AES (Audio Engineering Society) protocol used
for communication between digital audio devices and computers. In Figure 1, the DES transmitter
takes data from memory using a DMA controller, assembles the frame for transmission, it encrypts the
data after it receives the key and transmits the encrypted data. Encryption protocol requires that the
encrypted data be transmitted within a certain time duration of receiving the encryption key. In the DES
protocol, a 56-bit encryption key is used to transform 64 bits of ‘plaintext’. Software implementations
of the encryption algorithm shown in Figure 2 vary from 300 to 3000 instructions depending on the

’ level of bit-oriented operations supported. The hardware implementation on the other hand can be
implemented to work in 16 cycles times of most digital systems.

It is possible to implement the DES controller in Figure 1 either as a program on a general purpose
re-programmable component or as dedicated ASIC chips [5]. However, as shown in Figure 2, most
encryption/decryption is a long, iterative process of rotations, XOR operations, bit permutations and
table lookups. Further, these protocols often use bit-reversal operations as a part of overall encoding
strategy. A bit-permutation operation can be implemented easily in dedicated hardware while it may
take too long to execute as a sequence of instructions on most processors. While implementing the
complete protocol controller on dedicated hardware may be too expensive, an implementation which
uses a re-programmable component may satisfy performance requirements and at the same time provide
the ease and flexibility of reprogramming in software.

1. I Motivations for hardware-software partitionikg

clear 64-bit output buffer

for each bit i = 1 . . 48 of keyed buffer do {

isolate bii i of the keyed buffer. .
if (bit i = 1)

set output buffer bit f(i) using map table, f

1
SOFTWARE: 300 TO 3000 INSTRUCTlONS

Permuted and Shifted 56-Kev Buffer.
9 10 11 . . 14 15 16 17 . . 21 . . 24 49 50 51 52 53 54 55 56 I

b
b ,/ /
/I 1 /

/ I
I1 I 1 I I 1. ,

byte 1 byte 2 byte 7 byte 8
HARDWARE: MAXIMUM OF 16 CYCLES

Figure 2: DES Encryption Scheme

Example 1.2.
While bit-wise shifting and xor operations lead to a slower software implementations, corresponding
byte-wise implementations was considerably faster. Given extra memory for table-storage, the program
implementations can be speeded-up even more using table-lookup methods. Such implementations are
often competitive with corresponding hardware implementations.
Consider a l&bit CRC-CCITT computation using polynomial z l6 + xl2 + x5 + 1 below.
With the addition of every byte of data, the new CRC is clearly is a function of &bits of old CRC
and the new byte of data. This function is precomputed and stored in an 256-entry table. Thus, a
byte-wise implementation using two 256-byte tables, as described by the following pseudo-code, when
coded in assembly can achieve 16-bit CRC computation in 7 instructions per byte.

typedef byte char;

byte Table_low[256], Table_high[256];
byte Temp, data, CRC-low, CRC-high;

Temp = data xor CRC-low;
CRC-low = Table-low[TempJ xor CRC-high;
CRC-high = Table-high[Temp];

3

The actual latency of computation is a strongly dependent on the instruction-set architecture (ISA) of
the target processor. The best implementation of the above pseudo-code on an Intel 8086 processor
computes 16-bit CRCs in 9 instructions, a Motorola 68K implementation in 11 instructions and a
RISC-based implementation in 14 instructions. 0

4 I INYRODUCT7ON

1.2 The problem of system synthesis

The problem of mixed system synthesis is complex, and todate there are no available CAD tools to support
it. This report addresses the hardware-software codesign issue by formulating it as a system partitioning
problem into application-specific and re-programmable components. As explained in Section 4, we can
also view it as an extension of high-level synthesis techniques to systems with generic re-programmable
resources. Nevertheless, the overall problem is much more complex and it involves, among others,
solving the following subproblems:

1. Modeling the system functionality and performance constraints.

System modeling refers to the speci’cution problem of capturing important aspects of system
functionality and constraints to facilitate design implementation and evaluation. Most hardware
description languages attempt to describe a system functionality as a set of computations performed
by a computing element and as interactions among computing elements. Among the important
issues relevant to mixed system designs are:

0 explicit or implicit concurrency specification--_
l communication model used: shared memory versus message-passing based

l control flow specification or scheduling information

There is a relationship between concurrency specification and the natural partitions in the system
descriptions. Typically, languages that contain explicit partitioning via control flow breaks, find it
difficult to specify concurrency explicitly. Concurrency information is then obtained by performing .
dependency analysis whose complexity depends on the communication model used. We consider
the relevant modeling issues in Section 3.

2. Choosing granularity of the hardware-software partition.

The system functionality can be partitioned either at the functional abstraction level where a certain
set of high-level operations is partitioned or at the process communication level where a system
model composed of interacting process models is mapped onto either hardware or software at the
process description level. The former attempts fine grain partitioning while the latter attempts a
high-level library binding through coarse-grain partitioning.

3. Determination of feasible partitions into application-specific and re-programmable components.

The so-called problem of hardware-sofhuare partitioning. This delineation is influenced by issues
such as analog interfaces that require a specialized hardware interfaces. However, for operations
that can be implemented either in hardware or in software, the problem requires a careful analysis
of flow of data and control in the system model.

4. Specification and synthesis of the hardware-software interface.

5. Implementation of software routines to provide real-time response to concurrently executing hard-
ware modules.

1.3 Applications 5

6. Synchronization mechanisms for software routines and synchronization between hardware and soft-
ware portions of the system.

This report attempts to outline major issues and suggests approaches to solving them. This report
is organised as follows. In Section 2.1 we present a description of different system architectures based
on types of hardware, software components used. We then describe features and limitations of the
system architecture that is target of current approach towards system synthesis. Section 3 describes the
modeling of system functionality. In particular, we describe how the input to our synthesis system is
described in a hardware description language and its model based on flow graphs. Section 4 defines the
problem of system partitioning. We discuss issues relating to performance characterization of hardware
and software components and partitioning cost metrices based on which a partitioning algorithm is
presented. Sections 5 and 6 present problems and solutions in implementation of hardware and software
components, respectively. We introduce the notion of threads as a linearized set of operations. The
software component is composed a set of concurrent and hierarchical threads. Section 7 discusses
issues in system synchronization, how synchronization is achieved between heterogeneous components--.
of system design. In section 8 we present design network coprocessor and summarize the results of
hardware, software tradeoffs. Section 9 presents a summary of the main issues in system synthesis.

1.3 Applications

Among the potential applications of the techniques presented in this report are:

1. Design of cost-effective systems: ‘Ihe overall cost of a system implementation can be reduced by
the ability to use already available general purpose re-programmable components while reducing
the number of application-specific components.

2. Rapid prototyping of complex system designs - a complete hardware prototype of a complex
system is often too big to be implemented except in a semi-custom implementation. With the

a identification of time critical hardware section, the total amount of hardware to be synthesized may
be reduced significantly, thus making it feasible for rapid prototyping. A feasible partition that
shifts the non performance-critical tasks to software programs can be used to quickly evaluate the
design.

3. Speedup of hardware emulation software - During their development phase, many system designs
are often modeled and emulated in software for test and debugging purposes. Such an emulation
can be assisted by dedicated hardware components which provides a speedup on the emulation
time.

Rapid prototyping and hardware emulation are two opposite ends of the system synthesis objective.
Rapid prototyping attempts to minimize the application-specific component to reduce design time whereas
hardware emulation attempts to maximize the application-specific component to realize maximum speed-
UP*

6 2 SYS7EM ARCHmCTLRES BASED ON HARDWARE-SOFTWARE COMPOAEl

System Specificatitm

System ParWoning.

Inkwfacw
Generation

Assembly Code ASIC and Interface Netlist

Mixed System implementation

Figure 3: System Synthesis Procedure

Figure 3 shows organization of the CAD design system used for synthesis of mixed system designs.
The input to our synthesis system is an algorithmic description of system functionality described in a

I hardware description language (HDL). The HDL description is compiled into a system graph model
based on data-flow graphs described in Section 3. ‘Ihe system graph model is subject to system partitioning
and hardware and software generation schemes as described in sections 4 through 6. Section 7 discusses
mechanisms for synchronization between hardware and software. The resulting mixed system design
consists of an assembly code for the software component, and a gate-level description of the hardware
and hardware-software interface. ‘Ihis heterogenous description can be simulated by a program Poseidon
that is described elsewhere [6].

2 System Architectures Based on Hardware-Software Components

In colloquial terms most digital systems can be classified as being either reprogrummable or embedded.
Reprogrammable digital systems contain some form of storage that can be altered (reprogrammed) by the
user under software control. On the other hand, the embedded systems are usually hardwired for certain

7

Degree of Reprogrammability

ii
is!
g Reprogrammable
2 Micro-prog

0
0 Micro-

:

Program

ML
prOgriUll

HL
Program

MAINFRAMES BITGLICED
CONTROLLERS

VLIW MACHINES

MICROCONTROLLERS
, 4 MLXED

CONTROLLERS

Custom
Hardware

Synthesized
Hardware

Programmable
U’W (F-V

HARDWARE COMPONENT

Figure 4: System Classification Based on HUYSW Components

specific tasks which can not be altered without changing the underlying hardware. Most reprogrammable
digital systems contain one (or more) general-purpose microprocessor and structured memory components.
Since embedded systems are optimized for certain specific tasks, the degree of ‘reprogrammability’ varies
from none to changing parameters of some existing sequential control. An embedded system may have
a dedicated controller (a sequencer) or a microcontroller programmed to sequence operations. Most of
these systems contain storage (program or data) which is relatively small and can not be easily altered.
Microcontrollers are essentially general purpose microprocessors with on-board memory for program anda
data storage. The ability to reprogram a digital system is related to the versatility of primitive operations,
or the instruction-set of the microprocessor or microcomputer used in the system. In our terminology we
refer to a microprocessor or a microcontroller as a reprogrammable component or simply as a processor.
The specific set of instructions needed for a particular application to be executed by the reprogrammable
component is referred to as the software component. Thus, in broad terms, a digital system can be thought
of consisting of two components: sofrware as a program in an on-board RAM or ROM and hardware
as the underlying interconnection of special-purpose blocks. Based on this distinction, Figure 4 shows
compositions of some familiar systems. The hardware component in a system design may be custom-
designed as in most general purpose machines, or program-generated (programmed), or programmable
as in programmable gate array designs. The software component of a system may consist of microcoded
routines, or machine-level programs used in embedded control systems or high-level programming used
in special-purpose machines. It is important to note that some system designs use microcoding simply
as a technique for implementation of hardware control. For example, general purpose microprocessors

8 2 SYSlEM ARCHmCTUES BASED ON HARDWARE-SOFTRGIRE COMPOAENlS

MICRO-
7PROCESSOR -

c) ASK0
- ASK0

Figure 5: Target System Architecture

use microcoding simply as a design technique. This is different from the software necessary to achieve
system functionality as in microprogramming of functional algorithms in case of mainframe machines.

Conventionally, machine-level and high-level programs manipulate user data-structures while micro-
programs manipulate hardware resources. In case of mixed controller designs proposed in this paper,
however, we use machine-level programs to perform both activities. The objective of this research is
design of mixed controllers shown in Figure 4. These systems use a reprogrammable compoent to achieve
part of the system functionality which may be time-constrained as in the case of embedded systems.

2.1 Target System Architecture

We choose a target architecture that contains the essential elements of hardware-software systems. In

a Figure 5, the target architecture consists of a general-purpose processor assisted by application-specific
hardware components. The following lists the relevant assumptions relating to the target architecture.

0 We restrict ourselves to use of a single re-progrumrnuble component because presence of multiple
re-programmable components requires additional software synchronization and memory protection
considerations to facilitate safe multiprocessing. Multiprocessor implementations also increase the
system cost due to requirements for additional system bus bandwidth to facilitate inter-processor
communications. We make this simplifying assumption in order to make the synthesis tasks man-
ageable.

l The memory used for program and data-storage may be on-board the processor. However, the
interface buffer memory needs to be accessible to the hardware modules directly. Because of
the complexities associated with modeling hierarchical memory design, so far we considered the
case where all memory accesses are to a single level memory, i.e., outside the re-programmable

9

component. The hardware modules are connected to the system address and data busses. Thus
all the communication between the processor and different hardware modules takes place over a
shared medium.

l The re-programmable component is always the bus master. Almost all re-programmable compo-
nents come with facilities for bus control. On the other hand, inclusion of such functionality on
the application-specific component would greatly increase the total hardware cost.

l All the communication between the re-programmable component and the ASIC components is done
over named channels whose width (i.e. number of bits) is same as the corresponding port widths
used by read and write instructions in the software component. The physical communication takes
place over a shared bus. The problem of encoding and sharing multiple virtual channels over a
physical bus is a subject of continuing research at Stanford [7].

l The re-programmable component contains a ‘sufficient’ number of maskable interrupt input signals.
For purposes of simplicity, we assume that these interrupts are unvectored and there exists a
predefined destir@on address associated with each interrupt signal.

l The application-specific components have a well-defined RESET state that is achieved through
system initialization sequence.

It is important to note that the final system implementation may or may not be a single-chip system
design depending on availability of the re-programmable component either as a macro-cell or as a separate
chip. Further, the approach outlined in this report can also be used for alternative target architectures.

3 Specification and Modeling of Hardware-Software Systems

Currently most behavioral system specifications are derived from the corresponding algorithmic descrip-
tions of the system functionality. The algorithmic descriptions are usually described in a procedural
language like C or Pascal. Consequently, the hardware behavioral descriptions tend to use a procedural

- language like VHDL, Verilog etc. However, when describing hardware in a procedural language (that is,
as a program), one is often faced with the difficulty of representing an essentially concurrently-executing
set of operations in a linear code The linear-code representation inherently assumes existence of a single
thread of control and static data storage. However, hardware execution is usually multi-threaded and is
driven by availability of appropriate data. In contrast to instruction-driven single-threaded linear-code
representation, data-flow graphs provide a dutu-driven representation that can model multiple-threads of
execution (Figure 6). Therefore, the hardware for embedded controllers and non-recursive DSP algorithms
is more appropriately represented by data-flow (DF) graphs instead of linear code used for algorithmic
description. To avoid this dichotomy of behavioral representation, most high-level synthesis algorithms
operate on an intermediate form that accurately reflects the concurrent nature of hardware. Most hardware
intermediate forms used for high-level synthesis tend to be similar to data-flow graphs [S] [9] [lo] [ll].

Generally, any sequence of machine instructions can be represented by a machine-level data-flow
graph. Indeed the expression-evaluation trees generated by compilers (before the code-generation stage)

10 3 SPECIHC-AlTON AlK?I MODELING OF HARDWARE-SOFTWARE SYSEMS

scheduling and code gmefathn r l
L1lb.W

htnmtion mwn
Singlo Thrwd of Executitm
L/near, Static dbt8 rturo

Figure 6: Linear Code versus Data-How Graph Representations

are a form of data-flow graphs. However, these data-flow graphs consisting of operations described at the
level of machine instructions decrease the specification granularity significantly to make them useful for
system partitioning in to hardware and software components. Therefore, data-flow graphs in our context
are described using operations available at the language specification level. These have also been referred
to as macro-data flow graphs elsewhere [121.

From data-flow representations we can generate an equivalent sequence of instructions by scheduling
various operation vertices in the data-flow graph. Operation scheduling techniques are important even in
case of a single thread of execution where static memory requirements are affected by scheduling even
though all schedules result in same overall latency (see Section 4.2) . Latency optimality in scheduling .
is realized by exploiting parallelism in instruction stream which requires multiple execution threads. We
consider the algorithms for evaluating data-flow graphs and their equivalent linear-code representations
in section 4.2.

3.1 System specification using HardwareC

a We specify system functionality in an hardware description language called, HurdwareC [131. HardwareC
follows much of the syntax and semantics of the programming language, C with modifications necessary
for correct and unambiguous hardware modeling. Like C, the primitive operation in HurdwureC consists
of an assignment operation with a procedural call being the means of abstraction of sub-specifications.
Procedural calls correspond to modular specification of different components of the hardware. No recur-
sive calls of any form are allowed. A HardwareC specification consists of blocks of statements which
are identified by enclosing parentheses. The blocks are structured, thus no two blocks are overlapped
partially. That is, given any two blocks, they are either disjoint or one is contained by the other block.
Like C, no nested procedure declarations are allowed. Therefore, any variable that is non-local to any
procedure is non-local to all procedures. Local variables are scoped ZexicuUy with the most-closed nested
rule for structured blocks.

A process in HardwareC executes concurrently with other processes in the system specification. A
process restarts itself on completion of the last operation in the process body. Thus there exists an

3.1 System specification using HardwareC 11

implied outer-most loop that contains the body of the process model. In other languages, this loop can
be specified by an explicit outer loop statement. Operations within a process body need not be executed
sequentially (as is the case in a process specification in VHDL, for example). A process body can be
specified with varying degrees of parallelism such as.parallel (< >), data-parallel (0) or sequential ([I).

In addition, HardwareC allows specification of declarative model calls as blocks that describe physical
connections and structuraI relationships between called models. For hardware modeling purposes, both
timing and resources constraints are allowed in the input specifications. Timing constraints are specified
as min/max delay attributes between labeled statements where as resource constraints are specified as
user-specified bindings of process and procedure calls to specific hardware model instances.

Example 3.1 describes a simple process specification in HurdwareC.

Example 3.1. Example of a simple HurdwureC process

process simple (a, b, cl
in port a[8], b[8] ;
out port cl81 ;

_-boolean xi81, ~181, 2[81 ;

<
x = read(a);
y = read(b);

2 = fun(x , y);
write c = 2;

This process performs two synchronous read operations in the same cycle, followed by a function
evaluation and a write operation. Note that specification of explicit parallelism by (<>) delimiters
is redundant here since there exists an implicit parallelism between the two read operations, thus a
data-parallel grouping (0) would yield the same execution results. 0

There is no explicit delay associated with individual assignment statements (except in case of explicit
a register/port load operations as mentioned later). An assignment may take zero or non-zero delay time.

However, multiple assignments to same variable can either be interpreted as (a) last assignment or (b) an .
assignment after some delay. Resolution of which policy (a) or (b) to be used is performed by a reference
stack [141. Reference stack performs variable propagation by instantiating values of the variables in the
right-hand side of the assignments. In case of identified storage elements (b) is adopted where ‘some
delay’ corresponds to delay of ‘at least’ one cycle time. In addition, this policy can also be enforced
on some assignments by an explicit ‘load’ prefix that assigns a delay of precisely one cycle time to the
respective assignment operation.

3.1.1 Memory and Communication

HardwareC allows specification of shared memory within a process model. All the communication
within a process model is based on the shared memory specified within the model, because it is relatively
straight-forward to ensure ordering of operations within a given process model to ensure integrity of

12 3 SPECIEICATTON AND MODELING OF HARDWARE-SOFTWARE SYSTEMS

memory shared between operations in the model. However, consistency of memory shared across con-
currently executing models must be ensured by the models themselves. HardwareC allows specification
of blocking inter-model communications based on message-passing operations. As with the shared mem-
ory variables, the only data-types available for channel is a fixed-width bit-vector. Integers are coded
using 2’s complement representation.

. .

Use of message-passing operations simplifies the specification of inter-model communications. It
should be noted, however, that it is easy to implement a message-passing communication using memory
shared between respective models (the converse is not true, however). Indeed, during system partitioning,
reductions in communication overheads are realized by simplifying the inter-model communication as
discussion in later sections.

3.1.2 Nondeterminism in System Specifications

Non-determinism in our system models is caused either by external synchronization operations or by
internal data-dependent delay operations, like conditionals and data-dependent loops. External synchro-
nization operations are related to blocking communication operations, whereas operations likes data-
dependent loops present variable and unknown execution delays. Example 3.2 below shows a Hurd-
wareC process description containing 3 unbounded/unknown delay operations: message-passing receive
operation, conditional and loop.

Example 3.2. Example of a HurdwareC process with unbounded delay operations

process example (a, b, c)
in port a[81 ;
in channel b[8] ;
out port c ;

boolean x181, y[8 I, 2181 ;

x = read(a);
y = receive(b);
if (x > y)

Z = x - y ;
else

z=x*y;
while (z >= 0) (

write c = y
z=z-1;

read refers to a synchronous port read operation that is executed unconditionally as a value assignment
operation from the wire or register associated with the port a. receive is a message-passing based
read operation where the channel b carries additional request and acknowledge control signals that
facilitate a blocking read operation on based on availability of data on channel b. 0

3.2 System Model

Broadly speaking, there are two major ways of modeling and analyzing the system behavior:

3.2 System Model 13

process-based modeling where logical and temporal properties of processes and their constituent events
define the behavior of a system, and axiomatic techniques, similar to theorem-proving in proof
systems, are applied to verify correctness of system transformations [15 1. Relevant logical properties
of the system behavior are expressed by assertions about liveness and safety. Each liveness property
indicates that the assertion (about state of the system) will eventually hold. Each safety property
states that the assertion (on the system state) ~31 always be true. Most common method to specify
and verify such assertions is by adding time variables to the computation model [161 [171. Common
examples of this approach are proof-systems for CSP programs [181, distributed programs [191.

graph-based modeling which uses techniques from graph theory to build the system model. The main
difference with the process-based modeling is in explicit expression of dependencies between pro-
cesses and constituent operations.

We model system behavior using a graph representation based on flow graphs [20]. As described later
in this section, timing and resource constraints are represented on graphs compatible with the operation
graph models. -_
Definition 3.1 A system model, M, is represented by a 3-tuple consisting of operation graph Pr, timing
constraint , 7, and resource constraint, R.

The operation graph models capture system functionality as a set of control-data-flow graphs. ‘Ilming
constraints are specified using compatible weighted graph models. Resource constraints are used to
specify bounds on types and number of data-path resources available for synthesis of M into hardware
as well as the amount of static storage available for synthesis of M into software. Hardware resource
constraints are important for hardware synthesis and are briefly mentioned in Section 5.

Definition 3.2 An operation graph model, #, consists of a set of acyclic sequencing graph models:

where a sequencing graph model, Gi, represents body of an iterative construct in the hardware description
language model.

The iterative constructs are of two types:

l Counting loops have an explicit or an implicit repeat count, T.
l Non-counting loops wait on some external conditions on a wire or a channel. For example, a

HardwareC statement like
while(wirename);

is semantically equivalent to wait (!wirename) ;. These loops model some asynchronous
event in the behavior model and are required for correct modeling of reactive hardware behavior.
The corresponding hardware for such loops is implemented by means of asynchronous set/reset
inputs to the storage elements. In software, however, such operations can be implemented either
as interrupts to on-going computation or as polled operations.

14 3 SPECZTCATTON Am MODEL~G OF HARDWARE-SOFTWARE SYSZMS

All sequencing graph models are assumed to model counting loop operations with a finite or infinite
repeat count. Non-counting loop operations are modeled as individual wait operations. We make further
distinctions between characteristics of counting loop constructs when considering issues in performance
characterization of the software component.

A sequencing graph model, G, that models a process specification in HardwareC is a model with
Infinite repeat count., that is, on completion of its last operation (sink), it restarts itself unconditionally.
Among the sequencing graph model of an operation graph model, 6, there are two kinds of hierarchies
induced:

l structural hierarchy denoted by relation, S, that denotes structural relationship between any two
sequencing graph models,

l calling hierarchy G* of a sequencing graph model, G, denotes the set of sequencing graph models
that are on the control-flow hierarchy of G, that is, models that are called or used by G.

An operation graph model may consist of structural connection of one or more than one sequencing graph
models, each of which contains a called hierarchy. A sequencing graph model that is common to two
calling hierarchies is considered a shared model or a shared resource.

Definition 3.3 A sequencing graph model is a polar acyclic graph G = (V, E, S, x, S) where V =
{BOA,... , v~) represent operations with vo and VN being the source and sink operations respectively.
The edge set, E = ((vi, vj)) represents dependencies between operation vertices. An integer weight
S(vi), \d vi E V represents execution delay of operation associated with vertex, v;. Function, x : E I+ 2
defines condition index of a given edge. In case of edges incident from a condition vertex or incident
on a join vertex, these a condition index refers to case value associated with the evaluated condition. S
defines the storage common to operations in the graph model G.

For sake of simplicity, a sequencing graph model, G, is often expressed as G = (V, E). An edge,
(vi 7 vj) E E(G) induces a precedence relationship between vertices v; and vj and it is also indicated
by Vi > vj. Relation >* indicates transitive closure of the precedence relation. The transitive closure

I of a sequencing graph model, G, under precedence relation is denoted by G? Note that the sequencing
model defined here are similar to the the SIF model defined in [141. There are, however, some differences
in representation of conditional and wait operations.

The sequencing graph model captures the operation concurrency and data-dependent delay opera-
tions. Overall, the sequencing graph model consists of concurrent data-flow sections which are ordered
by control flow. The graph edges represent dependencies while branches indicate parallelism between
operations. The data-flow sections preserve the parallelism while control constructs like conditionals and
loops obviate the need for a separate description of the system control flow. The control operations like
loops are specified as separate subgraphs by means of hierarchy. The computational semantics of the
sequencing graph model is as follows: an operation in the data-flow graph is enabled for executions once
all the input data are available. We maintain the strict FXFO order of operations during successive invo-
cations of the graph model by imposing the additional constraint that a source vertex is reinvokes only
after the corresponding sink vertex has been executed. This requirement avoids need for conventional

3.2 System Model 15

token-matching schemes needed for execution of pure data-flow graphs [21]. Figure 7 shows an example
of the graph model corresponding to process simple described in Example 3.2.

0 ._w 0
d

\fd 1 0d 1/bfun 2

I

.
0nop 0

Sink s = Ix Y, zl

Figure 7: Example of a sequencing graph model

Remark 3.1 Storage, S, is decfined for correct behavioral interpretation of the graph model, G. S is
independent of cycle-time of the clock used to implement the corresponding synchronous circuitry and
does not include storage spec@c to structural implementation of G (for example, control latches). Further
S, need not be the minimum storage requiredfor correct behavioral interpretation of a sequencing graph
model.

An operation vertex is classified as a simple or complex vertex depending on the operation performed
by the vertex. Simple vertices consist of a single operation whereas complex vertices consists of a set
of operations that are represented by a called sequencing graph model. Thus complex vertices induce
hierarchical relationships between sequencing graph models. A call vertex enables execution of the
sequencing graph corresponding to the procedure call. A loop vertex iterates over the graph body of the
loop until its exit condition is satisfied. Table 1 lists operation vertices used for describing the sequencing
graph models.

Remark 3.2 The sequencing graph is acyclic because the HardwareC descriptions are required to be
structured and looping constructs are represented as separate graphs.

Data-dependent and synchronization operations introduce uncertainty over the precise delay and order
of operations in the system model and thus make its execution non-deterministic [22]. We refer to a
vertex with data-dependent delay as a point of non-determinism in the system graph model.

16 3 SPECLKK’Al7ON AND MODELING OF WARDWARE-SOFTl+HRE SYS7EM.S

0Pe Operation Description
Simple no-op No operation

load Load register. .
cond Conditional fork
join Conditional join
wait Wait on a signal
op-logic Logical operations
op-arithmetic Arithmetic operations
op-relational Relational operations
op-io I/o operations

Complex call Procedural call
loop Iteration
block Declarative block

Table 1: Sequencing graph operation vertices

Definition 3.4 An operation vertex in G with an unbounded execution &lay is known as an anchor
vertex.

A vertex representing wait operation is example of an anchor vertex. The execution delay, 6(v) of .
an anchor vertex may not be known statically and may take any nonnegative integer value from 0 to 00.
By definition, source vertex, VO, of a sequencing graph is considered an anchor vertex.

Definition 3.5 A sequencing graph delay function, d, returns a non-negative delay of a graph model,
G following a bottom-up computation as follows:

I 1. Delay of a non-anchor vertex is the execution delay of the operation, d(v;) = 6(v;),
2. Delay of an anchor vertex is set to zero,
3. Delay of a sequencing graph model, G, is the delay of the longest path in G,

d(G) = maxd(poN) = c 4Vi)ui E longestgath(G)

where a path,pij, in G consists of an ordered set of vertices in V(G), p;j = (v;, v;+l, . . . , vj>.
4. Delay of a complex vertex is set to zero, that is,

d(vlocJ = d(vcau) = +4hck) = 0

5. Delay of a conditional vertex is maximum of delay over each of its branches. A conditional branch
is defined by a directed path from the condition vertex to the corresponding join vertex.

3.2 System Model 17

Definition 3.6 A sequencing graph latency function, X, returns a non-negative latency of a graph model,
G following a bottom-up computation as follows:

1. Latency of a vertex is the execution delay of the operation represented by vertex
2. Latency of a sequencing graph model is execution delay of the sequencing graph model, that is,

the time period from execution of its source vertex to the execution of its sink vertex
3. Latency of complex vertices is the latency of the corresponding called sequencing graph models,

that is,

+block) = A(Gblock)

where ~1 is the repeat-count of the loop operation vlOOP.

Note that latency of a sequencing graph is a function of operation scheduling. On the other hand, the
delay function represents the longest path delay of sequencing graph.

3.2.1 Communication

For all operations with in in a graph model, G = (V, E, 6, S) all the communication is based on shared
storage, S. Inter-model communications are represented by I/O operation vertices which, on execution,
may alter the model storage, S. An I/O operation vertex may encapsulate a sequence of operations which
is referred as a communication protocol. A communication protocol may be blocking or non-blocking.
A non-blocking protocol may also be finitely buDred.

A blocking communication protocol is is expressed as a sequence of simpler operations on ports and
additional control signal to implement the necessary handshake. For example, to implement a blocking
read operation on a channel ‘c’ additional control signals ‘cxq' and ‘c-ak' would be needed as shown
in the Example below.

Example 3.3. A blocking read operation.

bread(c) => [
write c-rq = 1;
wait(c-ak);
< read(c);
write c-rq = 0; >

cl

While it is easy to connect two blocking or two non-blocking read-write operations, connection of
two disjoint read/write operations on a channel requires handling of special cases. For example, consider
a connection between blocking read and non-blocking write operation below.

Example 3.4. Blocking/Non-blocking channel connections.

18 3 SPECITK’A7TON AND MODELING OF HARDWARE-SOFTUHRE SYSTEMS

Blocking read

PlodlJCW Consumer

Blocking read and non-blocking write

Non-blocking write

[
write c-rq = 1;
wait(c-ak);
< read(c); write c-rq = 0; >

[
write c-rq = 1;
< write c = value; write c-rq = 0; >
I

Blocking write and non-blocking read

Non-blocking read Blocking write

[
write c-rq = 1;
< read(c); write c-rq = 0; z
1

[
write c-rq = 1;
wait(c-ak);
< write c = value; write c-rq = 0; >

A non-blocking/non-blocking read/write connection results in one cycle read and write operations.
However, a blocking/non-blocking connection requires two clock cycles for the non-blocking operation.
0

A buffered communication is facilitated by a finite-depth interface buffer with corresponding read
and write pointers. The communication protocol consists of I/O operation as well as manipulation of the
read, write pointers as shown by the example below.

Example 3.5. Buffered communication protocol.

Producer Consumer

writegtr

C

1
read (buff[readqtr]);
read_ptr++ modulo N;

I
write buff[write_ptr] = value;
writegtr+t modulo N;

Under normal operation, reattptr # write,ptr. Violation of this condition indicates either a
buffer is full or empty depending on whether the increment of writ e-ptr causes violation or the
increment of rea&ptr causes the violation. 0

3.3 SpeCfication of 7Rning Constraints 19

Figure 8: 77~ Constraint Graph Model

3.3 Specification of Timing Constraints

liming constraints are of two types: (a) minimum/maximum timing separation between pairs of operations
and (b) system input-output rate constraints. ‘Ikning constraints between operations are indicated by
tagging the corresponding operations. The input(output) rate constraints refer to the rates at which the
data is required to be consumed (produced). The rate constraints refer to min/max time constraints on
multiple executions of the same input or output operation.

Let us first consider the timing constraints of the first type, that is, the min/max timing constraints.
Min/max timing constraints between operations are specified by tagging the corresponding assignment
operations in the HurdwareC specifications. Example 3.6 shows an example of a min/max timing con-
straint.

Example 3.6. Specification of midmax timing constraints by statement tagging

process simple (a, b, cl
in port a[8], b[8] ;
out port c[S] ;

boolean x[8], y[8], z[8] ;
tag A, B;

<
A: x = read(a);

y = read(b);

z = fun(x , y);
B: write c = z;

constraint maxtime from A to B = 3 cycles;

0

These timing constraints are abstracted in a constraint graph model [14] shown in Figure 8. In
the constraint graph model vertices represent operations and edges indicate timing constraints between

20 3 SPECIEK’A77ON An-I) MODELJNG OF HARDWARE-SOFTWXRE SYS7lZMS

vertices. The edges are Weighted by the timing constraint value. A positive value implies a minimum
timing constraint, a negative value implies a maximum timing constraint.

Let T(vi) represent start time of operation v;. A minimum timing constraint, Zij 2 0 from operation
vertex v; to Vj is defined by the following relation between the start times of the respective vertices:

Similarly a muximum timing constraint, Uij 2 0 from vi to vj is defined by the following inequality:

T(vj) 5 T(v~) + Uij

Definition 3.7 The timing constraint graph model, GTO is defined as GT~ = (V, E, 0) where the set of
edges consists of forward and backward edges, E = Ej U Eb and W;j E n defines the weights on edges
such that T(vi) + Oij < T(vj).

3.4 Data Rate Constraints

Each execution of an input(output) operation consumes(produces) a sample of data. An input/output data
interval is defined in terms of cycles/sample as the interval between successive input/output operations.
Corresponding data rates are defined by inverse of the data interval. Input/output data rates are a function
of time.

A minimum data rate constraint, pm, on an input/output operation defines the lower bound on the
interval between any successive executions of the corresponding operation. Similarly, a maximum data
rate constraint, PM, on an I/O operation defines the upper bound on the time interval between successive
executions of the operation. Thus, the rate constraints refer to time constraints on multiple executions of
the same input or output operation. These constraints can be expressed as min/max timing constraints on
unrolled constraint graph models. As an example, constraint graph model GT~ shown in Figure 9 consists
of two sequential executions of the sequencing graph model G. The rate constraint on consecutive read
operations is shown as a maximum timing constraint between two read operations in GT1.

For an I/O operation v E V(G), a data-rate constraint of PM samples/cycle can be translated into a
constraint on latency of G. Graph G either models a process or body of a loop operation. If G models
a process then execution of G restarts itself on completion. Since polarity of G guarantees that there is
one execution of v for every execution of G. Therefore, latency, A(G) 5 & cycles. If G models body
of a loop operation vi E V(G’) then

A(G’) = X(vl) + d’ = 1-1 l A(G) + d’

where d’ (2 0) is the difference in latencies of G’ and vi. Thus a constraint on A(G) can be translated
into a constraint on latency of the corresponding process graph model, G’, if the loop repeat count, rl,
can be constrained.

In case of nested loop operations, rate constraints are indexed by corresponding loop operations. ‘Ihe
loops are indexed by increasing integer numbers. The inner-most loop is indexed 0. In the Example 3.7
below there are two rate constraints on the read operation with respect to the two while statements.

3.4 Data Rate Constraints 21

Figure 9: SpecilLication of rate constraint as a midmax timihg constraint

Example 3.7. Specification of rate constraints in presence of nested loop operations.

process example (frameEN, bitEN, bit, word)
in port frameEN, bitEN, bit;
out pert word(81;

boolean store[8], temp;
tag A;

while (frameEN)

while (bitEN)

A: temp = read(bit);
store[7:0] = store[6:0] @ temp;

write word = store;

attribute 'constraint maxrate 0 of A = 1 cycles/sample';
attribute 'constraint maxrate 1 of A = 10 cycles/sample';

QO

0mg

8

Ql
OP

Q

Q

Q2

-mg01 1
0* PO * p,

l((32) <= P;

L(Q,) = q*A(Q,) + d <= P-\

rl denotes repeat-count of loop modeled by G2 and d is the difference in latencies of G1 and operation
vloop in G1. •I

22 4 lTU5 PROBLEM OF HXRDWARE-SOFTWARE PARlT7TOAENG

4 The Problem of Hardware-Software Partitioning

We restrict our attention to partitions that are functional in nature so that the sequencing graph models
are at the granularity of operations rather than machine instructions. Use of functional partitions helps
in operation scheduling since an operation can only be scheduled when all its inputs are available. We
make a distinction between homogenous and heter&enous partitions of a given system model based on
partitioning objectives. ‘Ihe objective of homogenous partitioning is to partition a given hardware de-
scription into minimal number of hardware blocks each of which is smaller than a given size constraint.
This partitioning is performed under overall area, pinout and latency constraints. The homogenous
partitioning problem is attacked and solved by previous research [23]. ‘Ihe objective of heterogenous
partitioning problem is to partition the system model for implementation into hardware and software
components. Heterogenous partitioning can be thought of as a generalization of the homogenous par-
titioning problem with re-programmable components as being ‘generalized resources’. However, there
are inherent differences in the model of computation used for implementation of hardware and software
models. The software component implements model functionality as an instruction-driven computation
with a statically allocated memory space. On the other hand, hardware components essentially operate
as data-driven reactive, components. Further, due differences in primitive operations in hardware and
software components, the two computations proceed at very different instantaneous rates. Because of
these differences in the models and rates of computation used by hardware and software components,
it is necessary to allow multiple executions of individual hardware and software models with respect to
each other to achieve high system throughput. Further, the difference in rates of computations causes
variations in the rates of communication between hardware and software components and thus entail a
higher communication overhead due to necessary handshake and buffering mechanisms.

Given two sets of operations, their execution is termed single-rate if for each execution of an operation
in one set there is only one execution of all operations in the other set. Correspondingly, an execution is
termed multi-rate if for each execution of an operation in one set, there are more than one executions of an
operation in the other set. Note that operations in a sequencing graph model, G, execute at a single rate.
On the other hand, executions of sequencing graph models may be multi-rate. For the reasons described
before, we would like to achieve a multi-rate execution of hardware and software models. Thus a partition
of a sequencing graph model must be transformed to allow multi-rate executions of the partitioned graphs
by choice of suitable inter-par&ion communication mechanisms (bufferring, for example). In this context,
the problem of hardware-software partitioning is formulated as a problem of partitioning of operation
graph models, 4, instead of partitioning of the sequencing graph models, G. Because system partitioning
is* strongly influenced by the choice of the target processor and program implementation techniques, we
first present a model of the processor and our approach to software characterization.

4.1 Processor Model

The target processor is represented by a cost model, II = (roP, rea, t, , ti) where

0 execution time function, roP, represents assembly instruction delay times in cycles,
l address calculation delay function, rea, represents effective address calculation delay times in cycles,

4. I Processor Model 23

MO&
immediate
register
direct
register indirect
memory indirect
indexed

Notation
##4
Rl
w-w
(Rl)
@t-N
1oww-w

Eqlanation
value = 4

‘value = [Rl]
value = mem[lOOJ
value = mem[[Rl]]
value = mem[mem[~l]]]
value = mem[lOO+[Rl]+d*[R2]]

Table 2: Addkessing Modes

0 memory access times t, in cycles is the time for a memory access,

l interrupt response time, t;, is the maximum time between activation of an external interrupt and
beginning of execution of the corresponding interrupt service routine.

The execution time function, T,~, maps assembly instructions to positive integer delays. The assembly
instructions are generated by the high-level language compiler. These instructions usually correspond
to instructions supported by the processor instruction set. However, some assembly instruction may
refer to a group of processor instructions. These pseudo-assembly instructions are sometimes needed for
compilation efficiency and to preserve atomic@ of certain operation in the sequencing graph model. Effect
of internal hardware pipelining in microprocessors is modeled as follows. The function, r,* represents
pipelined operation delays (which is usually 1 cycle for operations with non-pipelined execution delays
of less than number of pipestages, p). A penalty of p - 1 cycles is added to the delay of the overall
program. In addition, additional pipeline stall penalty is added for instructions with latencies greater than
p (such as floating point instructions). The address calculation function, lea, maps a memory addressing

- mode to integral delay (in cycles) encountered by the processor in computing the effective address. An
addressing mode specifies an immediate data, register or memory address location. In the last case, the
actual address used to access the memory is called the effective address.

Table 2 lists common addressing modes. Square brackets ([I) indicate contents, for example, [Rl]
indicates contents of register Rl, mem[lO] indicates memory contents at address 10. Not all the
addressing modes may be supported by a given processor. For example, the DLX processor supports
only immediate and register addressing modes, while the x86 instruction set supports all mentioned
addressing modes (though with restrictions on which registers can be used in a certain addressing mode).
The interrupt response time, t;, is the time that processor takes to become aware of an external hardware
interrupt in a single interrupt system (that is, when there is no other maskable interrupt is running).

A software implementation of a sequencing graph model, G = (V, E) is character&d by a software
size function, Sn, that refers to the size of program and static data necessary to implement the corre-
sponding program on a given processor, n. For a operation graph model, @, &-J(G) = CGiEe Sn(G;).

Now the problem of system partitioning is stated as follows.

24 4 THE PROBLEM OF IURDWARE-SOFTWARE PARZ?TTOMNG

Problem PI: Given a system model, M = (@, 7, TZ), static storage constraint, s, and a
processor cost model, n, find a pa&ion of operation graph model, Q, = @ h U @a such that:

1. !#$ satisfies the timing constraints 7,

2. sofhvare size, Sn (& > 5 3 and

3. the number of sequencing graph models in #a is maximized.

4.2 Modeling of Software Performance

Software performance is characterized by two metrices: software delay and program/data size. Software
delay can be computed by bottom-up computation of operation delays in the sequencing graph model.
Data size is determined by the size of static storage required for correct execution of the program.

In order to make effective tradeoffs during partitioning, it is necessary to be able to make good esti-
mates about software and hardware performance. Such estimations often make simplifying assumptions
that tradeoff modeling accuracy against speed of estimations. In estimating software performance, we
make the following assumptions.

1. The system bus is always available for instruction/data reads and writes.
2. All memory accesses are aligned. Misaligned memory accesses add additional cycles to memory

access time, t,.
3. All memory accesses are to a single-level memory.

Each operation, v, in the graph model is character&d by number of read accesses, nT, number of
write accesses, n, and the number of assembly-level operations, n,. Typically, n, is 1. The software
operation delay function, 7, is computed as follows:

V(‘)= gtOp, t2mi+gmi
i=l i=l i=l

where the operand access time, mi, is the sum of effective address computation time and memory access
time for memory operands. Due to non-orthogonality of most common instruction set architectures, the
execution time function of some operations is often slightly overestimated from real execution delays.
The number of read and write accesses is related to the amount and allocation of static storage, S(G).
wait operations in a graph model induce a synchronization operation in the corresponding software model.
Thus, the software delay of wait operations is estimated by the synchronization overhead which is related
to the program implementation scheme being used. A synchronization operation causes a context switch
in which the waiting program is switched out in favor of another program. It is assumed that the software
component is computation intensive and thus the wait time of a program can be overlapped by active
execution another program. As mentioned earlier, a wait operation can be implemented either as an inter-
rupt operation or a polled operation. In case of an interrupt-based implementation, the synchronization
delay is computed as follows:

77;ntr (V) = ti t ts t t*

4.2 Modeling of Software P&omance 25

where ti is interrupt response time, t, is interrupt service time, which is typically the delay of the setvice
routine that performs input read operation and t, is concurrency overhead (Section 6). In case of a
polled implementation of a wait operation, the delay due to a wait operation is the delay in performing
the corresponding read operation. However, the program implementation scheme enforces additional
constraint on the minimum polling time interval, t p, at which any port can be polled. t, is a function of
the size of @,.

The determination of static storage, S, required for software implementation of a graph model is
more complex. By static storage here we are chiefly concerned with the storage required to hold data
transfers across assembly operations. One approach to determine the minimum set of variables required
to implement a graph model, G, would be to serialize the graph model, G based on a scheduling of
operations. Due a single processor target architecture, the cumulative operation delay of G would be
constant under any schedule. However, the number of variables required to implement program of G
would vary according-to scheduling technique used. Most popular heuristics for code generation use
a specific order of execution of successor nodes in order to reduce the size of S [24]. A variable
interference graph can be built from the serialized model G. The minimum number of colors required to
color vertices in the interference graph such that no two adjacent vertices have the same color gives the
minimum number of variables required to implement G in software. The set of variables in min S(G) can
be mapped to specific memory locations or the on-chip registers, since no aliasing of data items is allowed
in input HardwareC descriptions. (Register storage of an aliased variable will lead to incorrect behavior
due to possible inconsistency in values stored in the register and the value stored at the aliased location,
memory). Unfortunately, the computational complexity of the problem of coloring an interference graph
is in the class of NP-problems. Thus, heuristics are required to determine min IS(G)]. We use the
following heuristics to determine minimum static data storage required for a given sequencing graph
model. In this formulation we do not consider internal pipelining and storage requirements within the
functional units. We assume that each operation vertex requires at least one cycle and hence any data

- transfer across operation vertices in the sequencing graph requires a holding register. With each edge in
the sequencing graph we associate an integer weight, 6, representing the size of data transfer between
corresponding vertices. Weight of an edge that represents a control dependency is set to zero. We
assume all such data transfers are synchronous and, therefore, require corresponding storage elements. In
case of single execution stream, we use the following algorithm, single-threadstaticstorage, to identify
minimum static storage required for execution of its corresponding linear code.

We produce a single-thread execution schedule of operations using a depth-first search to produce a
topological order of vertices in the directed graph [25]. Topological sorting produces a complete order
(schedule) of operations that is compatible with the partial order imposed by the sequencing graph.
Topological sorting ensures that all edges are directed in only one direction (forward), in order words
there are no backward edges [25]. This scheduling operation takes O(]V] + IE]) time. Figure 10 shows
an example.

26 4 TX?!? PROBLEM OF hViRDWARE-SOFTKARE PARlK?TOAVNG

Algotithm to de&mine min jS(G) 1 .

Input : sequencing graph model, G(V;E)
Output: S(G), static storage for a linear code implementation of G
singleJhread-.rtatic-s~otoage(G)
{

H = topologically~rder (G)
count = storage = 0 ;
VUEV(H)
{

vv E succ(u)
count = count + 6(u> v) ;

Vu E pred(u)
count = count - 6(v>il) ;

storage = mar(count, storage) ;
1 --.
return storage

1

Lineaxization using Topological Sorting

Input : data-flow graph model, G(V,E)
Output: a list of topologically ordered vertices
topologicallymder(G) (

Q= stack = {} ;
VuO’(G)

U = white ;
source-vertex(G) = gray ;
push (source-vertex(G)) ; .
while stack # {} {

Vu E Aaj(Top (stack)) {
if v = white {

u = gray ;
push(v) }

1
Q=Q + pop(stack))

r e t u r n Q }

4.3 Partitioning Feasibility 27

S = (a, b, c, d, 8, f, g) min static storage, min(lSI) = 3

Figure 10: Detmhation of minimum static storage for sibgle execution thread

4.3 Partitioning Feasibility

A system partition into-an application-specific and a re-programmable component is considered feasible
when it implements the original specifications and it satisfies the performance and interface constraints.
We assume that the hardware and software compilation, done using standard tools, preserves the function-
ality. We, therefore, concentrate on constraints. In particular, timing constraints are of special interest.
As noted earlier, timing constraints are of two types: those related to m.in/max time separation between
different operations and rate constraints on I/O operations. We assume that the operations subject to a
min/max timing constraint belong to the same process model. A timing constraint between operation
belonging to two different processes is equivalent to a synchronization constraint between the processes
and it can be specified by a blocking inter-process communication in functional specification of the pro-
cesses. Rate constraints are translated as constraints on latencies of affected sequencing graph models and
thus verified by comparing actual hardware and software latencies against imposed bounds. Satisfiability
of min/max timing constraints is checked by analyzing the corresponding constraint graph models. For

. graphs with no unbounded delay operations, constraint satisfiability is related to absence of any posi-
tive cycles in the constraint graph model. However, in presence of unbounded delay operations, some
constraints may be ill-posed [26], that is, constraints that can not satisfied for some possible values of
delays of unbounded delay operations. Note that a minimum timing constraint is never ill-posed. For an
illsposed maximum timing constraint between vertices vi and Vj there are two cases:

1. operations Vi and vj are transitively related, i.e., Vi >* Vj,
2. conversely, operations are concurrent, that is, l(Vi >* Vj) & l(Vj >* Vi).

In the first case, there exists a path, pij, that contains an unbounded delay operation. The unbounded delay
operation may be an external wait operation or an internal loop operation. For the software implementation
of the graph model, a wait operation is made deterministic by performing a context switch to a other
operations. Thus, satisfaction of the timing constraint by the software component can be verified by
assigning appropriate context switch delay (as mentioned in the previous section) to the wait operation.
In presence of general unconstrained data-dependent loop operations, determination of satisfiability of

28 4 7IHE PROBLEM OF HARDWARESOFTWARE PARlT7TONZNG

timing constraint is undecidable. However, under special conditions constrained loop operations can be
made deterministic by choosing an appropriate policy of loop computation (as shown in the following
sections). In the second case, where the constrained operations are concurrent, the constraint can be made
well-posed by selective serializations between the two paths of computation.

As mentioned earlier, when partitioning system model into hardware and software components the
data rates may not be uniform across models. The discrepancy in data-rates is caused by the fact that
the application-specific hardware and re-programmable components may be operated off different clocks
and the system execution model supports multi-rate executions that makes it possible to produce data at
a rate faster than it can be consumed by the software component when using a using a finite sized buffer.
In presence of multi-rate data transfers, feasibility of hardware-software partition is determined by the
fact that for all data transfers across a partition, the production and consumption data rates are compatible
with a finite and size-constrained interface buffer. That is, for any data transfer across partition, data
consumption rate is at least as high as the data production rate. The size of the actual buffer needed may
then be determined by using the scheme proposed in [27]. In addition, since the target architecture as
shown in Figure 5 contains a single system bus over which data transfer to and from the re-programmable
component takes place: Therefore, the net effect of all data-transfers over this bus should not exceed the
pre-specified system bus bandwidth. Available bus bandwidth is a function of bus/processor clock rate
and memory latency.

4.4 Algorithms for System Partitioning

The partition problem of hardware and software components requires first finding a feasible partition.
Among data-rate feasible solutions, a cost jhnction of overall hardware size, program and data storage
cost, bus bandwidth and synchronization overhead cost is used to determine the quality of a solution. We
explore two approaches to obtain a partition of system model into hardware and software components.

4.5 System Partitioning based on system non-determinism

a We consider approaches to system partitioning in the order of increasing complexity of the system model.
Let us first consider a system graph model with no unbounded delay operations and with single-rate
execution model. We then look for a partition of a system model driven by satisfaction of the imposed
timing constraints. Consider an algorithm that is summarized as follows: starting with an initial solution
with all operations in hardware, we select operations for move into the software component based on a
cost criterion of communication overheads. Movement of operations to software requires a serialization
of operations in accordance with the partial order imposed by the system model. With this serialization
and analysis of the corresponding assembly code for a given re-programmable processor, we derive delays
through the software component. The movement of operations is then constrained by satisfaction of the
imposed timing constraints. Such a partitioning algorithm would strive to achieve maximal number of
operations in the software component.

In presence of unbounded delay operations, we can still apply the algorithm described before. Note
that unbounded delay operations can not be subject to any maximum timing constraints. Therefore, we

4.5 System Partitiolu’ng bas& on system non-determini~m 29

transfer all such operations into the software component and then identify deterministic delay operations
for move into the software component such that all timing constraints are satisfied.

However, in systems with multi-rate execution model, the datadependent delay operations makes
it difficult to predict actual data-rates of production and consumption across partitions. Further, non-
deterministic delays in the system model makes it difficult to statically schedule operations in any im-
plementation of the system design. When considering a mixed implementation of the system design, it
is possible to use dynamic scheduling of operations either or in both hardware and software components.
Dynamic scheduling of operations in hardware or software requires both area and time overheads that
may sometimes render a hardware-software co-design solution difficult or even infeasible. On the other
hand, use of static scheduling requires a careful analysis of data-transfer rates across hardware and soft-
ware portions in order to make sure that possible data-rates can indeed be supported by the interface
implementation.

Due to non-determinism in system models, the most general implementation of hardware and software
components requires a control generation scheme that supports data-driven dynamic scheduling of various
operations. Since the software component is implemented on a processor that physically supports only
single thread of control, realization of concurrency in software entails both storage area and execution
time overheads. On the other hand, in absence of any point of non-determinism from the software,
all the operations in the software can be scheduled statically. However, such a software model may
be too restrictive by requiring the control flow to be entirely in hardware. In our model of software
implementation, we take an intermediate approach to scheduling of various operations as described
below. First, we make following assumptions about the implementation model:

l The system has an application-specific hardware component that handles all external synchroniza-
tion operations. (External non-determinism points).

l All the data dependent delay operations (internal non-determinism points) are implemented by
software fragments running on re-programmable components.

The software component is thought to consist of a set of concurrently executing routines, called threads.
A thread consists of a linearly ordered set of operations. The serialization of the operations is imposed-
by the control flow in the corresponding graph model. Concurrent sets of operations are implemented as
separate threads to preserve concurrency specified in the system graph model. All the threads begin with
a point of non-determinism and as such these are scheduled dynamically. However, within each thread
of-execution all operations are statically scheduled. As an example, data-dependent loops in software are
implemented as a single thread with a data-dependent repeat count. In this way, we take an intermediate
approach between dynamic and static scheduling of software operations. Instead of scheduling every
operation dynamically, we create statically known deterministic threads of execution which are scheduled
in a cycle-static manner depending on availability of data. Thus, an individual operation in software has
a fixed schedule in its thread, however, the time and the number of times the thread may be invoked is
data-driven. Therefore, for a given re-programmable processor, the latency,& of each thread is known
statically. For a given data-input operation in a thread, i, with latency, Xi, the data consumption rate, pi
is bounded as: ema2 5 pi 5 k where ArnaZ refers to the latency of the longest thread. It is assumed that
the latency includes any synchronization overhead that may be required to implement multiple threads

30 4 THE PROBLEM OF HARDWARE-SOFTWARE PARITTTOAING

Partirion

Input: System graph model, G = (V, E)
Output: Partitioned system graph model, V = V’ U Vs. .
partition(V):

v = vduvn
V” = V”* lJ V”t
VH ={ vne, Vd}
vs = { V”* }
create software threads (Vna)
compute data rates (processor)
if not(feasible(VH, Vs)) exit

fmin = WH, w
repeat

foreach Vdi E Vd n VH
mOVe(vdi)

until no improvement in cost function
return(Vjf , Vc)

/* identify points of non-determinism */
/* external vs internal nondeterminism */
/$ the initial hardware component */
/$ the initial software component */
I$ create 1 Vni 1 routines */

/* No feasible solution exists */
r* initialize cost function */

/* select a deterministic delay operation */
/* recursively move operations to SW */

t?lOVe(vd i): /* considers a vertex for move from V’ to VS */
if feasible(VH - {vdi}, Vs + {vdi})

if f(VH - {Vdi), VS + {V”i}) < f&n
VH = VH - (Vdi) /* move this operation to SW */
VS = VS + { Vdi }
fmin = f(VHrVS)
update software threads

return

update data rates (processor)
foreach vdj E SUCC(vdi) t? VH

IIIOVe(vdj)
/* identify successor for move */

of execution on a single-thread re-programmable processor. The lower bound on pi is obtained by
implementing a software scheduling scheme that reschedules a repeating thread for execution at the end
of every iteration.

The system partitioning across hardware and software components is performed by decoupling the
external and internal points of non-determinism in the system model. It is assumed that for all exter-
nal points of non-determinism, the corresponding data-rates are externally specified. Thus, through this
decoupling we are able to determine all the data-rates for all the inputs to the re-programmable com-
ponent. The production data-rates of the re-programmable component are determined by the software
synchronization scheme used. We consider the issue of software implementation in Section 6.

From externally specified data rates we compute data rates for data flow edges in the system graph
model. The vertex set, V, consists of two sets of vertices, V = {V d, Vn}, where Vd denotes the set

4.6 Partitioning based on decoupling of control and execution 31

of operations whose delay is bounded and known at compile time, and Vn refers to non-deterministic
delay vertices. With a data-rate annotated system model as an input, we first isolate its points of non-
determinism, Vn, into two groups: VQ, those caused by external input/output operations, and Vni ,
those caused by internal data-dependent operations: The external points of nondeterminism, Vnc, are
solely assigned to the hardware while the internal points of non-determinism, V W, are assigned solely to
the software component. With this initial partition we determine the feasibility of data transfers across
the partition. If this initial partition is not feasible, then the algorithm fails since no feasible partition
exists under the proposed hardware-software interface and software implementation scheme. If the initial
partition is feasible, then it is refined by migrating operations from hardware to software (i.e., moving
vertices from V’ to I+) in the search for a lower cost feasible partition.

Associated with each internal point of non-determinism (e.g. data-dependent loop bodies) we create
a program fragment or a thread of execution. Each thread of execution corresponds to a software routine
by creating corresponding C code from HurdwareC description. For various threads of execution in
the software component, we derive latency and static storage measures by analyzing the corresponding
assembly code. The assembly code is obtained by compiling the corresponding C descriptions. We have
considered todate two off-the-shelf components, the R3000 and the 8086, and used existing compilers to
evaluate the performance of the corresponding implementation. The algorithm uses a cost function, f =
f(size(vH), Size(h), Synch-Cost(VH, VS), Cinlerface data rates) that is a weighted sum of its arguments.
The algorithm uses a greedy approach to selection of vertices for move into VS. There is no backtracking
since a vertex moved into VS stays in that set throughout rest of the algorithm. Therefore, the resulting
partition is a local optimum with respect single vertex moves. The overall complexity of the algorithm
is quadratic in the number of vertices.

Hrdwuo Co&d softwan Data

n Data FIFO

---I

SW Entry Pohts

(J-~-U-
.I

Figure 11: Partitionibg into Hardware Control and Software Execute proCesses

4.6 Partitioning based on decoupling of control and execution

In this section, we briefly mention some of the alternatives ways of partitioning system models in to
hardware and software, The partitioning problem can be formulated as the problem of decoupling
of control and execution processes. We think of a system model as consisting of interacting control
and execution procedures. The execution procedures perform data manipulation where as the control
procedures direct the flow of execution and data. There are two possibilities:

32

p-.. we(q.r.y...)(
. . .

1

-occo&

Behavioral
Synthesis

Scheduling and
Program threads
generation 1

--_ Figure 12: Partitioned Hardware Model

1. The hardware generates the address and data values for software execute process to start executing.
In Figure 11 the software consists of a set of looping routines. The input data and loop counts are
provided to the software addressing unit by the hardware.

2. The software control provides a mechanism to dynamically schedule hardware execute resources.
This case is similar to microcoded machines where microcode uses different hardware resources to
control flow of execution.

Exploration of alternative partitioning schemes forms a part of the continuing research.
As a result of partitioning of a system model, we have two sets of sequencing graph models repre-

senting functionality hardware and software components (Figure 12). These models are translated into
dedicated hardware and software as explained in following sections.

5 Implementation of Hardware Components

H-ardware implementation consists of synthesis of application-specific components from system model.
Timing and resource constraints may be specified in the system model as well as during the design
exploration phase of the synthesis process. Application-specific hardware synthesis under resource and
timing constraints has been addressed in detail elsewhere [141. When generating the hardware component
attention must be paid to the determination and reachability of a know reset state. Typically this is achieved
by use of an extra reset input signal that on assertion steers the ASIC hardware into reset state from any
other state. Such a reachability to the reset state from any other state may sometimes be an overkill and
expensive since it is obtained at the extra hardware cost of requiring every storage element in the ASIC
to be ‘reset-able’. It is possible to reduce this overhead by requiring resetability on a selected few storage

5.1 Hardware 7imihg and Resource Constraints 33

elements. The primary idea being that the system can be driven to a known reset state by keeping the
primary inputs low and asserting the reset signal for a finite number of clocks needed to traverse the
longest circuit path in the asic.

5.1 Hardware Timing and Resource Constraints

Hardware timing constraints were described in Section 3.3. A resource refers to a data-path element,
that is a hardware module, which implements one or more HurdwureC operations. Resource binding of
a model refers to mapping of operations in the sequencing graph model to a set of hardware modules.
On binding, a hardware module is instantiated in order to perform operations to which it is bound to. In
general, a greater number of resource constraints results in a larger overall hardware size. However, to
few resource instances also increase the hardware size by increasing the size of control circuitry needed
to share resources among operations. Resource constraints refer to upper bounds on number and types of
hardware modules and instances. HurdwureC supports specification of total number of hardware modules
and instances available for synthesis as well as specification of partial binding of operations to specific-_
resources and resource instances. Example 5. lbelow shows an example of HurdwureC specification with
resource and timing constraints.

Example 5.1. Example of a HardwareC process with timing and resource constraints

process example (a, b, c)
in port a[81 ;
in channel b[8] ;
out port c ;

boolean x[81, ~(81, 2[8] ;
tag A, B;
instance multiply mpyA;

A:

B:

x = read(a);
Y = receive(b);
if (x > y)

Z = x - y ;
else

z=x*y;
while (z >= 0) {

write c = y ;
Z =z-1;)

constraint maxtime from A to B = 1 cycles;
constraint resource-usage multiply 1;

0

5.2 Constrained Hardware Partitioning

Often the size of application-specific hardware component may be too big to be implemented in a single
chip. This is especially the case when using programmable logic devices for the hardware component.
Typical field-programmable gate array (FPGA) devices support approximately 1000 equivalent gates
where as standard cell ASIC implementations provide up to 50,000 gates. In addition to size of hardware

34 6 llWP!!flAmON OF S@3J+HRE COMPONENlS

implementation, structural synthesis of large hardware components itself becomes computationally diffi-
cult. For this reason, partitioning of hardware graph models in order to satisfy eventual area, pinout and
delay limitations provides an effective means of hardware implementation. Our approach to hardware
partitioning is formulated as an hypergruph partitioning problem and is described in 1231.

6 Implementation of Software Components

In this section we focus on the problem of synthesis of the software component of system design. We
consider the software portion to be small and mapped to real memory so that the issues related to virtual
memory management are not relevant to this problem. The objective of software implementation is
to generate a sequence of processor assembly instructions, or the program, from the set of sequencing
graph models, &, obtained via system partitioning. The generated program is required to satisfy the
timing constraints on the sequencing graph model. System partitioning ensures that size constraints on
the software component will be observed. This task is accomplished in following four steps (Figure 13).

Step 1: Generation of linearized sets of operations or program threcds from es. This requires
selective serializations to ensure convexity of the subgraphs of graph models that are targeted for
program threads. A subgraph is considered convex if all paths between any pair of vertices in
the subgraph are completely contained in the subgraph. Selective serialization is followed by
scheduling of operations in subgraphs of the sequencing graph models. Each maximal set of
completely ordered (i.e., linearized) operations represents a potential program thread.

Step 2: Generation of program routines from program threads. In addition to operations in the
program threads, a program routine also contains operations that make it possible to achieve con-
currency and synchronization between program threads. It may also contain operations that are
required to observed imposed timing constraints on i,. Recall the essential problem here is how do
we implement various program threads for execution on a processor that supports only sequential
execution of operations. Since the processor is completely dedicated to the implementation of the
system model and all the program threads are known statically, the final program can be generated
in one of following two ways.

1. generate a single program routine that incorporates all the program threads, or
2. provide for multiple-thread executions by means of operation interleaving

. In the first case, we attempt to merge different routines and schedule all the operations in a single
routine. The unbounded delay operations are explicitly handled either by busy-waiting or by
executing specific context-switch operations. In the second case, concurrency between threads is
achieved by interleaved execution on a single processor. In principle, operation interleaving can
be as “finer-grained” as the primitive operations performed by the processor, that is the assembly
instructions. Here we make a further assumption that interleaving is performed at the level of
operations used in the sequencing graph model. This assumption is made to avoid otherwise
excessive overheads due to implementation of concurrency at processor instruction level. Multiple
routines may be implemented using a subroutine relationships to a global routine scheduler. The

35.
w 0 0 *

0
0

’ 0.
I

0

0
I

I

$equencing graph models Program Threads Program Routines

Figure 13: Steps in generation of the software component

cost of development of such an scheduler may be high in terms of code space and speed of response.
This cost increases substantially in case an attempt is made to avoid possibility of starvation of
some routines by implementing some kind of fairness in scheduling. An alternative would be to
implement various routines as a set of co-operuting routines instead of hierarchical relationship
imposed by subroutine call/return. Such an implementation is particularly attractive in our case
since it requires relatively little overheads to manage different routines on a single processor.
Section 6.4 presents a comparison of different concurrency implementation schemes.

Step 3: Code generation from program routines. For purposes of retargetability, we generate C-code
from program routines. Code generation requires translation of operations defined in the sequencing
graph model into corresponding operations in C, a high-level programming language, identification
of memory locations, binding of variables to memory addresses.

Step 4: Compilation of program routines into processor assembly and object code. C-programs
are compiled using existing software compiler for the target processors. Some issues related to
interface of the object code to the underlying processor and ASK hardware must be resolved at
this level. These are discussed later in this section.

. .

In this section, we discuss important issues related to generation of the software component. Let us tirst
consider the step of generation of program threads from sequencing graph models. Figure 14 shows the
hierarchical graph model for the process example described in Example 3.2. The system graph model
consists of two graphs, labeled Go and Gloop. The double-circles indicate operations with unbounded
execution delays. Depending on the points of synchronization in a model, the graph can be implemented
as a single or multiple program threads. A program thread is so called due to the complete serialization
of operations required for the control flow in a single thread of execution. In absence of any points of
synchronization, a simple graph model can be translated into a single program thread by ordering all the
operations of the graph model. On the other hand, a hierarchical system model is implemented as a set
of program threads where each thread corresponds to a graph in the model hierarchy. Thus, the software
component consists of a set of program threads. The program threads may be hierarchically related. In
addition, some program threads may need to be executed concurrently based on the concurrency among
the corresponding graph models. Concurrency between program threads can be achieved by using an

36 6 IMPLlZkE7VZA~ON OF SOl=TUHRE COMPOh?ENXS

waound8d

Figure 14: Example of a graph model containing unknown delay operations

inter-leaved computation model as explained later in this section.
A program thread may be initiated by a synchronization operation, such as a blocking receive operation

(rcvsynch). However, within each thread all operations have fixed delay. The (unknown) delay in
executing the synchronization operation appears as a delay in scheduling the program thread and it is
not considered a part of the thread latency. Therefore, for a given re-programmable device the latency
of each thread is known statically. Referring to the example in Figure 14, there are two program threads
TO and TlooP. The thread, TlooP consist of serialized operations in the corresponding graph body.

a
To

Tw

rev,synch
read
cond-eval
cond-jump
op add
op mpy
detach

loop-synch
write
oP
detach

Though only a feature of representation, this use of hierarchy to represent control flow is well suited to
eventual implementation of the software component as a set of program routines. Since all the operations
in a given graph model are always executed, the corresponding routines can be constructed with known
and fixed latencies as explained earlier. As with the graph model, the uncertainty due to data-dependent

6.1 Rate wnstraints and soilware peHionnance 37

.

delay operations is related to invocations of the individual routines. A software implementation consisting
of dynamic invocations of fixed latency program threads simplifies the task of software characterization
for satisfaction of data rate constraints. Satisfaction of imposed data rate constraints depends on the
performance of the software component. Even in presence of unbounded delay operations bounds on
software performance can be determined based on itsimplementation of program threads. In the following
sections, we describe a code-level transformation of the data-dependent loop operations that makes it
possible to observe imposed input/output rate constraints. In cases, where such transformations are not
possible, we use processor interrupts along with bounds on number of interrupts and interrupt latencies
to ensure satisfaction of rate constraints.

6.1 Rate constraints and software performance

The data rate constraints on the inputs and outputs of the software component are derived based on
the corresponding constraints on system inputs and outputs. A data rate constraint on an input (output)
specifies a lower bound (in terms of se&le) on the rate at which the particular I/O data should
be consumed (produced). In case of a deterministic software component, that is, sofiware component--
with known and bounded execution delays, precise data rates can be computed and checked against
corresponding data rate constraints. However, the presence of an unbounded-delay operation between
consecutive read (write) operations requires computation of statistical measures (such as distribution of
input data value and inter-arrival time) to determine the rate of data production and consumption. A major
contribution to the variability of data rates is due to the data-dependent loop operations since the delay
due to these operations consists of active execution times rather than ‘busy-wait’-type delays encountered
by other synchronization operations.

Cycle-static loop implementation

In some cases, the need for statistical measures can be avoided by transforming the corresponding dynamic
loop execution model into a cycle-static loop execution model as follows. Consider, for example, a
software component that consists of reading a value followed by a data-dependent delay operation showna
in Example 6.1.

Example 6.1. Consider a mixed implementation shown by the figure below.

The ASK component sends to the processor some data on port x at an input rate constraint of p
se&le. The function to be implemented by the processor is modeled by the following HurdwareC
process fragment.

process test(x, . ..)
in port x [SIZE];

Thread Tl Thread T2

read loop-synch

38 6 LM2?LEMENTA77ON OF SOFTWARE COMl-‘OhEhTS

. . .
read x ;
while (x >= 0)
1

<loop-body>
x = x - l ;

1

I detach <loop-body>
I x = x - l
I detach
I
I
I
I

x is a boolean array that represents an integer. In its software implementation, this behavior is translated
into a set of two program threads shown on the right, where one thread performs the reading operations,
and the other thread consists of operations in the body of the loop. For each execution of thread Tl
there are x execution of thread T2. 0

For the HardwareC process in Example 6.1, the interval between successive executions of the read
operation is determined by the overall execution time of the while statement. Due to this variable-delay
loop operation, the input data rate at port x is variable and is dependent on value of x as a function of
time. For each invocation of thread Tl there are x invocations of thread T2. In other words, thread Tl
can be resumed after x invocations of thread T2. In absence of any other data-dependency to operations in
the loop body, thread Tl can be restarted before completing all invocations of thread ‘12 by buffering the
data transfer from thread Tl to ‘12. Further, if variable x is used only for indexing the loop iterations, the
need for inter-thread buffering can be obviated by accumulating value of x into a separate loop counter as
shown in example below. We call such an implementation of a loop construct in software a cycle-static
loop based on the fact that an upper bound on the number of iterations of the loop body is statically
determined by the data rate constraints on inputs and outputs that are affected by the data-dependent loop
operation.

A cycle-static loop implementation assumes that there exists a repeat-count counter associated with
every loop and a loop body is required to be executed as long as its repeat-count is a non-zero number.
Additionally, the repeat-count is not used by the corresponding loop body for any purposes other than
can keeping a count of number of iterations remaining. Under such conditions, the above component can
be transformed into two program threads where one thread reads port x and increments the repeat-count
for the loop body contained in the other thread.

. Example 6.2. Transformation of data-dependent loop in Example 2 into a cycle-static loop

process test(x, . ..) I Thread Tl Thread T2
in port x [SIZE] I

f I read loop-synch
integer repeat-count = 0 ; I add op <loop-body>

I detach repeat-count--
read x ; I detach
repeat-count = repeat-count t x ; I
while (repeat-count >= 0) I
1 I

<loop-body> I
repeat-count = repeat-count-l I

(1). For each execution of thread Tl there are max(z, m) execution of thread T2 where constant
m is determined by input data rate constraint, p, on the read operation in Tl given by the relation:

6. I Rate wnstraints and sofiware petioxmance 39

1 = (AT~ + m . XT~) - t,, where thread latencies AT~ and ATZ include synchronization overheads. t,,
dpenotes cycle time of the processor.

(2). Initialization of variables is performed during system RESET state. 0

In this case, we can provide a bound on the rate at which port is read by ensuring that the read
thread, Thread Tl, is scheduled, say after utmost m iterations of the loop body. Due to accumulation of
repeat-count additional care must be taken to avoid any potential overflow of this counter. [Generally,
overflow can be avoided if m is greater than or equal to the average value of X. In the extreme, it can
be guaranteed not to overflow if m is at least maximum of x which is equivalent to assigning worst-case
delay to the loop operation].

Decoupling data rate from software non-determinism

Due to unbounded delay operations in the software component that is translated into a data-dependent
number of invocations of some threads of execution, use of cycle-static loops may not always be possible
or it may lead to implementations that under-utilize the system bus bandwidths, for example, by reserving
worst case data-transfer rates for some I/O operations. With concurrent threads, to a certain extent, we
can insulate the input/output data rates from variable delays due to other threads by buffering the data
transfers between threads. Thus, the inter-thread buffers hold the data in order to facilitate multiple
executions among program threads. Threads containing specific input/output operations are scheduled
at fixed intervals via processor interrupt routines as shown in the Example 6.3 below. In this scheme,
finite-sized buffers are allocated for each data-transfer between program threads. In order to ensure the
input/output data rates for each thread, we associate a timer with every I/O operation that interrupts the
processor once the timer expires. The associated interrupt service routine performs the respective I/O
operation and restarts the timer. In case a data is not ready the processor can send the previous output
and (optionally) raise an error flag.

Example 6.3.

Thread T2 Timer Process Tl (interrupt service routine)

loop-synch
<loop-body>
x = x - l
detach

timer-- per clock tick read x
if (timer == 0) load timer = CONSTANT

interrupt enqueue (x) on dFIF0

Thread Tl is now implemented into an interrupt service routine that is invoked at each expiration of
the timer process. Timer process represents a processor timer (or an external hardware timer) that is
used to generate interrupts at regular intervals. The interruption interval CONSTANT is determined by
the rate constraint and latencies of interrupt service routines. dFIF0 in the interrupt service routine
refers to the buffer between threads Tl and T2. 0

This scheme is particularly helpful in case of widely non-uniform rates of production and consumption.
In this case, data transfer from processor to ASICs is handled by the interrupt routines thereby leading
to a relatively smaller program size for the cost of increased latencies of the interrupt service routines.
Section 7.2 presents implementation costs and performance of this scheme.

40 6 IW=MAmON OF SOFTW-2lRE COMPOAENB

Next we consider the problem of software synchronization and scheduling mechanisms to make a
hardware-software system design feasible.

6.2 Representation of Inter-thread dependencies
. .

Inter-thread dependencies are represented by a program flow graph, P = (V, E). The vertices of P
are individual program threads. A directed edge between two vertices indicates a dependency between
the two corresponding threads. Example below shows the program flow graph corresponding to the
HardwareC process described in Example 3.2.

Example 6.4. Program flow graph corresponding to process example

cl

6.3 Control Flow in the Software Component

Our model of software component relies on the sequential execution of each thread of execution. Concur-
rency between threads is achieved through interleaved execution of the threads. Since multiple program
threads may be created out of a graph model each starting with an unbounded-delay operation, therefore,
software synchronization is needed to ensure correct ordering of operations within the program threads
and between different threads.

Since the total number program threads and their dependencies are known statically, the programs
threads are constructed to observe these dependencies. The threads are identified by unique tags. A
run-time FIFO, called control FIFO, maintains the id of the tags that are ready to run based on control
flow (while they may still be waiting for data). Before detaching, each thread performs one or more
enqueue operations to the FIFO for its successor threads as shown in Example 6.5 below.

Example 6.5. Inter-thread control dependencies

0Tl Thmd Tl
before Tl

EIIIr

after Tl

Flow Graph Thread Control FIFO

<body> refers to the (linearized) set of operations from the corresponding graph models. Control
dependency from thread Tl to T2 is built into the code of Tl by the enqueue operation on the control
FIFO. 0

6.4 Concurrency in Software Rirough Interleaving 41

A thread dependency on more than one predecessor thread (that is a multiple indegree (fanin) node
in the flow graph) is observed by ensuring multiple enqueue operations for the thread by means of a
counter. For example, a thread node with a indegree of 2 would contain a synchronization preamble code
as indicated by the while statement shown in Example 6.6 below.

Example 6.6. Thread with multiple input control dependencies
ThreadTl

while (count != 1)
1

count = count + 1;
detach

1
<body>
count = 0
enqueue <successor threads> on cFIF0
detach

@ @

\/

0Tl

Control transfer for multiple fanin nodes entails program overheads that add to the latency of the
corresponding threads. For this reason, an attempt should be made to reduce multiple dependencies for
a program thread through a careful dependency analysis. In case of multiple outdegree nodes in the flow
graph, a necessary serialization among enabling of successor threads occurs. However, this serialization
is of little significance since there exists only a single re-programmable component.

6.4 Concurrency in Software Through Interleaving

The problem of concurrent multi-thread implementation is well known[28]. In general, multiple program
threads may be implemented as subroutines operating under a global task scheduler. However, subroutine
calling adds overheads which can be reduced by putting all the program fragments at the same level of

a execution. Such an alternative is provided by implementing different threads as coroutines [29]. In this
case, routines maintain a co-operative rather than a hierarchical relationship by keeping all individual data
as local storage. The coroutines maintain a local state and willingly relinquish control of the processor
at exception conditions which may be caused by unavailability of data or an interrupt. In case of such
exceptions the coroutine switch picks up the processes according to a predefined priority list. The code
for such a scheduler for coroutines takes approximately 100 bytes in an instruction set that supports both
register and memory operands.

Software implementation with explicitly modeled points of non-determinism

Since the processor is completely dedicated to the implementation of the system model and all software
tasks are known statically, we can use a simpler and more relevant scheme to implement the software
component. In this approach, we merge different routines and describe all operations in a single routine
using a method of description by cases [30]. This scheme is simpler than the coroutine scheme presented

42

Implementation Processor type Overhead cycles j
Subroutine 728
Coroutine 364
Restricted Coroutine 103
Description by cases 85
Restricted &routine L/S 19
Description bv cases US 35 A

6 IMPLEMENZAI7ON OF SOFT?+HRE COMPOMTNTS

Table 3: Compan’son of propam thread implementation schemes

above. Here we construct a single program which has a unique state assignment for each point of non-
determinism. A global state register is used to store the state of execution of a thread. Transitions between
states are determined by the requirement on interrupt latency for blocking transfers and scheduling of
different points of non-determinism based on data received.

This method is restrictive since it precludes use of nested routines and requires description as a single
switch statement, which in cases of particularly large software descriptions, may be too cumbersome.
Overhead due to state save and restore amounts to 85 clock cycles for every point of non-determinism
when implemented on a 8086 processor. Consequently, this scheme entails smaller overheads when
compared to the general coroutine scheme described earlier.

Table 3 summarizes program overhead for different implementation schemes. The processors are
categorized based on availability of memory operands in the instruction set. A register-memory (R./M)
processor supports both register and memory operands for its instructions, typical of ‘complex-instruction
set’ processors like Motorola 68K or Intel x86 series. A load-store (L/S) processor supports use of
memory operands only in two specific ‘load’ and ‘store’ instructions, typical of ‘reduced-instruction set’
processors like Mips R(2/3)K and Sun SPARC series. Overhead cycles refers to the overhead (in cycles)
incurred due each transfer operation from one program thread to another. A Subroutine implementation
refers to translation of program threads to program subroutines that operate under a global task scheduler

* (or the main program). A Coroutine implementation reduces the overhead by placing routines in a
co-operative, rather than hierarchical, relationship to each other. A Restricted coroutine implementation
reduces the overhead further by suitably partitioning the onboard register storage between program threads
such that program counter is the only register that is saved/restored during a thread transfer. In case of
RYM processors the case description scheme reduces the overhead by reducing amount of ALU operations
in favor of a slight increase in memory input-output operations.

6.5 Issues in Code Generation from Program Routines

As mentioned earlier, we generate C-code from partitioned graph models. Use of high-level programming
language for software generation provides the ability to generate corresponding object code for most
commonly used processors. While this retargetability can be realized for the most part of the software

6.5 &wes in Code Generation from I%ogram Routines 43

component, there are certain program implementation issues that must be addressed while compiling and
loading the generated C-programs. In this section, we address the major practical implementation issues.

6.5.1 Memory allocation . .

The C-compiler uses two kinds of memory structures: stack for storing local variables in order to facilitate
subroutine calls; heap for dynamic allocation of memory space to run-time generated data structures.
When using target systems with limited available memory (especially in case of microcontrollers where
the on-chip memory is severely constrained), unconstrained use of stack and heap space may lead runtime
exceptions that may make the software component non-functional. Fortunately, use of both stack and
heap can be avoided by performing static memory allocation in the generated program. Static memory
allocation makes the generated program non-recursive and non-reentrant. ‘Ihe non-recursive nature
of the software component is not an issue since the input graph models are themselves non-recursive
thus ruling out possibility of recursion in generated programs. A non-reentrant program can not be
entered by more than one task. This is usually a problem in case of general-purpose computing systems
where a program execution must co-exist with other programs and the operating system software. In our
application, the only restriction placed by non-reentrant code is that the main program and, the interrupt
service routines must not share any procedure calls.

6.5.2 Data types

The standard C programming languages supports the following data types: char, short int, int, long
int, float and double. Format compatibility for the encoded/interpreted data types (types other than bit-
vectors) becomes an issue when interfacing a general-purpose processor to external hardware such as
A/D converters. Further, most standard C-compilers support declaration prefixes const and volatile. A
const-declared data set can be mapped to on-chip read-only memory (ROM). For variables declared as
shared-storage between program threads and as memory-mapped I/O variables, use of volatile declaration
preserves these from any compiler-driven optimizations.

63.3 The C Standard Library

The standard C-library contains procedures that are called by most C-programs. While most of these
procedures are coded as C-programs thus making it portable across systems. However, some of these
are written as assembly programs. Commonly used assembly routines are getchar and putchur() that
are used for most I/O operations. These routines must be written for the target processor. Example 6.7
shows these routines for the MC68HCll processor.

Example 6.7. Assembly input/output routines for MC68HCll processor

#define RDRF 0x20
#define TRDE 0x80
#define SCSR * (char l) Ox102e
#define SCDR * (char l) Ox102f

/* Receive data register full */
/* Transmit data ready empty */
/* SC1 status register */
/* SC1 data register */

int putchar (c)

44 6 IMpLEMENTAnON OF SOFTWWZE COMPOAEWS

int c;

while (! (SCSR & TRDE));
SCDR = c;
return(c);

/* Wait until ready to receive */

int getchar 0
1

while (! (SCSR & RDRF));
c = SCDR;
return(c);

. .
/* Wait for data */

6.5.4 Linking and loading compiled C-programs

When using routines from the standard C-library, only the routines used by the program are loaded
into the object image. The object image consists of memory-relocatable modules. A hardware-software
interface often contains fixed memory locations for interface semaphores, hardware devices addresses et
cetra. When using relocatable object code, fixed addresses can be generated and used by the program by
creating special relocatable modules that are loaded at fixed addresses during executions. Use of smaller
relocatable modules for fixed-address generation avoids the problem of having to create fixed-address
object modules for the entire software component. Example 6.8 shows how such modules can be used
to address a fixed location interrupt vector table.

Example 6.8. Using relocatable modules to generate fixed-address locations

Interrupt Vector - ble

Fixed
Location

Program Relocatable module Memory

Figure 15: Generating fixed addresses from C-programs

The interrupt-vector table is located at a fixed address Oxffd6. The following relocatable module
vector-table contains pointers to various service routines. vector-table is compiled sepa-
rately and loaded at address Oxffd6.

extern void reset();
extern void sci();

6.5 Lcsues in Code Generation from Program Routines 45

extern void spi();
. . .
void (* const vector-table111 0 = {

sci0, /* SC1 service routine */

. . .
reset,
I;

L.

0

6.U Interface to assembly routines

For a variety of reasons, often assembly routines are needed to simplify the task of hardware-software
interface tasks. Most common example of assembly programs are programs for runtime startup routines
to setup the environment for execution of C-coded programs. A startup routine typically performs the
following functions:

1. Load stack pointer (if using stack)
2. Manipulation of hardware registers. Sometimes, a hardware register must be initialized within

a certain time interval of power-up that can only be performed by an assembly routines. For
example, the block protection register (BPROT) in MC68HCll must be written within 5 1 cycles
after power-up inorder to enable writes to the on-chip EEPROM.

3. Initialize global variables either by initializing the automatic initialization block in static RAM
memory generated by the C-compiler for auto-initialized variables, or by using initialized values
from a ROM.

When interfacing a C-compiled program to assembly programs, the following issues must be consid-
ered:

l global symbols are renamed by the compiler with a prefix that must be used by the assembly
routines.

l when passing parameters or returning values from routines, some values may be passed via registers
while others may need use of an external stack.

l registers that are used by compiler must be saved and restored when manipulated by the assembly
_ routines.

Use of in-line assembly routines in C-programs simplifies the task of interfacing object code to the
underlying processor hardware. A common example of in-line assembly is in enabling/disabling interrupts
as shown by the Example below.

Example 6.9. Use of in-line assembly

main0

. . .
-asm('di\n');

46 7 SYSEM SYNCHRONIZATTON

<critical code>

-asm('ei\n');

. .
Cl

As a matter of programming convenience, the in-line assembly instructions need not use explicitly
assigned processor registers. Most C-compilers allow use of C-expressions as operands to assembly
instructions. This allows us to use critical functions as assembly macros in C source programs as shown
by the example below.

Example 6.10. C functions as assembly macros

#define sin(x) \
({double -value, -arg = (x) ; \
asm ('fsinx %l, $0' : '=f' (-value) : 'f' (-arg)); \
-value; 1)

The assembly instruction fsinx uses C expression x as an operand. Type declaration ’ f’ indicates
that a floating point register must be used for this operand. A ’ = f 1 declaration indicates that output
is a floating point register. The output operand -value must be a write-only I-value. 0

7 System Synchronization

Due to pseudo-concurrency in the software component a data transfer from hardware to software must be
explicitly synchronized. Using a polling strategy, the software component can be designed to perform pre-
meditated transfers from the hardware components based on its data requirements. This requires static
scheduling of the hardware component. In cases where the software functionality is communication
limited, that is, the processor is busy-waiting for an input-output operation most of the time, such a
scheme would be sufficient. Further, in absence of any non-determinism, the software component in this
scheme can be simplified to a single program thread and a single data channel since all data transfers are

a serialized. However, this would not support any branching, no reordering of data arrivals since dynamic
scheduling of operations in hardware would not be supported.

In order to accommodate different rates of execution of the hardware and software components, and
due to unbounded delay operations, we look for a dynamic scheduling of different threads of execution.
Such a scheduling is done based on availability of data. This scheduling is by means of a control FIFO
introduced in Section 6.3 which attempts to enforce the policy that data items are consumed in the order
in which they are produced. The hardware-software interface consists of data queues on each channel
and a FIFO that holds the identifiers for the enabled program threads in the order in which their input
data arrives. The control FIFO depth is sized with the number of threads of execution, since a program
thread is stalled pending availability of the requested data.

Example 7.1. Hardware-Software Interface
Figure 16 shows schematic connection of the FIFO control signals for a single data queue. In this
example, the data queue is memory mapped at address OxeeOOO while the data queue request signal

47

Processor

Figure 16: Control FFO schematic

ntwr

Figure 17: HFO control state transition diagram

is identified by bit 0 of address OxeeOO4 and enable from the microprocessor (up&n) is generated from
bit 0 of address OxeeO08.
The control logic needed for generation of the enqueue is described by a simple state transition diagram
shown in Figure 17. The control FIFO is ready to enqueue (indicated by gn = 1) a process id if
the corresponding data request (qxq) is high and the process has enabled the thread for execution
(up-en). Signal up-ah indicates completion of a control FIFO read operation by the processor.

In case of multiple fanin queues, the enqueue-rq is generated by OR-ing the requests of all inputs
to the queues. In case of multiple-fanout queues, the signal dequeuexq is generated also by OR-ing
all dequeue requests from the queue. 0

The control FIFO and associated control logic can be implemented either in hardware as a part of the
ASIC component or in software. In case the control FIFO is implemented in software the FIFO control
logic is no longer needed since the control flow is already in software. In this case, the q,rq lines
from data queues are connected to processor unvectored interrupt lines, where the respective interrupt
service routines are used to enqueue the thread identifier tags into the control FIFO. During the enqueue
operations the interrupts are disabled in order to preserve integrity of the software control flow. An
specification for the control FIFO based on two threads of execution isgiven in the Example 7.2 below.

Example 7.2. Specification of the control FIFO based on two threads of execution

queue [2] controlFIF0 [l];

48 7 SYSlEM SYNCIcLRONIzA’T1ON

INTERFACE BUFFER POLICY-OF-USE

DIRECT-MAPPED BUFFER FOR TAG m
DATA TRANSFER:

DATA

I I I I
1. Tags detemhed statically
$ &used for demand scheduling

3. Mwmw ratio to support
muttiple HW executions

=. FIFO BUFFER FOR DYNAMIC
CONTROL FLOW: I I
1. Control ttow modifications from:

a. Memory Read or
b. Interrupt driven or
c. A dedicated Input Port

Figure 18: Hsdware and Software Interface Architecture

queue 1161 line-queue [l], circle-queue [l];

when ((line-queue.dequeue_rq+ & !line-queue.empty) & !controlFIFO.full) do
controlFIF0 enqueue #l;
when ((circle-queue.dequeue-rq+ & !circle-dequeue.empty) & !controlFIFO.full)
do controlFIF0 enqueue f2;
when (controlFIFO.dequeue_rq+ & !controlFIFO.empty) do controlFIF0 dequeue
dlx.OxffOOO[l:O];

dlx.Oxff000[2:2] = !controlFIFO.empty;

. In this example, two data queues with 16 bits of width and 1 bit of depth, line-queue and
circle-queue, and one queue with 2 bits of width and 1 bit of depth controlFIF0 are de-
clared. The guarded commands specify the conditions on which the number 1 or the number 2 are
enqueued - here, a ‘+’ after a signal name means a positive edge and a ‘-’ after the signal means a
negative edge. ‘Ihe tirst condition states that when a request for a dequeue on the queue line-queue
comes and the queue is not empty and the queue controlFIF0 is not full, then enqueue the value
1 in the controlFIF0. The last command just specifies a direct connection between signal not
controlFIFO.empty andbit2ofsignal dlx.OxffOOO. 0

7. I Hardware-SoRware hterface Architecture 49

P R O C E S S M O D E L T A S K S W I T C H M O D E L I N T E R F A C E B U F F E R M O D E L

i rofora to routlno rawclaW with point of non-datorminim I

@I 09

Figure 19: Hardware and Software Interface Model

7.1 Hardware-Software Interface Architecture

As mentioned earlier, the hardware-software interface depends on the corresponding data transfer require-
ments imposed on the system model. In the case of known data-rates where (non-blocking) synchronous
data transfers are possible, the interface contains an interface buffer memory for data transfer. Different
policy-of-use for the interface buffer is adopted when transferring data or control information across the
partition. Therefore, the interface buffer consists of two parts: a data-transfer buffer and a control-transfer
buffer (Figure 18). The data-transfer buffer uses an associative memory with statically detemtined tags
while the control-transfer buffer uses a FIFO policy-of-use in order to dynamically schedule multiple
threads of execution in the software. Associated with each data-transfer we assign a unique tag which

a consists of two parts, software thread id and the specific data-transfer id. Since all the threads and all
input/output operations are known, the tags are determined statically. In addition, the data-buffer contains
a request flag (RQ bit) associated with each tag to facilitate demand scheduling of various threads in
software. Figure 19 explains the modus operandi of data transfer across a hardware-software partition.
In the software, a thread of execution is in the compute state as long as it has all the available data
[Figure 19(a)]. In case of a miss on a data, the corresponding RQ bit is raised and the thread is detached
Figure 19(c)]. The processor then selects a new thread of execution from the control FIFO [Figure 19(b)].
In case of data arrival to the interface buffer, if the corresponding RQ bit is on, its tag is put into the
control FIFO [Figure 19(c)]. ’

Note that the interface architecture described here shows only a mechanistic view of the hardware-
software synchronization concepts presented before. Its implementation may be made simpler and yet
achieve the same effect. For example, the functionality of the associative memory buffer can be translated
into a software thread while using a simpler memory structure.

50 7 SYSlEM SYNCMONLzLAlTON

Figure 20: Graphics Coprocessor Block Diagram

PROCESSOR ASIC Hardware
.~.:.:.:.:~.:.:.:.:.:.~,.. p...v..... . ..A........
::::::::::::::::::::::

. ,A .
p.......

.:.~.:.:.:::::::::
~gp.

* . ..*.*...

:::p::: :.:*.
m ::::::g
VA... :y::::::

Line I#$

:.:.:.:.: *...*.*.*.
A...... .:s<*.;
:m :s.y,:.*.

&.$$i

IF

:~ ~.&?&@~@&*2@2:
::::::y :y$:y

5T.V
.

g# g circle k
:.:.:.g ..*..... <
.‘.*,:.:. -<:.:.:.. .*
9x.:.: . A%..
.>>x ::::::y:

;y.>x
-,.- 2.. y*. .,*. n . . .,>$*;
..v.* 5% .A... :.y$$p& . ,<. ,<<,s.:
:.I.:.:.: x.:.:.:.:.: +.:*:: +.... *.*.*...*.*. . *....., *.. f....

is;
.w.:. .x.:.~k*<&s#x4>s.~~~

Control RF0

Figure 2 1: Graphics Coprocessor hnplementation

7.2 Example

x,out~O:31

ysutt0:31

xcirclet0:33

ycirclefO:3l

cantrolFifot0:31

CF,rmady

contmlFifo,rd

contmlFifo_r

OlJq

=-rq

7.2 Example

DOOOOOOOOOOOOOOOOOOOOOOOOOOOOO~OO~~22222~33333~44444~5555555555555~66666~77

ooooooooooooooooooooooooooooooooo ~~22222~33333~44444)5555555555555 b66666p77
I 1

-r 1 1 , 1 I 1 1
0 193 387 5KJ 774

I I I I I
667 1161 1354 1546

r 8 I
1741 1935 2129 2322 2516 2709 29b3

Figure 22: Graphics Coprocessor Simulation

51

In order to illustrate the effect of software and hardware-software interface implementation, we present
design of a graphics controller that outputs pixel coordinates for lines and circles given the end coordinates
(and radius in case of circle). The final implementation of the system design consists of line and circle
drawing routines in the software component while the ASIC hardware performs initial coordinate gener-
ation, coordinate transfer to the video ram. The software component consists of two threads of execution
corresponding to the line and circle drawing routines. Both program threads generate coordinates that

- are used by the dedicated hardware. The data-driven dynamic scheduling of program threads is achieved
by a 3-deep control FIFO. The circle and line drawing program threads are identified by id numbers
1 and 2 respectively. The program threads are implemented using the coroutine scheme described in
Section 3.1.2.

Figure 23 shows the main program in case of a hardware control FIFO implementation. Like the line
and circle drawing routines, this program is compiled using existing C-compiler. Table 4 compares the
performance of different program implementations using control FIFO either in hardware or in software
component. The hardware implementation of a control FIFO with fanin 3 when synthesized by program
Hebe and mapped to LSI 10K library of gates using program Ceres costs 228 gates. An equivalent
software implementation adds 388 bytes to the overall program size of the software component. Note
that the cost of hardware control FIFO increases as the number of data queues increases. On the other
hand, software implementation of control FIFO using interrupt routines to perform the control FIFO

52 7 SYSTEM SYNCHRONIzAlTON

#include “transferJo.h”

int lastFC[h+fAXCOROUTlNES].= {scheduler, circle, line,main};
int curzent=h4AIN;

int *controlFIFO-out = (int *) OxaaoooO;
int *conMFlFO = (int *) OxabOOOO;
int *controlFIFO~outak = (int *) OxacOWO;

#include “line.c”
#include “circ1e.c”

void main(){
resume (SCHEDULER);

1;

int nextCoroutine;

void scheduler() {
resume (LINE);
resume (CIRCLE);

--. wMeo(jREsFD {

nextcorou tine = *controlFIFO;
} while ((nextCoroutine & 0x4) != 0x4);
resume (nextCoroutine 85 0x3);

1
I

Figure 23: Graphics ControlIer Software Component

Scheme Program Synchronization
I/ Isize overhead

I delay 1
WW (% cycles)

Hardware CFIFO 5972 0
Software CFIFO 6588 50
ODt. Software CFIFO 6360 29.4

81 535.2 502 76.4 30
95 749.5 407 106.8 31
95 651 330 94 31

Table 4: A comptuison of control HFO implementation schemes

53

enqueue operations offers lower implementation cost for a 50% increase in the thread latencies. In case
of software implementation of control FIFO, the enqueue and dequeue operations are described in C which
are then compiled for DLX assembly. ‘Ihe overhead due to enqueue and dequeue operations is reduced
further by manually optimizing the assembly code for enqueue and dequeue operations as indicated by
the entry ‘Opt. Software CFIFO’. This one time optimization of enqueue and dequeue routines, which
does not affect the C-code description of the program threads, leads to a reduction in the program size
and program thread overhead to 29.4% thereby improving the rate at which the data is output. Note that
data input and output rates have been expressed in terms of number of cycles it takes to input or output a
coordinate. Due to a purely data-dependent behavior of program threads, the actual data input and output
rates would vary with respect to value of the input data. In this example simulation, the input rate has
been expressed for a simultaneous drawing of a line and 5 pixel radius with width of 1 pixel each and
the results are accurate to one pixel. An input rate of 81 cycles/coordinate corresponds to approximately
0.25 million samples&c for a processor running at 20 MHz. Similarly, a peak circle output rate of 30
cycles/coordinate corresponds to a rate of 0.67 million samples/set.

Though instructive, the line and circle drawing algorithms are simple enough that their software
implementation do not-fully exploit the potential of a mixed implementation. However, a more computa-
tionally intensive operation like spline generation or operations involving floating point arithmetic would
greatly benefit by their program implementations.

8 Example of System-level Synthesis: Network Coprocessor

The coprocessor manages the processes of transmitting and receiving data frames over a network under
CSMAKD protocol. CSMA/CD refers to Carrier Sense Multiple Access with Collision Detection protocol
used to facilitate communication among many stations over a shared medium (or channel). It is defined
by IEEE 802.3 standard. Briefly, CS means that any station wishing to transmit ‘listens’ first and defers
its transmission until the channel is clear. MA implies simultaneous accesses by multiple stations is
allowed without the use of any central arbitration. CD refers to collision detection protocol used to detect

. simultaneous transmission by two or more stations.
The purpose of this coprocessor is to off-load the host CPU from managing communication activities.

The coprocessor contains two independent 16 byte wide receive and transmit FIFO buffers. The copro-
cessor provides a small repertoire of eight instructions that let the host CPU program the machine for
specific operations (transmit some data from memory, for example). The coprocessor provides following
functions.

l Data Framing and De-Framing
l Network/Link Operation
l Address sensing
l Error Detection
l Data Encoding
l Memory Access

54 8 EX4MpLE OF SYSlEM-LEKEL SY-IS: iWTWORK COPROCESSOR

START enables reception
STOP disable reception
XMIT transmit frame
CTADDR set controller address
SIF set inter-frame spacing
JAM set jamming parameter
PREAMBLE set preamble length in bytes
SFRDELIM set frame delimeter

Table 5: Network Coprocessor htmction Set

8.1 Host CPU-Coprocessor Interface

Both the CPU and the coprocessor share a bus which can be controlled either by CPU or by the copro-
cessor. The exclusivity-of bus-master is ensured by handshake signals used between the two. The shared
bus consists of all Address and Data lines.

In additions to CPU and coprocessor, the bus is also connected to system memory. The coprocessor
contains a PC which contains the address from where its next instruction fetch occurs.

8.2 Coprocessor Operation

A typical coprocessor operation can be described as follows:

1. host cpu invokes the coprocessor by write and a memory mapped address
2. the coprocessor responds by making a request for bus control
3. once acknowledged the coprocessor initiates memory read operation to receive command operations
4. once initialized the coprocessor relinquishes control of the bus to host cpua

In the event of a collision, the controller manages the ‘jam’ period, random wait and retry process by
re-initializing the DMA pointers without CPU intervention. In case of any errors in the received data,
the controller re-initializes the DMA pointers and reclaims any data buffers containing the bad frame.
All the transmitted and received data is manchester encoded/decoded.

8.3 Coprocessor Architecture

The coprocessor architecture is modeled after the target system architecture shown in Section 2.1. A
modification is addition of a local memory and local bus in order to reduce the system bus bandwidth.
The coprocessor can be thought of logically consisting of following functional units: execute, transmit
and the receive unit. The ethernet controller block diagram is shown in Figure 24.

8.3 Coprocessor Architecture 55

System
Bus

. .

! Local Bus

Netwo& Coprocessor-I--...........I-----.-.......------...........-----...........------.........------...........-----...-......
Or derived from Manchester encoded input data (RXD)

Figure 24: Network Coprocessor Block Diagram

The Execute unit provides for fetching and decoding of coprocessor instructions. It provides a
repertoire of eight instructions listed in Table 5 The Receive unit receives frames and stores them into
memory. The host cpu sets aside an adequate amount of buffer space and then enables the controller..
Once enabled, frames arrived asynchronously. The controller must always be ready to receive the data
and store them into a free memory area. The controller checks each received frame for an address match.
If a match occurs, it stores the destination and source address and length field in the next available free
space. Once an entire frame is received without errors, the controller does the following:

0 updates the actual count of the frames received
l fetches address of the next free receive buffer
0 interrupts the cpu

Given a pointer to the memory, the Transmit unit generates the preamble start frame delimiter,
fetches the destination address and length field from the transmit command, inserts its unique address
as the source address, fetches data field from buffers pointed by the transmit command, computes and
appends CRC at the end of the frame.

56 8 EXAMPLE OF SYSK5M-LEE SY~IS: NETWORK COPROCESSOR

The important rate and timing constraints on the coprocessor design are: the maximum input/output
bit rate is 10 Mbkc; maximum propagation delay is 46.4 ps; maximum jam time is 4.8 ps and the
minimum inter-frame spacing is 67.2 ps.

If-

Memory

-b SYNCHRONIZATION BUFFERS
- cm

DMA-RCVD - CDT

Figure 25 : Net work Coprocessor hnplementa tion

8.4 Network Coprocessor Implementation Results

Due to this partitioning of system behavior into hardware and software components we demonstrate
feasibility of achieving a 20 MHz coprocessor using a slower general microprocessor component running
at 10 MHz. This speedup in coprocessor performance is achieved by identifying time critical operations
and implementing them in dedicated hardware.

‘Ihe ethernet coprocessor is modularly described as a set of 13 concurrently executing processes which
interact with each other by means of 24 send and 40 receive operations. The total HurdwareC description
consists of 1036 lines of code. A mixed implementation following the approach outlined in Section 4.4
was attempted by decoupling the points of non-determinism in the system model. Table 6 shows the
results of synthesis of application-specific hardware component of the system implementations that was
synthesized in the Olympus Synthesis System and mapped using LSI logic 10K library of gates. Table
7 shows synthesis results using ACTEL library of gates. The software’component is implemented in a
single program containing case switches corresponding to 17 synchronization points, i.e., internal points

8.4 Net work Coprocessor hnplemen tation Results 57

Unit Process Area Delay
Transmit Unit xmitbit 271 14.31 ns

xm.itBune 3183 37.15 ns
DMAxmit 2560 45.06 ns

Receive Unit DMArcvd 400 27.51 ns
rcvdbit 282 12.30 ns
rcvdbuffer 127 22.09 ns
rcvdframe 1571 38.12 ns

Conrocessor 8394 45.06 ns

Table 6: Network Coprocessor Spth&s Results using LSI LCAlOK Gates

Unit Process Area Delay
Transmit Unit xmitbit 268 128.10 ns

xmitframe 2548 246.0 ns
DMAxmit 2028 472.85 ns

Receive Unit DMArcvd 563 236.65 ns
rcvdbit 211 115.50 ns
rcvd buffer 121 199.28 ns
rcvdframe 1226 298.40 ns

Coprocessor 7022 472.85 ns

Table 7: Network Coprocessor S~thesis Results using Actel Gates

of non-determinism as described in Section 6. With reference to Figure 24, the software component
consists of the execution unit and portions of the DMA-rcvd and DMAmit blocks. The reception and
transmission of data on the ethernet line is handled by the application-specific hardware running at 20
MHz. The total interface buffer cost is 314 bits of memory elements. Table 8 lists statistics on the code
generated by existing software compilers for the ethernet software component implementation.

By contrast, a purely hardware implementation of the Network Coprocessor requires 10882 gates
(using LSI 1OK library). With a maximum limit of 10000 gates on a single chip, a pure hardware imple-
mentation would require two application-specific chips. Thus by partitioning into hardware and software
components we are able to achieve a 20 MHz coprocessor operation while decreasing the overall hard-
ware cost to only one application-specific chip (or 23% in terms of gate count). The reprogrammability
of software components makes it possible to increase the coprocessor functionality, for example addition
of self-test and diagnostic features, with little or no increase in dedicated hardware required.

58 8 EBlMPLE OF SYSTEM-LEKEL SYNTHESIS: AUTTWORK COPROCESSOR

Target Processor Pgrn & Data Size Max Delay
R3000, 10 MHz 8572 bytes 56 cycles, 5.6 /LS

18086, 10 MHz 1 1295 bytes 1 115 cycles, 11.5 j.&s 1

Table 8: Network Coprocessor software Component

Figure 26 shows a results of simulation of the final network coprocessor design. This simulation
portion shows when the coprocessor is being programmed for transmission. Instructions are supplied to
the coprocessor by external programmer (the host CPU) which are enqueue in a l-deep queue, ctq-ueue.
The last pulse on signal ctqueue-ak indicates transmission enable instruction after which data is
transmitted serially through signal TXD.

TXD

TXE

txstat

twd,idl

ctqJwe~0:31

ctquwet4:71

ctqmd8:l.U

cteauecl2:151

ctqmueCl6:lSl

0

0

0

0

E

0

0

2

0

1

0

I L

I I

EEEEEEEEEEEEEEEEEEEEEEE

)oooooo b b o o Hooooooooo~~oooooooo hiiboo&iiilbooooooooooooooooooooooooooo~

)oooooobboo ~F10oo0Lboo~Fboooooooooooooooooooooooook2zz22zz22z2z22zz22zz22zI

3d56l46utid9 I 8 lob llb6 l2k l413 1 1542 I 1650 17s I Id27

Figure 26: Network Coprocessor Simulation

59

9 Summary

Synthesis of systems containing both general-purpose re-programmable as well as application-specific
components can be formulated as a hardware-software co-design problem due to two predominantly dif-
fefent computation models used by the system components. Ibis report attempts to identify important
topics and sub-problems in synthesis of hardware-software systems which are then addressed individu-
ally. Among the important topics are - system functionality and constraint modeling, system partitioning,
hardware-software synchronization and synthesis of hardware and software components. We model sys-
tem behavior using flow graph that encapsulate system data and control flow. Constraints are specified on
these graphs as additional edges or as constraints on graph properties. Constraint-driven partitioning into
hardware and software components is performed using a system model that supports non-deterministic de-
lay operations and timing constraints. ‘Ihis partitioning is driven by the satisfaction of timing constraints.
A feasible solution to the timing constraints is obtained by identification and separation of internal and
external points of non-determinism in the system model.

Hardware implementation of partitioned system models uses synthesis approach formulated in the--_
Olympus Synthesis System. Software component design for such systems poses interesting problems due
to inherently serial nature of program execution that must interact with concurrently operating hardware
components. The software component is generated in two steps. First we create a set of linearized sets
of operations, called threads. Next, based on concurrency implementation technique, program threads
are translated into program routines. We have compared program implementation schemes for achieving
low-overhead pseudo-concurrency in the program threads. A coroutine implementation reduces overheads
due to hierarchical calling mechanisms by treating all routines symmetrically, therefore, the context
information needed to be saved/restored is reduced. However, the necessity to embed control flow
into the individual coroutines reduces this gain somewhat, since in some ways the hierarchical context
save/restore also contains this control flow information. At the same time, the ability to do intelligent
dependency analysis can reduce this overhead in case of coroutines. Case descriptions may result in
a smaller overall program implementation in certain cases. The tradeoff between cases and coroutine

. implementations is dependent on processor ISA.
Synchronization between hardware and software is achieved through the use of a control FIFO buffer.

We have demonstrated feasibility of control FIFO-based hardware-software synchronization schemes
where the FIFO control can be implemented either as a dedicated hardware or as a program. The
software implementation of control FIFO reduces the size of hardware component of system design, but
it increases program size and adds to the latencies of program threads. This makes the input data rate about
15% slower in case of the graphics controller example. Depending on the objective of system synthesis
either of the hardware and software alternatives can be selected and simulated using program Poseidon.
Generally, an implementation that aims to rapidly prototype the system design would favor software
component of the system design for a small loss of performance. Hardware control FIFO-based schemes
require sophisticated hardware in order to implement multi-fanin queues. The interrupt-based schemes
reduce the external overhead for the price of additional storage/counters, achieve greater bandwidth
utilizations, reduce the effect of thread sizes on supported data rates, thus making an otherwise infeasible
partition feasible.

60 Ri!SZRENaS

Using the partitioning and implementation approach outlined here we are able to implement the design
of an Ethernet based network coprocessor into feasible hardware and software components. The mixed
implementation requires 23% less dedicated hardware than a purely application-specific implementation.
More importantly, reprogrammability of the software component makes it possible to extend the copro-
cessor functionality without the need of additional application-specific hardware modules. We are able to
simulate mixed system designs using by running concurrent hardware, software simulations with interface
protocol described as a set of guarded commands.

The topic of system synthesis using hardware and software is explorative in nature, because of its
novelty. Even with the simplifying assumptions relating to the target architecture, the problems of accu-
rately characterizing software component and its synthesis are challenging problems. This work takes a
first step in formulating the problem of system synthesis containing hardware and software components.
There are several limitations of the approach presented here. First, even though system specifications
in HurdwareC contain explicit concurrency, the algorithmic control flow is not modified during the be-
havioral synthesis process. This control flow eventually translates into a hierarchical sequencing graph
model which influences system partitioning and the generation of program threads. Since no across the
hierarchy optimizationsare performed the system implementations are affected by the style of specifica-
tion in HurdwareC. Current research efforts are attempting to formulate behavioral transformations that
alter control flow while preserving overall functional and timing characteristics of a system model. With
respect to partitioning, the limitation of the technique presented here would be related to the lack of a
feasible partition on some system designs. In addition, the assumptions on hardware, software imple-
mentation model and interface scheme influence the partition. As a result, the partitioning results may
not be as general to all system designs but specific to the assumptions made for example to the type
of re-programmable processor being considered. Further, the hardware and processor cost models used
are simplified in order to speed up evaluations of different partitioning alternatives. In particular, our
formulation does not make use of processor specific capabilities in the performance estimation of the
software component. Currently we do not consider memory hierarchy in our model of system design.
Most modern processors come with a certain amount of on-chip cache memory that can be used to speed
up the response time of the software component. However, this is not an inherent limitation of our

* approach, and future extensions include modeling of the effect of cache misses on software performance.

10 Acknowledgments

Authors would like to thank Claudionor Coelho, Jr. and Martin Freeman for helpful discussions. This
research was sponsored by NSF-ARPA, under grant No. MIP 8719546 and, by DEC jointly with NSF,
under a PYI Award program, and by a fellowship provided by PhilipsBignetics. We also acknowledge
support from ARPA, under contract No. J-FBI-89-101.

References

[l] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, “The Olympus Synthesis System for Digital

REFERENCES 61

Design,” IEEE Design and Test Magazine, pp. 37-53, Oct. 1990.

[2] J. Rabaey, H. D. Man, and et. al., Silicon Compilation, D. Gajski, editor, ch. Cathedral II: A
Synthesis System for Multiprocessor DSP Systems, pp. 311-360. Addison Wesley, 1988.

[3] D. Thomas, E. Lagnese, R, Walker, J. Nestor, J. Rajan, and R. Blackbum, Algorithmic and Register-
Transfer Level: The System Architect’s Workbench. Kluwer Academic Publishers, 1990.

[4] R. Camposano and W. Rosenstiel, “Synthesizing Circuits from Behavioral Descriptions,” IEEE
Tknsactions on CADLICAS, vol. 8, no. 2, pp. 171-180, Feb. 1989.

[5] M. Ligthart, A. Bechtolsheim, G. D. Micheli, and A. E. Gamal, “Design of a Digital Audio Input
Output Chip,” in Proceedings of the Custom Integrated Circuits Conference, pp. 15.1.1-15.1.6, May
1989.

[6] R. K. Gupta., C. C. Jr., and G. D. Micheli, “Synthesis and Simulation of Digital Systems Containing
Interacting Hardware and Software Components,” in Proceedings of the 2gthDesign Automation
Conference, June 1992.

[7] C. N. Coelho, D. Filo, and G. D. Micheli, “Channel Sharing,” under preparation, Stanford Univer-
sity, 1992.

[8] M. C. McFarland, “The Value Trace: A Data Base for Automated Digital Design,” Technical Report
DRC-01-4-80, Design Research Center, Carnegie-Mellon University, Nov. 1978.

[9] R. Camposano, A. Kunzmann, and W. Rosenstiel, “Automatic Data Path Synthesis from DSL
Specifications,” in Proceedings of the International Conference on Computer Design, pp. 630-635,
1984.

[lo] A. Parker, J. Pizarro, and M. Mlinar, “A Program for Data Path Synthesis,” in Proceedings of the
23TdDesign Automation Conference, pp. 461-466, June 1986.

[1 l] R. K. Brayton, R. Camposano, G. D. Micheli, R. Otten, and J. van Eijndhoven, Silicon Compilers,
ch. The Yorktown Silicon Compiler System, pp. 204-310. Addison Wesley, 1987.

[121 V. Sarkar, Partitioning and scheduling parallel programs for multiprocessors. MIT Press, Cam-
bridge, Mass., 1989.

[131 D. Ku and G. D. Micheli, “HardwareC - A Language for Hardware Design (version 2.0),” CSL
Technical Report CSL-TR-90419, Stanford University, Apr. 1990.

[14] D. Ku and G. D. Micheli, High-level Synthesis of ASICs under Timing and and Synchronization
Constraints. Kluwer Academic Publishers, 1992.

[151 B. Chen and R. Yeh, “Formal Specification and Verification of Distributed Systems,” IEEE Tkzns-
actions on Sofnvare Engineering, vol. SE-g, no. 6, pp. 71&722, Nov. 1983.

62 RlZISRENmS

[16] V. Haase, “Real lime Behavior of Programs,” IEEE Tktnsuctions on Somare Engineering, vol. SE-
7, no. 5, pp. 494-501, Sept. 1991.

[17] P Caspi and N. Halbwachs, “A Functional Model for Describing and Reasoning Time Behavior of
Computer Systems,” AC&I Infonnatica, vol. 22,. no. 6, pp. 595-628, Mar. 1986.

[181 K. Apt, N. Francez, and W. D. Roever, “A Proof System for Communicating Sequential Processes,”
ACM Trans. on Programming Languages and Systems, vol. 27, no. 2, pp. 359-385, July 1980.

[19] S. Owicki and D. Gries, “Verifying Properties of Parallel Programs,” Communications of the ACM,
vol. 19, no. 5, pp. 279-285, May 1976.

[20] A. L. Davis and R. M. Keller, “Data Flow Program Graphs,” IEEE Computer, vol. 15, no. 2, Feb.
1982.

[21] J. B. Dennis and D. P Misunas, “A preliminary architecture for a basic data-flow
Proc. 2nd Annual Symposium on Computer Architecture, pp. 126- 132, 1974.

processor,” in

[22] D. Bustard, J. Elder, and J. Welsh, Concurrent Program Structures, p. 3. Prentice Hall, 1988.

[23] R. K. Gupta and G. D. Micheli, “Vulcan - A System for High-Level Partitioning of Synchronous
Digital Systems,” CSL Technical Report CSL-TR-471, Stanford University, Apr. 1991.

[24] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and Tools, ch. Code
Generation, pp. 557-565. Addison Wesley, 1986.

[25] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, ch. VI: Graph Algo-
rithms. The MIT Press, 1990.

(261 D. Ku and G. D. Micheli, “Relative Scheduling Under Timing Constraints: Algorithms for High-
Level Synthesis of Digital Circuits,” IEEE Transactions on CADLICAS, vol. 11, no. 6, pp. 696-718,
June 1992.

[27] T. Amon and G. Borriello, “Sizing Synchronization Queues: A Case Study in Higher Level Syn-
thesis,” in Proceedings of the 28 th Design Automation Conference, June 199 1.

[28] G. R. Andrews and F. Schneider, “Concepts and Notations for Concurrent Programming,” ACM
- Computing Surveys, vol. 15, no. 1, pp. 34&, Mar. 1983.

[29] M. E. Conway, “Design of a Separate Transition-Diagram Compiler,” Comm. of the ACM, vol. 6,
pp. 396-408, 1963.

[30] P. J. H. King, “Decision Tables,” The Computer Journal, vol. 10, no. 2, Aug. 1967.

63

11 Appendix A: Processor Characterization in Vulcan-II
The syntax of the CPU characteristics file is:

.cpumodel <processor-name> ;
. .

.machine-type [<stack>, <accumulator>, <g-pr>] ;
. operand-type [<rr>, <rm>, <mm>] ;

.cycle-time <num> ns ;

. load <num> cycles ;

. address [<str>]* ;

.data [<str>]* ;

. interrupt [<str>]* ;

.reset <str> ;

.bus-model ;
.type [<muxed> , <de-muxed>] ;

-- .de-muxed ;
. mem-read <str> ;
.mem-write <str> ;
. io-read <str> ;
.io-write <str> ;

.end-de-muxed ;

.muxed ;
.read <str> ;
.write <.str> ;
.io <str> ;
.mem <str> ;

.end-de-muxed ;

.bus-hold <str> ;

.bus-ack <str> ;

.end-bus-model ;

.timing-model ;

11 timing model
instr delay = read/write access + execution delay + operand EA delays
.read-access <num> cycles ;
.write-access <num> cycles ;

. load <num> cycles ;

.store <num> cycles ;

. move <r-rum> cycles ;

.xchange <num> cycles ;

.alu <r-rum> cycles ;

.mpy <num> cycles ;

.div <num> cycles ;

. camp <num> cycles ;

. call <num> cycles ;

.jump enurn; cycles ;

64 II ApPEmLX A: PROCESSOR CMmmnON IN VULCAN-II

.branch <num> cycles ;

.bc-true <num> cycles ;

.bc-false <num> cycles ;

.return <num> cycles ;

interrupts are all fixed target locations-.
. seti <num> cycles ;
. cli <num> cycles ;
. int-response <num> cycles ;

.halt <num> cycles ;

EA calculation
-address-modes ;

.end-address-modes ;

.fpadd <num> cycles ;

.fpsub <num> cycles ;

.fpdiv <num> cycles ;

. fpmul <num> cycles ;

.end-timing-mode
.endcpumodel ;

